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Abstract

Efficient data collection is an important goal in cognitive neuroimaging studies be-
cause of the high cost of data acquisition. One method of improving efficiency is to
maximize the informativeness of the data collected on each trial. We propose an Adap-
tive Design Optimization (Cavagnaro, Myung, Pitt, & Kujala, 2010; Myung, Cavagnaro,
& Pitt, 2013) procedure to optimize the sequencing of stimuli for model-based functional
neuroimaging studies. Our method uses the Joint Modeling Framework (B. M. Turner,
Forstmann, & Steyvers, 2019; B. M. Turner, Forstmann, et al., 2013) to maximize the infor-
mation learned about how the brain produces a behavior by integrating over neural and
behavioral data simultaneously. We validate our method in simulation and real-world ex-
periments by showing how Adaptive Design Optimization proposes the optimal stimulus

sequence to reduce uncertainty and improve accuracy from a Bayesian perspective.
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Introduction

Functional magnetic resonance imaging (fMRI) has become one of the most important
tools in cognitive science to investigate human brain activity because of its noninvasive
nature, reasonable temporal resolution, and precise spatial resolution (Poldrack, Mumford,
& Nichols, 2011). However, the cost of data collection in neuroimaging studies using fMRI is
exceptionally high due to high maintenance expenses of the scanner and low signal-to-noise
ratio in the blood oxygenation level dependent (BOLD) response. Therefore, optimizing the
experimental procedure and design is an important methodological issue for improving the
efficiency of fMRI studies. To this point, many methods have been proposed to ameliorate
certain limitations of fMRI measurements. For example, optimizing a stimulus sequence
(for a recent review, see Holling, Maus, & van Breukelen, 2013) prior to performing an
experiment, optimizing the scan acquisition sequence, or reducing the scanning area to
specific brain regions (de Hollander, Keuken, van der Zwaag, Forstmann, & Trampel, 2017)
can all improve the signal-to-noise ratio of fMRI measures.

However, most of the previous design optimization methods for fMRI experiments
focus on detecting brain activations associated with a task or its across-condition contrast
that heavily rely on general linear modeling (GLM), or estimating the shape of the hemody-
namic response. Would these methods be helpful if your research interest is, for example,
to study the mechanism of self-control? In particular, what if the population of interest
is children, whose attention span is quite limited? Such a population is uniquely difficult
to obtain extensive numbers of trials, and therefore efficient data collection is strongly
required.

Although the previous approaches will be useful in increasing the signal-to-noise
ratio of our experiment, they may not be optimally configured to study computational
mechanisms associated with self-control (B. M. Turner et al., 2018). Moreover, there is no
guarantee that “optimal” experimental designs computed before actual experiments will
be the best designs for all participants. In a computational cognitive model, different levels

of cognitive functioning are represented as different parameter values, which might affect
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the definition of the “optimal” set of stimuli for each individual. Also, there are often large
differences in neural or behavioral responses to similar stimuli across participants, or even
within a participant scanned at different points in time (Miller et al., 2002). Therefore, it is
sometimes unclear which stimuli should be used for a given participant, which suggests

the need for adaptive, rather than static, optimization of experimental design.

In the present study, we present a general-purpose methodology that overcomes
many of the aforementioned limitations of fMRI measurement and optimization methods.
The central feature of our algorithm is its optimally adaptive stimulus-proposal scheme as
a way to maximize the information that is learned about how a brain produces a behavioral
response. Specifically, the active-learning algorithm chooses a stimulus on each trial by
making real-time statistical inferences, in this case about the participant’s perceptual deci-
sion making process. The key advantages of our approach are three-fold. First, the data
collection process in an fMRI experiment involves an optimization of the stimulus sequence
in such a way to maximize information learned on each trial about the underlying decision
process. Hence, the focus is on information about the decision, rather than number of trials
or number of scans per trial. Second, the data collection process is completely adaptive:
unlike static design optimization methods (Holling et al., 2013; Smucker, Krzywinski, &
Altman, 2018), we analyze fMRI data from trial to trial in real time so that the stimulus
search process is always conditional on the current state of knowledge about the partici-
pant’s decision process. Third, our method incorporates both neural and behavioral data
to optimize stimulus choice, a feature that is different from previous real-time design opti-
mization methods such as QUEST (Watson & Pelli, 1983), Psi method (Kontsevich & Tyler,
1999), Dynamically Adaptive Imaging (Cusack, Veldsman, Naci, Mitchell, & Linke, 2012)
and The Automatic Neuroscientist (Lorenz et al., 2016). All these advantages reduce overall
scan time for a desired amount of information by automatically tailoring the experimental
design to each individual participant. In simulated and empirical studies, we show how the
method can be used to collect data that are more informative than what could otherwise be

obtained, despite neural variability and other complications that plague fMRI experiments
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(Greve et al., 2013).

Overview of the Methodology

Figure 1 provides a flowchart of the method we have developed to perform adaptive
optimization of real-time fMRI experiments. Following typical structural scans and func-
tional localizer tasks (Appendix A), fMRI data are collected during the task in real time and
processed to determine activation of each region of interest with motion correction. The
pattern of activation is then evaluated by a joint model (Palestro et al., 2018; B. M. Turner,
Forstmann, et al., 2013; B. M. Turner, Van Maanen, & Forstmann, 2015), whose parameters
convey the current knowledge of how brain activity best predicts the pattern of behavioral
responses. To keep the knowledge of brain-behavior connections as current as possible,
the parameters of the joint model are updated via Bayes rule on each trial using several
techniques: (1) differential evolution Markov chain Monte Carlo (B. M. Turner, Sederberg,
Brown, & Steyvers, 2013) to efficiently approximate the parameter posterior distributions
(Section “Posterior Sampling via DE-MCMC”), (2) one-trial lag to prevent hemodynamic
lag from adversely affecting the posterior estimates (Section “One-trial-lag Optimization”),
and (3) dynamic gridding to adjust the grid used to approximate the joint posterior dis-
tribution (Section “Dynamic Gridding”). Finally, we rely on active learning through ADO
(Cavagnaro et al., 2010; Myung et al., 2013) to guide selection of stimuli on a trial-by-trial
basis. The advantage of using ADO is that it selects stimuli for the next trial based on
the current parameter estimates in the joint model by integrating over all possible stimuli
and all possible neural and behavioral responses. The stimulus design that is maximally
informative about how the brain produces a behavior of interest is selected for the next
trial, and the process repeats until a stopping criterion is reached. Supplementary code

used in this study for implementing ADO is available on https://github.com/MbCN-1ab.
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Figure 1. Pipeline for the fMRI-ADO Framework. The figure shows how Adaptive Design
Optimization can be used to adaptively select stimuli from a set of potential candidates to
maximize the information relating brain activity to a behavioral response. On each trial,
a stimulus is selected based on the calculation of global utility (top), and the stimulus is
shown to the participant (bottom left). A joint model analyzes the Blood Oxygenated Level
Dependent (BOLD) response and the choice outcome from the new stimulus. Given the
new information, we recalculate the global utility across the stimulus space to propose the
next stimulus in the sequence. Occasionally (e.g., every four trials), a dynamic gridding
process is used to effectively integrate over stimulus and parameter spaces.

st Adaptive Design Optimization

82 ADO is a Bayesian and model-based method for optimal experimental design based

ss on an information theoretical measure of design utility. ADO was originally proposed as
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an online design optimization tool for model comparison in cognitive science experiments.
However, when only considering one model, the method naturally reduces to an algorithm
for optimizing parameter estimation. A cognitive process model, along with the history of
a participant’s responses, guides stimulus selection on each trial so that a selected stimu-
lus is hypothesized to yield the greatest amount of information about model parameters.
Although ADO is similar to many staircasing procedures used in psychophysical experi-
ments, ADO is more general in that it can be applied naturally to different types of neural
data (e.g., EEG, single-unit recordings, decision choices) or to any type of cognitive process

model.

ADO proposes an optimal design for upcoming trials by solving an optimization
problem. Given a candidate design of an experiment for the next trial d € D, design
proposals are made by selecting a design associated with the highest global utility U(d).
Here, U(d) is defined with respect to the local utility u(d, 6,y), which is a function of the
design d, the model parameter ¢, and the anticipated (behavioral) response on the next trial

y*. A generic description of the design optimization is as follows:

di+1 = argmax U(d)
d

U@ = [ [ uld0,57w(716.dp(0) db dy" (1)
y*€Y JOeO

A local utility function u(d, §,y) evaluates the utility or informativeness of a design d
regarding a model parameter set  when a design d is used and a response y is anticipated
in a hypothetical experimental trial. The global utility U(d) is computed as an “average”
local utility by integrating the local utility over a parameter space © and a response space

Y.

A posterior covariance matrix and the sum of squared errors are often used as utility
functions (Ryan, Drovandi, McGree, & Pettitt, 2016). However, a standard implementation
of ADO relies on mutual information to evaluate the utility of each design because mutual

information performs well for both parameter estimation and model comparison.
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In addition to d, §, and y*, assume d;.; and y; .+ that represent a series of experimental
designs and collected (behavioral) responses in the previous ¢ trials, respectively. A global

utility function based on mutual information is

p(Oldie, y1e,d, y*)
Ud:/ / lo p(y*|0, di.¢)p(0) db dy*. 2
D= ] o8 ol gy P10 di)p(6) Ao dy )

Note that by the definition of mutual information, a local utility function in Equation 1 is

p(0\dit, yi:e,d,y*)
p(e‘dlzta yl:t)

u(d,0,y*) = log 3)

(Myung et al., 2013).

Myung et al. (2013) suggested a simple integration strategy based on grid based
methods. Myung et al.’s approach proceeds by first defining a number of grid points for
each dimension of design, parameter, and response spaces. Once the grids are defined over
an entire search space, ADO then evaluates local utilities (i.e., u(d, 6, y*)) and joint densities
of 6 and y1.4 (i.e., p(y*|0, d1.1)p(0) = p(y*,0|d;.;)) for all grid points. A global utility for a
candidate design d is computed by taking a mean of weighted local utility values sharing

a target design d :

1 Oldis, v doy")
Ud)~ = 3 1og POt d YD) g i vpio) 4)
nq (6.5°} p(‘g‘dl:t:ylzt)

where n, is the total number of grid points assigned to a candidate design d.

ADO has been fruitfully applied in cognitive science (Cavagnaro, Aranovich, Mc-
Clure, Pitt, & Myung, 2016; Cavagnaro, Pitt, Gonzalez, & Myung, 2013; Cavagnaro, Pitt, &
Myung, 2011) and more recently to neuroscientific problems, but only in simulation work
(DiMattina, 2016; Sanchez et al., 2014; Sanchez, Lecaignard, Otman, Maby, & Mattout,
2016). Although similar adaptive stimulus optimization methods have been applied on
neurophysiology studies (for a recent review, see DiMattina & Zhang, 2013), there was no

study directly connecting behavioral and neural data for optimizing stimuli. For example,
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DiMattina (2016) used adaptive stimulus generation, which has Bayesian adaptive mecha-
nisms to compare contrast gain models in human vision. However, this application neither
modeled neural activity nor used neural data directly. Instead, the researcher developed
an encoding-decoding model to map contrast stimuli to hypothesized neural responses
(encoding model) and then to behavioral responses (decoding model) such that ADO only
operated on the behavioral response data. While this study involves a neurophysiological
model, ADO has yet to be demonstrated as an effective tool in the online processing of

neural data.

Joint Modeling Framework

Today, scientists interested in studying cognition are faced with many options for
relating experimentally-derived neurophysiological variables to the dynamics underlying
a cognitive process of interest. A recent trend in cognitive science is to blend the theoretical
and mechanistic accounts provided by models in the field of mathematical psychology
with the high-dimensional data brought forth by modern measures of cognition such as
those collected in an fMRI experiment. One new approach for imposing a reciprocal link
between brain measures and decision variables is the “joint modeling” approach. Unlike
the traditional modeling approaches (for descriptions of uniqueness, see B. M. Turner et
al., 2019), joint models enforce a constraint on model parameters based on the random
variation in the neural data. In other words, if one treats the neural data as a statistical
covariate within the model, the estimates of the cognitive model parameters will be more
constrained under mild conditions (B. M. Turner, 2015). The process of fitting the model
to data procures estimates of neural activation parameters for each stimulus presentation.
For the behavioral data, a cognitive model is developed, and similarly fit to behavioral
data such as choice response time measures. To impose statistical reciprocity, a linking
function specifies how the parameters of the neural data are related to the parameters of
the cognitive model.

In a series of studies, joint models have been shown to outperform models that do not
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incorporate neural measures, suggesting that the information in neural measures can be
used to make substantially better predictions for decisions (e.g., B. M. Turner, Rodriguez,
Norcia, McClure, & Steyvers, 2016). In addition, compared to approaches estimating
single-trial neural and behavioral model parameters separately and correlating them (e.g.,
Forstmann et al., 2010, 2008), joint models can minimize the loss of information about
statistical constraints. In the present investigation, we will optimize this framework to

arrive at better representations of how the brain produces a behavior.

Adaptive Design Optimization: Extension to the Neural Data

Introducing neural data and its activation model does not change the definition of
the global utility function and the searching process. However, the dimension of both
parameter and response spaces increases because we have incorporated neural data and
therefore need to consider the expected neural responses into ADO.

Ideally, a full joint model would allow ADO to use a raw BOLD time-series vector
N as its neural input. Assuming a hierarchical joint model €2 = (Gnyper; Oneural, Fvehavioral ),
observed neural data during the previous ¢ trials N..,,q(;), and anticipated neural observa-

tions IN*, we can define global utility function as

Usnm(d) = // /u(d./ Q,N* y*)p(N*, y*|Q, d)p(Q) dQdN* dy*

p(Q|d1:taN1:end(t)vyl:tvN*vy*)
= log p(N*, 1, d)p(Q) dQdN* dy*  (5)
/// p(Q‘dlitlezcnd(t)ay]it) ( ‘ ) ( )

Note that the subscript notation of the variables representing neural (i.e., Ny.cnq()) and
behavioral (i.e., y1.1) data are inconsistent due to the mismatch of temporal resolution
between BOLD and behavioral responses. Here, end(t) refers to the number of neural data
samples (i.e., time points) until the end of the ¢-th trial.

However, using the raw neural data is practically impossible within ADO because of
the interaction between ADO, the dimensionality of neural data increasing in real time, and

the shape of the anticipated BOLD responses. Equation 5 suggests that all data points in
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the time-series vector N must be integrated over R where n is the length of the time-series
vector. The problem in the real-time fMRI application is that new data are continuously
added during the scan causing increases in the dimension of the neural data space, even

when ADO is computing the global utility of candidate designs.

A more critical problem is that computation time required for ADO interacts with the
data collection procedure. If ADO functions relying on the raw BOLD responses, it has to
evaluate the expected neural responses for the next few time points. However, the number
of time points to be considered is arbitrary here because computation time for ADO will
delay the whole schedule of the next trial (e.g., stimulus presentation). Moreover, changes
in the schedule of the next trial will conclude in changing the shape of predicted BOLD
responses and essentially in the evalutation of the global utility. As these issues occur in
real time while ADO computes the next optimal stimulus, ADO would not be able to handle
this issue appropriately. BT: this was hard to follow for me. I modified it, but honestly I
don’t get what you're trying to say. Is it that the calculations at time t for the next trial don’t
include the information about the BOLD response from the previous trial t-1? it seems like

this is not being effectively communicated.

As an alternative, we can implement a global utility function based on a “limited”
version of the joint model structure using trial-wise neural activation estimates. For exam-
ple, we can make use of simple statistical models, such as a general linear model, to first
obtain estimates of the unknown stimulus- or trial-wise neural activations /3, denoted 3
(e.g., Rissman, Gazzaley, & D’Esposito, 2004). Given these neural activation estimates for

previous trials 41.; and for the next hypothetical trial 3*, a global utility is defined as

Urond) = [ [ [ uld, 9,550,571 () d2dp” dy

Qldyt, Brots yiue, B5y%) 4 .
:///logp< ‘ 1.t7/81.t7Ay1.t7/8 Y )p<6*,y*’Q,d)p(Q) deﬁ* dy*
p(Q‘dlztaﬁl:tay1:t>

When the limited joint model is used, single-trial neural activation estimates serve as

the neural input into the ADO procedure, and this is an effective strategy because these
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estimates efficiently describe stimulus- or trial-wise brain activity, unlike the raw neural
data as in Equation 5. By reducing the set of possible data points to single-trial activation
parameters rather than a full BOLD time series, the computational burden of using ADO
becomes manageable once again. However, this reduction does come at the cost of inflated
uncertainty in the estimates of neural activation. Also, note that the response space for
the continuous neural activation 3 must be discretized if one attempts to use a grid-based

approximation as in Equation 4.

Introducing the Neural Data: Single-trial Neural Activation

The use of stimulus- or trial-wise neural activation estimates serves as a remedial
strategy for the high dimensionality problem of raw BOLD responses. To actually use the
single-trial activation estimates, fMRI-based ADO must include a component that estimates
neural activation amplitude evoked by each stimulus or trial so that the neural estimates
can be used for proposal generation.

The conventional approach to estimating single-trial activation is to perform a general
linear model (GLM) analysis — an application of multiple linear regression to fMRI data. A
GLM uses a design matrix consisting of vectors representing the onset times of events of
interest (e.g., stimulus presentation, response production) convolved with a hemodynamic
response function. A typical approach is to define condition-wise regressors for comparing
the mean activation estimates across conditions (for a more general introduction to this
topic, see introductory textbooks for fMRI data analysis such as Poldrack et al., 2011).

However, when using ADO, GLM regressors must be defined at each stimulus- or
trial-level because we need information of neural activity associated with each stimulus.
Conceptually, stimulus-level regressors can be easily made by setting the onset vectors for
each individual stimulus, not for each condition. A single-trial GLM can be implemented
in a Bayesian framework (e.g., Palestro et al., 2018). However, full posterior estimation
is time consuming in real-time fMRI experiments due to the large number of single-trial

regressors or multiple BOLD response vectors. In our application, we used frequentist
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estimates to obtain trial-wise neural activation estimates efficiently. For example, ordinary

least squares estimates can be derived as:
f=X"X)"'X"N (6)

where X is a design matrix, a superscript 7" indicates the transpose operation, and N is a
raw BOLD time-series vector. We relied on ordinary least square estimates for extracting
the target region given the time constraint. However, during the task, we used estimates
assuming the first-order temporal autocorrelation in the optimization routine for acquiring

as accurate values as possible.

Issues in Estimation Methods. Although the idea of estimating stimulus-wise neu-
ral activation using GLMs seems straightforward, a few methodological issues can affect
the quality of the estimates and computational burden imposted on ADO. The first issue
is the shape of the HRF. As the observed neural data are assumed to be the product of
convolving a sequence of experimental events and the HRF, how we define (or model) the
HREF affects the estimates of the single-trial neural activation.

In this study, we used the canonical HRF model (also known as ‘double-gamma
HRF’) with fixed shape parameters: a; = 6, a2 = 16,b; =1, by = 1, and ¢ = 1/6. Given the
time index ¢ and fixed shape parameters, the double-gamma HREF is

ot exp(—bit) 927 1b5? exp(—bat)

h(t) = o —c o) . 7)

However, it is worth noting that if the HRF is misspecified, estimates of the trial-wise
neural activity may be suboptimal, as is the case in nearly every model-fitting procedure
(Lindquist, Loh, Atlas, & Wager, 2009).

Ideally, we could estimate the shape parameters of the HRF during the experiment.
However, simultaneously estimating the shape parameters will quickly increase the com-
putational complexity of the design optimization problem. As the main purpose of our

study is proof of concept, we used the canonical HRF as a reasonable approximation.
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Another statistical issue is that the single-trial GLM is vulnerable to multicollinearity;,
especially when an experiment uses rapid event-related designs (i.e., short interstimulus or
intertrial intervals). This problem comes from the shape of the HRF, which has a temporally
extended profile. If two experimental events are offset with a short time interval, the corre-
sponding regressors will be similarly shaped to one another, making their correlation high.
Although this problem might not apply to our study with better trial-by-trial separation,

an appropriate methodological consideration is still needed.

Previous studies have discussed this issue and proposed alternative methods for bet-
ter single-trial neural activation estimates (e.g., Abdulrahman & Henson, 2016; Mumford,
Davis, & Poldrack, 2014; Mumford, Turner, Ashby, & Poldrack, 2012; B. O. Turner, Mumford,
Poldrack, & Ashby, 2012). However, many of these alternatives use the strategy of fitting
as many GLMs as the number of stimuli or trials to be analyzed, which could increase the
computation time in the ADO pipeline. Also, selection of the estimation method must con-
sider how one plans to update the single-trial neural estimates together (see “Incremental
Estimation of Single-trial Neural Activation”). Hence, we decided to use a more traditional,
single-GLM-based approach (Rissman et al., 2004) for this proof-of-concept study, while

tully acknowledging its limitation.

Incremental Estimation of Single-trial Neural Activation. To update the neural
activity from newly occurred events in the latest trial, estimation of single-trial neural
activation is necessary at the end of every trial. However, using this incremental procedure
implies that BOLD time-series will be continuously updated during an entire scanning
session. For single-trial neural estimates that are already obtained, we cannot avoid slight
changes in those estimates because newly updated data will change the likelihood (and
therefore posterior density) of possible estimates. Hence, we have to determine how to deal
with the variability of single-trial neural estimates during fMRI-based ADO experiments.

The first option to handle the variability of single-trial neural estimates is to block
the updating of neural estimates included in ADO during previous trials. In this case,

neural activation estimates of previous stimuli or trials will be fixed in further trials and
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new estimates for those trials will not be used in ADO. Only the estimates from a new trial
will continue being added in the neural “data” — in this case, single-trial neural activation
estimates — vector. This approach ensures the stability of ADO algorithm as the estimates
of neural activity remain constant once they have been estimated on a given trial. Also,
this approach can maximize computational efficiency of grid-based ADO. As long as the
grid settings and previously obtained neural data do not change, we can store the posterior
probability density of the current trial as the prior for the next trial, and simply call those
values when evaluating the global utility.

The second option to handle the variability of single-trial neural estimates is to allow
ADO to update the neural estimates every trial. From this perspective, ADO must use the
best “data” — again, single-trial neural activation estimates — available at each trial. Hence,
ADO must refer to new estimates as they become more accurate and less variable as the

experiment moves on.

In the simulation experiments, we made an ideal assumption that we always obtain
perfect estimates of stimulus-wise neural activations. Therefore, there is no need for
considering the variability of neural estimates and updating the new parameters through
the acquisition. In the fMRI experiments, however, we chose the second strategy that

updates neural estimates for every trial to make ADO use the best information available.

One-trial-lag Optimization. Ideally, we should use both neural and behavioral
data from all previous trials. However, when we use typical lengths of interstimulus or
intertrial intervals, obtaining neural estimates of the latest trial before computing global
utility is almost impossible due to the temporal profile of hemodynamic responses.

In detail, the hemodynamic responses consist of an increasing period to a peak that
takes 5-6 seconds, a decreasing period with an undershoot below a baseline activation, and
a slow asymptotic recovery period. The total length of a hemodynamic response usually
takes up to 30 seconds. As our main interest is the activation amplitude, we need to measure
BOLD responses for a specific stimulus or trial for at least 5-6 seconds to characterize their

peak intensity. However, a temporal lag of 5-6 seconds might be too long depending on
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stimulus presentation settings (i.e., stimulus duration, interstimulus/intertrial interval). In
this case, we can collect a behavioral response but not a neural activation estimate at the

end of the trial.

/7N i . = = BOLD responses for the first trial
/ \ / \ BOLD responses for the second trial
\ ¥ . + = BOLD responses for the third trial
] ! \ Convolved BOLD resopnses
A Stimulus onset

T
0
(Prior) A

(Single-trial beta estimation +)

...................... > ADO )
Design proposal

Randomized design

1
i

i

E

|

| Stimulus duration
i

i Response interval
i

Trial #1 Trial #2 Trial #3

Figure 2. Conceptual illustration of one-trial-lag ADO. Dotted lines (red, blue, and green)
refer to hypothetical hemodynamic responses evoked by a stimulus within each trial, and
a straight line (gray) shows the expected value of convolved hemodynamic responses. The
squares below the x-axis specifies the length of intervals required for each step.

One possible solution for the loss of neural data is to use the neural and behavioral
data obtained by the (¢t — 1)-th trial to generate the optimal proposal for (¢ + 1)-th trial,
a strategy we refer to as ‘one-trial-lag Adaptive Design Optimization (ADO)’. Figure 2
describes how one-trial-lag ADO works. For example, the first trial uses an ADO proposal
that is derived by the prior distribution of model parameters, whereas the second trial uses
randomly generated designs since the neural estimates from the first trial are not available
at this point. During the second trial, the single-trial neural activation of the first trial is
estimated and used together with behavioral data to compute the optimal design for the
third trial. Similarly at the third trial, ADO uses the data obtained by the second trial (green

blank rectangle) to generate the optimal proposal for the fourth trial.
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The method described above was used in the simulation study as an ‘ideal” schedule
of imposing a lag because we can exploit ADO in as many trials as possible. However, we can
also simplify the implementation of one-trial-lag ADO using randomly generated designs
for the first few trials, which is the strategy used in the fMRI experiment. Compared to the
method described above, the latter might be preferred from the perspective of controlling
variability of neural estimates. As enough neural data have been collected in the first few
trials, the neural estimates corresponding to the first few trials have already stabilized. As
one-trial-lag ADO relieves us from burdensome computational time when acquiring single-
trial beta estimates, we recommend using this procedure when single-trial beta estimates

must be obtained to characterize the BOLD response.

Refining the Functionality of fMRI-based ADO

Posterior Sampling via DE-MCMC. In the practice of Adaptive Design Optimiza-
tion, full posterior estimation of model parameters may be required in real-time for two
reasons: evaluation of the performance of ADO and adaptive updating of the grid points.
In this study, we used a Differential Evolution Markov chain Monte Carlo sampler (DE-
MCMC; ter Braak, 2006; B. M. Turner, Sederberg, et al., 2013) for posterior updating.
DE-MCMC sampler uses information about the difference between chains to draw new
posterior samples, enabling it to sample more efficiently from models with correlated
dimensions. In addition, DE-MCMC sampler suffers less from autocorrelation in the sam-

pling process than conventional Metropolis-Hastings algorithms.

To initialize the chains of the sampler, we used the grid points as a reference. In detail,
initial chains were selected by multinomial sampling with a choice probability vector p®
constructed by normalized posterior densities of all grid points in the parameter space.
Given the j-th grid point in the search space at trial ¢, H;t), and the total number of grids J,

the i-th chain initialized after completing the ¢-th trial, ¢;; 1, is initialized by multinomial
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sampling:

Cit1 ~ Multinomial(p®)

= 1\/Iultinomial([pgt)Jgg)7 o ,pg)]T)

Here, the probability that the j-th grid point is selected as an initial chain is

p(t) o f(e](t) ‘yl:ta dl:t)
’ 3‘]:1 f(@](t) ’yl:ty dl:t)

At the (i — 1)-th iteration, given the chains from the previous iterations c. ;;—1, DE-
MCMC proposes a posterior sample with the following procedure. First, the sampler
randomly selects two different chains, say ¢, +;—1 and ¢, +;—1, and take their difference:
Ac = ¢mti—1 — Cnti—1. Second, a proposal based off on the third chain ¢, ;-1 (¢ # m,n) is
generated by adding Ac scaled by a pre-specified factor v and random perturbation ¢ to it.
If this proposal passes the test by the Metropolis-Hastings probability, the new proposal is

accepted as a posterior sample. If not, the previous sample is used again.

However, poor initialization can cause problems in the posterior due to “outlier”
chains that deviate from the majority of the chains. Migration (Hu & Tsui, 2005) could
be a reasonable remedy to solve this problem by swapping the location of outlier chains
during the first few trials with fixed probability. In addition, DE-MCMC can force the
sampling procedure to focus more on the high-density region (this is called “burn-in"
mode; B. M. Turner & Sederberg, 2012) so that we can center the posterior around its
maximum a posteriori (MAP) estimate. For more details, we direct readers to publications
investigating these ideas B. M. Turner and Sederberg (2012); B. M. Turner, Sederberg, et al.
(2013).

Dynamic Gridding. The current implementation of fMRI-based Adaptive Design
Optimization (ADO) relies on a grid-based method to approximate the global utility cal-

culation. For efficient performance of ADO, we need to discretize both parameter and
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response spaces appropriately. Theoretically, an obvious first choice is to define a dense
grid over a broad range of values in both parameter and response spaces. However, a
tradeoff ensues between the number of grid points and computational efficiency due to
multidimensionality of the grid space. Adding only one more grid point per dimension
will result in an explosive increase of the number of grid points in the entire search space.
Hence, simply specifying a very dense grid is not an appropriate solution.

Another disadvantage of the dense grid space is redundant grid points in low pos-
terior density regions. Global utility based on mutual information relies on posterior
densities obtained at each grid point. Joint posterior distributions of model parameters
will be constrained as the experiment proceeds, and therefore the number of grid points
with extremely small posterior density (i.e., p(y|0, d)) will increase. In the end, most of the
grid points cannot contribute to generating new proposals due to small posterior densities,
which makes computation and aggregation of global utility values inefficient.

One possible solution is to update the grid as the posterior distribution is updated.
This approach allows ADO computation to be affordable with limited computing resources
while achieving better efficiency. Implementation of this solution requires a method for

automatically adjusting the distribution of grids to capture a region with high posterior

density.
(A) Initial grid ~ (B) Posterior samples  (C) Rotated samples (D) Re-defined grid (E) Updated grid
F ¥+ ¥ ¥ ¥ §F ¥ ¥ ¥ ¥ ¥ o :
+ + + + + HHEF + + o+ + Hd - + ¥
ST I (SO [ o
H + + + + HHF +7% + + HO g e, ¢ S A H ++++
H + + + + HHE + + + + H 3 P 3 +
R A
+ 4+ + + 4+ H4+ + + + + 4 ‘ R ‘
61 PC1 91

Figure 3. Visual illustrations of eigendecomposition-based dynamic gridding. ADO
starts with an initial grid setting (A) and obtains posterior samples using an MCMC sam-
pler (B). The covariance matrix from the posterior samples provides information about
eigenvectors (red arrows in B), which enables rotation of the posterior samples to align
them orthogonally (C). New grid points are defined for each dimension based on pre-
specified percentiles (D). The eigenvectors of the covariance matrix allow rotation of the
new grid back onto the original parameter space (E).
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Here, we used a simple method based on eigendecomposition of a sample covariance
matrix motivated by principal component analysis (Johnson & Wichern, 2007). The main
idea is that we can compute the sample covariance matrix S from the posterior samples
obtained by MCMC procedures and decompose it into eigenvectors and associated eigen-
values. These eigenvectors provide an appropriate rotation scheme to orthogonalize the
posterior samples. Figure 3 provides visual illustrations of the dynamic gridding procedure

described here.

The result of eigendecomposition of S consists of two matrices — a square matrix R
containing eigenvectors of S as its columns, and another diagonal matrix C' whose diagonal
elements are eigenvalues of S:

S = RCR™..

Because eigenvectors in R construct an orthogonal basis explaining the largest variance of
the posterior samples, we can use R to map the original posterior samples, say A, onto
an orthogonal principal component space without additional scaling: A = AR. Then, for
each dimension, we can sample quantiles from an empirical marginal distribution given a
set of pre-specified probabilities, which defines a new grid in the rotated space. As a last
step, an inverse of the rotation matrix R maps the newly defined grid G’ onto the original
space: G* = G R™'. There are several software packages for statistical computing that offer
the appropriate functions for implementing these operations (e.g., eigen and quantile in

R).

Note that this dynamic gridding method can sometimes generate invalid grid points
according to assumptions on the model parameters. For example, the standard deviation
of a normal distribution, say o, is not allowed to have negative values by its definition.
However, the SVD-based dynamic gridding might allow invalid grid points (i.e., o < 0)
by the shape of the joint posterior distribution and constraints imposed to other model

parameters. These invalid grid points must be ignored in subsequent steps.
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Simulation Study

In this section, we aim to provide the simulation-based verification of the performance
of IMRI-based ADO. To this end, we first describe the contrast discrimination task that will
be used in both the simulation study and the fMRI experiment, and then outline the joint
model we used to explain both the neural and behavioral data.

Next, we report the result of one large simulation study we conducted to assess
parameter recovery when using ADO-based experiments relative to a randomized design as
abaseline. To investigate how well the parameter recovery results generalize, we performed
parameter recovery analyses on 30 different parameter sets, each of which produce patterns
of data that resemble human decision making in our task. The basic structure is to (1)
choose a parameter value for the joint model from the 30-parameter set, (2) perform an
ADO-based experiment with the data from each trial being produced by the joint model,
(3) perform a Randomized Search based experiment by sampling a pair of contrasts on
each trial at random, and (4) compare the parameter posterior estimates obtained in each
experiment sequence. For (4), we compare the estimated parameter posteriors in terms of
their accuracy (i.e., distance from the true parameter value) and precision (i.e., the variance

in the estimated parameter posterior).

Task

In the contrast discrimination task, a participant is presented two grating annuli
consecutively, each having different contrast levels. Following the stimuli, a response cue
is presented and the participant is instructed to respond by indicating which of the two
stimuli were of higher contrast by pressing the corresponding button. Figure 4 illustrates
the trial structure of the contrast discrimination task.

Contrast levels are defined in the interval [0,1]. When the contrast level is 0, the
stimulus is completely flattened and shown as a gray plane. When the contrast level is 1,
the stimulus shows a fluctuating black-white stripe pattern. In the experiment, the contrast

values are logarithmically spaced with 10 levels (i.e., 0.010, 0.017, 0.028, 0.046, 0.077, 0.129,
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6 seconds Interstimulus
(flickering at 4Hz) interval
6-10 seconds Stimulus 2
(mean: 8 seconds) 6 seconds
(flickering at 4Hz) Fixation
1 second Response
Same duration with

the interstimulus
interval

Fixation
1 seconds

Figure 4. The trial structure of the contrast discrimination task. After the fixation for one
second, a participant is presented two grating stimuli with different contrasts consecutively.
Each stimuli is presented for six seconds flickering at 4Hz. The mean length of interstimulus
and intertrial intervals is 8 seconds. The mean length of interstimulus and intertrial
intervals in Randomized Search and Adaptive Design Optimization are 8 and 12 seconds,
respectively.

0.215, 0.359, 0.599, 1.000). We also restricted the experimental design such that no two

stimuli had exactly the same contrast.

Developing a Joint Model of Contrast Discrimination

We have developed a joint model that relies on the Naka-Rushton equation and a
Thurstonian decision model to describe how the neural response manifests in the dis-
crimination experiment. In the model, neural activation (and therefore the amplitude of
BOLD responses) is assumed to monotonically increase with increases in the contrast level,
specifically, according to the well-known Naka-Rushton equation (DiMattina, 2016; Li, Lu,
Tjan, Dosher, & Chu, 2008). From this prediction of stimulus-induced neural activations,
a Thurstonian decision model is used to predict behavioral choice responses in the binary
discrimination task (Thurstone, 1927). Both decisions about the functional form of the
neural measures and the discrimination model were chosen because of their general appli-
cability to other decision-making tasks, so that the results presented here could be readily

adapted to other experimental task settings.



425

426

427

428

429

430

431

432

433

434

435

437

438

439

440

441

442

FMRI DESIGN OPTIMIZATION 23

Neural Submodel. To describe the relationship between the contrast and activation
of visual cortex, we use Naka-Rushton equation (DiMattina, 2016; Li et al., 2008). Given the
two contrast levels ¢; and ¢z, Naka-Rushton equation models predicted neural activation

levels using three shape parameters (b, Rpqz, ¢50):

2

Riaz G
2 2
C50 1+ ¢

Bi=0b+

(i=1.2) ®)

where b is baseline activation, Ry, is the maximum amplitude above the baseline, and c5
is the contrast level that evokes half the maximum activation. We assume that the actually
measured neural activation ; is normally distributed with mean Bi and constant standard

deviation §/+/2:

B; ~ N (B, (6/V2)?). ©)

Behavioral Submodel. On the behavioral side, we use a Thurstonian decision
model (Thurstone, 1927) to model the discrimination process. Let us assume that the
perceptual system represents the physical stimuli (i.e., the two grating stimuli) with inten-
sity ¢1 and ¢2 as 1 and v as a normally distributed random variable centered on the true

physical state, but with some perceptual uncertainty s such that

i~ N(,8%) (i=1,2). (10)

Then, we make a comparative judgment based on the difference between two mental
representations, say 12 — 1. Hence, the difference of the two psychological variables can

be written as

o — Py ~ N(¢2 - ¢1, (\/58)2)- (11)

Given this difference distribution, we assume a behavioral response y is given according to
a Bernoulli distribution

y ~ Bernoulli(p)
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with probability p determined by the psychological mapping of the two physical intensities

such that

p=1-0"(0;65— 61,(v25)%), (12)

where ®*(; u, 0?) is a cumulative density function of a Gaussian distribution with mean p
and standard deviation 0. Hence, y = 1 when our psychological experience suggests that
b2 > P1.

A Linking Function. Any joint model requires a linking function that mathemati-
cally expresses the relationship between the neural and behavioral submodels. As a linking
function, we simply assume that the neural encoding of the contrast stimuli works as a men-
tal representation of the contrast level (i.e., ¢; = Bi, ¥; = B;). In addition, we assume that
the uncertainty in behavioral responses ¢ is affected by the variability of neural activation
as in Equation 9. Therefore, the complete joint model of contrast discrimination comprising

of four parameters (b, Rz, ¢50,9) can be described as follows:

Bo — Br ~ N(B2 — pr,62),
p=1 _q)*<o;32 —31752) Z/()OON(x;Bz —5’1,52)61377

y ~ Bernoulli(p).

Methods

To perform grid-based Adaptive Design Optimization (ADO), we need to first specify
environmental settings that include (1) prior distributions, (2) initial grid settings, (3)
MCMC sampler parameters (e.g., the number of chains, burn-in steps and valid iterations),
(4) dynamic gridding parameters. Tables 1 and 2 show the default settings and parameter
sets used in the simulation study.

As for the levels of the contrast, we used ten logarithmically spaced points for each

stimulus per trial. As we used two stimuli for each trial and excluded the designs where the
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first and second stimuli shared the same contrast, the design space consists of 10 — 10 = 90
candidate designs. For a grid-based approximation of the parameter space, we decided to
use five points per dimension. Therefore, the number of points in the parameter space is

5% = 625.

If the response variable of interest relies on discrete measurements, we do not need
further approximations for grid-based ADO because the response variable itself is already
discretized. However, if the response variable is continuous, grid-based ADO requires
discretization of the response space. In this simulation, we set ten levels of neural activation
amplitudes for this approximation. As we used two neural measures per trial plus one

binary choice, the discretized response space consists of 10? x 2 = 200 points.

When specifying the prior distributions, we could use non-uniform priors such as
diffuse normal distributions for b and R,,.z, a truncated normal or beta distribution for
cs0, and an inverse-gamma distribution for §. However, we decided to use uniform priors
to reduce computation time as much as possible, as we evaluated posterior densities every
trial with newly updated single-trial neural estimates (see Section for more details) or grid

points.

In the simulation study, we defined measures of accuracy and precision of posterior
estimates by root mean square deviation (RMSD) and standard deviation (PSD) of the
posterior distribution. We considered mean values of the posterior samples as posterior es-
timates as in Equation 13, and then computed parameter-wise standard deviation (PSD; ;)
and pooled performance measures (RM SD; and PSD;) at each trial ¢ as follows: Given a
set of “true” parameters assumed in each simulation § = (61, 62,03, 64) = (b, Rymaaz, 50, 9),
and z;;;; representing a value of the j-th chain of the DE-MCMC sampler for the parameter

0; at the k-th iteration (j = 1,--- ,24),
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Tt = 800 Tijkts (13)
24 % 800, =, j=1
4
=1
PSD,, = \/2116(32001 ?il(xijkt — Tit)?
o 24 x 800 ,
1 4
PoD= 1 PSP 14)
=1

s7 . The DE-MCMC sampler drew posterior samples for 1,000 iterations and discarded the

ss first 200 iterations as burn-in.

Variable Details
The number of replicates 100 for each parameter set
The number of trials 20

Stimulus {0.010, 0.017, 0.028, 0.046, 0.077,
(Rounded to 3 decimal places) 0.129, 0.215, 0.359, 0.599, 1.000}
b Uniform(-3, 5)
Prior Rz Uniform(-3, 5)
€50 Uniform(0, 1)
0 Uniform(0.0001, 5)
b {-2,-1,0,1, 2}
Riaz {0.5,1.125, 1.75, 2.375, 3}
Initial grid settings C50 {0.05, 0.275, 0.5, 0.725, 0.95}
0 {0.001, 0.30075, 0.6005, 0.90025, 1.2}

Neural response {0,0.22,0.44, 0.67, 0.89,
1.11,1.33, 1.56, 1.78, 2}
Design space 90 = 10% — 10
Grid size Parameter space 625 = 5%
Response space 200 = 10% x 2
Chains 24
Burn-in samples 200
DE-MCMC Valid posterior samples 800
Migration probability 0.1
Dynamic Method Eigenvector-based rotation
Gridding Schedule After every trial
Percentile (20%, 35%, 50%, 65%, 80%)
Table 1

Default settings in Simulation Study
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Set Parameter values Set Parameter values
b Rmax C50 o b Rmax C50 0
1 0050 1.000 0350 0200 16 0200 1.631 0.180 0.206
2 0345 1473 0136 0263 17 -0.009 2.026 0.156 0.297
3 0371 1544 0203 0.203 18 0454 1.678 0.194 0.356
4 0378 1.750 0.114 0390 19 0.269 1.220 0.122 0.368
5 0233 1340 0.391 0303 20 0.134 1.173 0.107 0421
6 0206 2078 0.374 0257 21 0.018 1.123 0.165 0.373
7 0210 2199 0.177 0463 22 0423 1351 0208 0.432
8 0302 1287 0248 0.345 23 0480 1.706 0.147 0.402
9 0012 1480 0239 0310 24 0402 1.835 0.232 0.261
10 0.025 1.620 0.262 0409 25 0204 1999 0.314 0.242
11 0277 1809 0395 0462 26 0.030 1.527 0.284 0.206
12 0136 1.321 0.179 0457 27 0.057 1.048 0.126 0.317
13 0393 1937 0.118 0282 28 0.086 2152 0.357 0.430
14 0362 1.823 0352 0374 29 0176 1.813 0.343 0.421
15 0235 2186 0.357 0466 30 0.083 2.054 0.267 0.493

Table 2
A list of 30 parameter sets used in Simulation Study. Parameter values are rounded to three decimal
places.

Results

As our simulation involves randomness both within a given parameter set and be-
tween parameter sets, we present the results in two phases. Figures 5 and 6 illustrate the
results for a single parameter combination within the set. First, Figure 5 compares design
proposals from ADO (top row) and Randomized Search (RS; bottom row). Each dot repre-
sents a design candidate, and the relative intensity conveys the frequency of each stimulus
selection. Each column represents a different block of trials: 1-5 (left), 6-10 (middle), and
1-20 (all trials; right). As expected, the bottom row shows that RS selects design candidates
(i.e., pairs of contrast values) with equal frequency. However, the ADO search selects
design candidates with different frequencies over trials.

Figure 6 compares ADO (red) to RS (black) designs in terms of accuracy (left panel),
precision (middle panel), and effective differences between the designs in terms of number
of trials (right panel). For accuracy, we compared ADO to RS by computing the pooled

root mean squared deviation (RMSD; left) between each estimated parameter posterior to
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Figure 5. Simulation Results from the Parameter Set 1. The figure shows a path analysis
comparing Adaptive Design Optimization (ADO; top panel) against Randomized Search
(RS; bottom panel) separated by Trials 1-5 (left column), Trials 6-10 (middle column), and
all trials (right column). Frequency of stimulus selection is indicated by intensity of the
circles, where the first and second stimuli are shown on the z— and y—axes, respectively.
The labels for two axes were intentionally omitted for visual clarity.

the true parameter set. For precision, we compared ADO to RS by computing the pooled
standard deviation (PSD) of each estimated posterior distribution. For both RMSD and PSD,
smaller values are preferred. In both panels, we extrapolated the metrics corresponding to
the RS design by extending the simulation by 10 trials. Across both panels, ADO clearly
outperforms RS, attaining a smaller RMSD and PSD across all parameter sets. The right
panel of Figure 6 extends the comparison illustrated in the left and middle panels; on each
trial, we computed how many additional trials (y-axis) would be needed using RS to attain
a similar RMSD (plus signs) and PSD (open circles) as a function of trial number (z-axis).
This comparison shows compelling advantages for ADO search. For example, 10 trials
worth of ADO search is roughly equivalent to 17-18 trials of RS, and 20 trials of ADO is

roughly equivalent to 32 trials of RS.
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Figure 6. Simulation Results from the Parameter Set 1. The figure shows performance
metrics comparing ADO (red) to RS (black) in one of the parameter sets tested in the
simulation. The left and middle panel compares the experimental searches in terms of
accuracy and precision by plotting the pooled root mean squared deviation (RMSD) and
posterior standard deviation (PSD) of the estimated parameter posteriors, respecitvely.
Semi-transparent lines represent individual results from 100 simulations for each method,
whereas bold solid lines represent the average performance. Smaller values are preferred
for both accuracy and precision. In RS experiments, results for additional 10 trials are
shown to compare long-term mean performance of RS (black bold dotted lines) to the mean
performance of ADO at the 20th trial (red dotted lines). The right panel shows the number
of additional trials required for RS experiments to attain equivalent mean performance
with the ADO algorithm in terms of RMSD (plus signs) and PSD (open circles).
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Figure 7. Summary of the Simulation Results. Scatter plots show the performance of ADO
(z-axis) relative to RS(y-axis), based on RMSD (left panel) and PSD (right panel) aggregated
across 30 parameter sets. In each panel, the distribution of each performance measure and
its mean are shown as a contour plot and the “x" marker, separated by blocks (see legend
for details).
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Although the results of the within-parameter set analysis are encouraging, they lack
generalizability across different brain-behavior relations. To this end, we can extend the
analysis by aggregating the performance metrics shown in Figure 7 across 30 different
parameter sets. Figure 7 shows scatter plots of the RMSD (left) and the PSD (right) to
compare the performance of ADO (z-axis) to RS (y-axis). The gray shaded area indicates
regions of each metric space where the performance of ADO was superior to RS. In general,
a significant proportion of the metrics (= 71 — 75% at maximum) are located above the
identity line, and therefore we can conclude that ADO outperforms RS across these 30
parameter sets.

One feature of the aggregated results is that the performance metrics comparing
ADO to RS tend to converge as the number of trials increase (e.g., Trial 20, purple contour
in Figure 7). This is a well-established effect in design optimization: once enough data are
collected, the benefits provided by ADO asymptote depending on the number of stimuli
to choose from and the complexity of the cognitive model. In our case, as the experiment
and model are both relatively simple, we should expect RS to eventually catch up to ADO
beyond approximately 20 trials. However, substantially better ADO results would be
realized with either more candidate stimuli or a more detailed cognitive process model.
Regardless, the main result is that the performance of ADO is better during the first few
trials, suggesting that a stopping rule could be developed to facilitate more efficient data

collection relative to RS.

fMRI Experiment

The result of the simulation study suggested that ADO supported by both neural
and behavioral data can estimate model parameters more efficiently than a baseline RS
procedure does. To validate the method in a real-world application, we compared the
efficiency of ADO relative to RS in an fMRI experiment. Our goal was to establish the
performance of ADO both across participants (i.e., between-participant), and within the

same participant across different scanning sessions (i.e., within-participant).
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Participants

Four participants completed the experiment. Each participant had three two-hour
sessions including 90-minute functional MR scanning. Two among four participants were
female, and the mean age of participants was 24.75. All participants were recruited from
The Ohio State University and provided informed consent. The study was approved by

the Institutional Review Board of The Ohio State University.

Stimuli and Task

All stimuli and instructions were generated by SMILE (State Machine Interface Li-
brary for Experiments; http://smile-docs.readthedocs.io/en/latest/), a Python li-
brary for programming psychological experiments, on a MacBook Pro 2016. Each partici-
pant laid on the scanner bed and viewed the stimuli presented onto a rear-projection screen
through a mirror mounted in the coil. Stimuli were presented at eye level at a distance of
74cm.

Each grating stimulus was generated with spatial frequency of 3.06 cycles per degree,
and formed as an annulus not to expose the grating patterns at fovea. The radii of the
external and internal circles were 14.52 degree and 3.48 degree in visual angle, respectively.
In addition, a linear mask was applied to the annulus to allow gradual changes in stimulus
intensity. The stimulus intensity increases from a distance of 1.74 degree reaches its
maximum at a distance of 2.94 degree, and fades gradually from a distance of 4.34 degree
from the center of screen.

A participant was presented two consecutive grating stimuli with different contrast
levels and asked to keep fixation at a white “+” marker located at the center of a screen.
When the fixation marker changed to a response cue (a white “x” marker), the participant
was asked to answer whether the first or the second stimulus was of higher contrast. The
participant was given two 2-button response pads, one for each hand, and was instructed
to use one button for each side to make a response. The response-button association rule

altered every session. For example, a participant was asked to use the button in the left
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box to respond that the first stimulus had higher contrast level in one session, and to use
the button in the right box to make the same response in the next session.

Each participant performed the same task over three separate scanning sessions,
each lasting about 90 minutes. Within each of the three independent-replication sessions,
participants completed two conditions: in one condition the stimulus sequence was gener-
ated based on RS, whereas in the other condition it was generated based on ADO. Due to
participant dropout, the order between the ADO-based and RS-based runs was not coun-
terbalanced. Participants 1 and 2 conducted the ADO-based runs first in the first and third
replicate sessions, and the RS-based run first in the second session. Participant 3 conducted
the RS-based run first in the first and third replicate sessions, and the ADO-based run first
in the second session. Participant 4 conducted the ADO-based run first in the first replicate
session, and the RS-based run first in the two remaining sessions.

The difference between the RS-based and ADO-based runs is the length of intertrial
interval. ADO requires time to calculate an optimal design at the end of every trial, and
for adjusting parameter grids after the 4th, 8th, 12th, and 16th trials. Specifically, fMRI-
based ADO in this experiment requires 6-8 seconds for proposing the optimal design and
additional 4-5 seconds for full posterior estimation and grid adjustment. Therefore, 8
seconds of the mean intertrial interval used in the RS-based experiment was not enough
in the ADO-based run. While the intertrial interval of the run without ADO was either 6,
8, or 10 seconds, that of the ADO-based run was extended for 4 seconds (i.e., 10, 12, or 14
seconds). The total length of the run without ADO was 624 seconds. The ADO-based run

took approximately 15 minutes.

Protocol

Figure 8 provides a graphical summary of the scanning protocol and data flow in the
ADO-based fMRI experiments. The experiment comprises of three stages: (1) acquisition
of structural and functional localizer images, (2) inverse-registration of anatomical masks

onto a standard space, and (3) data collection in the main task.
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Figure 8. The scanning protocol and data flow used in ADO-based real-time fMRI
experiments. The left column represents scanning protocols that should be set in the
terminal computer that controls the MR scanner. The right column represents the template
brain images that must be prepared before the experiment. The center column represents
the data that we acquire from a participant using raw MR images, template brain images,
and the appropriate computations on them.

The first stage aims to collect information required for producing a task-specific mask
in the subject-specific brain space. After completing set-up for online data transfer from an
MR scanner to a terminal computer, an experimenter needs to collect structural images of a

participant’s brain and acquire a regional localizer based on an echo-planar imaging (EPI)
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sequence. The former constructs the basis of the subject space, whereas the latter limits
the region to be scanned in the functional localizer and the main tasks. The functional
localizer task is performed to detect task-relevant voxels as the last step. The functional
localizer mask can be defined by performing a whole-brain GLM analysis with data from
the localizer task and extracting voxels that have test statistics (e.g., ¢-statistics) greater than

a specific threshold.

In the second stage, an experimenter extracts the task-relevant subject-specific mask
using the data acquired from the first stage. We use a template structural image defined
in a standard brain space such as MNI (Montreal Neurological Institute) atlas (Grabner et
al., 2006) as a reference. Once the experimenter collects the structural image in the subject
space, it is registered to the standard brain template to obtain the transformation matrix
that maps the subject space onto the standard space. The inverse-transformation matrix
is derived by taking an inverse of the transformation matrix, and is used for mapping the
anatomical masks in the standard space to the subject space. When regions of interest
(ROIs) must be constrained by masks provided by standard anatomical atlases (e.g., Jiilich
Histological Atlas; Eickhoff et al., 2005), we can transform the standard masks to subject-
specific masks by using the inverse-transformation matrix. The conjunction between the
inverse-transformed anatomical mask and the functional localizer mask defines the task-

relevant mask in the subject space.

The task-specific mask enables one to obtain voxel-wise BOLD responses in real-time
during the main task. When an experimenter is interested in a specific ROI defined by the
task-relevant mask, a common approach is to average neural signals from all voxels in the
mask for running the GLM analysis for stimulus-wise neural estimates. The stimulus-wise

neural activation estimates are considered as neural inputs of ADO.

Our report will focus on the optimization during the main task. Regarding how we
performed the functional localizer task and determined the voxels of interest, readers are

referred to Appendix A.
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Definition of the Benchmark and Distance Metrics

Unlike the simulation study, we don’t have a “true" parameter that serves as a bench-
mark to compare the performances of ADO and RS, especially when the focus of our
analysis is on accuracy. Therefore, we decided to use the posterior estimate obtained by
using all the data from both ADO-based and RS-based runs within a session as a bench-
mark. We can justify this approach for two reasons: (1) the stimulus-wise neural activation
estimates from ADO-based and randomized-design runs capture the neural activity of the
same visual system, and (2) the uncertainty of model parameters will be most reduced by
using all the available data. The variability of stimulus-wise neural activation estimates
may raise questions about the first assumption because ADO might cause adaptation to
repeatedly presented stimuli compared to randomized designs (Krekelberg, Boynton, &
van Wezel, 2006). However, we suggest that using the combined data is the most reasonable
way to establish a standard for performance evaluation given the constraints in our data

analysis.

Once the posterior samples from the ADO, RS, and benchmark settings were ob-
tained, we computed the estimates used for performance evaluation. We originally in-
tended to calculate a four-dimensional joint MAP estimate using multidimensional kernel
density estimation. However, the currently available methods (e.g., Duong, 2007) either
required substantial computation time or were very susceptible to slight differences in pos-
terior samples. Therefore, we computed MAP estimates using an Epanechnikov kernel for

each parameter, and used them in the offline analyses.

Again, we denote the parameter vector 6 = (61, 62,603,04) = (b, Rpmaaz, c50,9). Given
estimates obtained at trial ¢ from ADO QAAD(M = (él,AD(),ta é27AD()7t, HA;;’AD()’t, ééLAD(),t)/ es-
timates from RS HARSJ = (QAL RSt HAQ, RS+ HA37 RSt é4, rs,t), and benchmark estimates éB,t =
(HALB,t? (92,3,% HA;;TBJ,, HA47B¢), we define the RMSD for each method m € {ADO, RS} as fol-

lows:
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4

RMSD,,; = J (Ormt — 0i.4)2

i=1
The definition of the PSD follows Equation 14, except for the number of iterations in the
DE-MCMC sampler. Due to the time concern, we sampled 500 iterations and discarded

the first 200 samples as burn-in.

To strengthen our conclusion under the situation where there is no way to know
the “true” parameter values, we compared the results in the data space as well as in the
parameter space. As for the analysis in the data space, we focused on comparison of
Naka-Rushton curves from ADO and RS due to the model structure that the behavioral
process (i.e., Thurstonian decision model) depends on the neural encoding process (i.e.,

Naka-Rushton model).

For the comparison in the data space, we first recovered the shape of Naka-Rushton
curves by plugging estimates of Naka-Rushton model parameters 0 = (01, 62,03,04) =

(b, Rimaa, c50, 6) into the Equation 8:

. - 02 ApOCi>
Napo(ci) = 01,4p0 + 75—
3.4p0 T Ci
. 5 0o, rsci?
Nps(ci) = OLrs + 55—,
937RS + C;
. - 09 pci?
Np(c) =615+ —
93,B + Ci

where ¢ = (0.010, 0.017, 0.028, 0.046, 0.077, 0.129, 0.215, 0.359, 0.599, 1.000) is the contrast

used in the experiments, and i = 1,--- , 10.

The model fit metrics were defined by root mean squared error from the benchmark

estimate: for estimated curves N4 DOt N Rrs,t, and N B, for trial ¢,
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10
DEVD.apos = | 163 {Kavo(e) - Nu(e)},
i=1
1 Lo .
DEV Dpsy = \ 10 {NRS(Ci) - NB(Ci)}'
=1

Results

The results from Participant 4 are not presented here because of the low quality of
the neural data (i.e., the size of the region scanned in the experiment, and excessive head

movement), but we refer the reader to Appendix B for equivalent analyses.

Proposed Designs. Figure 9 shows the designs proposed by ADO and RS in the
fMRI experiment sessions. Compared to the results from the simulation, the pattern of
proposals is not clearly discriminated between the two methods. However, we can see, for
example, design combinations of extremely high and low contrasts (e.g., the four corners of
each panel) are frequently sampled compared to RS. We can attribute this proposal pattern
as an attempt to estimate the baseline parameter b and the maximum amplitude parameter

Rmax .

Accuracy and Precision of the Estimates. As in the simulation study, we compared
the accuracy and precision of parameter estimates from each method (i.e., ADO, RS) using
the RMSD and PSD, respectively. Note that the RMSD was defined with respect to the

benchmark parameter.

Figure 10 shows that ADO tends to allow estimates that are closer to the benchmark
estimates than RS does. At the 20th trial, the accuracy measures show that ADO outper-
forms RS in 8 out of 9 scanning sessions. Meanwhile, the result is more mixed in terms of
precision and RS tends to perform better than ADO. We suspect that the selective sampling
procedure of ADO and a low signal-to-noise ratio interacting with the model structure

makes precise parameter estimation difficult.
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Figure 9. Proposed Designs from the fMRI Experiment. The figure shows a path analysis
comparing Adaptive Design Optimization (ADO; top panel) against Randomized Search
(RS; bottom panel), the column of which corresponds to each participant (left: Participant
1, center: Participant 2, right: Participant 3). Results from all three replicate sessions are
collapsed for each participant. Frequency of stimulus selection is indicated by intensity of
the circles, where the first and second stimuli are shown on the z— and y—axes, respectively.
The first four random trials in the ADO-runs are plotted with “x” marks. The labels for
two axes were intentionally omitted for visual clarity.

Prediction Analysis in the Data Space. Based on the prediction accuracy, we de-
fined the log-transformed ratio of PRED between ADO and RS run as a comparison metric.
Note that comparison metrics greater than zero indicate superiority of ADO relative to
RS. Figure 11 compares the performance of ADO and RS in terms of accuracy in the data
space (right) with a representative example (left, center). In the right panel, each within-
participant session is color-coded for clarity. Note that the performance metrics are defined
using the data excluding the first four trials, because the first ADO proposal was used on

the 5th trial. Figure 11 shows that in terms of accuracy, ADO tends to outperform RS as all
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Figure 10. Results of the fMRI Experiment: Parameter Space. Performance of the two
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algorithms is compared in terms of the accuracy with respect to the benchmark estimate
(left) and the posterior precision (right). Colored lines with circles and “x” marks represent
the accuracy and precision changing over trials. Each row shows the results from diffrent
participants (top: Participant 1, middle: Participant 2, bottom: Participant 3). Replicate
sessions are color-coded (red: Session 1, green: Session 2, blue: Session 3). Empty dots

represent the first four trials at which ADO had to use random proposals. The dot with “ x”

mark refers to the last trial of each session. The black dotted line represents the identity
line. If a point is located in the gray area (i.e., above the identity line), it means that ADO
shows higher accuracy or precision compared to RS on that trial. The ranges of both axes
were truncated for visual clarity.
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Figure 11. Results of the fMRI Experiment: Data Space. Performance of the two algo-
rithms is compared in terms of the accuracy of predicted Naka-Rushton curves for one
example participant session (left), and aggregated across all scanning sessions (right). The
left plot compare the Naka-Rushton curves predicted from the MAP estimates obtained us-
ing Adaptive Design Optimization (ADO; red) and Randomized Search (black). Bold and
dotted lines represent the mean prediction and associated standard deviation, respectively.
Orange dashed lines represent the benchmark curve, pooled across both runs. The right
panel shows the performance of ADO relative to RS in terms of model fit in the data space
for each scanning session. To assess accuracy, we first calculated the distance between the
model-wise prediction (bold lines) and the benchmark curve (orange dashed line), denoted
DEV D spo and DEV Dggs. The right plot shows their log-transformed ratio, where higher
values support ADO in accuracy (gray area). Note that accuracy metrics are obtained by
averaging DEV D excluding the first 4 trials, where random stimuli were presented in both
ADO and RS experiments.

the metrics are greater than zero.

Post-hoc Analysis of Global Utility. A complementary analysis that demonstrates
more clearly the superiority of ADO is to compare the amount of information extracted on
each individual trial across the ADO and RS procedures. Such an analysis would reveal
whether or not ADO was presenting the optimal stimulus on each trial within the run,
and similarly, whether or not better stimuli could have been presented during each trial
of the RS runs. To address this question, we computed the global utility (i.e., a measure

of information) for each possible stimulus that could have been presented on each trial,



705

706

707

708

709

710

711

712

713

714

715

716

77

718

719

720

721

722

723

724

725

726

727

728

729

731

732

FMRI DESIGN OPTIMIZATION 41

conditional on the current state of knowledge about the brain-behavior relation (i.e., the
joint model). We then normalized the global utility within each trial and compared the
ADO and RS results. Figure 12 shows the distribution of global utility values on each trial,
where each panel represents a separate participant. Further, each panel is divided into the
three runs, where RS runs are illustrated in black and ADO runs are colored according to
the run information. Finally, the right-hand side of each panel shows a violin plot of the

distribution of global utility across all trials except the first four that used random stimuli.

Figure 12 shows that ADO performs substantially better in terms of trial-level global
utility compared to RS. Namely, the utility obtained using ADO was larger than that of the
RS in nearly all cases, indicating that ADO extracts better information about how the brain
data predicts abehavioral response. Due to the post-hoc nature of this analysis, we could not
perfectly account for all of the potential variables that occurred during data acquisition (e.g.,
variability in neural data, variance in the dynamic gridding process). However, to integrate
out as much uncertainty in the data acquisition procedure as possible, we obtained Monte
Carlo estimates of global utility by repeating the simulated data acquisition 50 times for
each scanning session. Even after considering this additional uncertainty, the normalized

global utilities shown in Figure 12 strongly support the performance of ADO relative to RS.

Discussion. The fMRI experiment showed mixed results compared to the simula-
tion study. The global utility analysis suggested that ADO proposed stimulus sequences
that maximized the expected amount of information. Focusing on the accuracy, the param-
eter estimates and the predicted Naka-Rushton equation from ADO outperformed those
from RS. However, the precision of the parameter estimates of ADO was worse compared

to that of RS.

We suspect the selective sampling procedure of ADO might cause inflated uncertainty
of the estimates, together with a possibly low signal-to-noise ratio. In particular, one of
the model parameters 0 can be affected by the signal-to-noise ratio. As ¢ is associated with
the degree of deviation from the mean prediction of the Naka-Rushton equation, the low

signal-to-noise ratio can propagate to not only 4, but also other shape parameters of the
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Figure 12. Analysis of Global Utility Distributions. Each panel shows the distribution
of normalized global utility of all possible stimulus pairs generated by Adaptive Design
Optimization (colored plots) and Randomized Search (RS; light gray plots). The lower
right panel illustrates the same data after aggregating across trials and runs. For each
participant, a scatter plot on the left panel shows how the distribution of normalized global
utility changes over trials, whereas a violin plot on the right panel represents the same
information aggregated across trials. Note that the first four trials were excluded from the

violin plot because RS was used for both search procedures.

Naka-Rushton equation (i.e., b, Ryaz, C50-

General Discussion

Limitations and Contributions

This study provides a proof of concept of online design optimization for model-

based fMRI experiments seeking to exploit neural and behavioral data simultaneously.
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The results of the simulation studies and the fMRI experiment demonstrate that ADO can
successfully incorporate both neural and behavioral data to maximize the acquisition of
neurophysiological measures to explain behavioral responses. We have shown that these

results are generalizable across between- and within-participant scanning sessions.

The impact of a few simplifications on the results deserve mention. One limitation
of our method is the manner in which trial-wise brain activation is acquired. In our
fMRI experiment, we simply estimated the single-trial activation parameters on each trial,
and used them directly as input to the joint model. However, when using ADO in fMRI
experiments, the unbalanced and interdependent nature of experimental designs generated
by ADO can inflate variability of single-trial neural estimates. Because ADO is “greedy"
in the way it maximizes global utility on the next trial, it can sometimes tend to over-
select a particular stimulus pair. Because the stimulus pair is selected more frequently,
extreme single-trial neural estimates become more likely, resulting in amplified variability.
In addition, task-irrelevant factors such as neural adaptation can potentially interact with
unbalanced designs and affect the mean trend and variability of neural activation estimates.
Although we found no conclusive evidence of neural adaptation in our experiment, we
cannot rule out this possibility for future applications and list it as a way to potentially

improve the algorithm.

Another potential shortcoming of the results presented here is our treatment of
neural variability. It has been observed that the variability of neuronal firing rates increases
according to the mean firing rate (Boynton, Demb, Glover, & Heeger, 1999), implying that
the variability of the BOLD responses is a function of their amplitudes across time because
neural firing rates are positively correlated with BOLD amplitudes (Heeger, Huk, Geisler,
& Albrecht, 2000). To keep the model simple, we assumed that the variance in the BOLD
responses were constant throughout the scanning session. However, if our assumption
is violated, it is possible that our single-trial estimates would become inaccurate, thereby

affecting the efficiency of the ADO procedure.

Lastly, the interstimulus interval (12 seconds on average) used in this study might
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not be desirable from the perspective of efficiency. Also, the performance of ADO might be
partially due to better relaxation of BOLD responses with extended interstimulus interval.
However, the interstimulus interval can easily be shortened by using high-performance
computing resources and parallel computing to offload many of the ADO procedures. As
the experiment we report in this article was more of a proof of concept, we didn’t pursue
these options here. Future work will incorporate more efficient computing so that more

difficult optimization problems can be pursued.

Despite these limitations, we have shown that Adaptive Design Optimization can be
applied to real-time fMRI experiments to successfully optimize the selection of stimuli for
each individual. Our method has important improvements compared to previous design
optimization methods in neuroimaging. Unlike many previous methods (Cusack et al.,
2012; Holling et al., 2013; Lorenz et al., 2016), the model-based nature of ADO allows us to
explore candidate designs that inform our understanding of the computations assumed to
underlie mental operations, pursuing more than localized activation of the brain. More-
over, our method not only incorporated both neural and behavioral data successfully for
optimization, but does so in a formal and systematic way thanks to a joint model frame-
work which provides common statistical constraints. Lastly, unlike adaptive procedures
used in psychophysics (e.g. Leek, 2001) such as staircase procedures, ADO is a general-
purpose design optimization algorithm, enabling it to be applied to any combination of
neurocomputational and cognitive models, or data modality (e.g., EEG, fMRI, single-unit

recording).

One may view the randomized search as an experimental design as a relatively low
reference point by which to compare our ADO-based search. However, the randomized
search is still the predominant design in cognitive neuroscience experiments. Previously
developed online design optimization methods focused on slightly different optimization
problems, making them inappropriate to compare against here. For example, many alter-
native optimization methods either ignore the neural data when performing optimization

(e.g., DiMattina, 2016; Kontsevich & Tyler, 1999; Watson & Pelli, 1983), or they are not
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cognitive-model driven (e.g., Cusack et al., 2012; Lorenz et al., 2016). With our pipeline for
fMRI-based ADO established, future work will systematically study the effect of different

neural-behavioral modeling strategies and optimization methods.

Can Optimal Designs Guide Cognition Differently?

One general concern about using design optimization methods is that the proposed
optimal designs could alter cognitive processes from what we would expect when using
randomized or factorial experimental designs. Note that this problem is not unique to our
proposed ADO method, in principle, because traditional design optimization methods for
behavioral and fMRI experiments (e.g., de Hollander et al., 2017; Kontsevich & Tyler, 1999;
Leek, 2001; Watson & Pelli, 1983) would suffer from the same issue. The use of design
optimization techniques would be justified only when cognitive (and underlying neural)
processes associated with the given task are equivalent whether or not an optimization
method is used.

We understand that the simultaneous use of neural and behavioral data in ADO
makes this problem particularly non-trivial, as neural adaptation is an especially difficult
hurdle. However, the application of the general-purpose design optimization methods in
cognitive science is still in its infancy. Without further investigations, we cannot make
any conclusive statement about possible interactions among design optimization methods,
experimental tasks, cognitive models, and participants’ cognitive processes. Until then,
researchers should be aware of the possibility that the use of ADO can alter the underlying

neural and cognitive processes from their standard, factorial design counterparts.

Quality Control of the Neural Data

Like other typical fMRI experiments, fMRI-based ADO needs neural data of high
quality for obtaining clear results. Moreover, offline data preprocessing cannot be an option
for fMRI-based ADO due to its nature as a real-time data collection method. Therefore, real-

time quality control is one of the crucial factors in successful ADO experiments. Although
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we have applied only the minimum level of preprocessing methods (e.g., motion correction,
masking), one could take advantage of real-time filtering methods or even more integrative
real-time fMRI frameworks such as OpenNFT (Koush et al., 2017).

As for head movement, real-time motion correction algorithms applied by the MR
scanner might not be a perfect solution to the problem. Recent development of real-time
monitoring software such as FIRMM (Framewise Integrated Real-time MRI Monitoring;
Dosenbach et al., 2017) can help the experimenter detect any head motion anomalies,

allowing them to correct the issue through participant instruction.

Multi-voxel Extension

In this study, we used a simple model connecting the average neural activation of V1 to
behavioral decision processes. The use of activation amplitudes based on averaged signals
came from a practical decision as the goal of this study is to provide a proof of concept
of the fMRI-based ADO. However, many fMRI experiments focused on how distributed
neural activations represent stimuli or underlying cognitive processes (for reviews, see
Kriegeskorte & Diedrichsen, 2019; Norman, Polyn, Detre, & Haxby, 2006). The current
fMRI-based ADO, in principle, can incorporate distributed neural representations with
the same computational principle. However, most of the joint modeling approaches have
connected cognitive model parameters with the average neural activation amplitude (e.g.,
Palestro et al., 2018; B. M. Turner, Forstmann, et al., 2013; B. M. Turner et al., 2016, 2015), in
which distributed representation does not blend well. Therefore, the application of fMRI-
based ADO must be accompanied by the development of joint models that are compatible

with multi-voxel representations.

Practical Applications

Application of ADO to real-time neuroimaging experiments has great potential for
both basic research and practical applications. Real-time comparison of computational

cognitive models seems especially promising as neural data can sometimes provide dis-
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criminating evidence that could not be obtained on the basis of behavioral data alone
(e.g., Mack, Preston, & Love, 2013). Other domains where the need for adaptive and
rapid assessment of brain-behavior relations occur is in cognitive psychometrics (van der
Maas, Molenaar, Maris, Kievit, & Borsboom, 2011) and computational psychiatry (Wiecki,
Poland, & Frank, 2015). In these fields, obtaining high-quality data custom-tailored to
each individual is of vital importance if we are to have confidence in our ability to assess
and diagnose patients. With the groundwork of an adaptive, real-time methodology es-
tablished, future refinements could automatically identify key brain regions for each task,
allowing researchers to adjust scanning protocols to maximize the signal-to-noise ratio for
each participant. We hope that the algorithm developed here will enable the field to look
beyond problematic aggregation procedures and focus on custom-tailored experiments

that optimize for our understanding of how the brain produces behavior.

Conclusion

In this study, we demonstrated the computational framework for optimizing exper-
imental designs of cognitive-model-based fMRI experiments in real time. Using the joint
modeling framework, fMRI-based ADO successfully incorporated neural and behavioral
data simultaneously for proposing the sequence of experimental stimuli with the highest
global utility. Simulation and actual fMRI experiments showed that fMRI-based ADO
outperforms randomly proposed stimuli in accuracy and precision of parameter estimates.
Given its model-based nature, fMRI-based ADO can help researchers investigate computa-
tional mechanisms of the human brain and mind with optimized experiments. Moreover,
this method can assist experiments with special groups of interest (e.g., children, clinical

populations) more efficiently.
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Appendix A
Details of the fMRI Experiment

Functional Localizer

Before running the main task, we ran a functional localizer task to detect the voxels
rigorously coactivating with the grating stimuli. The functional localizer task was based on
a continuous carry-over design (Aguirre, 2007) that controls the order effect of the signal
by considering all possible carry-over patterns from a stimulus pool. As we can expect that
the order of stimuli affect the neural activation pattern, the continuous carry-over design
can be used to detect voxels that share similar activation patterns and the carry-over effect.

The experiment using the continuous carry-over design uses a fixed stimulus pre-
sentation order that realizes all possible configurations of carry-over patterns. Here, we
recommend making stimulus presentation settings as similar as possible to those of the
main task. For example, we set the stimulus duration (6 seconds) and the mean inter-
stimulus interval (8 seconds) as it was in the main task. However, generating all possible
carry-over patterns from ten contrast levels made the task length excessive and therefore
could have caused problematic issues such as participant fatigue and scanner drift. Hence,
we decided to use only five logarithmically spaced contrast levels that could approximate
contrast levels used in the main task (i.e., 0.01, 0.03, 0.1, 0.3, 1). The total length of the
functional localizer task was 528 seconds.

In the task, the participant was instructed to press a button when the current stimulus
was of the same contrast with the previous one while maintaining fixation at the center of
the screen. However, the behavioral task served no function; it was required only to help

participants concentrate on the stimulus presentation.

In-session Procedures 1: Preliminary Tasks

The participant went through a 30-minute briefing including informed consent, safety
screening, and a brief introduction about the experimental task. MRI scanning was per-

formed in the Center for Cognitive and Behavioral Brain Imaging at The Ohio State Univer-
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sity. A Siemens MAGNETOM Prisma 3T Magnetic Resonance Imaging System was used
with a 32-channel head coil.
First, the MPRAGE sequence was used for obtaining the anatomical structure of the

brain (1x 1 x 1 mm?3

resolution, inversion time = 950 msec, repetition time = 1900 msec,
echo time = 4.44 msec, flip angle = 12 degree, matrix size = 256 x 224 mm, 176 sagittal
slices per slab; scan time = 6.5 minutes). As we hoped to constrain the ROI to the primary
visual cortex (V1), the area to be scanned was then specified by covering the Brodmann
area 17 and most of the occipital lobe with a T2*-weighted EPI sequence (repetition time
= 2000 msec, echo time = 28 msec, flip angle = 72 degree, field of view =200 x 200 mm,
in-plane resolution = 2x 2 mm, and 33 slices with 2-mm thickness), which is referred to as
the EPI space henceforth for simplicity. All BOLD responses from the functional localizer
task and the contrast discrimination task were obtained using the EPI sequence with the
same setting.

We should mention that further analyses (i.e., detecting voxels of interest, real-time
computation for Adaptive Design Optimization, offline data analysis) used brain images
without preprocessing steps that are usually performed in offline analyses such as spatial
and temporal filtering due to its time consumption. The only exception is motion correc-
tion: the MR scanner used in this experiment offers functionality for prospective motion
correction — computational methods for reducing head motion artifacts during data acqui-
sition (for a recent review of prospective motion correction, see Maclaren, Herbst, Speck,

& Zaitsev, 2013).

In-session Procedures 2: Data preprocessing

We first carried out the functional localizer task to detect the voxels co-activating
with the presented grating stimuli. After the functional localizer task was complete, we
registered the anatomical images in the subject space to the standard MNI brain template
with nonlinear warping using FLIRT and FNIRT (Andersson, Jenkinson, & Smith, 2007;
Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001) in FSL (Smith et al.,
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2004) . Next, we aligned the EPI localizer images to the anatomical images using FLIRT.
By using the linear and nonlinear warping obtained from the previous steps, we converted
the mask for Brodmann area 17 provided by Jiilich histological atlas (Amunts, Malikovic,
Mohlberg, Schormann, & Zilles, 2000; Eickhoff et al., 2005) to the EPI space. As these
procedures usually take more than 7 minutes due to nonlinear registration, we asked the
participant to practice the contrast discrimination task for (approximately) 6 minutes to

learn the response-button mapping rule.

In-session Procedures 3: Determination of Voxels of Interest

The functional localizer task must detect voxels whose activation patterns are strongly
associated with stimulus presentation in the task. For selecting target voxels in the main
task, we performed a general linear model (GLM) analysis to all voxels in the EPI space
using the data from the functional localizer task. The GLM design matrix used only one
regressor representing the hemodynamic responses caused by all stimuli presented in the
functional localizer task. This GLM analysis did not consider any temporally autocorrelated
noise in the model structure because the analysis may be time-consuming.

Voxels in interest (VOIs) were determined by thresholding the ¢-statistic associated
with the regression coefficient of the task-relevant regressor. The decision rule is as follows:
If the number of voxels with ¢t > 5 was equal to or greater than 200, we used the threshold
as t = 5. However, when this criterion was not met, we adjusted the threshold to ¢t > 4.
If 100 or more voxels passed the adjusted threshold, we accepted the threshold ¢ = 4. If
this criterion was not met again, we ran the functional localizer task one more time and
repeated the analysis. If the result did not allow 100 or more voxels even in the second
attempt, we used the threshold allowing the greatest number of voxels among four options
(i.e., t > 5 from the first run, ¢ > 4 from the first run, ¢ > 5 from the second run, and ¢ > 4
from the second run).

Finally, we derived the subject-specific, task-relevant mask specifying VOIs in V1 by

taking conjunction of the subject-specific V1 mask and the extracted task-relevant voxels.
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Table Al shows the number of voxels actually used in the mask. A Python library nilearn

(Abraham et al., 2014) was used for formatting the final mask.

Session 1 | Session 2 | Session 3
Participant 1 189 125 117
Participant 2 171 330 315
Participant 3 136 82 25
Participant 4 47 142 227

Table Al
The number of voxels used in the experiment and post-hoc analysis.

In-session Procedures: Contrast Discrimination Task

The contrast discrimination task was carried out after the processing of the mask
was finished. Two runs were done separately based on Adaptive Design Optimization
(ADO) and Randomized Search (RS) within a scanning session so that we could consider
between-session variability of the neural signal.

In the ADO-based run, the first four trials are randomly proposed because of the
hemodynamic lag that prevents immediate estimation of stimulus-wise neural activation
estimates. From the fourth trial, ADO computed the global utility of candidate designs
and proposed an optimal stimulus pair by the following procedure. First, we extracted
the BOLD time series from the VOIs and averaged them. Then we estimated single-trial
neural activation for each grating stimulus by fitting a general linear model (GLM) with the
tirst-order temporal autocorrelation (AR(1)) model for the noise in the data using a Python
library statsmodel (Seabold & Perktold, 2010). Here, the AR(1) model assumes that the
measurement noise at time ¢ is correlated with measurement noise at time ¢ — 1. Once we
obtained the stimulus-wise estimates of neural activation, they were put into ADO together
with behavioral responses for computing the optimal design of the next trial. After the 4th,
8th, 12th, and 16th trials, we sampled the joint posterior distribution using the DE-MCMC
sampler (B. M. Turner, Sederberg, et al., 2013) for 500 iterations, and used the last 300
samples for dynamic gridding.

The total length of both ADO-based and RS-based experiments is 20 trials. In other
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words, ADO used a simple stopping rule based on a fixed number of trials (20 trials), as

we need to control the amount of data for parameter estimation.

Preliminary Analysis of the Neural and Behavioral Data
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Figure A1. Summary of the Neural and Behavioral Data. The left panels show scatter plots
of log-transformed contrast levels versus stimulus-wise neural activation levels in Adaptive
Design Optimization (red) and Randomized Search (black) experiments. The upper left
panel presents the stimulus-wise activation estimates aggregated across participants, while
the four lower left panels illustrate the same data but separately for each participant. The
right panel shows a scatter plot of accuracy of behavioral responses of four participants.
The x-axis represent behavioral accuracy in Adaptive Design Optimization experiments,
whereas the y-axis represent behavioral accuracy in Randomized Search experiments.

Figure Al summarizes the neural (i.e., single-trial neural estimates; left panel) and
the behavioral data (accuracy of the behavioral responses; right panel). The upper left
panel shows distributions of stimulus-wise neural activation estimates for each contrast,
collapsed across participants. The four lower left panels present the same data for each

participant. Theoretically, the single-trial neural estimates are expected to monotonically
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escalates according to the increase of the contrast level (Boynton et al., 1999). However,
single-trial neural estimates are broadly distributed due to their high variability (Abdul-
rahman & Henson, 2016; Mumford et al., 2012) and unbalanced designs. When their
group means were compared, Randomized Search (RS; black) experiments tend to allow a
monotonically increasing pattern, whereas the expected pattern is not clearly observed in
Adaptive Design Optimization (ADO; red) experiments.

The right panel of Figure A1l shows the accuracy of behavioral responses in ADO (x-
axis) and RS (y-axis) experiments. If a dot is located below the identity line (dotted line), we
consider that the performance in ADO experiments is better than in RS experiments. The
result consistently shows that participants made more accurate responses in RS experiments
than in ADO experiments. This tendency is partially explained by that ADO in this
experiment frequently focuses on small contrast values to obtain information about the
baseline parameter of Naka-Rushton Equation (See Figure 5 in the main text for an example

of the proposal trace in Simulation Study).

Posterior Sampling

For offline analyses to compare the performance of ADO to RS, we estimated param-
eters with a complete data set. We first estimated stimulus-wise neural activation levels
from ADO and RS experiments. After averaging the extracted BOLD time-series from all
voxels in the mask, we fitted a general linear model with the first-order temporal autocorre-
lation in noise to estimate stimulus-wise neural activation parameters. Once the single-trial
neural estimates were acquired, the joint model parameters were finally estimated by the
DE-MCMC sampler with the stimulus-wise neural activation and behavioral responses as
the data.

Compared to the simulation study, we had to modify the DE-MCMC sampler settings
due to the quality of neural data associated with the mechanism of ADO. ADO tends to
generate the same design repeatedly until it gets enough information about the specific

parameter, and then proposes distinct patterns of the design to explore different model
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parameters. As mentioned in Discussion, we found that the unbalanced design of ADO
adds a significant amount of variability of stimulus-wise neural activation estimates and

may induce difficulties in getting well-constrained posterior distributions.

Therefore, we decided to use a “burn-in mode" of the DE-MCMC sampler that con-
centrates posterior samples to the high-density regions compared to the regular “sampling
mode" (B. M. Turner & Sederberg, 2012), in addition to high migration probability. Specifi-
cally, the DE-MCMC sampler was run with the “burn-in mode" for 3,000 iterations in total:
the sampler used the first 2,000 iterations as a burn-in phase while applying migration at

every iteration, and generated the valid posterior samples for the last 1,000 iterations.

Note that brain images from the ADO-based and randomized-design runs shared the
same data preprocessing procedures to make the stimulus-wise activation estimates from
both experiments comparable. We used the motion-corrected images exported directly
from the MR scanner, and did not apply spatial and temporal filtering. The neural signal

was extracted from the same VOI mask defined for ADO.

Appendix B

Performance of ADO: Participant 4

In the case of Participant 4, which is not reported in the main text, ADO failed to show
better performance in two out of three scanning sessions. Figures B1, B2, and B3 provide
summary plots of the performance of ADO and RS in the data set of Participant 4. In
Figure B1, the design proposals made by ADO seem more distributed compared to other
participants described in Figure 9. It is not easy to say any decisive conclusion only with
this plot because of factors that affect the actual fMRI experiment (e.g., session-by-session
variability, head motion). However, the lack of specificity toward the combinations of
extremely low and high contrasts, which are useful for estimating b and R,,4., suggests
that the performance of ADO was suboptimal. Figure B2 shows the accuracy with respect
to the benchmark estimate and the precision of the parameter estimates. Unlike other

participants’ sessions where ADO performed better in accuracy, the results from Participant
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Figure B1. Participant 4: Proposed Designs from the fMRI Experiment. The figure shows
a path analysis comparing Adaptive Design Optimization (ADO; left) against Randomized
Search (RS; right). Results from all three replicate sessions are collapsed for each partic-
ipant. Frequency of stimulus selection is indicated by intensity of the circles, where the
first and second stimuli are shown on the x— and y—axes, respectively. The first four
random trials in the ADO-runs are plotted with “x” marks. The labels for two axes were
intentionally omitted for visual clarity.

4 are mixed. Although the results from the second (green) and third (blue) sessions claims
that the estimates were more precise, the third session (blue) loses this advantage due to
inaccurate estimates. In Figure B3, the bar plot on the left side shows the performance
comparison metrics acquired across three scanning sessions. The value of the performance
metric at the first and third sessions are negative, which means that estimated Naka-
Rushton curves in RS runs showed a better fit to the benchmark curve than in ADO runs.
The latter two plots show the distribution of normalized global utility recovered by post-
hoc analyses to test whether ADO appropriately presented the optimal sequence of stimuli.
The result of the first session (red scatter and violin plots) reveals that the ADO might not

have been successful in proposing optimal stimuli because the normalized global utility
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Figure B2. Participant 4: Accuracy and Precision of Parameter Estimates. Performance of
the two algorithms is compared in terms of the accuracy with respect to the benchmark
estimate (left) and the posterior precision (right). Colored lines with circles and “x” marks
represent the accuracy and precision changing over trials. Each row shows the results
from diffrent participants (top: Participant 1, middle: Participant 2, bottom: Participant
3). Replicate sessions are color-coded (red: Session 1, green: Session 2, blue: Session 3).
Empty dots represent the first four trials at which ADO had to use random proposals. The
dot with “x” mark refers to the last trial of each session. The black dotted line represents
the identity line. If a point locates in the gray area (i.e., above the identity line), it means
that ADO shows higher accuracy or precision compared to RS at that trial. The ranges of
both axes were truncated for visual clarity.

distributions do not show differences between the two methods.

To investigate why ADO performed worse in these sessions, Figure B4 provides
summary statistics of the neural data. Figure B4a plots the performance comparison metric
(i.e., log(DEV Drs/DEV D 4po)) against head movement measures (left) and the number
of voxels (right). In both panels, white areas designate regions of the statistical space
where ADO performs worse than RS. In the left plot, the log-transformed ratio of mean
absolute displacement between RS and ADO is shown on the z-axis, where greater values
are preferred. Both plots reveal that the performance of ADO tends to be better under
conditions in which there is less head movement (left) and the size of the region of interest
consists of a greater number of voxels (right). Figure B4b shows the region of interest
extracted from our functional localizer task, color coordinated by session for Subject 4.

Here, the figure shows that the mask identified in Session 1 (red) deviated considerably in
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Figure B3. Participant 4: Prediction Analyses and Global Utility Distributions. The left
plot shows the log ratio of averaged fit measures of RS to ADO compared to the benchmark,
as illustrated in Figure 11 in the main text. Higher values support ADO in accuracy (gray
area). The latter two plots show the distribution of normalized global utility of all possible
stimulus pairs generated by ADO (colored plots) and RS (gray plots). A scatter plot in the
center shows how the distribution of normalized global utility changes over trials, whereas
a violin plot on the right panel represents the same information aggregated across trials.
For all plots, note that the first four trials were excluded from the violin plot because RS
was used for both search procedures.

both size and location from Sessions 2 and 3. Finally, B4c shows the displacement from
all three sessions of ADO (colored lines) and RS (black lines) as a function of time. ADO
Session 3 in particular showed considerably more movement relative to the corresponding
RS run. Hence, these analyses reveal that ADO performs worse than RS only when the
quality of the neural data are poor, which we encountered in the first and third sessions for

Subject 4.

In summary, our post-hoc analyses revealed why ADO performed worse than RS in
the two scanning sessions of Subject 4. Specifically, the mask defined in Session 1 following
our functional localizer consisted of a small number of voxels that were not representative

of the key visual areas. In Session 3, we observed much larger head movements in the
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ADO condition relative to the RS condition.
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Figure B4.  Quality of the Neural Data and Performance of ADO. Plots in
panel a show scatter plots for comparing the performance comparison metric (i.e.,
log(DEV Drs/DEV D4spo) and quality assurance metrics (left: log absolute mean dis-
placement ratio of RS to ADO, right: the number of voxels used in the offline data analy-
ses). Here, the performance comparison metric is the same as what used in the right plot
of Figure 11 in the main text. The value greater than zero supports ADO in accuracy. The
x-axis of the left plot is the log-transformed ratio of absolute mean displacement between
RS and ADO, where absolute mean displacement is a summary metric revealing the degree
of displacement from a single reference brain volume. Higher values of this ratio mean
that head position was more stable in ADO than RS, and therefore are more preferred. In
panelsb and ¢, we describe the mask used for offline analyses (b) and time-series of absolute
displacement (c) of Participant 4, who showed bad performance in ADO runs. In panel
b, red, green, blue dots represent the mask used in the first, second, and third scanning
session, respectively. In panel ¢, we used the same color-coding rule to represent absolute
displacement in ADO runs, while black lines represent absolute displacement metric in RS
runs.
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