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Abstract

Efficient data collection is an important goal in cognitive neuroimaging studies be-

cause of the high cost of data acquisition. One method of improving efficiency is to

maximize the informativeness of the data collected on each trial. We propose an Adap-

tive Design Optimization (Cavagnaro, Myung, Pitt, & Kujala, 2010; Myung, Cavagnaro,

& Pitt, 2013) procedure to optimize the sequencing of stimuli for model-based functional

neuroimaging studies. Our method uses the Joint Modeling Framework (B. M. Turner,

Forstmann, & Steyvers, 2019; B. M. Turner, Forstmann, et al., 2013) to maximize the infor-

mation learned about how the brain produces a behavior by integrating over neural and

behavioral data simultaneously. We validate our method in simulation and real-world ex-

periments by showing how Adaptive Design Optimization proposes the optimal stimulus

sequence to reduce uncertainty and improve accuracy from a Bayesian perspective.
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Introduction1

Functional magnetic resonance imaging (fMRI) has become one of the most important2

tools in cognitive science to investigate human brain activity because of its noninvasive3

nature, reasonable temporal resolution, and precise spatial resolution (Poldrack, Mumford,4

& Nichols, 2011). However, the cost of data collection in neuroimaging studies using fMRI is5

exceptionally high due to high maintenance expenses of the scanner and low signal-to-noise6

ratio in the blood oxygenation level dependent (BOLD) response. Therefore, optimizing the7

experimental procedure and design is an important methodological issue for improving the8

efficiency of fMRI studies. To this point, many methods have been proposed to ameliorate9

certain limitations of fMRI measurements. For example, optimizing a stimulus sequence10

(for a recent review, see Holling, Maus, & van Breukelen, 2013) prior to performing an11

experiment, optimizing the scan acquisition sequence, or reducing the scanning area to12

specific brain regions (de Hollander, Keuken, van der Zwaag, Forstmann, & Trampel, 2017)13

can all improve the signal-to-noise ratio of fMRI measures.14

However, most of the previous design optimization methods for fMRI experiments15

focus on detecting brain activations associated with a task or its across-condition contrast16

that heavily rely on general linear modeling (GLM), or estimating the shape of the hemody-17

namic response. Would these methods be helpful if your research interest is, for example,18

to study the mechanism of self-control? In particular, what if the population of interest19

is children, whose attention span is quite limited? Such a population is uniquely difficult20

to obtain extensive numbers of trials, and therefore efficient data collection is strongly21

required.22

Although the previous approaches will be useful in increasing the signal-to-noise23

ratio of our experiment, they may not be optimally configured to study computational24

mechanisms associated with self-control (B. M. Turner et al., 2018). Moreover, there is no25

guarantee that “optimal” experimental designs computed before actual experiments will26

be the best designs for all participants. In a computational cognitive model, different levels27

of cognitive functioning are represented as different parameter values, which might affect28
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the definition of the “optimal” set of stimuli for each individual. Also, there are often large29

differences in neural or behavioral responses to similar stimuli across participants, or even30

within a participant scanned at different points in time (Miller et al., 2002). Therefore, it is31

sometimes unclear which stimuli should be used for a given participant, which suggests32

the need for adaptive, rather than static, optimization of experimental design.33

In the present study, we present a general-purpose methodology that overcomes34

many of the aforementioned limitations of fMRI measurement and optimization methods.35

The central feature of our algorithm is its optimally adaptive stimulus-proposal scheme as36

a way to maximize the information that is learned about how a brain produces a behavioral37

response. Specifically, the active-learning algorithm chooses a stimulus on each trial by38

making real-time statistical inferences, in this case about the participant’s perceptual deci-39

sion making process. The key advantages of our approach are three-fold. First, the data40

collection process in an fMRI experiment involves an optimization of the stimulus sequence41

in such a way to maximize information learned on each trial about the underlying decision42

process. Hence, the focus is on information about the decision, rather than number of trials43

or number of scans per trial. Second, the data collection process is completely adaptive:44

unlike static design optimization methods (Holling et al., 2013; Smucker, Krzywinski, &45

Altman, 2018), we analyze fMRI data from trial to trial in real time so that the stimulus46

search process is always conditional on the current state of knowledge about the partici-47

pant’s decision process. Third, our method incorporates both neural and behavioral data48

to optimize stimulus choice, a feature that is different from previous real-time design opti-49

mization methods such as QUEST (Watson & Pelli, 1983), Psi method (Kontsevich & Tyler,50

1999), Dynamically Adaptive Imaging (Cusack, Veldsman, Naci, Mitchell, & Linke, 2012)51

and The Automatic Neuroscientist (Lorenz et al., 2016). All these advantages reduce overall52

scan time for a desired amount of information by automatically tailoring the experimental53

design to each individual participant. In simulated and empirical studies, we show how the54

method can be used to collect data that are more informative than what could otherwise be55

obtained, despite neural variability and other complications that plague fMRI experiments56



FMRI DESIGN OPTIMIZATION 5

(Greve et al., 2013).57

Overview of the Methodology58

Figure 1 provides a flowchart of the method we have developed to perform adaptive59

optimization of real-time fMRI experiments. Following typical structural scans and func-60

tional localizer tasks (Appendix A), fMRI data are collected during the task in real time and61

processed to determine activation of each region of interest with motion correction. The62

pattern of activation is then evaluated by a joint model (Palestro et al., 2018; B. M. Turner,63

Forstmann, et al., 2013; B. M. Turner, Van Maanen, & Forstmann, 2015), whose parameters64

convey the current knowledge of how brain activity best predicts the pattern of behavioral65

responses. To keep the knowledge of brain-behavior connections as current as possible,66

the parameters of the joint model are updated via Bayes rule on each trial using several67

techniques: (1) differential evolution Markov chain Monte Carlo (B. M. Turner, Sederberg,68

Brown, & Steyvers, 2013) to efficiently approximate the parameter posterior distributions69

(Section “Posterior Sampling via DE-MCMC”), (2) one-trial lag to prevent hemodynamic70

lag from adversely affecting the posterior estimates (Section “One-trial-lag Optimization”),71

and (3) dynamic gridding to adjust the grid used to approximate the joint posterior dis-72

tribution (Section “Dynamic Gridding”). Finally, we rely on active learning through ADO73

(Cavagnaro et al., 2010; Myung et al., 2013) to guide selection of stimuli on a trial-by-trial74

basis. The advantage of using ADO is that it selects stimuli for the next trial based on75

the current parameter estimates in the joint model by integrating over all possible stimuli76

and all possible neural and behavioral responses. The stimulus design that is maximally77

informative about how the brain produces a behavior of interest is selected for the next78

trial, and the process repeats until a stopping criterion is reached. Supplementary code79

used in this study for implementing ADO is available on https://github.com/MbCN-lab.80
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an online design optimization tool for model comparison in cognitive science experiments.84

However, when only considering one model, the method naturally reduces to an algorithm85

for optimizing parameter estimation. A cognitive process model, along with the history of86

a participant’s responses, guides stimulus selection on each trial so that a selected stimu-87

lus is hypothesized to yield the greatest amount of information about model parameters.88

Although ADO is similar to many staircasing procedures used in psychophysical experi-89

ments, ADO is more general in that it can be applied naturally to different types of neural90

data (e.g., EEG, single-unit recordings, decision choices) or to any type of cognitive process91

model.92

ADO proposes an optimal design for upcoming trials by solving an optimization

problem. Given a candidate design of an experiment for the next trial d ∈ D, design

proposals are made by selecting a design associated with the highest global utility U(d).

Here, U(d) is defined with respect to the local utility u(d, θ, y), which is a function of the

design d, the model parameter θ, and the anticipated (behavioral) response on the next trial

y∗. A generic description of the design optimization is as follows:

dt+1 = argmax
d

U(d)

U(d) =

∫

y∗∈Y

∫

θ∈Θ
u(d, θ, y∗)p(y∗|θ, d)p(θ) dθ dy∗. (1)

A local utility function u(d, θ, y) evaluates the utility or informativeness of a design d93

regarding a model parameter set θ when a design d is used and a response y is anticipated94

in a hypothetical experimental trial. The global utility U(d) is computed as an “average”95

local utility by integrating the local utility over a parameter space Θ and a response space96

Y .97

A posterior covariance matrix and the sum of squared errors are often used as utility98

functions (Ryan, Drovandi, McGree, & Pettitt, 2016). However, a standard implementation99

of ADO relies on mutual information to evaluate the utility of each design because mutual100

information performs well for both parameter estimation and model comparison.101
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In addition to d, θ, and y∗, assume d1:t and y1:t that represent a series of experimental102

designs and collected (behavioral) responses in the previous t trials, respectively. A global103

utility function based on mutual information is104

U(d) =

∫

y∗∈Y

∫

θ∈Θ
log

p(θ|d1:t, y1:t, d, y
∗)

p(θ|d1:t, y1:t)
p(y∗|θ, d1:t)p(θ) dθ dy

∗. (2)

Note that by the definition of mutual information, a local utility function in Equation 1 is105

u(d, θ, y∗) = log
p(θ|d1:t, y1:t, d, y

∗)

p(θ|d1:t, y1:t)
(3)

(Myung et al., 2013).106

Myung et al. (2013) suggested a simple integration strategy based on grid based107

methods. Myung et al.’s approach proceeds by first defining a number of grid points for108

each dimension of design, parameter, and response spaces. Once the grids are defined over109

an entire search space, ADO then evaluates local utilities (i.e., u(d, θ, y∗)) and joint densities110

of θ and y1:t (i.e., p(y∗|θ, d1:t)p(θ) = p(y∗, θ|d1:t)) for all grid points. A global utility for a111

candidate design d is computed by taking a mean of weighted local utility values sharing112

a target design d :113

U(d) ≈ 1

nd

∑

{θ,y∗}

log
p(θ|d1:t, y1:t, d, y

∗)

p(θ|d1:t, y1:t)
p(y∗|θ, d1:t)p(θ) (4)

where nd is the total number of grid points assigned to a candidate design d.114

ADO has been fruitfully applied in cognitive science (Cavagnaro, Aranovich, Mc-115

Clure, Pitt, & Myung, 2016; Cavagnaro, Pitt, Gonzalez, & Myung, 2013; Cavagnaro, Pitt, &116

Myung, 2011) and more recently to neuroscientific problems, but only in simulation work117

(DiMattina, 2016; Sanchez et al., 2014; Sanchez, Lecaignard, Otman, Maby, & Mattout,118

2016). Although similar adaptive stimulus optimization methods have been applied on119

neurophysiology studies (for a recent review, see DiMattina & Zhang, 2013), there was no120

study directly connecting behavioral and neural data for optimizing stimuli. For example,121
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DiMattina (2016) used adaptive stimulus generation, which has Bayesian adaptive mecha-122

nisms to compare contrast gain models in human vision. However, this application neither123

modeled neural activity nor used neural data directly. Instead, the researcher developed124

an encoding-decoding model to map contrast stimuli to hypothesized neural responses125

(encoding model) and then to behavioral responses (decoding model) such that ADO only126

operated on the behavioral response data. While this study involves a neurophysiological127

model, ADO has yet to be demonstrated as an effective tool in the online processing of128

neural data.129

Joint Modeling Framework130

Today, scientists interested in studying cognition are faced with many options for131

relating experimentally-derived neurophysiological variables to the dynamics underlying132

a cognitive process of interest. A recent trend in cognitive science is to blend the theoretical133

and mechanistic accounts provided by models in the field of mathematical psychology134

with the high-dimensional data brought forth by modern measures of cognition such as135

those collected in an fMRI experiment. One new approach for imposing a reciprocal link136

between brain measures and decision variables is the “joint modeling” approach. Unlike137

the traditional modeling approaches (for descriptions of uniqueness, see B. M. Turner et138

al., 2019), joint models enforce a constraint on model parameters based on the random139

variation in the neural data. In other words, if one treats the neural data as a statistical140

covariate within the model, the estimates of the cognitive model parameters will be more141

constrained under mild conditions (B. M. Turner, 2015). The process of fitting the model142

to data procures estimates of neural activation parameters for each stimulus presentation.143

For the behavioral data, a cognitive model is developed, and similarly fit to behavioral144

data such as choice response time measures. To impose statistical reciprocity, a linking145

function specifies how the parameters of the neural data are related to the parameters of146

the cognitive model.147

In a series of studies, joint models have been shown to outperform models that do not148



FMRI DESIGN OPTIMIZATION 10

incorporate neural measures, suggesting that the information in neural measures can be149

used to make substantially better predictions for decisions (e.g., B. M. Turner, Rodriguez,150

Norcia, McClure, & Steyvers, 2016). In addition, compared to approaches estimating151

single-trial neural and behavioral model parameters separately and correlating them (e.g.,152

Forstmann et al., 2010, 2008), joint models can minimize the loss of information about153

statistical constraints. In the present investigation, we will optimize this framework to154

arrive at better representations of how the brain produces a behavior.155

Adaptive Design Optimization: Extension to the Neural Data156

Introducing neural data and its activation model does not change the definition of157

the global utility function and the searching process. However, the dimension of both158

parameter and response spaces increases because we have incorporated neural data and159

therefore need to consider the expected neural responses into ADO.160

Ideally, a full joint model would allow ADO to use a raw BOLD time-series vector

N as its neural input. Assuming a hierarchical joint model Ω = (θhyper, θneural, θbehavioral),

observed neural data during the previous t trials N1:end(t), and anticipated neural observa-

tions N∗, we can define global utility function as

UJM (d) =

∫ ∫ ∫

u(d,Ω,N∗, y∗)p(N∗, y∗|Ω, d)p(Ω) dΩ dN∗ dy∗

=

∫ ∫ ∫

log
p(Ω|d1:t,N1:end(t), y1:t,N

∗, y∗)

p(Ω|d1:t,N1:end(t), y1:t)
p(N∗, y∗|Ω, d)p(Ω) dΩ dN∗ dy∗ (5)

Note that the subscript notation of the variables representing neural (i.e., N1:end(t)) and161

behavioral (i.e., y1:t) data are inconsistent due to the mismatch of temporal resolution162

between BOLD and behavioral responses. Here, end(t) refers to the number of neural data163

samples (i.e., time points) until the end of the t-th trial.164

However, using the raw neural data is practically impossible within ADO because of165

the interaction between ADO, the dimensionality of neural data increasing in real time, and166

the shape of the anticipated BOLD responses. Equation 5 suggests that all data points in167
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the time-series vector N must be integrated over Rn where n is the length of the time-series168

vector. The problem in the real-time fMRI application is that new data are continuously169

added during the scan causing increases in the dimension of the neural data space, even170

when ADO is computing the global utility of candidate designs.171

A more critical problem is that computation time required for ADO interacts with the172

data collection procedure. If ADO functions relying on the raw BOLD responses, it has to173

evaluate the expected neural responses for the next few time points. However, the number174

of time points to be considered is arbitrary here because computation time for ADO will175

delay the whole schedule of the next trial (e.g., stimulus presentation). Moreover, changes176

in the schedule of the next trial will conclude in changing the shape of predicted BOLD177

responses and essentially in the evalutation of the global utility. As these issues occur in178

real time while ADO computes the next optimal stimulus, ADO would not be able to handle179

this issue appropriately. BT: this was hard to follow for me. I modified it, but honestly I180

don’t get what you’re trying to say. Is it that the calculations at time t for the next trial don’t181

include the information about the BOLD response from the previous trial t-1? it seems like182

this is not being effectively communicated.183

As an alternative, we can implement a global utility function based on a “limited”

version of the joint model structure using trial-wise neural activation estimates. For exam-

ple, we can make use of simple statistical models, such as a general linear model, to first

obtain estimates of the unknown stimulus- or trial-wise neural activations β, denoted β̂

(e.g., Rissman, Gazzaley, & D’Esposito, 2004). Given these neural activation estimates for

previous trials β̂1:t and for the next hypothetical trial β̂∗, a global utility is defined as

ULJM (d) =

∫ ∫ ∫

u(d,Ω, β̂∗, y∗)p(β̂∗, y∗|Ω, d)p(Ω) dΩ dβ̂∗ dy∗

=

∫ ∫ ∫

log
p(Ω|d1:t, β̂1:t, y1:t, β̂

∗, y∗)

p(Ω|d1:t, β̂1:t, y1:t)
p(β̂∗, y∗|Ω, d)p(Ω) dΩ dβ̂∗ dy∗.

When the limited joint model is used, single-trial neural activation estimates serve as184

the neural input into the ADO procedure, and this is an effective strategy because these185
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estimates efficiently describe stimulus- or trial-wise brain activity, unlike the raw neural186

data as in Equation 5. By reducing the set of possible data points to single-trial activation187

parameters rather than a full BOLD time series, the computational burden of using ADO188

becomes manageable once again. However, this reduction does come at the cost of inflated189

uncertainty in the estimates of neural activation. Also, note that the response space for190

the continuous neural activation β̂ must be discretized if one attempts to use a grid-based191

approximation as in Equation 4.192

Introducing the Neural Data: Single-trial Neural Activation193

The use of stimulus- or trial-wise neural activation estimates serves as a remedial194

strategy for the high dimensionality problem of raw BOLD responses. To actually use the195

single-trial activation estimates, fMRI-based ADO must include a component that estimates196

neural activation amplitude evoked by each stimulus or trial so that the neural estimates197

can be used for proposal generation.198

The conventional approach to estimating single-trial activation is to perform a general199

linear model (GLM) analysis – an application of multiple linear regression to fMRI data. A200

GLM uses a design matrix consisting of vectors representing the onset times of events of201

interest (e.g., stimulus presentation, response production) convolved with a hemodynamic202

response function. A typical approach is to define condition-wise regressors for comparing203

the mean activation estimates across conditions (for a more general introduction to this204

topic, see introductory textbooks for fMRI data analysis such as Poldrack et al., 2011).205

However, when using ADO, GLM regressors must be defined at each stimulus- or206

trial-level because we need information of neural activity associated with each stimulus.207

Conceptually, stimulus-level regressors can be easily made by setting the onset vectors for208

each individual stimulus, not for each condition. A single-trial GLM can be implemented209

in a Bayesian framework (e.g., Palestro et al., 2018). However, full posterior estimation210

is time consuming in real-time fMRI experiments due to the large number of single-trial211

regressors or multiple BOLD response vectors. In our application, we used frequentist212
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estimates to obtain trial-wise neural activation estimates efficiently. For example, ordinary213

least squares estimates can be derived as:214

β̂ = (XT X)−1XT N (6)

where X is a design matrix, a superscript T indicates the transpose operation, and N is a215

raw BOLD time-series vector. We relied on ordinary least square estimates for extracting216

the target region given the time constraint. However, during the task, we used estimates217

assuming the first-order temporal autocorrelation in the optimization routine for acquiring218

as accurate values as possible.219

Issues in Estimation Methods. Although the idea of estimating stimulus-wise neu-220

ral activation using GLMs seems straightforward, a few methodological issues can affect221

the quality of the estimates and computational burden imposted on ADO. The first issue222

is the shape of the HRF. As the observed neural data are assumed to be the product of223

convolving a sequence of experimental events and the HRF, how we define (or model) the224

HRF affects the estimates of the single-trial neural activation.225

In this study, we used the canonical HRF model (also known as ’double-gamma226

HRF’) with fixed shape parameters: a1 = 6, a2 = 16, b1 = 1, b2 = 1, and c = 1/6. Given the227

time index t and fixed shape parameters, the double-gamma HRF is228

h(t) =
ta1−1ba1

1 exp(−b1t)

Γ(a1)
− c

ta2−1ba2

2 exp(−b2t)

Γ(a2)
. (7)

However, it is worth noting that if the HRF is misspecified, estimates of the trial-wise229

neural activity may be suboptimal, as is the case in nearly every model-fitting procedure230

(Lindquist, Loh, Atlas, & Wager, 2009).231

Ideally, we could estimate the shape parameters of the HRF during the experiment.232

However, simultaneously estimating the shape parameters will quickly increase the com-233

putational complexity of the design optimization problem. As the main purpose of our234

study is proof of concept, we used the canonical HRF as a reasonable approximation.235
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Another statistical issue is that the single-trial GLM is vulnerable to multicollinearity,236

especially when an experiment uses rapid event-related designs (i.e., short interstimulus or237

intertrial intervals). This problem comes from the shape of the HRF, which has a temporally238

extended profile. If two experimental events are offset with a short time interval, the corre-239

sponding regressors will be similarly shaped to one another, making their correlation high.240

Although this problem might not apply to our study with better trial-by-trial separation,241

an appropriate methodological consideration is still needed.242

Previous studies have discussed this issue and proposed alternative methods for bet-243

ter single-trial neural activation estimates (e.g., Abdulrahman & Henson, 2016; Mumford,244

Davis, & Poldrack, 2014; Mumford, Turner, Ashby, & Poldrack, 2012; B. O. Turner, Mumford,245

Poldrack, & Ashby, 2012). However, many of these alternatives use the strategy of fitting246

as many GLMs as the number of stimuli or trials to be analyzed, which could increase the247

computation time in the ADO pipeline. Also, selection of the estimation method must con-248

sider how one plans to update the single-trial neural estimates together (see “Incremental249

Estimation of Single-trial Neural Activation”). Hence, we decided to use a more traditional,250

single-GLM-based approach (Rissman et al., 2004) for this proof-of-concept study, while251

fully acknowledging its limitation.252

Incremental Estimation of Single-trial Neural Activation. To update the neural253

activity from newly occurred events in the latest trial, estimation of single-trial neural254

activation is necessary at the end of every trial. However, using this incremental procedure255

implies that BOLD time-series will be continuously updated during an entire scanning256

session. For single-trial neural estimates that are already obtained, we cannot avoid slight257

changes in those estimates because newly updated data will change the likelihood (and258

therefore posterior density) of possible estimates. Hence, we have to determine how to deal259

with the variability of single-trial neural estimates during fMRI-based ADO experiments.260

The first option to handle the variability of single-trial neural estimates is to block261

the updating of neural estimates included in ADO during previous trials. In this case,262

neural activation estimates of previous stimuli or trials will be fixed in further trials and263
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new estimates for those trials will not be used in ADO. Only the estimates from a new trial264

will continue being added in the neural “data” – in this case, single-trial neural activation265

estimates – vector. This approach ensures the stability of ADO algorithm as the estimates266

of neural activity remain constant once they have been estimated on a given trial. Also,267

this approach can maximize computational efficiency of grid-based ADO. As long as the268

grid settings and previously obtained neural data do not change, we can store the posterior269

probability density of the current trial as the prior for the next trial, and simply call those270

values when evaluating the global utility.271

The second option to handle the variability of single-trial neural estimates is to allow272

ADO to update the neural estimates every trial. From this perspective, ADO must use the273

best “data” – again, single-trial neural activation estimates – available at each trial. Hence,274

ADO must refer to new estimates as they become more accurate and less variable as the275

experiment moves on.276

In the simulation experiments, we made an ideal assumption that we always obtain277

perfect estimates of stimulus-wise neural activations. Therefore, there is no need for278

considering the variability of neural estimates and updating the new parameters through279

the acquisition. In the fMRI experiments, however, we chose the second strategy that280

updates neural estimates for every trial to make ADO use the best information available.281

One-trial-lag Optimization. Ideally, we should use both neural and behavioral282

data from all previous trials. However, when we use typical lengths of interstimulus or283

intertrial intervals, obtaining neural estimates of the latest trial before computing global284

utility is almost impossible due to the temporal profile of hemodynamic responses.285

In detail, the hemodynamic responses consist of an increasing period to a peak that286

takes 5-6 seconds, a decreasing period with an undershoot below a baseline activation, and287

a slow asymptotic recovery period. The total length of a hemodynamic response usually288

takes up to 30 seconds. As our main interest is the activation amplitude, we need to measure289

BOLD responses for a specific stimulus or trial for at least 5-6 seconds to characterize their290

peak intensity. However, a temporal lag of 5-6 seconds might be too long depending on291
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The method described above was used in the simulation study as an ‘ideal’ schedule305

of imposing a lag because we can exploit ADO in as many trials as possible. However, we can306

also simplify the implementation of one-trial-lag ADO using randomly generated designs307

for the first few trials, which is the strategy used in the fMRI experiment. Compared to the308

method described above, the latter might be preferred from the perspective of controlling309

variability of neural estimates. As enough neural data have been collected in the first few310

trials, the neural estimates corresponding to the first few trials have already stabilized. As311

one-trial-lag ADO relieves us from burdensome computational time when acquiring single-312

trial beta estimates, we recommend using this procedure when single-trial beta estimates313

must be obtained to characterize the BOLD response.314

Refining the Functionality of fMRI-based ADO315

Posterior Sampling via DE-MCMC. In the practice of Adaptive Design Optimiza-316

tion, full posterior estimation of model parameters may be required in real-time for two317

reasons: evaluation of the performance of ADO and adaptive updating of the grid points.318

In this study, we used a Differential Evolution Markov chain Monte Carlo sampler (DE-319

MCMC; ter Braak, 2006; B. M. Turner, Sederberg, et al., 2013) for posterior updating.320

DE-MCMC sampler uses information about the difference between chains to draw new321

posterior samples, enabling it to sample more efficiently from models with correlated322

dimensions. In addition, DE-MCMC sampler suffers less from autocorrelation in the sam-323

pling process than conventional Metropolis-Hastings algorithms.324

To initialize the chains of the sampler, we used the grid points as a reference. In detail,

initial chains were selected by multinomial sampling with a choice probability vector p(t)

constructed by normalized posterior densities of all grid points in the parameter space.

Given the j-th grid point in the search space at trial t, θ
(t)
j , and the total number of grids J ,

the i-th chain initialized after completing the t-th trial, ci,t,1, is initialized by multinomial
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sampling:

ci,t,1 ∼ Multinomial(p(t))

≡ Multinomial([p
(t)
1 , p

(t)
2 , · · · , p(t)

J ]T )

Here, the probability that the j-th grid point is selected as an initial chain is

p
(t)
j =

f(θ
(t)
j |y1:t, d1:t)

∑J
j=1 f(θ

(t)
j |y1:t, d1:t)

.

At the (i − 1)-th iteration, given the chains from the previous iterations c·,t,i−1, DE-325

MCMC proposes a posterior sample with the following procedure. First, the sampler326

randomly selects two different chains, say cm,t,i−1 and cn,t,i−1, and take their difference:327

∆c = cm,t,i−1 − cn,t,i−1. Second, a proposal based off on the third chain cq,t,i−1 (q 6= m,n) is328

generated by adding ∆c scaled by a pre-specified factor γ and random perturbation ε to it.329

If this proposal passes the test by the Metropolis-Hastings probability, the new proposal is330

accepted as a posterior sample. If not, the previous sample is used again.331

However, poor initialization can cause problems in the posterior due to “outlier"332

chains that deviate from the majority of the chains. Migration (Hu & Tsui, 2005) could333

be a reasonable remedy to solve this problem by swapping the location of outlier chains334

during the first few trials with fixed probability. In addition, DE-MCMC can force the335

sampling procedure to focus more on the high-density region (this is called “burn-in"336

mode; B. M. Turner & Sederberg, 2012) so that we can center the posterior around its337

maximum a posteriori (MAP) estimate. For more details, we direct readers to publications338

investigating these ideas B. M. Turner and Sederberg (2012); B. M. Turner, Sederberg, et al.339

(2013).340

Dynamic Gridding. The current implementation of fMRI-based Adaptive Design341

Optimization (ADO) relies on a grid-based method to approximate the global utility cal-342

culation. For efficient performance of ADO, we need to discretize both parameter and343
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Here, we used a simple method based on eigendecomposition of a sample covariance362

matrix motivated by principal component analysis (Johnson & Wichern, 2007). The main363

idea is that we can compute the sample covariance matrix S from the posterior samples364

obtained by MCMC procedures and decompose it into eigenvectors and associated eigen-365

values. These eigenvectors provide an appropriate rotation scheme to orthogonalize the366

posterior samples. Figure 3 provides visual illustrations of the dynamic gridding procedure367

described here.368

The result of eigendecomposition of S consists of two matrices – a square matrix R

containing eigenvectors of S as its columns, and another diagonal matrixC whose diagonal

elements are eigenvalues of S:

S = RCR−1.

Because eigenvectors in R construct an orthogonal basis explaining the largest variance of369

the posterior samples, we can use R to map the original posterior samples, say A, onto370

an orthogonal principal component space without additional scaling: Ã = AR. Then, for371

each dimension, we can sample quantiles from an empirical marginal distribution given a372

set of pre-specified probabilities, which defines a new grid in the rotated space. As a last373

step, an inverse of the rotation matrix R maps the newly defined grid G̃ onto the original374

space: G∗ = G̃R−1. There are several software packages for statistical computing that offer375

the appropriate functions for implementing these operations (e.g., eigen and quantile in376

R).377

Note that this dynamic gridding method can sometimes generate invalid grid points378

according to assumptions on the model parameters. For example, the standard deviation379

of a normal distribution, say σ, is not allowed to have negative values by its definition.380

However, the SVD-based dynamic gridding might allow invalid grid points (i.e., σ < 0)381

by the shape of the joint posterior distribution and constraints imposed to other model382

parameters. These invalid grid points must be ignored in subsequent steps.383
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Simulation Study384

In this section, we aim to provide the simulation-based verification of the performance385

of fMRI-based ADO. To this end, we first describe the contrast discrimination task that will386

be used in both the simulation study and the fMRI experiment, and then outline the joint387

model we used to explain both the neural and behavioral data.388

Next, we report the result of one large simulation study we conducted to assess389

parameter recovery when using ADO-based experiments relative to a randomized design as390

a baseline. To investigate how well the parameter recovery results generalize, we performed391

parameter recovery analyses on 30 different parameter sets, each of which produce patterns392

of data that resemble human decision making in our task. The basic structure is to (1)393

choose a parameter value for the joint model from the 30-parameter set, (2) perform an394

ADO-based experiment with the data from each trial being produced by the joint model,395

(3) perform a Randomized Search based experiment by sampling a pair of contrasts on396

each trial at random, and (4) compare the parameter posterior estimates obtained in each397

experiment sequence. For (4), we compare the estimated parameter posteriors in terms of398

their accuracy (i.e., distance from the true parameter value) and precision (i.e., the variance399

in the estimated parameter posterior).400

Task401

In the contrast discrimination task, a participant is presented two grating annuli402

consecutively, each having different contrast levels. Following the stimuli, a response cue403

is presented and the participant is instructed to respond by indicating which of the two404

stimuli were of higher contrast by pressing the corresponding button. Figure 4 illustrates405

the trial structure of the contrast discrimination task.406

Contrast levels are defined in the interval [0, 1]. When the contrast level is 0, the407

stimulus is completely flattened and shown as a gray plane. When the contrast level is 1,408

the stimulus shows a fluctuating black-white stripe pattern. In the experiment, the contrast409

values are logarithmically spaced with 10 levels (i.e., 0.010, 0.017, 0.028, 0.046, 0.077, 0.129,410
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Neural Submodel. To describe the relationship between the contrast and activation425

of visual cortex, we use Naka-Rushton equation (DiMattina, 2016; Li et al., 2008). Given the426

two contrast levels c1 and c2, Naka-Rushton equation models predicted neural activation427

levels using three shape parameters (b, Rmax, c50):428

β̂i = b+
Rmaxc

2
i

c2
50 + c2

i

(i = 1, 2) (8)

where b is baseline activation, Rmax is the maximum amplitude above the baseline, and c50429

is the contrast level that evokes half the maximum activation. We assume that the actually430

measured neural activation βi is normally distributed with mean β̂i and constant standard431

deviation δ/
√

2:432

βi ∼ N
(

β̂i, (δ/
√

2)2
)

. (9)

Behavioral Submodel. On the behavioral side, we use a Thurstonian decision433

model (Thurstone, 1927) to model the discrimination process. Let us assume that the434

perceptual system represents the physical stimuli (i.e., the two grating stimuli) with inten-435

sity φ1 and φ2 as ψ1 and ψ2 as a normally distributed random variable centered on the true436

physical state, but with some perceptual uncertainty s such that437

ψi ∼ N
(

φi, s
2
)

(i = 1, 2). (10)

Then, we make a comparative judgment based on the difference between two mental438

representations, say ψ2 − ψ1. Hence, the difference of the two psychological variables can439

be written as440

ψ2 − ψ1 ∼ N
(

φ2 − φ1, (
√

2s)2
)

. (11)

Given this difference distribution, we assume a behavioral response y is given according to441

a Bernoulli distribution442

y ∼ Bernoulli(p)
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with probability p determined by the psychological mapping of the two physical intensities443

such that444

p = 1 − Φ∗
(

0;φ2 − φ1, (
√

2s)2
)

, (12)

where Φ∗(·;µ, σ2) is a cumulative density function of a Gaussian distribution with mean µ445

and standard deviation σ. Hence, y = 1 when our psychological experience suggests that446

φ2 > φ1.447

A Linking Function. Any joint model requires a linking function that mathemati-448

cally expresses the relationship between the neural and behavioral submodels. As a linking449

function, we simply assume that the neural encoding of the contrast stimuli works as a men-450

tal representation of the contrast level (i.e., φi ≡ β̂i, ψi ≡ βi). In addition, we assume that451

the uncertainty in behavioral responses δ is affected by the variability of neural activation452

as in Equation 9. Therefore, the complete joint model of contrast discrimination comprising453

of four parameters (b, Rmax, c50, δ) can be described as follows:454

β2 − β1 ∼ N
(

β̂2 − β̂1, δ
2)

,

p = 1 − Φ∗
(

0; β̂2 − β̂1, δ
2
)

=

∫ ∞

0
N(x; β̂2 − β̂1, δ

2
)

dx,

y ∼ Bernoulli(p).

Methods455

To perform grid-based Adaptive Design Optimization (ADO), we need to first specify456

environmental settings that include (1) prior distributions, (2) initial grid settings, (3)457

MCMC sampler parameters (e.g., the number of chains, burn-in steps and valid iterations),458

(4) dynamic gridding parameters. Tables 1 and 2 show the default settings and parameter459

sets used in the simulation study.460

As for the levels of the contrast, we used ten logarithmically spaced points for each461

stimulus per trial. As we used two stimuli for each trial and excluded the designs where the462
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first and second stimuli shared the same contrast, the design space consists of 102 −10 = 90463

candidate designs. For a grid-based approximation of the parameter space, we decided to464

use five points per dimension. Therefore, the number of points in the parameter space is465

54 = 625.466

If the response variable of interest relies on discrete measurements, we do not need467

further approximations for grid-based ADO because the response variable itself is already468

discretized. However, if the response variable is continuous, grid-based ADO requires469

discretization of the response space. In this simulation, we set ten levels of neural activation470

amplitudes for this approximation. As we used two neural measures per trial plus one471

binary choice, the discretized response space consists of 102 × 2 = 200 points.472

When specifying the prior distributions, we could use non-uniform priors such as473

diffuse normal distributions for b and Rmax, a truncated normal or beta distribution for474

c50, and an inverse-gamma distribution for δ. However, we decided to use uniform priors475

to reduce computation time as much as possible, as we evaluated posterior densities every476

trial with newly updated single-trial neural estimates (see Section for more details) or grid477

points.478

In the simulation study, we defined measures of accuracy and precision of posterior479

estimates by root mean square deviation (RMSD) and standard deviation (PSD) of the480

posterior distribution. We considered mean values of the posterior samples as posterior es-481

timates as in Equation 13, and then computed parameter-wise standard deviation (PSDi,t)482

and pooled performance measures (RMSDt and PSDt) at each trial t as follows: Given a483

set of “true” parameters assumed in each simulation θ = (θ1, θ2, θ3, θ4) ≡ (b, Rmax, c50, δ),484

and xijkt representing a value of the j-th chain of the DE-MCMC sampler for the parameter485

θi at the k-th iteration (j = 1, · · · , 24),486
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x̄i··t =
1

24 × 800

1000
∑

k=201

24
∑

j=1

xijkt, (13)

RMSDt =

√

√

√

√

4
∑

i=1

(x̄i··t − θi)2,

PSDi,t =

√

∑1000
k=201

∑24
j=1(xijkt − x̄i··t)2

24 × 800
,

PSDt =

√

√

√

√

1

4

4
∑

i=1

PSD2
i,t (14)

. The DE-MCMC sampler drew posterior samples for 1,000 iterations and discarded the487

first 200 iterations as burn-in.488

Variable Details

The number of replicates 100 for each parameter set

The number of trials 20

Stimulus
(Rounded to 3 decimal places)

{0.010, 0.017, 0.028, 0.046, 0.077,
0.129, 0.215, 0.359, 0.599, 1.000}

Prior

b Uniform(-3, 5)
Rmax Uniform(-3, 5)
c50 Uniform(0, 1)
δ Uniform(0.0001, 5)

Initial grid settings

b {-2, -1, 0, 1, 2}
Rmax {0.5, 1.125, 1.75, 2.375, 3}
c50 {0.05, 0.275, 0.5, 0.725, 0.95}
δ {0.001, 0.30075, 0.6005, 0.90025, 1.2}

Neural response
{0, 0.22, 0.44, 0.67, 0.89,
1.11, 1.33, 1.56, 1.78, 2}

Grid size
Design space 90 = 102 − 10

Parameter space 625 = 54

Response space 200 = 102 × 2

DE-MCMC

Chains 24
Burn-in samples 200

Valid posterior samples 800
Migration probability 0.1

Dynamic
Gridding

Method Eigenvector-based rotation
Schedule After every trial
Percentile (20%, 35%, 50%, 65%, 80%)

Table 1
Default settings in Simulation Study
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Set
Parameter values

Set
Parameter values

b Rmax c50 δ b Rmax c50 δ

1 0.050 1.000 0.350 0.200 16 0.200 1.631 0.180 0.206

2 0.345 1.473 0.136 0.263 17 -0.009 2.026 0.156 0.297

3 0.371 1.544 0.203 0.203 18 0.454 1.678 0.194 0.356

4 0.378 1.750 0.114 0.390 19 0.269 1.220 0.122 0.368

5 0.233 1.340 0.391 0.303 20 0.134 1.173 0.107 0.421

6 0.206 2.078 0.374 0.257 21 0.018 1.123 0.165 0.373

7 0.210 2.199 0.177 0.463 22 0.423 1.351 0.208 0.432

8 0.302 1.287 0.248 0.345 23 0.480 1.706 0.147 0.402

9 0.012 1.480 0.239 0.310 24 0.402 1.835 0.232 0.261

10 0.025 1.620 0.262 0.409 25 0.204 1.999 0.314 0.242

11 0.277 1.809 0.395 0.462 26 0.030 1.527 0.284 0.206

12 0.136 1.321 0.179 0.457 27 0.057 1.048 0.126 0.317

13 0.393 1.937 0.118 0.282 28 0.086 2.152 0.357 0.430

14 0.362 1.823 0.352 0.374 29 0.176 1.813 0.343 0.421

15 0.235 2.186 0.357 0.466 30 0.083 2.054 0.267 0.493
Table 2
A list of 30 parameter sets used in Simulation Study. Parameter values are rounded to three decimal
places.

Results489

As our simulation involves randomness both within a given parameter set and be-490

tween parameter sets, we present the results in two phases. Figures 5 and 6 illustrate the491

results for a single parameter combination within the set. First, Figure 5 compares design492

proposals from ADO (top row) and Randomized Search (RS; bottom row). Each dot repre-493

sents a design candidate, and the relative intensity conveys the frequency of each stimulus494

selection. Each column represents a different block of trials: 1-5 (left), 6-10 (middle), and495

1-20 (all trials; right). As expected, the bottom row shows that RS selects design candidates496

(i.e., pairs of contrast values) with equal frequency. However, the ADO search selects497

design candidates with different frequencies over trials.498

Figure 6 compares ADO (red) to RS (black) designs in terms of accuracy (left panel),499

precision (middle panel), and effective differences between the designs in terms of number500

of trials (right panel). For accuracy, we compared ADO to RS by computing the pooled501

root mean squared deviation (RMSD; left) between each estimated parameter posterior to502
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Although the results of the within-parameter set analysis are encouraging, they lack514

generalizability across different brain-behavior relations. To this end, we can extend the515

analysis by aggregating the performance metrics shown in Figure 7 across 30 different516

parameter sets. Figure 7 shows scatter plots of the RMSD (left) and the PSD (right) to517

compare the performance of ADO (x-axis) to RS (y-axis). The gray shaded area indicates518

regions of each metric space where the performance of ADO was superior to RS. In general,519

a significant proportion of the metrics (≈ 71 − 75% at maximum) are located above the520

identity line, and therefore we can conclude that ADO outperforms RS across these 30521

parameter sets.522

One feature of the aggregated results is that the performance metrics comparing523

ADO to RS tend to converge as the number of trials increase (e.g., Trial 20, purple contour524

in Figure 7). This is a well-established effect in design optimization: once enough data are525

collected, the benefits provided by ADO asymptote depending on the number of stimuli526

to choose from and the complexity of the cognitive model. In our case, as the experiment527

and model are both relatively simple, we should expect RS to eventually catch up to ADO528

beyond approximately 20 trials. However, substantially better ADO results would be529

realized with either more candidate stimuli or a more detailed cognitive process model.530

Regardless, the main result is that the performance of ADO is better during the first few531

trials, suggesting that a stopping rule could be developed to facilitate more efficient data532

collection relative to RS.533

fMRI Experiment534

The result of the simulation study suggested that ADO supported by both neural535

and behavioral data can estimate model parameters more efficiently than a baseline RS536

procedure does. To validate the method in a real-world application, we compared the537

efficiency of ADO relative to RS in an fMRI experiment. Our goal was to establish the538

performance of ADO both across participants (i.e., between-participant), and within the539

same participant across different scanning sessions (i.e., within-participant).540
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Participants541

Four participants completed the experiment. Each participant had three two-hour542

sessions including 90-minute functional MR scanning. Two among four participants were543

female, and the mean age of participants was 24.75. All participants were recruited from544

The Ohio State University and provided informed consent. The study was approved by545

the Institutional Review Board of The Ohio State University.546

Stimuli and Task547

All stimuli and instructions were generated by SMILE (State Machine Interface Li-548

brary for Experiments; http://smile-docs.readthedocs.io/en/latest/), a Python li-549

brary for programming psychological experiments, on a MacBook Pro 2016. Each partici-550

pant laid on the scanner bed and viewed the stimuli presented onto a rear-projection screen551

through a mirror mounted in the coil. Stimuli were presented at eye level at a distance of552

74cm.553

Each grating stimulus was generated with spatial frequency of 3.06 cycles per degree,554

and formed as an annulus not to expose the grating patterns at fovea. The radii of the555

external and internal circles were 14.52 degree and 3.48 degree in visual angle, respectively.556

In addition, a linear mask was applied to the annulus to allow gradual changes in stimulus557

intensity. The stimulus intensity increases from a distance of 1.74 degree reaches its558

maximum at a distance of 2.94 degree, and fades gradually from a distance of 4.34 degree559

from the center of screen.560

A participant was presented two consecutive grating stimuli with different contrast561

levels and asked to keep fixation at a white “+” marker located at the center of a screen.562

When the fixation marker changed to a response cue (a white “×” marker), the participant563

was asked to answer whether the first or the second stimulus was of higher contrast. The564

participant was given two 2-button response pads, one for each hand, and was instructed565

to use one button for each side to make a response. The response-button association rule566

altered every session. For example, a participant was asked to use the button in the left567
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box to respond that the first stimulus had higher contrast level in one session, and to use568

the button in the right box to make the same response in the next session.569

Each participant performed the same task over three separate scanning sessions,570

each lasting about 90 minutes. Within each of the three independent-replication sessions,571

participants completed two conditions: in one condition the stimulus sequence was gener-572

ated based on RS, whereas in the other condition it was generated based on ADO. Due to573

participant dropout, the order between the ADO-based and RS-based runs was not coun-574

terbalanced. Participants 1 and 2 conducted the ADO-based runs first in the first and third575

replicate sessions, and the RS-based run first in the second session. Participant 3 conducted576

the RS-based run first in the first and third replicate sessions, and the ADO-based run first577

in the second session. Participant 4 conducted the ADO-based run first in the first replicate578

session, and the RS-based run first in the two remaining sessions.579

The difference between the RS-based and ADO-based runs is the length of intertrial580

interval. ADO requires time to calculate an optimal design at the end of every trial, and581

for adjusting parameter grids after the 4th, 8th, 12th, and 16th trials. Specifically, fMRI-582

based ADO in this experiment requires 6-8 seconds for proposing the optimal design and583

additional 4-5 seconds for full posterior estimation and grid adjustment. Therefore, 8584

seconds of the mean intertrial interval used in the RS-based experiment was not enough585

in the ADO-based run. While the intertrial interval of the run without ADO was either 6,586

8, or 10 seconds, that of the ADO-based run was extended for 4 seconds (i.e., 10, 12, or 14587

seconds). The total length of the run without ADO was 624 seconds. The ADO-based run588

took approximately 15 minutes.589

Protocol590

Figure 8 provides a graphical summary of the scanning protocol and data flow in the591

ADO-based fMRI experiments. The experiment comprises of three stages: (1) acquisition592

of structural and functional localizer images, (2) inverse-registration of anatomical masks593

onto a standard space, and (3) data collection in the main task.594
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sequence. The former constructs the basis of the subject space, whereas the latter limits599

the region to be scanned in the functional localizer and the main tasks. The functional600

localizer task is performed to detect task-relevant voxels as the last step. The functional601

localizer mask can be defined by performing a whole-brain GLM analysis with data from602

the localizer task and extracting voxels that have test statistics (e.g., t-statistics) greater than603

a specific threshold.604

In the second stage, an experimenter extracts the task-relevant subject-specific mask605

using the data acquired from the first stage. We use a template structural image defined606

in a standard brain space such as MNI (Montreal Neurological Institute) atlas (Grabner et607

al., 2006) as a reference. Once the experimenter collects the structural image in the subject608

space, it is registered to the standard brain template to obtain the transformation matrix609

that maps the subject space onto the standard space. The inverse-transformation matrix610

is derived by taking an inverse of the transformation matrix, and is used for mapping the611

anatomical masks in the standard space to the subject space. When regions of interest612

(ROIs) must be constrained by masks provided by standard anatomical atlases (e.g., Jülich613

Histological Atlas; Eickhoff et al., 2005), we can transform the standard masks to subject-614

specific masks by using the inverse-transformation matrix. The conjunction between the615

inverse-transformed anatomical mask and the functional localizer mask defines the task-616

relevant mask in the subject space.617

The task-specific mask enables one to obtain voxel-wise BOLD responses in real-time618

during the main task. When an experimenter is interested in a specific ROI defined by the619

task-relevant mask, a common approach is to average neural signals from all voxels in the620

mask for running the GLM analysis for stimulus-wise neural estimates. The stimulus-wise621

neural activation estimates are considered as neural inputs of ADO.622

Our report will focus on the optimization during the main task. Regarding how we623

performed the functional localizer task and determined the voxels of interest, readers are624

referred to Appendix A.625
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Definition of the Benchmark and Distance Metrics626

Unlike the simulation study, we don’t have a “true" parameter that serves as a bench-627

mark to compare the performances of ADO and RS, especially when the focus of our628

analysis is on accuracy. Therefore, we decided to use the posterior estimate obtained by629

using all the data from both ADO-based and RS-based runs within a session as a bench-630

mark. We can justify this approach for two reasons: (1) the stimulus-wise neural activation631

estimates from ADO-based and randomized-design runs capture the neural activity of the632

same visual system, and (2) the uncertainty of model parameters will be most reduced by633

using all the available data. The variability of stimulus-wise neural activation estimates634

may raise questions about the first assumption because ADO might cause adaptation to635

repeatedly presented stimuli compared to randomized designs (Krekelberg, Boynton, &636

van Wezel, 2006). However, we suggest that using the combined data is the most reasonable637

way to establish a standard for performance evaluation given the constraints in our data638

analysis.639

Once the posterior samples from the ADO, RS, and benchmark settings were ob-640

tained, we computed the estimates used for performance evaluation. We originally in-641

tended to calculate a four-dimensional joint MAP estimate using multidimensional kernel642

density estimation. However, the currently available methods (e.g., Duong, 2007) either643

required substantial computation time or were very susceptible to slight differences in pos-644

terior samples. Therefore, we computed MAP estimates using an Epanechnikov kernel for645

each parameter, and used them in the offline analyses.646

Again, we denote the parameter vector θ = (θ1, θ2, θ3, θ4) ≡ (b, Rmax, c50, δ). Given647

estimates obtained at trial t from ADO θ̂ADO,t = (θ̂1,ADO,t, θ̂2,ADO,t, θ̂3,ADO,t, θ̂4,ADO,t), es-648

timates from RS θ̂RS,t = (θ̂1,RS,t, θ̂2,RS,t, θ̂3,RS,t, θ̂4,RS,t), and benchmark estimates θ̂B,t =649

(θ̂1,B,t, θ̂2,B,t, θ̂3,B,t, θ̂4,B,t), we define the RMSD for each method m ∈ {ADO,RS} as fol-650

lows:651



FMRI DESIGN OPTIMIZATION 36

RMSDm,t =

√

√

√

√

4
∑

i=1

(θ̂i,m,t − θ̂i,B,t)2.

The definition of the PSD follows Equation 14, except for the number of iterations in the652

DE-MCMC sampler. Due to the time concern, we sampled 500 iterations and discarded653

the first 200 samples as burn-in.654

To strengthen our conclusion under the situation where there is no way to know655

the “true” parameter values, we compared the results in the data space as well as in the656

parameter space. As for the analysis in the data space, we focused on comparison of657

Naka-Rushton curves from ADO and RS due to the model structure that the behavioral658

process (i.e., Thurstonian decision model) depends on the neural encoding process (i.e.,659

Naka-Rushton model).660

For the comparison in the data space, we first recovered the shape of Naka-Rushton661

curves by plugging estimates of Naka-Rushton model parameters θ = (θ1, θ2, θ3, θ4) ≡662

(b, Rmax, c50, δ) into the Equation 8:663

N̂ADO(ci) = θ̂1,ADO +
θ̂2,ADOci

2

θ̂2
3,ADO + ci

2
,

N̂RS(ci) = θ̂1,RS +
θ̂2,RSci

2

θ̂2
3,RS + ci

2
,

N̂B(ci) = θ̂1,B +
θ̂2,Bci

2

θ̂2
3,B + ci

2

where c = (0.010, 0.017, 0.028, 0.046, 0.077, 0.129, 0.215, 0.359, 0.599, 1.000) is the contrast664

used in the experiments, and i = 1, · · · , 10.665

The model fit metrics were defined by root mean squared error from the benchmark666

estimate: for estimated curves N̂ADO,t, N̂RS,t, and N̂B,t for trial t,667
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DEVDADO,t =

√

√

√

√

1

10

10
∑

i=1

{

N̂ADO(ci) − N̂B(ci)
}

,

DEV DRS,t =

√

√

√

√

1

10

10
∑

i=1

{

N̂RS(ci) − N̂B(ci)
}

.

Results668

The results from Participant 4 are not presented here because of the low quality of669

the neural data (i.e., the size of the region scanned in the experiment, and excessive head670

movement), but we refer the reader to Appendix B for equivalent analyses.671

Proposed Designs. Figure 9 shows the designs proposed by ADO and RS in the672

fMRI experiment sessions. Compared to the results from the simulation, the pattern of673

proposals is not clearly discriminated between the two methods. However, we can see, for674

example, design combinations of extremely high and low contrasts (e.g., the four corners of675

each panel) are frequently sampled compared to RS. We can attribute this proposal pattern676

as an attempt to estimate the baseline parameter b and the maximum amplitude parameter677

Rmax.678

Accuracy and Precision of the Estimates. As in the simulation study, we compared679

the accuracy and precision of parameter estimates from each method (i.e., ADO, RS) using680

the RMSD and PSD, respectively. Note that the RMSD was defined with respect to the681

benchmark parameter.682

Figure 10 shows that ADO tends to allow estimates that are closer to the benchmark683

estimates than RS does. At the 20th trial, the accuracy measures show that ADO outper-684

forms RS in 8 out of 9 scanning sessions. Meanwhile, the result is more mixed in terms of685

precision and RS tends to perform better than ADO. We suspect that the selective sampling686

procedure of ADO and a low signal-to-noise ratio interacting with the model structure687

makes precise parameter estimation difficult.688
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conditional on the current state of knowledge about the brain-behavior relation (i.e., the705

joint model). We then normalized the global utility within each trial and compared the706

ADO and RS results. Figure 12 shows the distribution of global utility values on each trial,707

where each panel represents a separate participant. Further, each panel is divided into the708

three runs, where RS runs are illustrated in black and ADO runs are colored according to709

the run information. Finally, the right-hand side of each panel shows a violin plot of the710

distribution of global utility across all trials except the first four that used random stimuli.711

Figure 12 shows that ADO performs substantially better in terms of trial-level global712

utility compared to RS. Namely, the utility obtained using ADO was larger than that of the713

RS in nearly all cases, indicating that ADO extracts better information about how the brain714

data predicts a behavioral response. Due to the post-hoc nature of this analysis, we could not715

perfectly account for all of the potential variables that occurred during data acquisition (e.g.,716

variability in neural data, variance in the dynamic gridding process). However, to integrate717

out as much uncertainty in the data acquisition procedure as possible, we obtained Monte718

Carlo estimates of global utility by repeating the simulated data acquisition 50 times for719

each scanning session. Even after considering this additional uncertainty, the normalized720

global utilities shown in Figure 12 strongly support the performance of ADO relative to RS.721

Discussion. The fMRI experiment showed mixed results compared to the simula-722

tion study. The global utility analysis suggested that ADO proposed stimulus sequences723

that maximized the expected amount of information. Focusing on the accuracy, the param-724

eter estimates and the predicted Naka-Rushton equation from ADO outperformed those725

from RS. However, the precision of the parameter estimates of ADO was worse compared726

to that of RS.727

We suspect the selective sampling procedure of ADO might cause inflated uncertainty728

of the estimates, together with a possibly low signal-to-noise ratio. In particular, one of729

the model parameters δ can be affected by the signal-to-noise ratio. As δ is associated with730

the degree of deviation from the mean prediction of the Naka-Rushton equation, the low731

signal-to-noise ratio can propagate to not only δ, but also other shape parameters of the732
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The results of the simulation studies and the fMRI experiment demonstrate that ADO can738

successfully incorporate both neural and behavioral data to maximize the acquisition of739

neurophysiological measures to explain behavioral responses. We have shown that these740

results are generalizable across between- and within-participant scanning sessions.741

The impact of a few simplifications on the results deserve mention. One limitation742

of our method is the manner in which trial-wise brain activation is acquired. In our743

fMRI experiment, we simply estimated the single-trial activation parameters on each trial,744

and used them directly as input to the joint model. However, when using ADO in fMRI745

experiments, the unbalanced and interdependent nature of experimental designs generated746

by ADO can inflate variability of single-trial neural estimates. Because ADO is “greedy"747

in the way it maximizes global utility on the next trial, it can sometimes tend to over-748

select a particular stimulus pair. Because the stimulus pair is selected more frequently,749

extreme single-trial neural estimates become more likely, resulting in amplified variability.750

In addition, task-irrelevant factors such as neural adaptation can potentially interact with751

unbalanced designs and affect the mean trend and variability of neural activation estimates.752

Although we found no conclusive evidence of neural adaptation in our experiment, we753

cannot rule out this possibility for future applications and list it as a way to potentially754

improve the algorithm.755

Another potential shortcoming of the results presented here is our treatment of756

neural variability. It has been observed that the variability of neuronal firing rates increases757

according to the mean firing rate (Boynton, Demb, Glover, & Heeger, 1999), implying that758

the variability of the BOLD responses is a function of their amplitudes across time because759

neural firing rates are positively correlated with BOLD amplitudes (Heeger, Huk, Geisler,760

& Albrecht, 2000). To keep the model simple, we assumed that the variance in the BOLD761

responses were constant throughout the scanning session. However, if our assumption762

is violated, it is possible that our single-trial estimates would become inaccurate, thereby763

affecting the efficiency of the ADO procedure.764

Lastly, the interstimulus interval (12 seconds on average) used in this study might765
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not be desirable from the perspective of efficiency. Also, the performance of ADO might be766

partially due to better relaxation of BOLD responses with extended interstimulus interval.767

However, the interstimulus interval can easily be shortened by using high-performance768

computing resources and parallel computing to offload many of the ADO procedures. As769

the experiment we report in this article was more of a proof of concept, we didn’t pursue770

these options here. Future work will incorporate more efficient computing so that more771

difficult optimization problems can be pursued.772

Despite these limitations, we have shown that Adaptive Design Optimization can be773

applied to real-time fMRI experiments to successfully optimize the selection of stimuli for774

each individual. Our method has important improvements compared to previous design775

optimization methods in neuroimaging. Unlike many previous methods (Cusack et al.,776

2012; Holling et al., 2013; Lorenz et al., 2016), the model-based nature of ADO allows us to777

explore candidate designs that inform our understanding of the computations assumed to778

underlie mental operations, pursuing more than localized activation of the brain. More-779

over, our method not only incorporated both neural and behavioral data successfully for780

optimization, but does so in a formal and systematic way thanks to a joint model frame-781

work which provides common statistical constraints. Lastly, unlike adaptive procedures782

used in psychophysics (e.g. Leek, 2001) such as staircase procedures, ADO is a general-783

purpose design optimization algorithm, enabling it to be applied to any combination of784

neurocomputational and cognitive models, or data modality (e.g., EEG, fMRI, single-unit785

recording).786

One may view the randomized search as an experimental design as a relatively low787

reference point by which to compare our ADO-based search. However, the randomized788

search is still the predominant design in cognitive neuroscience experiments. Previously789

developed online design optimization methods focused on slightly different optimization790

problems, making them inappropriate to compare against here. For example, many alter-791

native optimization methods either ignore the neural data when performing optimization792

(e.g., DiMattina, 2016; Kontsevich & Tyler, 1999; Watson & Pelli, 1983), or they are not793



FMRI DESIGN OPTIMIZATION 45

cognitive-model driven (e.g., Cusack et al., 2012; Lorenz et al., 2016). With our pipeline for794

fMRI-based ADO established, future work will systematically study the effect of different795

neural-behavioral modeling strategies and optimization methods.796

Can Optimal Designs Guide Cognition Differently?797

One general concern about using design optimization methods is that the proposed798

optimal designs could alter cognitive processes from what we would expect when using799

randomized or factorial experimental designs. Note that this problem is not unique to our800

proposed ADO method, in principle, because traditional design optimization methods for801

behavioral and fMRI experiments (e.g., de Hollander et al., 2017; Kontsevich & Tyler, 1999;802

Leek, 2001; Watson & Pelli, 1983) would suffer from the same issue. The use of design803

optimization techniques would be justified only when cognitive (and underlying neural)804

processes associated with the given task are equivalent whether or not an optimization805

method is used.806

We understand that the simultaneous use of neural and behavioral data in ADO807

makes this problem particularly non-trivial, as neural adaptation is an especially difficult808

hurdle. However, the application of the general-purpose design optimization methods in809

cognitive science is still in its infancy. Without further investigations, we cannot make810

any conclusive statement about possible interactions among design optimization methods,811

experimental tasks, cognitive models, and participants’ cognitive processes. Until then,812

researchers should be aware of the possibility that the use of ADO can alter the underlying813

neural and cognitive processes from their standard, factorial design counterparts.814

Quality Control of the Neural Data815

Like other typical fMRI experiments, fMRI-based ADO needs neural data of high816

quality for obtaining clear results. Moreover, offline data preprocessing cannot be an option817

for fMRI-based ADO due to its nature as a real-time data collection method. Therefore, real-818

time quality control is one of the crucial factors in successful ADO experiments. Although819
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we have applied only the minimum level of preprocessing methods (e.g., motion correction,820

masking), one could take advantage of real-time filtering methods or even more integrative821

real-time fMRI frameworks such as OpenNFT (Koush et al., 2017).822

As for head movement, real-time motion correction algorithms applied by the MR823

scanner might not be a perfect solution to the problem. Recent development of real-time824

monitoring software such as FIRMM (Framewise Integrated Real-time MRI Monitoring;825

Dosenbach et al., 2017) can help the experimenter detect any head motion anomalies,826

allowing them to correct the issue through participant instruction.827

Multi-voxel Extension828

In this study, we used a simple model connecting the average neural activation of V1 to829

behavioral decision processes. The use of activation amplitudes based on averaged signals830

came from a practical decision as the goal of this study is to provide a proof of concept831

of the fMRI-based ADO. However, many fMRI experiments focused on how distributed832

neural activations represent stimuli or underlying cognitive processes (for reviews, see833

Kriegeskorte & Diedrichsen, 2019; Norman, Polyn, Detre, & Haxby, 2006). The current834

fMRI-based ADO, in principle, can incorporate distributed neural representations with835

the same computational principle. However, most of the joint modeling approaches have836

connected cognitive model parameters with the average neural activation amplitude (e.g.,837

Palestro et al., 2018; B. M. Turner, Forstmann, et al., 2013; B. M. Turner et al., 2016, 2015), in838

which distributed representation does not blend well. Therefore, the application of fMRI-839

based ADO must be accompanied by the development of joint models that are compatible840

with multi-voxel representations.841

Practical Applications842

Application of ADO to real-time neuroimaging experiments has great potential for843

both basic research and practical applications. Real-time comparison of computational844

cognitive models seems especially promising as neural data can sometimes provide dis-845
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criminating evidence that could not be obtained on the basis of behavioral data alone846

(e.g., Mack, Preston, & Love, 2013). Other domains where the need for adaptive and847

rapid assessment of brain-behavior relations occur is in cognitive psychometrics (van der848

Maas, Molenaar, Maris, Kievit, & Borsboom, 2011) and computational psychiatry (Wiecki,849

Poland, & Frank, 2015). In these fields, obtaining high-quality data custom-tailored to850

each individual is of vital importance if we are to have confidence in our ability to assess851

and diagnose patients. With the groundwork of an adaptive, real-time methodology es-852

tablished, future refinements could automatically identify key brain regions for each task,853

allowing researchers to adjust scanning protocols to maximize the signal-to-noise ratio for854

each participant. We hope that the algorithm developed here will enable the field to look855

beyond problematic aggregation procedures and focus on custom-tailored experiments856

that optimize for our understanding of how the brain produces behavior.857

Conclusion858

In this study, we demonstrated the computational framework for optimizing exper-859

imental designs of cognitive-model-based fMRI experiments in real time. Using the joint860

modeling framework, fMRI-based ADO successfully incorporated neural and behavioral861

data simultaneously for proposing the sequence of experimental stimuli with the highest862

global utility. Simulation and actual fMRI experiments showed that fMRI-based ADO863

outperforms randomly proposed stimuli in accuracy and precision of parameter estimates.864

Given its model-based nature, fMRI-based ADO can help researchers investigate computa-865

tional mechanisms of the human brain and mind with optimized experiments. Moreover,866

this method can assist experiments with special groups of interest (e.g., children, clinical867

populations) more efficiently.868
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Appendix A

Details of the fMRI Experiment

Functional Localizer869

Before running the main task, we ran a functional localizer task to detect the voxels870

rigorously coactivating with the grating stimuli. The functional localizer task was based on871

a continuous carry-over design (Aguirre, 2007) that controls the order effect of the signal872

by considering all possible carry-over patterns from a stimulus pool. As we can expect that873

the order of stimuli affect the neural activation pattern, the continuous carry-over design874

can be used to detect voxels that share similar activation patterns and the carry-over effect.875

The experiment using the continuous carry-over design uses a fixed stimulus pre-876

sentation order that realizes all possible configurations of carry-over patterns. Here, we877

recommend making stimulus presentation settings as similar as possible to those of the878

main task. For example, we set the stimulus duration (6 seconds) and the mean inter-879

stimulus interval (8 seconds) as it was in the main task. However, generating all possible880

carry-over patterns from ten contrast levels made the task length excessive and therefore881

could have caused problematic issues such as participant fatigue and scanner drift. Hence,882

we decided to use only five logarithmically spaced contrast levels that could approximate883

contrast levels used in the main task (i.e., 0.01, 0.03, 0.1, 0.3, 1). The total length of the884

functional localizer task was 528 seconds.885

In the task, the participant was instructed to press a button when the current stimulus886

was of the same contrast with the previous one while maintaining fixation at the center of887

the screen. However, the behavioral task served no function; it was required only to help888

participants concentrate on the stimulus presentation.889

In-session Procedures 1: Preliminary Tasks890

The participant went through a 30-minute briefing including informed consent, safety891

screening, and a brief introduction about the experimental task. MRI scanning was per-892

formed in the Center for Cognitive and Behavioral Brain Imaging at The Ohio State Univer-893
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sity. A Siemens MAGNETOM Prisma 3T Magnetic Resonance Imaging System was used894

with a 32-channel head coil.895

First, the MPRAGE sequence was used for obtaining the anatomical structure of the896

brain (1× 1 × 1 mm3 resolution, inversion time = 950 msec, repetition time = 1900 msec,897

echo time = 4.44 msec, flip angle = 12 degree, matrix size = 256 × 224 mm, 176 sagittal898

slices per slab; scan time = 6.5 minutes). As we hoped to constrain the ROI to the primary899

visual cortex (V1), the area to be scanned was then specified by covering the Brodmann900

area 17 and most of the occipital lobe with a T2*-weighted EPI sequence (repetition time901

= 2000 msec, echo time = 28 msec, flip angle = 72 degree, field of view = 200 × 200 mm,902

in-plane resolution = 2× 2 mm, and 33 slices with 2-mm thickness), which is referred to as903

the EPI space henceforth for simplicity. All BOLD responses from the functional localizer904

task and the contrast discrimination task were obtained using the EPI sequence with the905

same setting.906

We should mention that further analyses (i.e., detecting voxels of interest, real-time907

computation for Adaptive Design Optimization, offline data analysis) used brain images908

without preprocessing steps that are usually performed in offline analyses such as spatial909

and temporal filtering due to its time consumption. The only exception is motion correc-910

tion: the MR scanner used in this experiment offers functionality for prospective motion911

correction – computational methods for reducing head motion artifacts during data acqui-912

sition (for a recent review of prospective motion correction, see Maclaren, Herbst, Speck,913

& Zaitsev, 2013).914

In-session Procedures 2: Data preprocessing915

We first carried out the functional localizer task to detect the voxels co-activating916

with the presented grating stimuli. After the functional localizer task was complete, we917

registered the anatomical images in the subject space to the standard MNI brain template918

with nonlinear warping using FLIRT and FNIRT (Andersson, Jenkinson, & Smith, 2007;919

Jenkinson, Bannister, Brady, & Smith, 2002; Jenkinson & Smith, 2001) in FSL (Smith et al.,920
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2004) . Next, we aligned the EPI localizer images to the anatomical images using FLIRT.921

By using the linear and nonlinear warping obtained from the previous steps, we converted922

the mask for Brodmann area 17 provided by Jülich histological atlas (Amunts, Malikovic,923

Mohlberg, Schormann, & Zilles, 2000; Eickhoff et al., 2005) to the EPI space. As these924

procedures usually take more than 7 minutes due to nonlinear registration, we asked the925

participant to practice the contrast discrimination task for (approximately) 6 minutes to926

learn the response-button mapping rule.927

In-session Procedures 3: Determination of Voxels of Interest928

The functional localizer task must detect voxels whose activation patterns are strongly929

associated with stimulus presentation in the task. For selecting target voxels in the main930

task, we performed a general linear model (GLM) analysis to all voxels in the EPI space931

using the data from the functional localizer task. The GLM design matrix used only one932

regressor representing the hemodynamic responses caused by all stimuli presented in the933

functional localizer task. This GLM analysis did not consider any temporally autocorrelated934

noise in the model structure because the analysis may be time-consuming.935

Voxels in interest (VOIs) were determined by thresholding the t-statistic associated936

with the regression coefficient of the task-relevant regressor. The decision rule is as follows:937

If the number of voxels with t ≥ 5 was equal to or greater than 200, we used the threshold938

as t = 5. However, when this criterion was not met, we adjusted the threshold to t ≥ 4.939

If 100 or more voxels passed the adjusted threshold, we accepted the threshold t = 4. If940

this criterion was not met again, we ran the functional localizer task one more time and941

repeated the analysis. If the result did not allow 100 or more voxels even in the second942

attempt, we used the threshold allowing the greatest number of voxels among four options943

(i.e., t ≥ 5 from the first run, t ≥ 4 from the first run, t ≥ 5 from the second run, and t ≥ 4944

from the second run).945

Finally, we derived the subject-specific, task-relevant mask specifying VOIs in V1 by946

taking conjunction of the subject-specific V1 mask and the extracted task-relevant voxels.947
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Table A1 shows the number of voxels actually used in the mask. A Python library nilearn948

(Abraham et al., 2014) was used for formatting the final mask.949

Session 1 Session 2 Session 3

Participant 1 189 125 117

Participant 2 171 330 315

Participant 3 136 82 25

Participant 4 47 142 227
Table A1
The number of voxels used in the experiment and post-hoc analysis.

In-session Procedures: Contrast Discrimination Task950

The contrast discrimination task was carried out after the processing of the mask951

was finished. Two runs were done separately based on Adaptive Design Optimization952

(ADO) and Randomized Search (RS) within a scanning session so that we could consider953

between-session variability of the neural signal.954

In the ADO-based run, the first four trials are randomly proposed because of the955

hemodynamic lag that prevents immediate estimation of stimulus-wise neural activation956

estimates. From the fourth trial, ADO computed the global utility of candidate designs957

and proposed an optimal stimulus pair by the following procedure. First, we extracted958

the BOLD time series from the VOIs and averaged them. Then we estimated single-trial959

neural activation for each grating stimulus by fitting a general linear model (GLM) with the960

first-order temporal autocorrelation (AR(1)) model for the noise in the data using a Python961

library statsmodel (Seabold & Perktold, 2010). Here, the AR(1) model assumes that the962

measurement noise at time t is correlated with measurement noise at time t− 1. Once we963

obtained the stimulus-wise estimates of neural activation, they were put into ADO together964

with behavioral responses for computing the optimal design of the next trial. After the 4th,965

8th, 12th, and 16th trials, we sampled the joint posterior distribution using the DE-MCMC966

sampler (B. M. Turner, Sederberg, et al., 2013) for 500 iterations, and used the last 300967

samples for dynamic gridding.968

The total length of both ADO-based and RS-based experiments is 20 trials. In other969
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escalates according to the increase of the contrast level (Boynton et al., 1999). However,978

single-trial neural estimates are broadly distributed due to their high variability (Abdul-979

rahman & Henson, 2016; Mumford et al., 2012) and unbalanced designs. When their980

group means were compared, Randomized Search (RS; black) experiments tend to allow a981

monotonically increasing pattern, whereas the expected pattern is not clearly observed in982

Adaptive Design Optimization (ADO; red) experiments.983

The right panel of Figure A1 shows the accuracy of behavioral responses in ADO (x-984

axis) and RS (y-axis) experiments. If a dot is located below the identity line (dotted line), we985

consider that the performance in ADO experiments is better than in RS experiments. The986

result consistently shows that participants made more accurate responses in RS experiments987

than in ADO experiments. This tendency is partially explained by that ADO in this988

experiment frequently focuses on small contrast values to obtain information about the989

baseline parameter of Naka-Rushton Equation (See Figure 5 in the main text for an example990

of the proposal trace in Simulation Study).991

Posterior Sampling992

For offline analyses to compare the performance of ADO to RS, we estimated param-993

eters with a complete data set. We first estimated stimulus-wise neural activation levels994

from ADO and RS experiments. After averaging the extracted BOLD time-series from all995

voxels in the mask, we fitted a general linear model with the first-order temporal autocorre-996

lation in noise to estimate stimulus-wise neural activation parameters. Once the single-trial997

neural estimates were acquired, the joint model parameters were finally estimated by the998

DE-MCMC sampler with the stimulus-wise neural activation and behavioral responses as999

the data.1000

Compared to the simulation study, we had to modify the DE-MCMC sampler settings1001

due to the quality of neural data associated with the mechanism of ADO. ADO tends to1002

generate the same design repeatedly until it gets enough information about the specific1003

parameter, and then proposes distinct patterns of the design to explore different model1004
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parameters. As mentioned in Discussion, we found that the unbalanced design of ADO1005

adds a significant amount of variability of stimulus-wise neural activation estimates and1006

may induce difficulties in getting well-constrained posterior distributions.1007

Therefore, we decided to use a “burn-in mode" of the DE-MCMC sampler that con-1008

centrates posterior samples to the high-density regions compared to the regular “sampling1009

mode" (B. M. Turner & Sederberg, 2012), in addition to high migration probability. Specifi-1010

cally, the DE-MCMC sampler was run with the “burn-in mode" for 3,000 iterations in total:1011

the sampler used the first 2,000 iterations as a burn-in phase while applying migration at1012

every iteration, and generated the valid posterior samples for the last 1,000 iterations.1013

Note that brain images from the ADO-based and randomized-design runs shared the1014

same data preprocessing procedures to make the stimulus-wise activation estimates from1015

both experiments comparable. We used the motion-corrected images exported directly1016

from the MR scanner, and did not apply spatial and temporal filtering. The neural signal1017

was extracted from the same VOI mask defined for ADO.1018

Appendix B

Performance of ADO: Participant 4

In the case of Participant 4, which is not reported in the main text, ADO failed to show1019

better performance in two out of three scanning sessions. Figures B1, B2, and B3 provide1020

summary plots of the performance of ADO and RS in the data set of Participant 4. In1021

Figure B1, the design proposals made by ADO seem more distributed compared to other1022

participants described in Figure 9. It is not easy to say any decisive conclusion only with1023

this plot because of factors that affect the actual fMRI experiment (e.g., session-by-session1024

variability, head motion). However, the lack of specificity toward the combinations of1025

extremely low and high contrasts, which are useful for estimating b and Rmax, suggests1026

that the performance of ADO was suboptimal. Figure B2 shows the accuracy with respect1027

to the benchmark estimate and the precision of the parameter estimates. Unlike other1028

participants’ sessions where ADO performed better in accuracy, the results from Participant1029
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ADO condition relative to the RS condition.1062
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