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Abstract
To examine how the brain produces behavior, new statistical methods have linked neurophysiological measures directly
to mechanisms of cognitive models, modeling both modalities simultaneously. However, current simultaneous modeling
efforts are largely based on either correlational methods or on functions that map one stream of data to the other. Such
frameworks are limited in their ability to infer causality between brain activity and behavior, typically ignore important
temporal dynamics of neural measures, or ignore large- and small-scale functional networks necessary for completing
cognitive tasks. In this article, we investigate one causal framework for modeling brain dynamics as a potential alternative
for explaining how behavior can be viewed as an emergent property of brain dynamics. Our proposed framework can be
considered an extension of multivariate dynamical systems (MDS; Ryali et al. Neuroimage, 54(2), 807–823, 2011), as it is
constructed in a way such that the temporal dynamics and brain functional connectivities are explicitly contained in the model
structures. To test the potential usefulness of the MDS framework, we formulate a concrete model within it, demonstrate
that it generates reasonable predictions about both behavioral and fMRI data, and conduct a parameter recovery study.
Specifically, we develop a generative model of perceptual decision-making in a visual motion-direction discrimination task.
Two simulation studies under different experimental protocols illustrate that the MDS model can capture key characteristics
of both behavioral and neural measures that typically occur in experimental data. We also examine whether or not such a
complex system can be inferred from experimental data by evaluating whether current algorithms for fitting models to data
can recover sensible parameter estimates. Our parameter recovery study suggests that the MDS parameters can be recovered
using likelihood-free estimation techniques. Together, these results suggest that our MDS-based framework shows great
promise for developing fully integrative models of brain-behavior relationships.
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Introduction

The rapid development of brain measurement techniques
such as functional magnetic resonance imaging (fMRI) have
contributed substantial insights into the neural correlates of
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human information processing and cognitive operations in
cognitive neuroscience. Traditional cognitive neuroscience
has investigated relations between brain and behavior in
two directions. The first direction is on interpreting and
understanding the unique contribution of individual brain
areas, known as localization. The central premise is that
different brain areas are different because they perform
different operations. For example, certain brain regions
(e.g., V5 or middle temporal (MT)) are thought to play
major roles in processing visual motion (Maunsell and Van
Essen 1983; Vanduffel et al. 2001), in that the neurons in
these regions significantly predict decisions about motion
direction (Gold and Shadlen 2007). The second direction
is to identify brain networks that jointly describe cognitive
operations, where the premise is that the completion of any
cognitive function requires the collaboration of a series of
functionally segregated brain functions. For example, in the
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case of visual motion processing, the completion of the
function also relies on some basic cortical or subcortical
functions such as the basal ganglia to either inhibit the
motion impulse or execute a motor command (Hikosaka
et al. 2000a; Lo and Wang 2006). Both directions contribute
to our understanding of how individual brain regions work
together within a functional network to produce behavior,
and what the functional roles of those individual brain
regions are within the context of a task. However, most
analyses in cognitive neuroscience consider the questions of
“what is the functional role of brain region X?” and “what is
the brain network that gives rise to cognitive operation Y?”
as two separate issues, often requiring completely different
statistical techniques. Segregating these two objectives can
potentially obfuscate the functional interpretation of brain
region X, specifically what its contribution to cognitive
operation Y actually is.

To better understand and interpret brain function, a new
wave of researchers have abstracted away the cognitive
operations necessary for performing cognitive tasks, and
examined how these abstractions are related to brain activity
(see Forstmann and Wagenmakers 2015; Turner et al.
2017b, 2019a, b; de Hollander et al. 2016, for reviews).
These efforts are based on a set of linking propositions
(Teller 1984; Schall 2003) relating psychological variables
to physiological ones, where various approaches can be
uniquely separated on the basis of how researchers impose
said link (de Hollander et al. 2016; Turner et al. 2017b).
Although a detailed review is beyond the purpose of
this article, Fig. 1 shows a few particularly relevant
diagrams that illustrate different linking concepts within
an overarching “joint modeling” framework (Turner et al.
2013b, 2015b, 2019a; Palestro et al. 2018a). The directed
approach (left) attempts to simply transform the neural
data N into a parameter θ within a cognitive model, and
the transformation may have parameters δ. The success of
this linking procedure is the degree to which a suitable
transformation of the neural data provides good predictions
for, or fits to, behavioral data B. The covariance approach

(middle) attempts to impose a flexible map from neural data
to model parameters by considering all possible pairwise
correlations between sets of candidate brain regions and
mechanisms in the model. It assumes an overarching
distribution that enforces an explicit connection between
parameters θ , δ, and �, where δ and θ have a direct
constraint on neural N and behavioral B data, respectively.
Although new efforts have increased the scalability of this
approach (Turner et al. 2017a), there are clear limitations
with considering all possible pairwise correlations.

The two approaches—directed and covariance—each
attempt to address both the functional role of brain
regions and the overarching functional network among
brain regions. The directed approach instantiates an explicit
link between neural data from one brain region and a
model parameter. Once fit to data, one can then assess
the degree to which a significant mapping relation exists
by, for example, examining the posterior distribution of
the slope parameter within a regression model linking N

to θ . Although an informed multivariate regression model
is a possible solution, directed models are not typically
made cognizant of the many interactions that may exist
between different brain regions, and hence are typically
not suitable for uncovering brain networks. On the other
hand, the covariance approach was intended to extract
brain networks by considering the set of brain regions that
(1) are correlated with one another and (2) are jointly
correlated with a cognitive mechanism. Despite the promise
of network extraction, covariance models are still limited in
the sense that they are typically correlational in nature. The
linking function most commonly prescribed is a multivariate
normal distribution (e.g., Turner et al. 2015b, 2016), such
that the connections among modalities are defined by a
covariance matrix. Directed models impose a more causal,
confirmatory structure (Cassey et al. 2016; van Ravenzwaaij
et al. 2017) but are also tied to specific details of cognitive
models that may limit their flexibility.

In this article, we explore a different approach that
we refer to as the “integrative” approach shown in

Fig. 1 An illustration of three approaches for linking neural and
behavioral data simultaneously. N represents the neural data, B rep-
resents the behavioral data, and S represents experimental stimuli. θ ,

δ, and � represent model parameters. Solid lines with arrows indicate
ancestry statistical dependence among the nodes in the graph
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the right panel of Fig. 1. The integrative approach
develops a single cognitive model capable of predicting
both neural and behavioral measures from experimental
stimuli S. Here, a single set of parameters θ transforms
the experimental stimuli through a model specification
to generate predictions about neural N and behavioral
B data jointly. Integrative models have been previously
developed and productively used. For example, Anderson
and colleagues (Anderson 2007, 2008; Borst et al. 2010a,
b, 2013) have shown that by using the ACT-R architecture
to specify the model structure (i.e., θ in Fig. 1), fMRI
data can be predicted by convolving modular activation
within ACT-R with the canonical hemodynamic response
function. Because ACT-R was already designed to explain
behavioral data, the internal dynamics of ACT-R give a
natural mechanism for also producing predictions for neural
data. The integrative approach is also related to the work of
Cassey et al. (2016), Kragel et al. (2015), Polyn et al. (2005),
and Purcell et al. (2010), where neural data are modeled and
directly drive or replace components of a cognitive model.

Although conceptually simple in Fig. 1, the success
of an integrative model is determined by how the model
structure in θ is specified. Our goal in this article is to
create a framework for designing integrative models, by
(1) identifying key brain regions that jointly contribute
to the cognitive processes in the task, (2) defining
structure among those brain regions that respects the
temporal and spatial properties of brain regions having
a physical existence within space and time, and (3)
specifying how activity in a subset of brain regions
promotes a specific behavioral response. Our framework
considers the distributed interactions among brain regions
by conceptualizing them as being temporally and spatially
dependent, yet functionally integrated (Friston 2009). To
provide constraint on integrative models, we articulate
our framework by requiring full specification of the time
series for each region of interest (ROI). The time series
of each ROI will be a dependent function of all brain
regions in the set, which will allow us to investigate
both localization behavior and functional connectivity
among ROIs, potentially providing an integrated solution to
understanding the functional role of ROIs within a network.

By virtue of their specificity, integrative models, with
the form shown in Fig. 1, are difficult to develop and
fit to data. Not only must integrative models consider
how brain regions interact with one another, they must
also consider how those regions ultimately give rise to a
prediction about behavior. Often, researchers can rely on
previous localization work to define how brain regions
contribute to the cognitive process, but this is no small task,
especially considering the emergence of brain networks
with common functional structure discussed above. Also,
there are methodological difficulties in fitting integrative

models to data because they have a larger number of
parameters and they often are mathematically intractable
due to their inherently stochastic and time-dependent nature.

We propose a new integrative framework for map-
ping functional brain activity to decision-making processes,
based on multivariate dynamical systems (MDS; Ryali et al.
2011). Our framework is designed to simultaneously gener-
ate behavioral data and neural measures for cognitive tasks.
In constructing this framework, we have three criteria in
mind. First, our framework should construct fully generative
models for neuro-cognitive processes. Generative models
predict the pattern of neural and behavioral data a priori
based on assumptions of underlying cognitive processes and
stimulus properties. Second, our framework should explain
neural measures from a functionally integrated brain net-
work, such that the coordination contributes to the eventual
cognitive process. Third, we wish to specify the generative
process for neural data in an abstract, measure-independent
space such that integrative models are invariant with respect
to the type of neural measures collected experimentally
(e.g., fMRI, EEG). Imposing these constraints here will
facilitate future work enabling data fusion, where a single
cognitive model can be used to explain behavior, EEG, and
fMRI (e.g., Turner et al. 2016).

In this article, we use our framework to construct a
specific cognitive model for the perceptual decision-making
task. We present two simulation results showing that the
extended MDS models can generate plausible patterns
of both behavioral and neural data. We then investigate
whether or not such a framework can be realized from neural
and behavioral data from a cognitive task. To investigate
this, we apply approximate Bayesian methods to estimate
model parameters of the model by fitting it to simulated
data. Finally, contributions and limitations of the extended
MDS are discussed.

Multivariate Dynamical Systems

The proposed MDS framework is closely related to but
also distinct from certain other frameworks. On the one
hand, MDS can be viewed as a multivariate version of the
linear dynamical systems. For example, bilinear dynamical
systems model a single neuron activation (Penny et al.
2005), and switching linear dynamic systems are proposed
to improve the overall quality and sufficiency of model
parameter estimation (Smith et al. 2010). On the other
hand, MDS has many commonalities with dynamic causal
modeling (DCM; Friston et al., 2003, 2017; Marreiros et al.
2008; Stephan et al. 2010) in that they both contain a “state
equation” to model the latent neuronal activations, and an
“observation equation” to map the latent neuronal activation
to the observed neural signals, such as fMRI blood oxygen
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level dependent (BOLD) signals. However, there are many
differences between MDS and DCM. First, conventional
DCM treats the brain as a deterministic dynamic system
subject to inputs (Friston et al. 2003) although a stochastic
DCM was developed later (Daunizeau et al. 2009), whereas
MDS explicitly includes a stochastic term. Second, DCM
and MDS use different observation equations to map the
latent neuronal activation to the BOLD signal. In particular,
DCM adopts a nonlinear “Balloon” model (Buxton et al.
1998; Friston et al. 2000; Mandeville et al. 1999; Stephan
et al. 2007) to describe how latent neuronal activations
are transformed into hemodynamic time series, while MDS
formulates the relationship as a linear convolution of
latent neuronal states with a kernel expansion using basis
functions (Ryali et al. 2011). Another DCM study related
to the goal of the current article is the behavioral DCM
(Daunizeau et al. 2014; Rigoux and Daunizeau 2015). The
central idea of the behavioral DCM is that the hidden
neuronal states can be transformed by a probabilistic
sigmoid mapping to produce a binary behavioral choice.
Our extended MDS model can produce both behavioral
choice and response time, under a mechanistic model.

In general, MDS is a state-space model in that it models
observed data by assuming a time series of unobserved
data. MDS first captures unobserved states by specifying
a state equation, and then maps the unobserved states
to observed data by specifying an observation equation.
Here, we consider neural measures as observed data and
consider neuronal activations in the brain ROIs as the
latent states. An important point that will be exemplified
in future studies is that while neural measures are directly
dependent on the measurement tools (e.g., fMRI BOLD
signals and EEG signals), the latent neuronal activations
in this framework are invariant to the measurement tools.
Hence, once the latent activations are specified in a given
system, any number of neural measures may be used to infer
the parameters of the model from data.

State Equation

For M brain ROIs, we denote ROI i as Ri (i = 1, . . . , M).
S(t) represents neuronal activations at time t in each of M

ROIs and it is a column vector of length M . The MDS state
equation

S(t)=C(t)S(t − 1) + DU(t) + ω(t), for t = 1, . . . , T , (1)

involves a sum of three terms that are illustrated in Fig. 2
for a model with 6 ROIs. First, C(t) is an M × M matrix
showing the strengths of endogenous brain connectivity at
time point t . The diagonal elements inC(t) indicate the self-
connection within each ROI, and non-diagonal elements
indicate interconnection paths between ROIs. For example,
C[3, 1] denotes the connectivity strength fromR1 toR3, and
this connectivity could differ from C[1, 3], the connectivity
strength from R3 to R1. Notice that C(t) is often assumed
to be time invariant in dynamical systems, but here we
allow this matrix to vary across time to accommodate the
specifications of our cognitive model.

Second, the term DU(t) in Eq. 1 indicates the direct
exogenous effect on S(t). The vector U(t) has M

components, each of which indicates the strength of external
inputs to the corresponding ROI at time t . The strength
values are mainly affected by the experimental stimuli
property. U(t) can be constant across time T but can also
vary to represent temporal fluctuations of the perceived
strength values. D is an M × M diagonal matrix and
D(i, i)weights the external inputs. By specifying a diagonal
matrix, each external stimulus is constrained to affect
exactly one ROI.

Third, the noise term ω(t) is a vector of length M

sampled from a multivariate normal distribution with
ω(t) ∼ NM(0, Q(t)). This most general form of
the variance-covariance matrix Q(t) indicates that noise
can vary across time and may be correlated across
different ROIs. If one assumes independent and identically

Fig. 2 An illustration of the MDS state equation for a model with 6
ROIs. S(t) and S(t − 1) are two column vectors denoting the neuronal
activations at time point t and t −1, respectively. C(t) is a endogenous

brain connectivity matrix at time t . D is a diagonal matrix with direct
exogenous effects indicated by diagonal entries. U(t) is the strength of
input. ω(t) denotes the noise vector
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distributed noise across both time and ROIs, then Q(t) can
be simplified to σ 2IM , where IM is an identity matrix of size
M (Ryali et al. 2011). Q(t) is essentially useful as a way to
manipulate the signal-to-noise ratio (Ryali et al. 2011), and
thus in our framework, Q(t) systematically affects choice
accuracy and response times. For the simulation in this
article, Q(t) can vary across time in order to accommodate
the specifications of our cognitive model.

Observation Equation

We choose fMRI BOLD signal as the neural measure for the
purposes of this article. In MDS, the BOLD signal in each
ROI is modeled as a linear convolution of the hemodynamic
response function (HRF) and latent neuronal activations in
each ROI with appropriate observation noise (Ryali et al.
2011). The latent neuronal activation in Rm at time t comes
from the mth element of S(t) and is denoted as Sm(t). The
observed BOLD signal at time t in Rm is denoted as Ym(t).
If we use hm(τ) to denote the impulse response, or the
HRF for Rm, the observation equation can be expressed as
follows:

Ym(t) = Sm(t) ⊗ hm(τ) + em(t)

=
∫ ∞

−∞
Sm(t − τ)hm(τ)dτ + em(t). (2)

where “⊗” denotes linear convolution and em(t) is the
observation noise. The subscript m in each component
allows regional variability. Here, we assume that hm(τ)

takes the canonical form of the double gamma model
implemented in SPM 12 (http://www.fil.ion.ucl.ac.uk/spm/
software/spm12/):

hm(τ) = Am

[
τα1−1βα1

1 e−β1τ

	(α1)
− c

τα2−1βα2
2 e−β2τ

	(α2)

]
,

for m = 1, . . . , M, (3)

where τ references time and 	(x) = (x − 1)! indicates the
gamma function, which acts as a normalization term. By
convention, we set α1 = 6, α2 = 16, β1 = β2 = 1, and c =
1/6 to represent the shape of HRF. The unknown parameter
in the HRF is the amplitude Am, dependent on ROI Rm.
The other unknown aspect of Eq. 3 is the length of the HRF
(denoted as L, in seconds). We choose to produce neuronal
activations Sm(t) on the millisecond level, and so we set
τ = {.001, .002, . . . , 1, . . . , L} to form a discrete (Euler)
approximation of Eq. 3.

We assume that the observation noise em(t) is normally
distributed with zero mean and variance ξ2m:

em(t) ∼ N(0, ξ2m).

Note that the noise term em(t) is uncorrelated across time
points, and each ROI can have its own variance.

To control for computational burden in our applications
below, Ym(t) is downsampled by a factor of 1000 for each
of m = 1, . . . , 6. Specifically, we keep every 1000th sample
of Ym(t) and discard the others, a process that can be written
as follows:

BOLDm(j) = Ym(1000j),

where the index j is counted in seconds when applied
to BOLDm and in milliseconds when applied to Ym. We
perform this step to conform to the temporal resolution of
fMRI BOLD signal in a real experiment, which depends on
the repetition time (TR). We assume TR = 1 s.

Model Structure

Here, we apply the MDS framework to construct a gen-
erative model of perceptual decision-making. In particular,
we apply the MDS framework on a sequence of (assumed)
experimental trials. The latent neuronal activation deter-
mines both BOLD signal (via the observation equation in
Eq. 2) and behavioral data. The trials are consecutive so that
neuronal activation in the current trial affects the follow-
ing trial. The model is intended to describe how key ROIs
systematically activate through time across experimental
trials.

We first review some important findings about the
neural substrate of perceptual decision-making, because
they provide the theoretical underpinnings of the model.
Next, we construct a basis set of ROIs based on the
literature, and then define the mathematical structure that
relates the neuronal activation among the regions through
time. As a reference, Fig. 3 shows the overarching structure
of the model, where we assume a set of six ROIs (R1,
. . . , R6). By specifying a particular structural relationship
between these regions, we can simulate the model’s activity
in the context of a random dot motion task.

The random dot motion task is often used to investigate
the neural and cognitive basis of perceptual decision-
making (Ball and Sekuler 1982; Britten et al. 1992;
Churchland et al. 2008; Forstmann et al. 2010, 2008;
Ho et al. 2009; Niwa and Ditterich 2008; Roitman and
Shadlen 2002; Salzman and Newsome 1994; Shadlen and
Newsome 2001; van Maanen et al. 2011). The stimuli in
this task consist of an array of moving dots, where some
percentage of the dots are moving in a coherent direction.
The percentage of dots moving coherently can be varied,
and this percentage is often treated as an independent
variable to quantify the task difficulty (e.g., Britten et al.
1992).

The gist of how the brain processes information in the
task can be described in three steps. First, sensory visual
neurons in the brain areas MT and medial superior temporal
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Fig. 3 A proposed MDS model for explaining neural and behavioral
data from a perceptual decision-making task. UL and UR represent the
visual inputs for leftward and rightward moving dots, respectively. R1
and R2 contain visual cortex neurons with direction–selective prop-
erty. R1 and R2 encode visual inputs of random moving dots. R3 and
R4, such as FEF and LIP, contain neurons that accumulate evidence
for leftward and rightward dots independently. R5 stands for the out-
put nuclei of basal ganglia and R6 represents pre SMA. U5 provides a
hypothetical constant input for R5. Black arrows indicate input/output

connections, red arrows indicate excitatory connections, and purple
arrows indicate inhibitory connections. R1 excites R3, R2 excites R4,
and R5 inhibits R6. When absolute difference of accumulated evi-
dences between R3 and R4 reaches a threshold, R3 and R4 jointly
inhibitR5 so thatR6 gets disinhibited.R6 accumulates evidence for the
response options, eventually passing a signal to initiate a movement.
The dotted lines represent a process of comparing values of S3(t0) and
S4(t0) to determine the movement direction

(MST) of extrastriate cortex extract motion information
from the visual image and represent the information within
the visual cortex (Britten et al. 1992, 1996; Celebrini and
Newsome 1995; Croner and Albright 1999; Shadlen et al.
1996). Neurons in MT and MST respond selectively to
visual stimuli moving in particular directions reflecting the
amount of motion energy to which they are tuned (Albright
1984; Simoncelli and Heeger 1998; Zeki 1974). Second,
the motion–direction representations in MT and MST are
used to produce an integrated estimate of the net direction
of motion. There is evidence that the latter computation
may be carried out in the frontal eye field (FEF) and the
lateral intraparietal area (LIP) of the inferior parietal lobe
(Andersen et al. 1992; Colby and Goldberg 1999; Schall
et al. 1995; Shadlen and Newsome 2001). In particular,
movement neurons in FEF and LIP initiate a saccade
when their spike rate reaches a threshold (Brown et al.
2008; Dorris et al. 1997; Ratcliff et al. 2003, 2007). The
cumulative strength of the motion information through time
is often taken as evidence of accumulator dynamics in extant
decision-making models that assume sequential sampling
of motion information (Boucher et al. 2007; Carpenter and
Williams 1995, 1999, 2009; Gold and Shadlen 2007; Purcell
et al. 2010; Ratcliff et al. 2003, 2007; Shadlen and Newsome
2001).

The first and second steps only indicate the probability
of making a decision choice to a certain direction for a
given visual input, but the overt response relies on the ability
of downstream neurons to select one unambiguous motor

program and pass it on to the motor system for execution
(Gold and Shadlen 2001, 2002). This selection is thought
to be performed by the superior colliculus (SC) and basal
ganglia in the third step (Ding and Gold 2013; Lo and
Wang 2006; Redgrave et al. 1999). The basal ganglia are
known to have a critical role in voluntary motor behavior
in general (Graybiel 1995; Hikosaka et al. 2000b; Houk
et al. 1995; Wickens 1997). Neurons in substantia nigra pars
reticulata (SNr), an output structure of the basal ganglia,
send GABAergic projections to principal cells in the SC,
providing a “default” level of tonic inhibition to the SC. This
tonic inhibition is released when the SNr receives increased
inhibitory inputs from caudate nucleus (CD, part of the
striatum), which is driven by excitatory inputs from many
cortical areas including the LIP and FEF (Hikosaka et al.
2000b, 2006). The third step of how LIP and FEF affect SC
through the mediation of the basal ganglia is explained as a
trade-off mechanism in the striatal hypothesis (Bogacz et al.
2010; Forstmann et al. 2008, 2010). The striatal hypothesis
posits that an emphasis on speed promotes excitatory input
from cortex to striatum; the increased baseline activation
of the striatum acts to decrease the inhibitory control that
the output nuclei of the basal ganglia exert over the brain,
thereby facilitating faster but possibly premature responses.

Inspired by the aforementioned neural findings, in Fig. 3,
R1 and R2 include visual neuronal populations mostly
including MT and MST that selectively encode the motion
information of the stimulus (Britten et al. 1992, 1996;
Celebrini and Newsome 1995; Croner and Albright 1999;
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Shadlen et al. 1996). The neuronal populations in R1 are
mainly sensitive to the leftward motion, whereas those in R2

are mainly sensitive to the rightward motion. The direction–
selective voxels in R1 and R2 can be decoded using
multivoxel pattern analysis (MVPA) methods and fMRI
(Kamitani and Tong 2005, 2006; Serences and Boynton
2007a, b). UL and UR in Fig. 3 are the leftward moving and
rightward moving stimulus strengths for the nodes R1 and
R2, respectively.

R3 and R4 contain neuronal populations of FEF and LIP
that further process the visual information from R1 and
R2 to guide the responses. Hence, the neuronal activations
in R1 and R2 induce the neuronal activations in R3 and
R4 respectively, through their endogenous connectivity, and
this induction is illustrated as red arrows in Fig. 3 to
represent excitatory effects. Here, we conceptualize the
instantaneous neuronal activations in R3 and R4 as two
independent decision variables evolving at each time point,
which makes R3 and R4 function as two independent
accumulators. This independent accumulator assumption
has been used in many perceptual decision-making models
(Boucher et al. 2007; Carpenter and Williams 1995, 1999,
2009; Gold and Shadlen 2007; Kim and Shadlen 1999;
Purcell et al. 2010; Ratcliff et al. 2003, 2007; Schall 2003;
Shadlen and Newsome 2001).

Moving rightward along the diagram in Fig. 3, R5 is
assumed to be the output nuclei of basal ganglia and R6 is
assumed to be the presupplementary motor area (pre SMA).
The neuronal activation in R5 continuously sends tonic
inhibition toR6, preventingR6 frommaking a response, and
this tonic inhibition is illustrated as a purple arrow from R5

to R6 in Fig. 3. U5 provides a hypothetical constant impulse
input for R5 so that when there is no other brain region
connected with R5 and R6, R5 remains positively activated
and thus R6 remains inhibited. Although there are many
other regions (e.g., SC, striatum) that play an important role
in decision-making, we have omitted these areas from the
MDS model for simplicity and their activities are unlikely
to be clearly measured in real experimental data.

R3 and R4 are conditionally connected with R5

through a dynamic gating mechanism. The dynamic gating
mechanism has been widely adopted to explain how
interactions between basal ganglia and cortical regions
affect information updating inside the cortical regions
(O’Reilly 2006; Redgrave et al. 1999; Stewart et al. 2010).
Following the notation of MDS, we expressE(t) as follows:

E(t) =| S3(t) − S4(t) |,
where S3(t) and S4(t) indicate the neuronal activation in R3

and R4 at time point t , respectively. Whenever E(t) reaches
a pre-specified threshold value θ1, the connections from R3

and R4 to R5 are initiated, illustrated as purple arrows from
R3 and R4 to R5 to represent inhibitory effects. We denote

the time at which the threshold is reached as t0. The relative
values of S3(t) and S4(t) determine the response: a leftward
choice is made if S3(t0) > S4(t0), and a rightward choice
is made otherwise. The values of S3(t) and S4(t) are each
depicted by a Gaussian distribution in Fig. 3, where in this
illustration rightward motion (UR) is stronger than leftward
motion (UL) on average. The joint inhibition from R3 and
R4 makes R5 unable to inhibit R6 (Bogacz et al. 2010;
Forstmann et al. 2008, 2010; Hikosaka et al. 2000b, 2006).
Notice that the involvement of dynamic gating mechanism
changes the connectivity matrix after t0. This is the main
reason why C(t) in Eq. 1 is time variant.

Once R6 becomes disinhibited, the neuronal activation in
R6 is monitored and accumulated at each moment from t0.
As soon as it reaches a pre-specified threshold θ2, R6 sends
out a signal to the muscle to initiate a movement, denoted as
t1 (Forstmann et al. 2008; Georgiev et al. 2016; Mansfield
et al. 2011). The response to be made is determined by
the relative magnitude of neuronal activations in R3 and
R4 at t0. As modeling motor control is beyond our present
scope, we assume a constant delay parameter τ to execute
the movement. This parameter is often used to model non-
decision processes in other decision-making models (Brown
and Heathcote 2005, 2008; Ratcliff and Smith 2004; Smith
and Vickers 1988).

Following a response, the visual inputs from external
stimuli are switched off (i.e., the values ofUL andUR return
to zero). As a result, the mean activations of R1, R2, R3, and
R4 return to zero, but fluctuate around this mean due to the
noise term in Eq. 1. The variation of the noise term inR1 and
R2 decreases after making a response to represent the lower
noise variations of neuronal activations in visual processing
ROIs after the response being made. Meanwhile, the joint
inhibition from R3 and R4 to R5 is canceled. R5 becomes
disinhibited and R6 reverts back to being inhibited. The
system remains at this stasis point until another stimulus is
presented.

Figure 4 illustrates an example of how this model works
by showing a trial of latent brain activity evolution of the
six ROIs in Fig. 3. The three panels show how neuronal
activations (y-axis) evolve with time (x-axis) in the six ROIs
(R1 to R6). ROIs are colored corresponding to the nodes in
Fig. 3. UR is set to be 4 times larger than UL. By observing
the neuronal activation oscillations of R1 and R2 in the top
panel before t1, there is a clear pattern that the magnitude of
activation within R2 is higher than that of R1. The opposite
pattern (i.e., R1 is higher than R2) mainly arises from the
large noise term. We use the same connectivity coefficient
from R1 to R3 and from R2 to R4. As such, in the middle
panel, most of the time R4 lies above R3 before time point
t1, similar to the pattern in the top panel where R2 lies
above R1. The bottom panel shows the effect on R6 of
the tonic inhibition from R5 for the time points before t0.
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Fig. 4 An example showing the
states of neuronal activation
corresponding to six
hypothetical regions of interest
(ROIs) in Fig. 3. The x-axis
represents the time course of a
trial and the y-axis represents the
neuronal activation. Each line is
associated with a ROI. The time
point t0 is when the absolute
difference of accumulated
evidences between R3 and R4
reaches a predefined threshold.
The time point t1 is when R6 is
ready to initiate a response
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Here, the activations of R5 and R6 are interwoven with
each other, whereas R5 looks more stable. The bottom panel
within the time window from t0 to t1 illustrates a different
pattern of activations between the R5 and R6 nodes. While
R6 rises rapidly and remains highly activated, R5 remains
negatively activated. The rightmost portion of the graph
after the movement–initiation time t1 illustrates the neuronal
activations in the six ROIs after making the response. The
activations of R1, R2, R3, and R4 fluctuate around zero
means. R5 becomes disinhibited and R6 is inhibited at the
negative value.

The MDS model we have developed can be used
to generate predictions about neural and behavioral data
through simulations. Although the model has several com-
ponents and temporally specific changes to its parameters,
Appendix A provides pseudocode with explicit steps detail-
ing these changes to facilitate the model’s implementation.
As a test of the model’s appropriateness, in the following
sections, we simulate the model under different stimulus
configurations, and evaluate whether the model generates
patterns of data that are reasonable. In Simulation Study
1, the stimulus strength (coherence) favored either one or
the other response on most trials, which is a typical exper-
imental procedure. In Simulation Study 2, the two kinds
of visual motion were balanced on all trials while their
(common) absolute coherence was manipulated. While such
balanced coherencies for the two options should not present
a problem in principle, this particular stimulus configuration
presents an interesting challenge to many extant models of

decision-making (Ratcliff et al. 2018; Teodorescu and Usher
2013, 2016).

Simulation Study 1: Unequal Coherence

The first simulation involves a standard set of stimuli, where
coherence is varied along a single dimension, varying in
strength for leftward and rightward response options. For
the purposes of our simulation, we assumed 1000 dots
shown on the screen, with each one moving either leftward
or rightward. Then, the leftward dots and rightward dots can
be subtracted from each other to form a net coherence. For
example, if there are 30% leftward dots and 70% rightward
dots, then the net coherence level is 40% to the right.
The probability of leftward dots is defined as pL and it
is the independent variable in this simulated experiment.
Table 1 shows that pL varies from .1 to .9, increasing by .1,

Table 1 The pL condition levels, corresponding pR levels and net
coherence levels used in Simulation Study 1

pL .1 .2 .3 .4 .5 .6 .7 .8 .9

pR .9 .8 .7 .6 .5 .4 .3 .2 .1

Net coherence .8 .6 .4 .2 0 .2 .4 .6 .8

pL, probability of leftward moving dots; pR , probability of rightward
moving dots. The net coherence is the absolute difference of pL and
pR , with the direction determined by the larger one of pL and pR
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implying that the probability of rightward dots pR decreases
from .9 to .1 by .1. The net coherence equals to the absolute
difference of pL and pR , with the direction determined by
the larger one of pL and pR .

With pL and pR at hand, we can calculate the number of
leftward dots and rightward dots and use them to represent
the strengths of the visual stimuli. In the simulation, we
use the number of dots as strength of input of UL and UR .
For each time point t from stimulus onset to movement–
initiation time t1, the number of leftward moving dots (UL)
is randomly sampled from a binomial distribution with a
given probability parameter pL:

UL(t) ∼ binomial(1000, pL), t = 1, . . . , t1

and the number of rightward moving dots (UR) equals toUL

subtracted from 1000:

UR(t) = 1000 − UL(t), t = 1, . . . , t1.

Hence, as UL is sampled at each moment in time,
the stimulus is stochastic, and the strength of evidence
fluctuates through time. The sum of UL(t) and UR(t) is
always a fixed 1000. Following a response (i.e., t > t1),
UL(t) and UR(t) are set to zero.

UL(t) and UR(t) are used as first two elements in the
external input vector U(t) in Eq. 1, making UL and UR the
impulse functions for R1 and R2, respectively. The values
of UL(t) and UR(t) are both divided by 100 to scale the
strength of neuronal activation. U5 is fixed to be 1 and
passed to the fifth element in the vector U(t), implying a
hypothetical constant magnitude of impulse function forR5.

We simulated a series of 270 trials where each trial
is associated with a pL condition. We assumed 30 trials
for each pL condition, and different pL conditions are
randomly interleaved across trials. Hence, this simulated
experiment can be considered as an event-related design.
Each series with 270 trials can be simulated multiple
times to take into account the randomness in a simulated
experiment. We simulated the series of trials for 100 times
in order to observe the data pattern, and the randomization
of trial conditions is fixed during the replication.

Parameters

The state (1) and observation (2) in MDS and perceptual
decision-making model structure in Section Model Structure
involve many parameters. In this section, we describe
how we specified those parameters for the current
simulation. We adopt two different forms for the intrinsic
connectivity matrix C(t) according to the model structure
in Section Model Structure, hence the time-dependent
specification of the C matrix stated earlier. Specifically,
we let C(t) = C1 from the beginning of a trial until the
threshold-crossing time (t < t0) and then again from the

motion–initiation time (t > t1) until the end of the trial,
where

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

.5 0 0 0 0 0
0 .5 0 0 0 0
.7 0 .9 0 0 0
0 .7 0 .9 0 0
0 0 0 0 .7 0
0 0 0 0 − .8 .7

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The diagonal elements in matrix C1 indicate that the
within-region connectivity strengths are .5 in R1 and R2, .9
in R3 and R4, and .7 in R5 and R6. The self-connectivity
strengths were all set to be .7 in Ryali et al. (2011) and
we used this value for R5 and R6. The instantaneous
neuronal activations in R3 and R4 are assumed as a result
of accumulated evidence so their self-connectivity strengths
have to be larger and close to 1. R1 and R2 process
visual stimuli so their self-connectivity should be smaller
than R3 and R4. We used .5 to allow some amount of
leakage to represent the mechanism that part of visual
stimulus information is lost in visual stimulus processing
(McClelland 1993; Smith 1995; Usher and McClelland
2001). Then, C1[3, 1] = C1[4, 2] = .7 indicates that
the connectivity strengths from R1 to R3 and from R2

to R4 are both .7. This medium high value indicates the
proportion of information is passed by from R1 and R2

to R3 and R4, respectively at each moment. Note that
we assume a symmetric pattern in the leftward motion
pathway (C1[1, 1], C1[3, 3], and C1[3, 1]) and rightward
motion pathway (C1[2, 2], C1[4, 4], and C1[4, 2]) by equal
connectivity strengths. C1[6, 5] = − .8 indicates a negative
connectivity strength − .8 from R5 to R6, and this negative
connectivity represents the constant inhibition from R5 to
R6. All the other connectivity strengths were set to zero.

During the interval from the threshold-crossing time to
the motion–initiation time (t0 ≤ t ≤ t1), the connectivity
matrix changes to C(t) = C2, where the matrix C2 is
identical to C1 except that C2[5, 3] = C2[5, 4] = −.2.
That is,

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

.5 0 0 0 0 0
0 .5 0 0 0 0
.7 0 .9 0 0 0
0 .7 0 .9 0 0
0 0 − .2 − .2 .7 0
0 0 0 0 − .8 .7

⎞
⎟⎟⎟⎟⎟⎟⎠
.

This change indicates that the connectivity strengths
from R3 to R5 and from R4 to R5 are both − .2 after the
connection paths are switched to “on” mode at threshold-
crossing time t0, and are later changed back to zero at t1
when the responses from R6 are initiated. The connection
strengths are back to zero after t1 to prepare for stimulus
presentation in the next new trial. The change from C1
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to C2 and back to C1 is possible via the dynamic gating
mechanism.

The direct input matrix D is composed with diagonal
elements for those regions with an external input (i.e., R1,
R2 and R5), so

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

.9 0 0 0 0 0
0 .9 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 .9 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

The direct effect coefficients of UL, UR , and U5 on R1,
R2, and R5 are all .9. This value was set to be slightly lower
than 1 to represent the fact that the strength of physical
stimuli (i.e., UL, UR) can only be partially captured by
visual processing regions (i.e., R1, R2).

The noise term ω(t) was distributed according to a
multivariate normal distribution in 6 dimensions, with zero
mean and a diagonal variance-covariance matrix, which
indicates uncorrelated noise across the 6 ROIs. Let σ (m)(t)

denotes the standard deviation of the noise in the mth ROI.
We set all 6 standard deviations to the same value σ1 =
16 throughout the time interval before initiating the motor
response (t < t1). After t1, the noise in the two sensory ROIs
was reduced to σ (1)(t) = σ (2)(t) = σ2 = 5, whereas
the noise in the other regions remained at its former level
σ1 = 16.

The parameters used for observation equation step in
Eq. 2 were set as follows. The length L of the HRF function
was 32s so there were 32,000 data points in each hm(τ) in
the temporal unit of 1 ms. The amplitude parameters for the
6 ROIs were A1 = A2 = .0005, A3 = A4 = .00006,
A5 = .0015, and A6 = .0002. These A’s scale the BOLD
signal to be approximately within the range from −2 to 2.
The amplitude parameters were the same for R1 and R2,
and same for R3 and R4, so that the magnitudes of BOLD
signals of R1 and R2, and of R3 and R4 were comparable.
The standard deviation ξm of the observation error term was
set to .05 for all ROIs. We performed the linear convolution
in Eq. 2 in frequency domain for fast computation using a C
subroutine library FFTW 3.3.8 (Frigo and Johnson 2005).

In themodel structure described in SectionModel Structure,
the threshold θ1 was set to be 250 and θ2 was 1500. The
non-decision time τ was set to be 100. The number of total
time points allowed in one trial was 2000 (i.e., 2 s).

We further simulated a rapid event-related fMRI design
with 30 trials at each pL condition. Conditions were
interleaved to create a time series of trials. In the series of
trials, the latent neuronal activation at the last time point
of each trial for each ROI was used as the latent neuronal
activation at the starting time point of the next trial for
the corresponding ROI. This operation allows trial-to-trial

dependencies in the time series data. Each time series can
be simulated multiple times, and so we set the number of
simulations to be 100 to accurately reflect the patterns in the
data. Therefore, each pL condition was repeated for 3000
times.

Results

Under the simulation setup, 99.84% of all the trials produce
a left or right response within 2 s. Figure 5 shows the
behavioral choice and response time data from Simulation
1. The nine panels are corresponding to the conditions of pL

from .1 to .9. In each panel, response times corresponding
to the left choice (L) are shown on the negative x-axis,
whereas response times corresponding to the right choice
(R) are shown on the positive x-axis. This simulation result
indicates that as pL increases, the proportion of the left
choice increases, along with the decrease of the right choice.
When pL equals to .5, approximately the same number
of choices are made between left and right alternatives
(49.48% of right choice in the simulation). Recall that pL

represents the input strength of the leftward motion relative
to the total input strength of leftward and rightward motion.
Therefore, when pL increases, the input strength for the
leftward motion increases, along with the decrease of the
input strength for the rightward motion, so the proportion of
the leftward choices increases.

We summarize the simulated behavioral results in Fig. 6
by showing how accuracy and mean response time change
with pL. In the left panel, accuracy is defined as correctly
choosing the direction with more moving dots. Figure 6
shows that accuracy decreases when pL increases from .1 to
.5 and increases when pL goes from .5 to .9. The accuracy
pattern is symmetric around pL = .5, and this symmetric
pattern is also shown on the mean response time in the
right panel. The symmetric pattern in the behavioral data
originates from the symmetric net coherence in Table 1.
Previous studies with the random dot motion paradigm
have shown that the net coherence serves as an indicator
for the difficulty of the task (Britten et al. 1992; Roitman
and Shadlen 2002; Salzman and Newsome 1994; Shadlen
and Newsome 2001). Therefore, our simulated random dot
motion task becomes harder as pL goes from .1 to .5 and
becomes easier as pL goes from .5 to .9, which is reflected
in the behavioral data.

Figure 7 illustrates an example of the simulated BOLD
signal for six ROIs from one simulation. The red dots
are signals after downsampling and black lines connect
neighboring dots. Every trial has a duration of 2 s, and there
are 270 trials in one simulation. With assumed TR = 1 s,
we have 2 samples in each trial, and thus 540 BOLD data
points in total. The shape of the oscillations is due to the
HRF shape in Eq. 3 and is similar with the typical BOLD
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Fig. 5 Behavioral choice and response time distributions from Simulation 1. Each histogram corresponds to a pL level. Response times
corresponding to the left choice (L) are shown on the negative x-axis, whereas response times corresponding to the right choice (R) are shown on
the positive x-axis

signal from real experiments. We observe that there are very
similar simulated BOLD signals in R1 and R3, and also in
R2 and R4, across trials. This similarity is expected because

in every trial, the neuronal activations in R3 and R4 are
directly affected byR1 andR2, respectively. The differences
across time points between R1 and R3 and between R2 and
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Fig. 6 Summary of behavioral data from Simulation 1. The left panel
shows choice accuracy at each pL level where accuracy is defined as
correctly choosing the direction with more moving dots. When pL is
.5, choosing right direction is defined as the correct choice. The right

panel shows the mean response time at each pL level. Error bars are
included considering the number of simulation (3000) at each pL level
(excluding number of non-response trials), and are extended to ± 2
standard errors about the mean response times

440 Comput Brain Behav  (2020) 3:430–457



Fig. 7 Simulated BOLD signal for each ROI from Simulation 1. The red dots are signals after downsampling and black lines connect neighboring
dots

R4 within each trial (as illustrated in Fig. 4) are canceled in
the downsampling process.

To further investigate the pattern of neural data, we fit the
general linear model (GLM) to the simulated BOLD signal
in each ROI, with the interleaved 9 pL conditions (.1, .2,
. . . , .9) as the explanatory variable. Following traditional
fMRI data analysis procedure, we convolved the interleaved
9 conditions with the same HRF in Eq. 3 before fitting the
GLM and denote convolved pL conditions as X. For the
simulated BOLD signal, we computed the average of BOLD
signal over 100 simulations for six ROIs and denote as a
matrix Y. GLM assumes as follows:

Y = Xβ + E,

where β is the linear coefficient vector and E is an
uncorrelated error term following the multivariate normal
distribution. Figure 8 illustrates correlational pattern in each
ROI with the orange dots and shows the least square fit
of GLM by the red straight lines. There are significant
correlations in R1 (β̂1 = .044, p = 1.48e−11), R2

(β̂2 = − .057, p = 2.77e−16), R3 (β̂3 = .038, p =
9.56e−10), and R4 (β̂4 = − .050, p = 1.37e−14), but
are not significant correlations in R5 and R6. This pattern
is consistent with the model assumption, as R1 and R2

process visual motion for leftward and rightward moving,
respectively, and R3 and R4 accumulate neuronal evidence
of leftward and rightward motion, respectively. Although
the pair of R1 and R3, and the pair of R2 and R4 both
produce similar BOLD signals as shown in Fig. 7, the
correlations in R1 and R2 are slightly stronger than those
in R3 and R4, respectively. R1 and R2 process the input of
motion information (i.e., UL and UR) directly, but R3 and
R4 access the motion information indirectly mediated by
R1 and R2. More motion information is lost after passing
through R1 and R2.

As a short conclusion, Simulation 1 generated behavioral
and neural data from a random dot motion task with
unequal coherence. Both behavioral and neural data
show qualitatively comparable characteristics with real
experimental data.

Simulation Study 2: Balanced Coherence

In Simulation 1, we treated the dots moving towards other
directions other than leftward or rightward as the irrelevant
“noise” and did not explicitly model them. Although
behavioral and neural predictions in Simulation 1 were
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Fig. 8 GLM fits for simulated BOLD signal from MDS model in Simulation 1 and the convolved pL conditions in each ROI. The orange dots
illustrate the correlational patterns in each ROI and red straight lines show least square fits of GLMs

qualitatively similar to real data, it is worth considering if
these dots can be treated as irrelevant noise. In the next
simulation, we aim to simulate the scenario where the
leftward dots and rightward dots are of equal amount but the
ratio of their summed amount compared to the total amount
of dots vary. This way, we are able to detect if the moving
dots towards other directions play a role in the random
dot motion paradigm. If these dots are indeed irrelevant,
the model should predict similar predicted behavioral and
neural results with the varied ratio. However, if these dots
have an effect on the decision-making process, the predicted
behavioral and neural data could provide insights to the
understanding of the problem.

In fact, this situation of balanced coherence is related
to the argument between sensitivity to absolute values and
to relative values (Teodorescu et al. 2016). Promoters of
the relative values postulate that decision-making is guided
by the relative value difference of the two alternatives,
in terms of either the difference or the ratio (Brown and
Heathcote 2008; Ratcliff and Rouder 1998; Roe et al. 2001;
Tversky and Simonson 1993). However, others argue that
task irrelevant absolute values are also important (Usher

and McClelland 2001). In other words, the absolute value
of the alternatives cannot be simply represented by the
relative value. Behavioral data from equal-valued decision-
making tasks show that equal-but-low-value alternatives
need longer processing time compared with equal-but-
high-value alternatives (Pirrone et al. 2014; Teodorescu
et al. 2016), implying the importance of absolute value of
choice alternatives. The balanced coherence of leftward and
rightward dots thus provides an appropriate emulation of
this situation.

Parameters

We still used 1000 random dots in total, but the 1000
random dots contained the same probability of leftward and
rightward dots, along with dots in other arbitrary moving
directions. The effects of dots in other moving directions
were still assumed to be offset by summing up. In the
1000 dots, the probability of leftward dots pL (and also
rightward dots pR) was manipulated across .1, .2, .3, .4,
and .5, so the probability of the dots moving towards other
directions (pothers) was correspondingly .8, .6, .4, .2, and

442 Comput Brain Behav  (2020) 3:430–457



0. From stimulus onset to movement-initiation time t1, the
numbers of leftward dots, rightward dots, and the others

were randomly sampled from a multinomial distribution,
such that
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Fig. 9 Summary of behavioral data from simulation 2. The left panel
shows proportion of left response at each pL level where a dashed
line indicates proportion of .5 as a reference. The right panel shows
mean response time at each pL level using the bar plot. Error bars are

included considering the number of simulation (3000) at each pL level
(excluding number of non-response trials), and are extended to ± 2
standard errors about the mean response times

(UL(t), UR(t), Uothers(t)) ∼ multinomial(1000, (pL, pR, pothers)), t = 1, . . . , t1

where UL, UR , and Uothers are the number of dots moving
towards left, right, and any other direction, respectively.
pL, pR , and pothers are multinomial distribution parameters
indicating the probabilities for random dots to move towards
each of the directions. UL(t) and UR(t) were again both
divided by 100. The other parameter settings in this
simulation were exactly the same as those in Simulation 1.

Results

Under the simulation setup, 99.12% of all the trials produce
a left or right response within 2 s. Figure 9 shows the
simulated behavioral data of response proportion and mean
response time as pL (or pR) increases from .1 to .5, with
non-response trials excluded. Not surprisingly, almost equal
proportion of left choices and right choices are made across
pL (or pR) from .1 to .5, because the input stimuli provide
equal amount of strength for the leftward and rightward
moving dots. However, the mean response time shows a
decreasing trend as pL increases. This result successfully
recovers the key response time data findings in previous
studies (Pirrone et al. 2014; Teodorescu et al. 2016).

To investigate the pattern of neural data, we fit GLM
to the simulated BOLD signal in each ROI, with the
interleaved 5 pL conditions (.1, .2, . . . , .5) as the explanatory

variable. Figure 10 shows correlational patterns in each
ROI, same as in Fig. 7. The least square fits in red straight
lines give significant correlations in all six ROIs: R1 (β̂1 =
.173, p = 2.2e−16), R2 (β̂2 = .171, p = 2.2e−16), R3

(β̂3 = .164, p = 2.2e−16), R4 (β̂4 = .160, p = 2.2e−16),
R5 (β̂5 = − .058, p = 3.7e−9), and R6 (β̂6 = .009, p =
.008). Comparing with Fig. 7, the correlations are much
stronger in all six ROIs, and correlations in R5 and R6 are
both significant in terms of p value. However, the plots
of R5 and R6 do not show any correlational patterns. The
significant correlations are likely to be driven by a few
potential “outlier” points.

As a short conclusion, Simulation 2 adopted balanced
coherence for two directions and generated behavioral
choice and response time data, consistent with empirical
findings. This simulation endorses the ability of the
MDS framework to accommodate different type of task
configuration in simulating behavioral and neural data.

Fitting theModel to Data

In this section, we investigate the model’s inferential
properties, with three questions in mind. First, can the model
be fit to data? For models like MDS, this is a complicated
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Fig. 10 GLM fits for simulated BOLD signal from MDS model in Simulation 2 and the convolved pL conditions in each ROI. The orange dots
illustrate the correlational patterns in each ROI and red straight lines show least square fits of GLMs

problem as the model must be fit to the entire time series
of neural and behavioral data. Importantly, as we do not
assume that data are independent and identically distributed,
fitting the model to data also entails capturing trial-to-trial
dependencies (Turner et al. 2015b, 2019; Wagenmakers
et al. 2004). Second, are the model parameters identifiable?
Identifiability refers to a property of a model such that
any particular parameter value maps to a unique probability
density function (Bamber and Van Santen 2000). Hence,
our goal is to provide some initial evidence that for a given
distribution of data, the model parameters have a unique
solution. Third, if successful in fitting the model to data, are
the recovered parameters veridical? In other words, are the
estimated parameters similar to the true parameters used to
generate the data?

To investigate these questions, we performed a model
recovery study. We first generated synthetic data—similar
to the experiments reported in the previous two sections—
and then fit the model to the generated data. We chose to
use Bayesian inferential techniques because the resulting
posterior distribution would allow us to simultaneously
assess both the accuracy of the estimates (i.e., the central
tendency of the posterior), and the uncertainty about them

(i.e., the posterior’s spread over the parameter space). As
the model’s likelihood function is analytically intractable,
we used approximate Bayesian methods to form an
approximation of the likelihood. Hence, our statistical
methods enable us to answer our second question by
assessing the shape (i.e., the concavity) of the posterior
distribution, and our third question by comparing the central
tendency of the posterior to the true values used to generate
the data. The first question is answered by procuring
solutions to the latter two questions.

Data Generation and Problem Statement

To emulate a real experimental setting, we assumed that
each of the nine pL conditions consisted of 30 trials, and
all the conditions were interleaved. Therefore, the generated
data consists of 270 trials, where each trial is associated
with a choice and response time, except for one trial where
no response is made during 2 s. The choice for the non-
response trial is coded differently than the other trials and
its existence shows no effect on the estimation process.
In addition, each trial period has an associated neural
time series matrix where we assumed a one second fMRI
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acquisition sequence (i.e., the TR). Because each stimulus
presentation period lasted for 2 s, each of the six neural
time series vectors consisted of 540 data points. Notice that
each time series was simulated for just one time, different
from Sections Simulation Study 1: Unequal Coherence
and Simulation Study 2: Balanced Coherence where each
time series was simulated for 100 times. Hence, we would
reasonably expect this randomness in data generation to be
included in the posterior estimates.

Estimating the full matrices, C1, C2, and D in Eq. 1
pose a great computational challenge. We chose to limit
our scope by decomposing these matrices into their
key individual elements, where Table 2 lists all of the
important parameters from this decomposition. The first
column provides the parameter notation, the second column
describes the parameter’s function, and the third column is
the true value that was used to generate the dataset. For this
analysis, we focused on recovering five key parameters: a1,
c2, θ1, σ1, andA12. We chose parameters a1, c2, and σ1 from
MDS state (1) , A12 from observation (2), and θ1 from the
model structure, trying to include parameters from different
sources.

For the purposes of recovery, we allowed these five
parameters to freely vary while keeping other parameters
in Table 2 fixed to their true values. In terms of
implementation, estimation requires that we search the

space of all possible combinations of the model parameters,
and evaluate their relative probabilities of having generated
the data.

EstimationMethods

When using Bayesian statistics, acquiring any posterior dis-
tribution depends on efficient evaluation of two functions:
(1) the prior distribution for the model parameters and (2)
the likelihood function relating the model parameters to the
observed data. The posterior distributions π(θ | XO) reflect
our knowledge about a parameter set θ after observing a
dataset XO , and it is obtained by combining the prior π(θ)

with the likelihood of a parameter set θ :

π(θ | XO) ∝ π(θ)L(θ | XO). (4)

The prior distribution π(θ) reflects our knowledge of the
parameter set θ before observing XO , and is typically easy
to specify in terms of defining its functional form. However,
the likelihood function L(θ | XO) is often much more
difficult to derive. For simulation-based models that attempt
to provide mechanistic explanations for how data manifest,
direct evaluation of the likelihood function can be difficult,
if not impossible. Unfortunately for us, the MDS model is
one such simulation-based model with complex, stochastic

Table 2 Summary of
parameter in the perceptual
decision-making MDS model

Parameter Description Value

c0 Within-region connection strength of R5 and R6 .7

c1 Within-region connection strength of R1 and R2 .5

c2 Within-region connection strength of R3 and R4 .9

a1 Connection strength from R1 to R3 and from R2 to R4 .8

a2 Connection strength from R3 to R5 and from R4 to R5 − .2

a3 Connection strength from R5 to R6 − .8

d1 Direct effect from U1 to R1 and from U2 to R2 .9

d2 Direct effect from U5 to R5 .9

τ Non-decision time 100

θ1 Threshold value for the difference between R3 and R4 250

θ2 Threshold value for accumulated movement information in R6 1500

σ1 Standard deviation of the noise term before t1 16

σ2 Standard deviation of the noise term in R1 and R2 after t1 5

A12 Magnitude parameter in the canonical HRF function for R1 and R2 .0005

A34 Magnitude parameter in the canonical HRF function for R3 and R4 .00006

A5 Magnitude parameter in the canonical HRF function for R5 .0015

A6 Magnitude parameter in the canonical HRF function for R6 .0002

ξm Standard deviation of observation error of BOLD signal .05

The first column provides the parameter notation, the second column describes the parameter’s function,
and the third column is the true value that was used to generate the dataset
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characteristics, and these features of the model make its
likelihood function intractable.

Likelihood Estimation: Kernel-Based ABC

To approximate the likelihood function of the MDS model,
we used kernel-based approximate Bayesian computation
(KABC) method (Palestro et al. 2018b; Turner and
Sederberg 2012, 2013a, 2014, 2018). As in a typical ABC
approach, KABC requires that we first define a discrepancy
function ρ(·), and use it to compare the “distance” between
the simulated data (XS) and observed data (XO ), where the
simulated data are generated by XS ∼ MDS(θ) for a given
parameter vector θ = {a1, c2, θ1, σ1, A12}. When using
KABC, we filter these distances by applying a continuous
weighting function ψ(·|δ) to ρ(·) to determine how closely
XS matches XO . The parameter δ serves as a tuning
parameter that controls the resolution of the “closeness”
between XS and XO . When ψ(·) obeys certain properties
(e.g., symmetric, unimodal), the term ψ(ρ(XS, XO)|δ)
increases as XS becomes more similar to XO . As an
example, perhaps the most common choice for ψ(·|δ)
is a Gaussian distribution centered at zero with standard
deviation equal to δ. In this example, as δ decreases, larger
weights in ψ(·|δ) will be obtained if XS ≈ XO , but a larger
penalty will be applied when the simulated data XS are
different from XO . Hence, the choice of δ is an important
one for accurately comparingXS toXO , an issue we discuss
below.

For a static set of simulated data XS , we could then
just find the set of parameter values θ that maximize
ψ(·|δ), a relatively straightforward optimization problem.
However, there is often considerable variability in the model
generation process, where even for a fixed parameter value
θ , we can arrive at very different sets of XS . Hence, we
can think of the data generation process as detailing a joint
distribution over candidate parameter values θ and random
realization of simulated data XS . As our goal is to estimate
θ and we do not care about the variability in XS , we can
obtain a posterior estimate by integrating out the variability
in XS :

π(θ | XO) ∝
∫

π(θ) Model (x | θ)ψ(ρ(x, XS) | δ)dxS,

(5)

where model(x | θ) denotes the density of data produced by
the model simulation.

While the argument above has been constructed assum-
ing XO and XS are scalars, for our estimation problem, our
data consist of two time series vectors—one for choice data

C and response time data RT—and one time series matrix
consisting of BOLD signal data Y for each of the six ROIs.
Hence, XO = {CO,RTO, YO} and XS = {CS,RTS, Y S}.
To compare XO and XS , we assumed these variables were
conditionally independent, and factorized the likelihood
approximation:

L
(
θ |XO

)
∝ ψ

[
ρ

(
XO, XS

)
|δ]

=
∏
i

ψ
[
ρ
(
RTS

i −RTO
i

)
|δ1

] ∏
i

ψ
[
ρ

(
CS

i −CO
i

)
|δ2

]

×
∏
m

∏
k

ψ
[
ρ

(
YS

m(k) − YO
m (k)

)
|δ3

]
. (6)

To stabilize the variability in the data generation process
(Toni et al. 2009), for each parameter proposal, we
simulated the model 10 times and averaged the data CS ,
RTS , and YS

m(k). With a suitable likelihood approximation
in hand, we can substitute (6)–(4), and estimate the posterior
distribution π(θ | XO).

Posterior Sampling

We used numerical Monte Carlo approximation techniques
to estimate the joint posterior distribution. Specifically, we
used differential evolution with Markov chain Monte Carlo
(DE-MCMC; ter Braak 2006; Turner et al. 2013c, 2015b)
to draw samples from Eq. 4. We chose DE-MCMC as it
has been shown to be a highly efficient sampling method
relative toMCMC, especially when sampling from posterior
distributions whose parameter dimensions are correlated
(Turner et al. 2013c).

Although Eq. 6 suggests that the tuning parameter
δ = {δ1, δ2, δ3} are fixed, it is difficult to specify
these parameters in advance. As we suggested above,
finding the best values for δ is a difficult problem with
grave consequences regarding the variance of the posterior
distribution. Because decreasing δ increases the accuracy
of the estimated posterior, one may be tempted to simply
set δ to zero. However, with decreases in δ come other
computational problems. Specifically, decreases in δ make
it difficult to obtain high-quality estimates because of the
sharp gradient associated with ψ(·|δ). If the variability in
the data generation process is large relative to the width of
ψ(·|δ), the chains of the sampling algorithm will tend to
“stick” in the posterior distribution and will not sample from
the posterior effectively.

To balance these two opposing forces, we used the
approximate Bayesian computation with differential evolu-
tion (ABCDE) (Turner and Sederberg 2012) algorithm to
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implement DE-MCMC sampling within the KABC like-
lihood approximation. ABCDE is unique as it uses two
“modes” of sampling: a “burn-in” mode and an “sample”
mode. In burn-in mode, ABCDE uses a specific optimiza-
tion rule for moving the chains of the algorithm into the
region of the posterior with highest density. To do this,
ABCDE proceeds by optimizing (5) with respect to both θ

and δ simultaneously. After some number of iterations, the
values of δ asymptote to values that are as small as pos-
sible, but still enable efficient sampling from the posterior
distribution of θ . After this point is reached, the algorithm
switched to the sample mode, where δ is set to their low-
est value obtained during the burn-in phase, and only θ is
estimated.

We ran the burn-in phase of the ABCDE algorithm with
24 chains for 2000 iterations, optimizing with respect to
both θ and δ. After this initial phase, we set each δ to their
respective (rounded) mean values, where δ1 = 100, δ2 = 1
and δ3 = .4, respectively. Henceforth, we used the sample
mode of ABCDE to obtain posterior estimates of only θ ,
running the algorithm for an additional 3000 iterations, but
discarded the first 1500 iterations as an additional burn-
in period (i.e., to allow the chains to spread out into the
posterior distribution). Hence, our posterior estimates are
based on 36,000 samples. A migration step (see Turner and
Sederberg 2012, 2013c) was used during the second burn-
in period with probability 0.2 for the first 400 iterations,
after which time the migration step was terminated. We
also used a purification step every 10 iterations to ensure
that the chains were not stuck in spuriously high regions
of the approximate posterior distribution (Holmes 2015).
Convergence was checked by visual inspection.

We also estimated posterior densities by behavioral-only
data or neural-only data to compare with the density from
the joint model. Specifically, in behavioral-only estimation,
XO = {CO,RTO} andXS = {CS,RTS}, and in neural-only
estimation, XO = {YO} and XS = {YS}. The estimated
likelihoods were constructed in the similar way as in Eq. 6,
but we reduced the multiples according to the elements in
XO and XS . We used δ1 = 100 and δ2 = 1 for behavioral-
only estimates and δ3 = .4 for neural-only estimates. Again,
we used the sample mode of ABCDE to obtain posterior
estimates, running the algorithm for 3000 iterations with the
first 1500 iterations discarded. Migration and purification
steps were performed in the same way as in joint estimation.

Prior Specification

To complete the specification in the Bayesian framework,
we must specify priors for each of the model parameters.
As we had no a priori beliefs about the model parameters,
we chose the following uninformative priors for joint

estimation, behavioral-only estimation and neural-only
estimation:

c2 ∼ U(0, 1),

a1 ∼ U(0, 1),

θ1 ∼ U(0, 1000),

σ1 ∼ U(0, 100), and

A12 ∼ U(0, 1),

where U(a, b) denotes a uniform distribution with lower
bound a and upper bound b.

Results

Figure 11 shows a comparison of the estimated posterior
densities for parameters c2, a1, θ1, σ1, andA12 by the 36,000
posterior samples. The blue, black, and green lines indicate
the posterior densities for each parameter informed by
behavioral data-only, neural data-only, and jointly informed
by behavioral and neural data, respectively. The red-dashed
lines indicate the true parameter values. Across all five
parameters, the neural and joint estimates are near their
true value. While estimates having only behavioral data
that are generally worse than the other modalities, the
posteriors still contain the true parameter value (except for
A12). For parameter c2, the neural density and joint density
cover similar range but the joint density is closer to the
true parameter value compared to the neural density. The
behavioral density, on the contrary, has a larger range of
support for the posterior density and is more distant from
the true parameter value compared with the other two. For
parameter a1, the neural density, behavioral density, and
joint density all include the true parameter value, whereas
the behavioral density and joint density have higher peaks.
For parameter θ1, the joint density is close to the neural
density, but the joint density is closer to the true parameter
value. The behavioral density is more flat compared to the
other two. For parameter σ1, the joint density and neural
density are close, but still the joint density is closer to the
true parameter value. The behavioral density shows the best
recovery performance for σ1 among three, which is possible
due to the critical importance on controlling signal-to-noise
ratio of σ1. The last parameter A12 differs from all the other
four as it does not have a direct influence on behavioral data
in the simulation process. Hence, the behavioral density is
shown as a horizontal line. The neural and joint densities
are close and both contain the true parameter value around
their peaks. The joint density, however, has a slightly higher
peak than the neural density and this trend can be due to the
correlation between free parameters—correlations between
free parameters make the estimation of one parameter able
to inform the estimation of other parameters (Turner et al.
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Fig. 11 Comparison of posterior estimates. The estimated posterior
density for each parameter informed by only neural data, only behav-
ioral data, or jointly neural and behavioral data. Densities are smoothed

using Gaussian kernels with widths .2, .5, 100, 10, and .0005 for
parameter c2, a1, θ1, σ1, and A12 for illustration, respectively. The true
parameter values are indicated by dashed red lines

2019a). This comparison of posterior densities suggests the
benefit by including both behavioral and neural data.

Figure 12 shows the estimated posterior distributions
informed by both behavioral and neural data for parameters
c2, a1, θ1, σ1, and A12 by the 36,000 posterior samples.
The panels on the diagonal show the marginal posterior
distributions, where a dashed red vertical line indicates the
true parameter value that was used to generate the observed
data, and the dashed blue vertical line indicates the mean of
the posterior estimates. All marginal posterior distributions
deviate from their respective uniform priors, suggesting that
the likelihood approximation is affecting the estimates. c2
and a1 are both left-skewed, and this skewness is likely as
their prior distributions are constrained to be less than 1. θ1,
σ1, and A12 all have right-skewed posterior distributions.
All five posterior means are close to the true parameter
values. Each parameter estimate is well constrained and
unimodal (except for some irregularities in a1), suggesting
that the model is securely identifiable.

The bottom left of the diagonal in Fig. 12 displays
the pairwise joint posterior distributions between all five
parameters, where the x- and y-axes can be inferred

from the marginals. In each panel, the black “x” symbol
indicates the true value of the parameter that generated the
data. The top right of the diagonal displays the pairwise
correlation coefficients. Combining the correlation plots
and coefficients, we observe a strong negative correlation
between c2 and a1 and a strong positive correlation between
θ1 and σ1. These strong correlations are interpretable under
model specifications. Recall that c2 represents the within-
region connection strength of R3 and R4 and a1 represents
connection strength from R1 to R3 and from R2 to R4.
Therefore, a reduction in a1 should occur with an increase
in c2 so that both R3 and R4 can still accumulate the same
amount of evidence. Regarding the positive correlation
between θ1 and σ1, θ1 is the threshold value that the
absolute difference of neuronal activations that R3 and R4

accumulate toward and σ1 controls the signal-to-noise ratio
of the system. When σ1 increases, the neuronal activation
variations increase. The threshold value also needs to be
higher; otherwise, the neuronal activation variations could
easily reach the threshold by random.

As a short conclusion, the parameter recovery study has
suggested at least partial identifiability of the MDS model
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structure by estimating some important model parameters.
The likelihood-free algorithm KABC contributes to the
parameter recovery of the MDS model. The posterior
distribution of those estimated parameters captures the true
parameter values and the posterior means are close to the
true values. Hence, the recovered parameters are veridical.

Discussion

In the present article, we have proposed and investigated
a new framework for simultaneously modeling neural and
behavioral data. Theoretically, it differs from the previ-
ous simultaneous modeling attempts in that both neural
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and behavioral data are linked by the same generative
process, rather than linking them through an agnostic,
parametric transformation. This theoretical distinction pro-
duces a statistical distinction in that integrative models
are more closely connected to the data. Whereas covari-
ance approaches assume conditional independence between
model parameters and data (i.e., by using different “sub-
models”), the integrative approach is directly committed to
both streams of data: changes in a single parameter will
affect the model predictions for both neural and behav-
ioral data. The outcome of this direct connection is that
it enables more precise model parameter estimates, as was
shown when comparing the integrative model to models that
only considered behavior or neural data. Although we have
shown the utility of the MDS framework in two simulation
studies and a parameter recovery study, there are a number
of extensions and possibilities that we did not explore in the
present article. In the following sections, we will discuss
a few of these open questions and relationships as well as
relating our work to previous efforts.

Comparison with DCM/MDS

Our extended MDS departs from other DCM/MDS mod-
els (Daunizeau et al. 2009; Friston et al. 2003; Marreiros
et al. 2008; Ryali et al. 2011; Stephan et al. 2008, 2010)
in several important ways. First, it incorporates the stan-
dard sequential sampling assumptions prevalent in extant
models of evidence accumulation models to generate pre-
dictions for behavioral data. The self-connection parameters
in the accumulation nodes (i.e., C[3, 3], C[4, 4]) are con-
strained to be less than and close to 1, which is analogous
to having a “leakage” term often used in accumulator mod-
els (McClelland 1993; Smith 1995; Usher and McClelland
2001). The two threshold parameters θ1 and θ2 are anal-
ogous to the threshold term commonly used in evidence
accumulation models (for a review, see Ratcliff and Smith
2004). However, deciding which subset of ROI(s) repre-
sent the accumulation of evidence is a nontrivial problem.
In perceptual decision-making, the LIP and FEF regions
are well-established areas that may reflect the accumula-
tion mechanism. For extensions of the model presented here to
other cognitive processes, different configurations of the accu-
mulation process may need to be considered. For example,
building in a separate valuation process to represent the sub-
jective strength of hedonic stimuli may need to operate prior
to, or integrated within, the accumulation process described
here (e.g., Turner et al. 2018). Compared to the behav-
ior DCM approach (Rigoux and Daunizeau 2015) where
behavioral responses are predicted by a sigmoid mapping
function of the latent neuronal activations, our approach

allows continuous response times rather than only binary
response choices. More importantly, our approach provides
mechanistic explanations for cognitive processes with inter-
pretable model parameters (e.g., leakage, threshold, and
non-decision time).

Second, we have relaxed the connectivity parameters
from being fixed throughout the time course to being
temporally variant. In particular, we allow the endogenous
connectivity matrix C(t) to change from C1 to C2 after
threshold-crossing time t0 and back to C1 after movement–
initiation time t1 in each experimental trial. This change
adds a complex nonlinearity to the MDS model, making
it analytically intractable. For this reason, we recommend
using fixed connectivity matrices as an initial exploratory
step, and only allowing the connectivity matrices to change
if there are explicit justifications for doing so. Such a
tendency toward parsimony is productive in that it reduces
the number of parameters that need to be estimated,
provides strong constraints on the model, and helps to
reduce any potential overfitting tendency in the model.
Furthermore, the time points t0 and t1 for these changes
to take place are determined by the interplay between
the state (1) and the accumulation process in R3 and R4.
Therefore, the accumulation process has a direct effect
on the endogenous connectivity matrix, and hence on the
neural prediction. After t1 when the response is initiated
from R6, C(t) is changed from C2 to C1 to reflect a
“resting stage” where neurons are prepared for the next
trial. Except for the connectivity matrix, the noise term of
neuronal activations in R1 and R2 drops from σ1 to σ2 (i.e.,
σ1 > σ2) after t1, which also reflects the resting stage after
the response is initiated from R6. The inputs UL and UR

are set to be zero after t1 to indicate the termination of
processing visual stimuli at this time point. By introducing
such changes, we intend to consider underlying cognitive
processes, behavioral responses, and neural activities as
a whole, rather than map one as a transformation of
another. Hence, our framework can be thought of as an
integrative approach to modeling behavioral and neural data
simultaneously (Turner et al. 2017b, 2019a).

As an early attempt to explicitly modeling behavioral
data (choice and response time) as well as fMRI BOLD
signal, we did not include modulatory terms or nonlinear
terms in the state (1) compared with previous efforts
(Friston et al. 2003; Marreiros et al. 2008; Ryali et al.
2011; Stephan et al. 2008). On the other hand, the model
is enriched by incorporating parameters representing an
accumulation to bound process, and so there is not presently
a clear conclusion about the complexity of our model
relative to others. The current model specification might be
thought of as a new, mechanistic version of DCM/MDS,
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where it is capable of explaining behavioral data as an extra
benefit.

Another difference between our extended MDS frame-
work and DCM is that DCM facilitates model comparisons
based on model evidence, so that different hypotheses about
the connections among brain regions and how external
input affects their interactions can be tested. Although we
have not explicitly provided guidelines for how MDS could
enable model comparison, we expect that analogous com-
parisons are easily made. For example, to avoid issues like
model misspecification, one can directly compare a model
that is intentionally misspecified to one that is not expected
to be. Once each of these models are fit to data, one can
simply compare the quality of those model fits. Models that
are misspecified are expected to mismatch the pattern of
data by design, so if they do not, then one can conclude
that the data are not sufficiently able to identify models that
are misspecified from those that are not. A more complex
alternative is to test new mechanisms in the model by mak-
ing a set of models with different mechanistic assumptions.
For example, one could compare the baseline MDS model
presented here to another model that includes a lateral inhi-
bition mechanisms between R1 and R2, or between R3 and
R4 (e.g., Ashby et al. 2007; Usher and McClelland 2001).
The addition of the inhibition mechanism would need to be
justified by fitting to the data better than a model without
inhibition, and the assessment of justification can easily be
made by existing model performance metrics that balance
fit to data with penalty terms for model complexity. It would
also be possible to compare models with different config-
urations of C(t) to guide decisions about how flexible the
connectivity matrix should be in the time course of a cog-
nitive process. In summary, although we did not compare
many different MDS models, we recommend that MDS can
be used as a way to instantiate several different hypotheses
within a computational model, where the models’ fit to data,
balanced for complexity, can be used to provide support for
specific hypotheses about how the brain produces behavior.

ROI Definition and Identification

We defined six different ROIs in the perceptual decision-
makingMDSmodel throughout the article. Here, we discuss
the possibility of identifying those ROIs from real fMRI
data and some potential issues with defining and identifying
the set of ROIs.

Theoretically, R1 and R2 can be identified by using
MVPA methods and the tuning curve property of neurons
within visual cortex (especially MT and MST; Kamitani
and Tong 2005, 2006; Serences and Boynton 2007a, b).
However, in practice, the ability of MVPA for this purpose
remains controversial. For example, MVPA classifiers may

not find all the voxels that are relevant to represent the
feature values, as they tend to overweight the importance
of voxels that provide discriminative information and
underweight voxels that are common to both (Norman et al.
2006). We have constrained R1 and R2 to only encode the
properties of the external stimulus through UL and UR ,
respectively, but this constraint could be relaxed to construct
more realistic models.

The nodes R3 and R4 are assumed to stand for separate
voxels inside FEF and LIP. We treated FEF and LIP as
a single ROI due to the similar functional roles of LIP
and FEF in the perceptual decision-making task. This
assumption might lead to some issues, as it implies equal
self-connectivity within FEF and LIP, which has not been
supported by empirical results. Future investigations should
consider MDS models with separate nodes representing
similar functional roles. Also, we assumed that there are
separate voxels responsible for integrating leftward and
rightward motion information within FEF and LIP, but this
assumption is not widely accepted.

Furthermore, the typical spatial resolution of fMRI may
not be able to locate the output nuclei of basal ganglia (i.e.,
R5). Although our framework assumes that neurons inside
of an ROI carry homogeneous functions and share the same
neuronal activations—a common assumption in cognitive
neuroscience—the functional homogeneity of voxels inside
an ROI has been shown to vary across ROIs and change in
time (Korhonen et al. 2017; Ryyppö et al. 2018). Hence,
inhomogeneity of voxels within an ROI will create a
significant challenge to the static node definition used here.

Following the direction of information transformation in
Fig. 3, there are four layers that contain multiple nodes,
from visual cortex to pre SMA downstream. Thus, the MDS
framework can be viewed as a variant of neural network
models, and it can be generalized to look more similar
to neural network models by adding more units to each
layer. This direction of generalization is reasonable, as the
overall average activation of each ROI may be insufficient
to represent the neural information contained in the ROIs,
according to pattern-based information representation.
Ideally, we can further parcelize ROIs into multiple nodes
and use connectivity matrices for nodes between two
layers, instead of scalar weights. The generalization requires
overcoming at least two major difficulties though. First,
when each layer contains more than two nodes, it is much
harder to find the corresponding neural voxels for each node
in that layer, and so it increases the complexity to generate
neural predictions for each node. The second difficulty
comes from the well-known identifiability challenge and
overfitting issue in neural network models. Allowing more
nodes in each layer and connectivity matrices inevitably
hinders the possibility of the model being identifiable.
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Methods for Parameter Estimation

In this article, we have also investigated parameter recov-
ery. To fit the model to data, we combined Bayesian MCMC
posterior sampling with a kernel-based likelihood approxi-
mation method, known as kernel-based ABC (Palestro et al.
2018b). The kernel-based ABC method gives an approxi-
mation of the likelihood by considering summary statistics
of three time series quantities: one for behavioral choice,
one for behavioral response time, and one for the set of neu-
ral activations in the model. Kernel-based ABC techniques
have the downside of having “tolerance” parameters where
predictions of the model are compared to the observed
data by measuring the discrepancy between them through
a localized regression technique (Beaumont 2010). Hence,
while posteriors can be perfectly recovered with the discrep-
ancy of the residual term is zero, it is often impossible for
the residuals to be perfectly zero. This implies that any pos-
terior approximation will have some error (e.g., have some
increased variance) relative to the true posterior.

An alternative to this approach is the probability
density approximation (PDA; Miletić et al. 2017, Molloy
et al. 2019; Turner and Sederberg 2014, 2015a, 2018)
method. Essentially, the PDA method relies on numerous
simulations of the model for a candidate set of parameters
to approximate the likelihood function through a kernel
density estimation procedure (KDE; Silverman 1986).
The PDA method assumes a nonparametric form of the
likelihood function, whereas the kernel-based ABC method
is based on the normal approximation, and so PDA
often will provide a more accurate approximation of the
likelihood function. As a downside, the PDA method is
usually time-consuming due to the high number of model
simulations often necessary for improving the likelihood
approximation.

Another alternative for model fitting within the Bayesian
framework is to use variational Bayes to compute the
posterior distributions of model parameters (e.g., Ryali
et al. 2011). The variational Bayes approach is able to
obtain a posterior distribution of latent states and model
parameters, instead of relying on Monte Carlo property in
MCMC sampling. To do so, variational Bayes assumes a
parametric form of the posterior distribution and uses an
iterative procedure to estimate the posteriors by minimizing
the distance between the posterior distribution and the
evolving parametric form (Galdo et al. 2019). Variational
Bayes has been successful in fitting many other MDS/DCM
models (Daunizeau et al. 2014; David et al. 2006; Friston
et al. 2003; Marreiros et al. 2008; Ryali et al. 2011,
2016). However, variational Bayes usually requires a known
likelihood function, whereas the likelihood in the current

model is intractable. It is presently unclear how variational
Bayesian methods will perform when optimizing over
highly stochastic gradients.

Limitations and Future Directions

Choice of Features

Our example random dot motion task is based on a widely
studied low-level feature: motion direction. Numerous
monkey and human studies have shown the existence
of separate neurons or voxels sensitive to each motion
direction, and thus we believe it is entirely possible to
identify R1 and R2 from various fMRI voxels based on
MVPA techniques. Other than motion direction, many
low-level physical features have investigated the encoding
properties (e.g., tuning curves) of voxels, such as line
orientation, color, and spatial location. However, we have
not accumulated sufficient knowledge about the properties
of neural encoding for many higher level or abstract
features. For example, it is not clear if voxels can
specifically code for smaller sooner versus larger later
options in intertemporal choice, or for preferences among
food options.

Before knowing how higher level feature values are
encoded in individual voxels, it is reasonable to remain
conservative and apply this approach to tasks that are
based on low-level physical features. Note that limiting
investigations to low-level features does not limit the
scope of applying this framework to low-level cognitive
problems, because many higher level cognitive problems
(e.g., memory and categorization) can be investigated with
stimuli using low-level features.

Number of Parameters in the Recovery Study

In the parameter recovery study, we chose to recover
only 5 of the 18 parameters listed in Table 2. Therefore,
we cannot guarantee that the whole model structure is
identifiable. It is expected that many more iterations would
be required to estimate the full model, and even then,
we consider it unlikely that all model parameters will
be well recovered without significant amounts of data.
The number of required iterations for convergence also
depends on which parameters are chosen to estimate, and
the starting values of chains for the estimation. More in-
depth exploration is required to find the effects of different
numbers and different configurations of free parameters on
the computational costs of parameter estimation, as well as
the particular set of experimental and data constraints that
will ensure parameter identifiability.
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Simulated fMRI Design

For the assumed rapid event-related fMRI design in the
simulation, we used a constant inter-trial-interval (ITI) to
reduce the complexity of model simulation. However, a
jittered ITI is more commonly adopted in real rapid event-
related designs as a way to minimize confounds from a
subject’s habituation, as well as increasing the efficiency
of estimating the hemodynamic impulse response based on
the periodic overlap among stimulus-related hemodynamic
functions (Birn et al. 2002; Liu et al. 2001). The model has
to be further refined so that the simulated fMRI data can be
more comparable with real fMRI data.

Modality of Neural Data Modeling

We have mapped the neuronal activations to fMRI time
series data via a linear convolution with a canonical HRF,
but under the temporal resolution of fMRI, our framework
may be better situated to model EEG time series data. We
simulated the time series of neuronal activations on the
millisecond level, but when mapping the neural activations
to the fMRI BOLD signal, we had to downsample the
simulated fMRI BOLD signal by a factor of 1000 to mimic
the real sampling resolution of typical fMRI signals. In
so doing, we have discarded significant information about
the temporal dynamics of our model. On the other hand,
EEG data can easily achieve a temporal resolution of 1 ms.
In fact, DCM has been extended to generate EEG/MEG
data by use of a neural mass model to spatially map the
unobserved neuronal activations to the EEG/MEG evoked
responses (David et al. 2006; Kiebel et al. 2008). Another
opportunity is to use anatomical sources from fMRI to
constrain source localization methods for EEG data. Such
efforts could exploit the temporal resolution of EEG and the
spatial resolution of fMRI to form a more complete picture
of brain dynamics (Turner et al. 2016). Although we are
currently working on including EEG measurements in the
generative model to take advantage of temporal information,
such efforts were beyond the initial scope of this article.

Conclusion

Our results suggest that the extended MDS framework
may prove useful for future efforts in developing fully
integrated models of brain and behavior. We have shown
that integrated models can be used to produce patterns
of neural and behavioral data that resemble experimental
results. We have also shown that we can recover the model
parameters when fit to simulated data, where the true values
of the model parameters are known. Together, these results
suggest that MDS may be productive in inferring causal

links that explain how behavior may emerge from the brain
through mental operations.
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Ryyppö, E., Glerean, E., Brattico, E., Saramäki, J., Korhonen, O.
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