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Delay discounting behavior has proven useful in assessing impulsivity across a wide
range of populations. As such, accurate estimation of the shape of each individual’s
temporal discounting profile is paramount when drawing conclusions about how
impulsivity relates to clinical and health outcomes such as gambling, addiction, and
obesity. Here, we identify an estimation problem with current methods of assessing
temporal discounting behavior and propose a simple solution. First, through a simula-
tion study, we identify types of temporal discounting profiles that cannot reliably be
estimated. Second, we show how imposing constraints through hierarchical modeling
ameliorates these recovery problems. Finally, we apply our solution to a large data set
from a temporal discounting task and illustrate the importance of reliable estimation
within patient populations. We conclude with a brief discussion on how hierarchical
Bayesian methods can aid in model estimation, compensate for small samples, and
improve predictions of externalizing psychopathology.
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Delay discounting is a psychological phe-
nomenon where the subjective valuation of a
reward is lower than the objective value, in
proportion to the amount of time a person must
wait to obtain the reward. Often, this phenom-
enon is measured using monetary intertemporal
choice tasks. These tasks are characterized by

asking subjects to decide between a smaller-
sooner option, for example, $10 now, or a larg-
er-later option, for example, $20 in 2 weeks. A
tendency to choose the smaller-sooner option
can be used to measure impulsive choice. Nu-
merous explanations of how observers trade
reward for delay have been proposed, including

This article was published Online First March 26, 2020.
M. Fiona Molloy, Department of Psychology, The Ohio

State University; Ricardo J. Romeu, Department of Psy-
chological and Brain Sciences, Indiana University; Peter
D. Kvam, Department of Psychology, University of Flor-
ida; Peter R. Finn and Jerome Busemeyer, Department of
Psychological and Brain Sciences, Indiana University;
X Brandon M. Turner, Department of Psychology, The
Ohio State University.

This work was funded by National Institute on Alcohol
Abuse and Alcoholism R01AA13650 to Peter Finn, a CA-
REER Award from the National Science Foundation to
Brandon Turner, and a National Institute of Drug Abuse
Grant T32DA024628 to Ricardo Romeu.

Correspondence concerning this article should be addressed to
Brandon M. Turner, Department of Psychology, The Ohio State
University, 200C Lazenby Hall, 1827 Neil Avenue, Columbus,
OH 43210. E-mail: turner.826@gmail.com

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

Decision

© 2020 American Psychological Association 2020, Vol. 7, No. 3, 212–224
ISSN: 2325-9965 http://dx.doi.org/10.1037/dec0000121

212



exponential discounting models (Becker &
Murphy, 1988; Lancaster, 1963) as well as at-
tention-based models (Cheng & González-
Vallejo, 2016; Dai & Busemeyer, 2014; Schol-
ten & Read, 2010; Turner et al., 2019), but the
most common description is a hyperbolic func-
tion (Mazur, 1987). The hyperbolic function
allows for the estimation of the discounting rate
(k), which is unique for individuals based on
their delay discounting behavior/preferences.
Larger k values mean the larger-later option is
more heavily discounted, signifying a prefer-
ence for the more impulsive smaller-sooner op-
tion. In numerous applications, k has been used
to generalize meaningful connections about
how discounting behavior is related to sub-
stance use disorders and addiction (Bailey,
Gerst, & Finn, 2018; Bickel & Marsch, 2001;
Bickel, Odum, & Madden, 1999; Kirby, Petry,
& Bickel, 1999) and other risk-taking and
health behaviors (Daugherty & Brase, 2010).

Despite the importance of accurately estimating
the temporal discounting rate, few analyses have
investigated the recoverability of the parameters
of common temporal discounting models. Param-
eters of the same model may vary in their recov-
erability. For example, in linear regression, the
slope and intercept of a line are more difficult to
estimate when the residual noise is high. Here, we
first present a simulation study to expose weak-
nesses of standard estimation procedures in the
hyperbolic discounting model. We found several
types of common experimental designs where
temporal discounting curves cannot be reliably
estimated. We present a simple hierarchical solu-
tion that solves the issues identified in our simu-
lation study and provide code to facilitate our
recommended approach. After illustrating our so-
lution with simulated data, we apply it to data
from an intertemporal choice experiment (Finn,
Gunn, & Gerst, 2015). Here, we show that the
more constrained hierarchical estimates were
more highly correlated with externalizing psycho-
pathology than nonhierarchical estimates. We
conclude with a general discussion emphasizing
the importance of accurate assessment of temporal
discounting behavior.

Model Specification

To assess our ability to reliably model temporal
discounting behavior, we made a choice about the
particular functional form. Although our results

generalize to other models of temporal discount-
ing behavior (see online supplemental material),
we focus on the hyperbolic function due to its
prevalence and intuitiveness. In our own applica-
tions, we noticed that there were occasionally re-
liability issues during the model-fitting process for
some data structures. Unreliable (i.e., inaccurate,
imprecise, or both inaccurate and imprecise) esti-
mates are a major concern when the goal is to
generalize a specific behavior (e.g., temporal dis-
counting) to important societal problems (e.g., ad-
diction). It is therefore critical to identify where
and when the shape of the hyperbolic discounting
model cannot be reliably estimated. In this section,
we specify the general form of the model, then
discuss its construction, both nonhierarchically
and hierarchically, in a Bayesian framework.

To begin, the hyperbolic discounting function
(Mazur, 1987) is

VLL �
rLL

1 � kt
, (1)

where VLL is the subjective value of the delayed
(larger-later) option, rLL is the nondiscounted
value of the delayed option, k is the estimated
discounting rate, and t is the delay, in days, of
the larger-later option. The likelihood of choos-
ing the larger-later option is defined as

PLL �
1

1 � e�m(VLL�VSS)
, (2)

where PLL is the likelihood of choosing the
delayed option, m is the estimated sensitivity to
changes in the discounted value (Dai & Buse-
meyer, 2014; Dai, Gunn, Gerst, Busemeyer, &
Finn, 2016; Scherbaum, Haber, Morley, Under-
hill, & Moustafa, 2018; Wulff & van den Bos,
2018), VLL is the subjective value of the larger-
later option from Equation 1, and VSS is the
subjective value of the smaller-sooner option.
For our purposes, the smaller-sooner option is
always immediate (t � 0 days) and thus we can
rewrite Equation 2 as

PLL �
1

1 � e�m(VLL�rSS)
, (3)

where rSS is the amount in dollars of the imme-
diate option.
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Nonhierarchical Implementation

In the nonhierarchical version of the model,
we estimate a k and m pair for every individual
separately. Because we are interested in explor-
ing the parameter space, we want to have rela-
tively uninformed priors. The priors for k and m
were uniformly distributed from 0 to 10:

k �U(0, 10),

m �U(0, 10).

These priors are considered uninformative
because of their distribution and range. First, the
range is constrained to be positive (as k and m
can only be positive), but the spread of the
distribution is much larger than typical k and m
values. Additionally, a uniform distribution as-
sumes the parameter could be any value within
this range with equal probability.

Hierarchical Extension

As we will show below (and see online sup-
plemental materials), the primary reason for the
unreliable estimation is the degenerative shape
of the likelihood function at the individual level.
One solution to correct the shape is to construct
a hierarchical model where information can be
shared across individuals. While we are cer-
tainly not the first to propose hierarchical
Bayesian modeling to estimate parameters of
delay discounting (Chávez, Villalobos, Baroja,
& Bouzas, 2017; Vincent, 2016), we aim to
emphasize the importance of performing hier-
archical analyses, which are made significantly
more convenient within a Bayesian framework.
Constructing a hierarchy across subjects allows
us to use information from other subjects to
compensate for missing information or insuffi-
cient data. To facilitate construction of the hi-
erarchical model, we now specify truncated nor-
mal priors for both k and m:

ks � TN(�k, �k, 0, �)

ms � TN(�m, �m, 0, �),

where s indexes the subject, and TN(a, b, c, d)
denotes a truncated normal distribution with
mean a, precision b, lower bound c, and upper
bound d. The range of the truncated normal

constrains the estimates to be only positive,
while still remaining largely uninformative.
Hence, �k and �m are the means, and �k and �m

are the precision terms, for k and m, respec-
tively. We then assumed uniform priors from 0
to 10 for �k and �m:

�k �U(0, 10)

�m �U(0, 10),

and exponential priors with rate equal to one for
both �k and �m:

�k � Exp(1)

�m � Exp(1).

The priors for �k and �m are analogous to
the nonhierarchical priors for k and m. Example
code for fitting this hierarchical model in Just
Another Gibbs Sampler (JAGS) can be found
here: https://github.com/MbCN-lab/
hierarchical-discounting/. For generalizability,
we create population-level parameters for only
one group (e.g., one �k and one �m parameter).
However, this framework can be extended to
multiple groups based on the research question
or design of the experiment. For example, there
could be a hyperparameter for a control group
and a separate hyperparameter for a treatment
group.

Simulation Study

When applying the model to experimental
data, we have no assurances on the accuracy of
our estimates, as the true values of the model
parameters are unknown. Hence, to properly
assess statistical issues such as accuracy and
precision, we must investigate the model in an
environment where the true parameter values
are known. Our first goal is to uncover areas of
the parameter space that are problematic in
terms of recoverability. To do this, we ran two
different simulation studies. In the first simula-
tion study, we defined a grid over the k and m
space, generated data for each value in the grid,
and recovered the model parameters. We re-
peated this procedure while varying the number
of trials to explore the relationship between
recovery and experimental design. Our hypoth-
esis was that the reliability of the model param-
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eters would increase systematically with addi-
tional trials. In the second simulation study, we
compared the accuracy of estimation between
hierarchical and nonhierarchical models. The
hierarchical model incorporates more informa-
tion, so we expected that, especially for fewer
trials, the hierarchical model would correct the
degenerative shape of the likelihood function.

Areas of Unreliable Estimates

Method. To explore the effect of the num-
ber of trials on parameter recovery, we gener-
ated data consisting of four different trial sizes:
30 trials, 50 trials, 70 trials, and 150 trials. The
trial sizes, delays, and larger-later and smaller-
sooner options were inspired by the experimen-
tal design used within Finn et al. (2015). Here,
we will discuss the results from the two ex-
tremes of 30 and 150 trials, although every trial
size was fit. The larger-later option was always
$50, whereas the smaller-sooner option was
sampled from values from $2.50 to $47.50, in
increments of $2.50. The delays were uniformly
sampled from the following set: 7, 14, 30, 90,
and 365 days. We defined a 100-by-100 grid of
values within the joint (k, m) parameter space.
The sequence for k was from 0.01 to 1, increas-
ing in steps of 0.01. The sequence for m was
from 0.05 to 5, increasing in steps of 0.05. For
each pair of k and m across these ranges, we
calculated the VLL and simulated a choice. For
each trial, the VLL was determined by 50/(1 � k
� t), and then the PLL was calculated by 1/(1 �
exp(�m � (VLL � VSS))). The simulated choice
was generated by randomly sampling from a
Bernoulli distribution with PLL as the probabil-
ity of success. Preferential choices have been
found to be probabilistic, which this random
sampling accounts for (Rieskamp, 2008).

Once the data were generated, we fit the
nonhierarchical hyperbolic model specified
above using JAGS (Plummer, 2003). We fit the
model five times for the five data sets generated
for every pair of k and m values across all four
trial sizes. Each model was fit using three
chains, where each chain was initialized for
3,000 adaptations, with a burn-in of 4,000 iter-
ations and 6,000 samples. Hence, posterior sam-
ples consisted of 18,000 samples. Chains were
visually assessed for convergence. Code for
simulating data and fitting the nonhierarchical
model to these simulated data can also be found

at https://github.com/MbCN-lab/hierarchical-
discounting/.

Results. Figure 1a shows the accuracy
and precision of nonhierarchical k and m es-
timates over the grid of parameter values.
Precision and accuracy are important consid-
erations in evaluating parameter recovery.
Ideally, for accuracy, the mean of the poste-
rior should be close to the true value of the
parameter. We quantified accuracy as the
root-mean-square error (RMSE). RMSE is de-
fined as

�(k � k̂)2 � (m � m̂)2,

where k is the true k value, k̂ is the estimated k
value, m is the true m value, and m̂ is the
estimated m value. The RMSE is presented in
the left column of Figure 1a. Comparing differ-
ences in spread between the prior and posterior
measures precision and gives us some insight
into how well the data constrain the estimate.
This spread is compared by dividing the stan-
dard deviation of the posterior by the standard
deviation of the prior. If this ratio is 1, the data
do not provide much information about the es-
timate, as the spread of the posterior is the same
as the spread of the prior. However, if the ratio
is small, the data allow for precise estimates of
the parameters. The right column of Figure 1a
shows the plots of the standard deviation ratios.

Each row in Figure 1a corresponds to the
number of generated trials (30 or 150) used to
generate the data. As the number of trials
increases, estimates become simultaneously
more accurate and precise across the param-
eter space. Furthermore, across all trial sizes,
small k and m pairs (i.e., k � 0.2 and m � 1),
are most successfully recovered compared to
the rest of the sample space. In some cases,
for large values of m, the accuracy is high
(low RMSE), but the precision is much lower
(high SD ratio). This pattern results from the
selection of the priors. Because the prior was
set to be uniformly distributed from 0 to 10,
even if the posterior is not constrained at all
by the data, the mean will still be 5. Thus, for
values of m closer to 5, we see relatively
smaller RMSEs but not necessarily smaller
SD ratios. Overall, we found large differences
in recoverability across the parameter space,
especially when the experimental design con-
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sisted of fewer trials. Table 1 summarizes
these results across trial sizes.

Hierarchical Versus Nonhierarchical

Recovery

Method. In the second simulation study,
we explored the differences between hierarchi-
cal and nonhierarchical estimation. First, 60 dif-
ferent k and m pairs were randomly generated
within the same range as above (between 0.01
and 1 for k and between 0.05 and 5 for m). Data

were generated for these pairs in the same way
described above. There were 240 different data
sets fit to both models. The nonhierarchical and
hierarchical models were fit using the same
model-fitting procedure described above.

Results. The hierarchical model provided
consistently more accurate estimates than the
nonhierarchical model. Figure 1b shows the re-
sults of the simulated data fit to the nonhierar-
chical and hierarchical models. As before, each
row corresponds to the number of trials gener-
ated, where the left column shows the k param-
eter and the right column shows the m param-
eter. In both models, each subject has a k and m

estimate, so to directly compare the two models,
we show ks and ms for the hierarchical model,
not the population estimates �k and �m. Simu-
lated values are on the x-axis, and estimated
values are on the y-axis. Blue circles represent
the means of the posterior estimates for the
nonhierarchical model, red triangles represent
the means of the posterior estimates for the

Figure 1. Simulation study results. (a) The problematic areas of recovery obtained from the
nonhierarchical simulation study. The first and second rows show the results of parameter
recovery of k (x-axis) and m (y-axis) for 30 and 150 generated trials, respectively. The left
column shows how close the estimated k and m values were to the true k and m values,
quantified by the root-mean-square error (RMSE; z-axis). The right column compares the
prior and posteriors of the estimates, quantified by dividing the standard deviation of the
posterior by the standard deviation of the prior. Red-orange colors denote a SD ratio of 1, that
is, the posterior resembled the prior, whereas blue-green colors denote a more constrained
posterior. (b) Nonhierarchical and hierarchical parameter recovery. The first and second rows
(again for 30 and 150 trials, respectively) compare hierarchical (blue circles) and nonhierar-
chical (red triangles) estimates for k (left panels) and m (right panels). The x-axis shows the
simulated or “true” values used to generate the data, and the y-axis shows the estimated
parameter values using both hierarchical and nonhierarchical methods. The black line signifies
where the simulated and estimated values are equivalent. See the online article for the color
version of this figure.

Table 1
Summary of Nonhierarchical Root-Mean-Square

Error (RMSE) and SD Ratios Across 30, 50, 70,

and 150 Trials

Variable

Trials

30 50 70 150

M RMSE 2.384 2.355 1.971 1.636

Mdn SDposterior/SDprior 0.649 0.537 0.485 0.382
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hierarchical model, and the black line shows
where the simulated and estimated values are
equal.

Across trials, in both the hierarchical and
nonhierarchical models, the RMSE and stan-
dard deviation ratios were smaller than k than
for m (although this may be attributed to the
smaller range of true k values). Importantly, for
k and m in both hierarchical and nonhierarchical
models, as trial size increases, estimated k and
m values converge to the true values. However,
hierarchical estimates are consistently closer to
the true values than nonhierarchical estimates.
This disparity is exacerbated as the true values
for k and m increase. The recovery of both the
hierarchical and nonhierarchical models is af-
fected by trial size, but misestimates common in
a smaller number of trials are still closer to the
true values for hierarchical estimates than for
nonhierarchical estimates. Yet, even in the con-
text of 150 trials (where the nonhierarchical
model provided reasonable estimates for most
of the simulated k values), there are still multi-
ple cases where the hierarchical model recovers
the true value but the nonhierarchical model
overestimates the true value. This suggests that
hierarchical analyses are still preferred even
with a large number of trials.

We also examined the joint posteriors for the
nonhierarchically and hierarchically estimated k
and m pairs shown in Figure 1b. The nonhier-
archical model displayed a clustering pattern at
larger m values. This clustering pattern forces
the k values to become smaller, suggesting the
flat shape of the joint likelihood function may
be causing this misestimation. However, once a
hierarchy is introduced, the increased informa-
tion from the group-level parameters allows the
individual-level estimates to be “pulled in” by
introducing a central tendency to the likelihood
when little information is present for that indi-
vidual. This alleviates the overestimation prob-
lem by imposing a low conditional likelihood
Pr(individual – group) for high values of k or m,
thus drawing them closer to the other (lower)
individual-level estimates.

Real Data

In the previous section, we described a prob-
lem in the estimation procedure of hyperbolic
discounting and proposed using a hierarchical
framework and/or larger trial sizes to alleviate

this issue. In this section, we apply this solution
of hierarchical Bayesian modeling to real ex-
perimental data of 622 subjects from Finn et al.
(2015). We compared the recovery and con-
straint of nonhierarchical and hierarchical mod-
els. Additionally, the data from this experiment
involved a variable number of trials per subject,
which allowed us to explore recoverability of
nonhierarchical and hierarchical models as a
function of trial size.

Method

Experimental paradigm. The data we in-
vestigated are part of a larger study by Finn et
al. (2015) on the relationships between inter-
temporal choice, working memory capacity,
and externalizing psychopathology. Here, we
will give a brief overview of the delay discount-
ing task design, but refer to the original article
for more detail. A total of 622 subjects com-
pleted the delay discounting task on a computer.
They were asked to choose between an imme-
diate monetary option and a delayed monetary
option. The amount of the immediate option
ranged from $2.50 to $47.50 in increments of
$2.50. The amount of the delayed option was
always $50. Note that the delayed amount was
always larger than the immediate amount. The
delayed option was delayed by 1 week, 2 weeks,
3 months, 6 months, or 1 year. These delays
were then converted to days in the model-fitting
procedure used here and by Finn et al. (2015).
Each delayed option was presented in one of six
randomly presented blocks. The block of a set
delay consisted of both ascending and descend-
ing trials. For ascending trials, the smaller-
sooner option started at $2.50 and increased to a
highest possible value of $47.50 in increments
of $2.50. As soon as a subject chose the smaller-
sooner option, the sequence of ascending trials
ended. In descending trials, the smaller-sooner
options started at $47.50 and went down to
$2.50 in increments of $2.50 resulting in a stair-
step titration procedure originally aimed at ex-
perimentally identifying the indifference point
(rather than the likelihood function used in a
model-based approach). As soon as the subject
chose the larger-later option, the descending
trials stopped. The order of ascending and de-
scending trials was randomized. Because of this
design, there is not a fixed trial size across
individuals. The number of trials for this task
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ranged from 16 to 149 trials, with a mean of 115
trials. This feature gives us the opportunity to
explore the effect of trial size in estimating k
and m, with all other aspects of the experimental
design equal.

Model-fitting procedure. To estimate the
model parameters for the nonhierarchical
model, we initialized three chains for 1,500
iterations with a burn-in of 2,000 iterations and
sampled for 3,000 iterations, resulting in 9,000
samples of the joint posterior distribution. To
estimate the model parameters for the hierarchi-
cal model, we initialized three chains for 1,500
iterations with a burn-in of 4,000 iterations and
sampled for 5,000 iterations, resulting in 15,000
samples of the joint posterior distribution.
Chains were visually assessed for convergence.

Results

Nonhierarchical recovery. The nonhierar-
chical model accurately predicted the probabil-
ity of choosing a larger-later option, yet the
estimates of k and m were not as expected. The
nonhierarchical model very closely predicted
the observed PLLs, although there were a few
cases of over- and underestimations, particu-
larly at lower PLLs. However, an ability to re-
cover the choice proportions in the data does not
guarantee that we can recover the generating
parameters. This is partly because some choice
pairs are much more informative than others for
different parts of the parameter range. For ex-
ample, a choice of $5 now versus $50 in 1 week
is more diagnostic at extremely large values of
k, while a choice of $47.50 now versus $50 in 1
year will be more diagnostic at extremely small
values of k. Therefore, the right or wrong mix-
ture of choices could result in particularly good
or bad estimation of the model parameters even
if it is able to accurately generate the observed
choice proportions.

The left panel of Figure 2a shows the log-
transformed parameter estimates for the nonhi-
erarchical model fit to each subject. Each point
represents a subject’s mean of the posterior for
the log-transformed k (x-axis) and log-trans-
formed m (y-axis) estimates. The points also
display the range of trials that subjects com-
pleted, where the cyan circles denote fewer than
50 trials, green squares denote 50–69 trials, red
pluses denote 70–89 trials, and blue crosses
denote more than 90 trials. The nonhierarchical

model had stark differences in parameter recov-
ery across trial sizes in the simulation study, so
it is not surprising that this pattern also exists in
the real data. This is most noticeable with fewer
trials (denoted by cyan circles in Figure 2a),
where subjects who completed fewer than 50
trials had the lowest log-transformed m esti-
mates and the highest log-transformed k esti-
mates.

Because we do not know the true values of
the k and m values for real data, we cannot
directly test the accuracy of the estimate, using
a measure such as RMSE. However, because we
used a grid in the simulation study, we can get
an idea of the robustness of the estimates. Some
of these estimated values fall on areas, found
through our simulation study, that are difficult
to recover (evidenced by high RMSEs). Higher
RMSEs also signify that the estimates are bi-
ased. These problematic points were all with
small m and larger k values, and they were
present even with additional trials. However,
the majority of the estimates that were within
the range of our simulation study fell within
areas with small m and k values (less than 1 and
0.2, respectively), which had small RMSEs in
our simulation study.

Hierarchical recovery. A subject’s proba-
bility of choosing the larger-later option was
also accurately predicted in the hierarchical
model. The hierarchical model tended to over-
estimate smaller PLLs, which may be a result of
the hierarchical model’s tendency to pull outli-
ers toward the population mean. However, this
is only a minor difference, and overall the
model correctly predicts PLL. The right panel of
Figure 2a shows the log-transformed k and m
estimates for the hierarchical model, organized
by trial number. Similar to the nonhierarchical
model, there was a relationship between trial
size and parameter estimates. For example, the
estimates for 50 and fewer trials had smaller
log-transformed m and larger log-transformed k
estimates.

Comparing the hierarchical and nonhierarchi-
cal parameter estimates, the range of estimates
was more constrained for the hierarchical esti-
mates than for the nonhierarchical estimates.
This pattern was also observed in the simulation
study and demonstrates the property of shrink-
age inherent to hierarchical models. Figure 2b
directly compares an individual’s mean hierar-
chical and nonhierarchical estimates. While the
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extreme values show the highest discrepancy,
the estimates are still highly correlated. The
correlations between the nonhierarchical and
hierarchical log(k) estimates and log(m) esti-
mates for the real data are 0.96 and 0.87, re-
spectively.

Nonhierarchical and Hierarchical

Constraint

When estimating latent parameters from real
experimental data, we will never know the true
parameter values. Therefore, we are not able to

use measures of deviation between true and
estimated values to evaluate the accuracy of the
estimates as we did in the simulation studies.
However, we are still able to compare the pos-
teriors of the estimates to the priors. If the data
are uninformative, they will not provide suffi-
cient constraint and the posterior will subse-
quently resemble the prior.

Some of the nonhierarchical estimates for k

and m had posterior means that are outside the
typical range we would observe in most sets of
data and subjects. For example, individual-level

Figure 2. Real data results. Row a shows the k and m estimates of experimental data (Finn
et al., 2015). Each point represents a subject’s k (x-axis) and m (y-axis) estimates in a
nonhierarchical (left) or hierarchical (right) framework. A point’s color and shape signify the
number of trials that subject completed, where the cyan circles are fewer than 50 trials, green
squares are 50–69 trials, red pluses are 70–89 trials, and blue crosses are more than 90 trials.
Row b shows the consistency between the nonhierarchical (x-axis) and hierarchical (y-axis)
estimates for log-transformed k (left) and m (right). Each point represents mean estimates for
a single subject. See the online article for the color version of this figure.
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estimates of k values are usually small, but the
nonhierarchical model often had estimates
much larger than 1, clustering at 5. Our results
from the simulation study suggest that these
large values may be the result of uncertainty,
but when these individual estimates, Pr(data –
individual), are uncertain, they can be con-
strained in the hierarchical model by the mar-
ginal Pr(individual – group) and prior
Pr(group). To illustrate this phenomenon, Fig-
ure 3 shows the nonhierarchical (left) and hier-
archical (right) joint k and m posteriors for one
representative subject, Subject 42, who com-
pleted 31 trials total. The nonhierarchical pos-
terior for k in Subject 42 is underconstrained
and resembles the prior. This constraint prob-
lem was more prevalent in subjects with fewer
trials, such as Subject 42, as both k and m were
more reliably estimated in general with a larger
number of trials. However, it is worth noting
this nonhierarchical constraint problem also ex-
isted in some subjects who completed more
trials. For all underconstrained subjects, the ad-
ditional data provided by the hierarchical struc-
ture provided significantly more constraint on
the posterior.

Accurate parameter estimation also has an
impact on our understanding of the relationship
between delay discounting and other variables
of interest, such as externalizing psychopathol-

ogy (EXT). We compared the correlations be-
tween the estimated parameters and the mea-
sures of EXT calculated in Finn et al. (2015)
and found that the parameters estimated in a
hierarchical framework had stronger correla-
tions to EXT. The correlation between EXT and
k was slightly higher for the hierarchical esti-
mates (� � 0.29) than for the nonhierarchical
estimates (� � 0.24). The discrepancy was
larger for the correlations with m, where corre-
lations between EXT and m were much more
negative for the hierarchical estimates (� �
�0.20) than for the nonhierarchical estimates
(� � �0.064). These differences in correlation
exemplify the effect that an estimation proce-
dure can have on theoretical conclusions.

Discussion

Accurately assessing individual temporal dis-
counting curves should be an obligation when
generalizing to societal problems. Yet, we iden-
tified clear problems with the recoverability of
many representative forms of temporal dis-
counting profiles and found that these problems
are exacerbated when using an experimental
design with fewer trials. However, these prob-
lems need not be prohibitive for investigating
societal impacts of impulsive behavior. Instead,
we have provided a simple solution using hier-
archical Bayesian estimation to effectively

Figure 3. Hierarchical constraint. Shows the nonhierarchical and hierarchical joint posteri-
ors. The marginal k (x-axis) and m (y-axis) posterior distributions for Subject 42 are plotted
as joint kernel density plots for the nonhierarchical (left) and hierarchical (right) estimates.
See the online article for the color version of this figure.
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“pool” information across subjects. In using this
approach, we have shown that the previously
identified problematic temporal discounting
profiles can be corrected.

Our findings have implications within model
selection, design of intertemporal choice tasks,
and subject exclusion criteria. First, accurate
recovery is essential in modeling. While we
only explored a simple two-parameter model,
these results can be generalized to alternative-
wise models. In the Appendix, we present ana-
lytical results that demonstrate why these mis-
estimation problems occur with alternative-wise
models more generally. In fact, as the Appendix
shows, not even adding a utility parameter—
which forms the most general intertemporal
choice model—can alleviate this misestimation
problem. We note more informative priors
would help with constraining the model, even in
the nonhierarchical case, to lead to more accu-
rate estimation. For example, the uniform prior
on k consists of a larger range of k values than
those that are typically seen. However, while
informative priors aid in estimation, they re-
quire stronger assumptions about these un-
known parameters. Therefore, we would still
recommend hierarchical models as they do not
make these assumptions, instead providing a
data-driven approach.

Additionally, misestimation can affect model
selection criteria. For example, Ericson, White,
Laibson, and Cohen (2015) had issues with
cross-validation using the hyperbolic discount-
ing model and therefore favored a heuristic
model of intertemporal choice. These results
could be explained by a failure to recover some
k and m values, resulting in difficulties predict-
ing out-of-sample data. Second, delay discount-
ing parameters are often estimated using only
27 trials, especially in clinical contexts (Kirby
et al., 1999). Our results suggest additional tri-
als lead to more accurate estimation, so if pos-
sible, having at least two to three times more
trials makes a significant difference in con-
straint and accuracy of estimates. Few trials
may be inadequate due to the fact that the hy-
perbolic curve parameterized with different k
and m presents similar functional forms for
some pairs of rewards and delays. Having more
trials can help distinguish between similar val-
ues of k and m. However, if this is not feasible,
the hierarchical framework can compensate for
the lack of data and provide significantly better

estimates. Lastly, hierarchical models allow for
the inclusion of more subjects. Even subjects
who choose exclusively larger-later or smaller-
sooner options are theoretically interesting, es-
pecially when studying impulsivity. By pooling
information across the entire group, a more di-
verse sample can be studied. Overall, hierarchi-
cal Bayesian modeling can address many limi-
tations in studying delay discounting.
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Appendix

The Limit Problem: Hyperbolic Case

To show the generalizability of our analyses,
we demonstrate what happens to the hyperbolic
model, and to alternative-wise models in gen-
eral, as we take informative limits of the param-
eters in the model. The recovery issues of the
hyperbolic model mainly reflect the fact that
one parameter can “overshadow” another. By
overshadow, we mean that one parameter can
grow or shrink independently of another. This
issue, which we call here the limit problem,
leads to extreme nonidentifiability in the alter-
native-wise models.

Recall that the hyperbolic model is given by
the following function:

H(x, t; k) �
x�

1 � kt
, (4)

where x is the objective amount, t 	 0 is the
time delay, k 	 0 is our impulsivity parameter,
and � 	 0 is our utility parameter. As men-
tioned in the main text, we add a utility param-
eter here to make the analyses more general.
The probability that a larger-later (LL) option
will be chosen over a smaller-sooner (SS) op-
tion (which we shorten to P(LL ¼ SS)) is given
by either a logistic function:

Pl(LL ¼ SS) �
1

1 � exp(�mD)
, (5)

or by a standard cumulative normal (CDF; Dai
& Busemeyer, 2014):

PN(LL ¼ SS) � 
�D

�
�� P(N � D ⁄ �), (6)

where D � H(LL) � H(SS) is the difference in
utility between the LL and SS options, � indi-
cates choice variability, and N 	 Normal(0, 1).
We interpret D 
 0 to mean the LL option is

preferred on average, and D � 0 means that the
SS option is preferred on average. Note that by
taking the appropriate limits, we can make the
logistic model mimic the normal CDF model.
Thus, for simplicity, we focus our limit argu-
ments on the normal CDF. We emphasize,
though, that model mimicry does not imply that
the parameters that enact the mimicry are the
same between models (e.g., there are more ways
for the logistic model to converge to 1, say, than
with the CDF model).

We note that � is a continuous function,
since it is integration against another continuous
function (Folland, 2013). That is, a “passage of
the limit” through the cumulative distribution
function is permissible: limx¡x0

�(x) � �(x0)
(Folland, 2013; Ross, 1996).

The most relevant limit to our discussion
concerns the case when k ¡ �. Denote the LL
option as ($y, s delay) and the SS option as ($x,
t delay). The limit is given by (holding � fixed):

lim
k¡��


�D

�
�

� lim
k¡��


�
y�

1 � ks
�

x�

1 � kt

�
�¡ 
�0 � 0

�
�

� 1 ⁄ 2. (7)

Equation 7 states that the hyperbolic model
“converges” to a random chance model as we
increase k, meaning that the predicted choice is
completely random as impulsivity increases, as
expected. Figure A1 shows what a “likelihood
surface” (a G2 surface) would look like as a
function of � and k. For more details on how
this figure was generated, see the online supple-
mental material. For this G2 surface, a larger
value indicates a poorer fit to the data; the
convergence to the random chance model is

(Appendix continues)
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noted by the progressively poorer fit as k in-
creases. Note the steep climb toward an upper
bound. The surface also flattens out, regardless
of the � 
 0, for increasing k, so that larger
parameter pairs will reproduce the same pre-
dicted data. This leads to the extreme parameter
recovery issues.

The hierarchical approach ameliorates this
issue by constraining our search (through a con-
strained prior) for k values to avoid getting
stuck in the flat region, where the model ap-
proximates a random chance model.

The limit behavior of the hyperbolic model is
not relegated only to the hyperbolic model. This
generalizability arises from the convergence of
the hyperbolic model to a random chance mod-
el. As we saw from before, with k ¡ ��, we
have D ¡ 0. This is because the hyperbolic
model is a decreasing function of k: With all
other variables held constant, H(x, t, k) ¡ 0 as
k ¡ ��. This simply reflects the interpretation
of k: Greater impulsivity should lead to greater
discounting of delayed rewards, with maximal
discounting equivalent to ascribing zero subjec-
tive value to any delayed reward. This is the

prediction for any alternative-wise discounting
model. Therefore, these limit problems are not
restricted to the hyperbolic model. This is be-
cause, as the difference in utility between the
options goes to zero, � 
 0 does not change
with k. After applying the limit theorem, the
ratio will go to zero, making the probability
(using either PN or Pl) converge to 1/2. Impor-
tantly, this will happen for any alternative-wise
model that requires subjective value to decrease
with greater impulsivity (which is effectively all
of them), and what this subjective value is be-
comes irrelevant for large k or �. Hence, adding
a utility parameter will not fix this convergence
issue. In addition, simply changing the base
model of the alternative-wise approach will not
fix it either, as long as the choice variability and
impulsivity parameters are independent of one
another. Thus, the results of the main text apply
to any alternative-wise model with independent
parameters, not just the hyperbolic model.
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Accepted February 24, 2020 �

Figure A1. The G2 surface for the (stochastic) hyperbolic model. The surface is based on
simulated data generated from the median values of Dai et al. (2016). The middle graph shows
the “slice” of the surface at the true � value; the k-axis is zoomed in. The right-most panel
shows the slice of the surface at the true k value. Note that while the fit becomes better for
larger � (lower G2), the surface becomes flatter around the true value, leading to great
deviations between the estimated value and the true value. See the online article for the color
version of this figure.
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