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ABSTRACT

The Eocene Huitrera Formation of northwestern Patagonia, Argentina, is renowned for its
diverse, informative, and outstandingly preserved fossil biotas. In northwest Chubut Province, this unit
includes one of the most diverse fossil floras known from the Eocene, as well as significant fossil
insects and vertebrates, at the Laguna del Hunco locality. It also includes rich fossil vertebrate faunas at
the Laguna Fria and La Barda localities. Previous studies of these important occurrences have
provided relatively little sedimentological detail, and radiosotopic age constraints are relatively sparse
and in some cases obsolete. Here we describe five fossiliferous lithofacies deposited in four terrestrial
depositional environments: lacustrine basin-floor, subaerial pyroclastic plain, vegetated, waterlogged

pyroclastic lake margin, and extra-caldera incised valley. We also report several new *’Ar/*’Ar age
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determinations. Among these, the uppermost unit of the caldera-forming Ignimbrita Barda Colorada
yielded an *°Ar/*°Ar age of 52.54 + 0.17 Ma, ~6 Ma younger than previous estimates and
demonstrating that deposition of overlying fossiliferous lacustrine strata (previously constrained to >
52.22 +0.22 Ma) must have begun almost immediately on the subsiding ignimbrite surface. A
minimum age for Laguna del Hunco fossils is established by an overlying ignimbrite with an age 49.19
+ (.24, confirming that deposition took place during the Early Eocene Climatic Optimum. The Laguna
Fria mammalian fauna is younger, constrained between a valley-filling ignimbrite and a capping basalt
with *°Ar/*’Ar ages of 49.26 + 0.30 Ma and 43.50 + 1.14 Ma, respectively. The latter age is ~4 Ma
younger than previously reported. These new ages more precisely define the age range of the Laguna
Fria and La Barda faunas, allowing greatly improved understanding of their positions with respect to

South American mammal evolution, climate change, and geographic isolation.

INTRODUCTION

The Patagonian region of Argentina holds historic and still rapidly-expanding significance for
understanding the evolution and biogeography of terrestrial life in the Southern Hemisphere (e.g.,
Ameghino, 1906; Gaudry, 1906; Simpson, 1980; Archangelsky, 2005; Pascual, 2006; Salgado, 2007).
In recent years, there has been a marked increase in investigations of early Paleogene strata, which hold
vital and still little-studied records of recovery from the end-Cretaceous extinction, biotic responses to
climate changes, and biogeographic events related to the final breakup of Gondwana and the beginning

of South American isolation ( e.g., see summaries by Goin et al., 2012a; Wilf et al., 2013).

Fundamental to the rising significance of Patagonia’s outstanding fossils is the increase in
stratigraphic and sedimentological studies that give the fossiliferous strata geologic context, including
high-precision radioisotopic ages and paleomagnetic data. In just the past few years, a high-resolution

temporal and general geologic framework has emerged for the classic, extremely fossiliferous
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Paleocene to Miocene continental sequence of southern Chubut Province (Bellosi, 2010; Dunn et al.,
2013; Clyde et al., 2014; Woodburne et al., 2014; Comer et al., 2015; Krause et al., 2017). These data
constrain interpretations for a large variety of studies, from those on individual fossil sites and taxa to
reinterpretations of mammalian evolutionary faunas and their biozonations, known as South American
Land Mammal “Ages” (SALMAs) (Flynn and Swisher, 1995; Gelfo et al., 2009; Woodburne et al.,

2014a,b).

Our focus here 1s on another highly fossiliferous area, in northwest Chubut Province, known as
the Middle Chubut River Pyroclastic and Volcanic Complex of the Huitrera Formation (Fig. 1; Aragon
and Romero, 1984; Mazzoni et al., 1991; Aragon and Mazzoni, 1997; Aragon et al., 2001, 2004, 2018).
The Piedra Parada caldera preserves diverse Eocene volcanic rocks, including the caldera-floor
slgnimbrita Barda Colorada (IBC), a caldera-filling lacustrine sequence known as the Tufolitas Laguna
del Hunco, at least two youger ignimbrite units, and a succession of capping volcanic rocks of the
Andesitas Huancache (Archangelsky, 1974; Mazzoni et al., 1989; Aragon and Mazzoni, 1997; Mazzoni

et al. 1991; Figs. 1, 2).

The fossil richness and significance of the Tufolitas Laguna del Hunco has been well known
since Berry’s (1925) first report of the fossil flora from the principal section at Laguna del Hunco in the
northeasternmost exposures of the Tufolitas (Fig. 1). This was followed over several decades by
publications on fossil plants (e.g., Frenguelli, 1943; Romero and Hickey, 1976; Romero et al., 1988),
insects (Fidalgo and Smith, 1987), catfish (Dolgopol de Sdez, 1941; Azpelicueta and Cione, 2011), and
pipoid frogs (Casamiquela, 1961; Baez and Trueb, 1997). Over the past 15 years there has been a
marked increase in research activity on these strata, fueled by renewed, stratigraphically controlled
collecting efforts that have recovered many thousands of specimens (Wilf et al., 2003; Wilf et al.,
2005a). Initial phases of this work revealed that the Laguna del Hunco flora is among the most diverse

from the Eocene worldwide, currently containing more than 200 species (Wilf et al., 2003, 2005a,
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2005b). Systematic studies have detailed numerous, novel records of diverse plant genera that live
today only in Old World rainforests of Australasia and SE Asia; many of these taxa were previously
only known as fossils, if at all, in Australia and New Zealand. These records, and accompanying
reports of new fossil insects (e.g., Petrulevi¢ius and Nel, 2013; Petrulevicius, 2016 ), are far too
numerous to cite completely here (for summaries see Wilf et al., 2009; Wilf et al., 2013; Kooyman et
al., 2014). However, among the most remarkable discoveries are the outstanding fossils of kauris
(Agathis, Araucariaceae), gums (Eucalyptus, Myrtaceae), tomatillos (Physalis, Solanaceae), and beech
relatives (Castanopsis, Fagaceae) (Gandolfo et al., 2011; Wilf et al., 2014, 2017)(Wilf et al., 2019).
The fossil plants from Laguna del Hunco have revealed Eocene Patagonia as the western end of a trans-
Antarctic rainforest biome that harbored elevated biodiversity that was largely lost to extinction
following Antarctic separation and climate change (e.g., Kooyman et al., 2014). In addition, the ages of
many fossil plant lineages from Laguna del Hunco are significantly older than comparable molecular-

clock estimates, challenging that widely-used methodology (Wilf and Escapa, 2015; Wilf et al., 2017).

The fossil richness of the study area also includes a pair of rich Eocene mammalian faunas, the
Laguna Fria and La Barda assemblages, that occur within valley-fill deposits (Fig. 1). These faunas
were first collected by R. Pascual in the 1950s and have been the topic of intense study (Goin et al.,
2000, 2001; Tejedor et al., 2005; Tejedor et al., 2009; Lorente et al., 2016). Together, these sites have
produced more than 50 mammalian species, including the oldest South American bats (Tejedor et al.,
2005), the last occurrence of South American gondwanatheres (Goin et al., 2012b), and a diverse array
of other marsupial and placental taxa, especially xenarthrans and ungulates (Tejedor et al., 2009;
Lorente, 2016; Lorente et al., 2016). These faunas, often referred to collectively as the Paso del Sapo
fauna (after the nearby village of the same name; Fig. 1), are noted for their familial affinities with
middle Eocene Antarctic Peninsula faunas of the La Meseta Formation (e.g., Goin et al., 1999; Reguero

et al., 2013; Reguero et al., 2014; Goin et al., 2018). In addition, some marsupial remains have been
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assigned to the australidelphid clade (Lorente et al., 2016), which includes all living Australian
marsupials and one South American species. Thus, along with the celebrated Danian monotremes from
southern Chubut (Pascual et al., 1992), the Laguna Fria and La Barda faunas provide some of the
firmest evidence for a Gondwanic biogeographic signal in South America’s early Paleogene mammals.
These discoveries parallel abundant data from non-mammalian vertebrate groups and plants (e.g., Wilf
et al., 2013 for summary) and modern paleogeographic data (e.g., Lawver et al., 2011) and contrast
with the classic portrayal of South America as an isolated “island continent” for most of the Cenozoic

(Simpson, 1950; Simpson, 1980).

Despite the broad significance of the Laguna Fria and La Barda faunas, three issues surround
the interpretation of their age, hindering a precise understanding of their position in the evolutionary
sequence represented in the SALMA scheme. First, Tejedor et al. (2009; also Woodburne et al., 2014a,
b; Goin et al., 2018) proposed that the Laguna Fria and La Barda faunas are, collectively,
compositionally and temporally distinct, falling in an otherwise undocumented “Sapoan” provisional
SALMA between putatively older Rio Chican and younger Vacan faunas. The “Sapoan” concept is
widely used, having been followed by all the subsequent workers treating these faunas (citations
above). However, the assessment of geologic age of the faunas (Tejedor et al., 2009) was based on a set
of unpublished *°Ar/*° Ar dates from a conference abstract reporting the M.S. thesis results of the
present lead author (Gosses, 2006; Gosses et al., 2006), as well as uncertain correlations to now-
obsolete, whole-rock K-Ar dates on basalts exposed elsewhere (e.g., Mazzoni et al., 1991). We, like
Krause et al. (2017), emphasize that the critical **Ar/*’Ar ages (Gosses et al., 2006) used by Tejedor et
al. (2009) and subsequent workers have not, until now, been vetted, revised, or reanalyzed. Second,
Laguna Fria and La Barda could be separated enough in time that at least one assemblage temporally
overlaps previously defined SALMAs (Krause et al., 2017). Third, and beyond the scope of the present

study, is that the temporal bounds of the Rio Chican SALMA used for comparison are not well
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established because the type Rio Chican mammal sites (Simpson, 1935) have not been placed in a
modern chronostratigraphic framework (Krause et al., 2017). Further, based on a series of new high-
precision U-Pb ages from the Koluel Kaike Formation of southern Chubut Province, which is
traditionally but perhaps incorrectly correlated with the type Rio Chican, the Rio Chican SALMA 1is

likely to temporally overlap both the Vacan and the La Barda faunas (Krause et al., 2017).

Throughout the study area, reliable stratigraphy that directly constrains the ages of closely
associated fossils is, so far, only established at Laguna del Hunco itself (see Previous Geochronology).
The Laguna Fria and La Barda faunas are only loosely constrained by a set of obsolete K-Ar age
determinations of associated volcanic rocks (Archangelsky, 1974; Mazzoni et al., 1991), excepting the
use by Tejedor et al. (2005; 2009) of then-unpublished initial geochronologic data, including those of
Gosses (2006), which are revised and formally presented here. Several whole-rock K-Ar ages for other
units in the volcanic complex were also pioneering for their time but, likewise, used now-obsolete
techniques with very large uncertainties (Mazzoni et al., 1991). Similarly, important earlier work on the
depositional environments and processes that preserved the fossils (Petersen, 1946; Feruglio, 1949;
Aragon and Romero, 1984; Aragén and Mazzoni, 1997) requires updating from new methods and field

observations.

In this study, the depositional histories of five fossil-bearing lithofacies are examined to gain
insights into volcano-sedimentary evolution across the study area (Fig. 1). *’Ar/*’Ar geochronology is
used to improve chronostratigraphic resolution of the uppermost Ignimbrita Barda Colorada, the strata
holding the Laguna Fria fauna, and other localities. New age determinations for the Ignimbrita Barda
Colorada help to establish the duration of time between the cessation of primary caldera eruption and
fossiliferous lacustrine deposition of the Tufolitas Laguna del Hunco. Other ages permit improved

understanding of the temporal and geographic evolution of the globally significant caldera fossil-lake
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system and establish reliable constraints for the Laguna Fria fauna that will allow it to be placed

correctly in the SALMA biozonation.

GEOLOGIC SETTING

The Tufolitas Laguna del Hunco infill the Piedra Parada caldera within the Eocene Middle
Chubut River Pyroclastic and Volcanic Complex of the La Huitrera Formation (Aragén and Romero,
1984; Aragon and Mazzoni, 1997; Aragdn et al., 2004). The complex occurs along a line of Eocene
volcanic centers, referred to as the Pilcaniyeu belt, that stretch in a north-south direction and lie ~150
km east of modern arc volcanism (Rapela et al., 1984; Franzese, 1987; Rapela et al., 1988; lannelli et
al., 2017). Many outstanding fossil sites are located elsewhere in the Pilcaniyeu belt, especially in the
western exposures near San Carlos de Bariloche in Rio Negro (Berry, 1938; Aragon and Romero,
1984; Béez and Pugener, 2003; Melendi et al., 2003; Barreda et al., 2010; Wilf et al., 2010;
Petrulevicius, 2015). The Piedra Parada caldera is trapdoor style (cf., Lipman, 1997), extends 25-30
kilometers N-S, and is located in northwestern Chubut Province, Argentina (Fig. 1). The caldera-
forming ignimbrite, known as the Ignimbrita Barada Colorada (IBC), is overlain by the Tufolitas
Laguna del Hunco, which consists mainly of sub-aerial and lacustrine ash and lapilli that are variably
reworked with a smaller amount of interbedded lava flows and glass domes (Aragon and Mazzoni,
1997). Outcropping strata are as thick as 400 m, with the basal contact often not exposed. Nearly all
published fossils from the Tufolitas Laguna del Hunco (cited earlier) come from the principal section at
Laguna del Hunco, in the northeasternmost exposures (Fig. 1), but recent discoveries are emerging
from the southern outcrops as well (Bippus et al., 2016, 2019; Bomfleur and Escapa, 2019).

Above the Tufolitas Laguna del Hunco, capping deposits extend past the caldera edge and
consist of lava flows and dikes but few pyroclastic or sedimentary deposits. The Huancache and Cerro

Mirador Formations are some of the capping units. The Laguna Fria fauna (Figs. 1, 2; citations above)
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is found within a paleo-valley that was incised into the caldera-forming ignimbrite external to the
caldera itself and filled with original and reworked pyroclastic deposits (Tejedor et al., 2009). These
lithologies are grossly similar in appearance to the later phases of the Tufolitas Laguna del Hunco as
seen inside the caldera, but our geochronologic data presented here indicate that they are not
correlative. The La Barda fauna comes from another incised-valley outcrop ~6 km southwest of
Laguna Fria (Fig. 1). It occurs within tuff units that are interbedded with basalt flows of the Huancache

Formation (Tejedor et al., 2009)

PREVIOUS GEOCHRONOLOGY

Several *°Ar/*’Ar and K-Ar studies have generated age determinations for portions of the
Middle Chubut River Pyroclastic and Volcanic Complex. Archangelsky (1974) used whole-rock K-Ar
methods to determine the age of a single sample of the Ignimbrita Barda Colorada at Cafiadon de Loro,
adjacent to Laguna del Hunco (Fig. 1), as 58.6 + 3.0 Ma (£1o; corrected with modern decay constants
using Dalrymple, 1979). Mazzoni et al. (1991) reported twelve whole-rock K-Ar age determinations
from three different labs for lava flows, dikes, and ignimbrites within the complex. Of these, three
samples (VHI, 32-5, 54, and 86-107) appear too young, given reported and observed stratigraphic
relationships, while sample 87-44 appears too old. A possible cause for some of these discrepancies is
low temperature alteration, which was detected in this study using the **Ar/*’Ar incremental-heating
technique, but would not have easily been recognizable using older K-Ar methods.

At Laguna del Hunco, two paleomagnetic reversals are recorded along with three ca. 52 Ma
“Ar/* Ar ages from tuffs recovered from the 170 m local section of the Tufolitas Laguna del Hunco
(Wilf et al., 2003; Wilf et al., 2005a). One of the *°Ar/*°Ar ages, from the middle of the densely
fossiliferous interval (ash 2211A), was determined from single crystal fusion analyses of sanidine and
is thus considered the most reliable; its age was recalibrated to 52.22 + 0.22 Ma (Wilf, 2012) relative to

a Fish Canyon standard age of 28.201 + 0.046 Ma (Kuiper et al., 2008) and a value for .*°K of 5.463 +
8
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0.107 x 107" yr ' (Min et al., 2000). The 52.22 + 0.22 Ma age is widely applied to the rich Laguna del
Hunco fossil assemblage and is not revised here. Finally, the previously mentioned, initial results for
three samples in this study (Gosses, 2006; Gosses et al., 2006) used an age of 28.02 Ma for the Fish

Canyon standard (Renne et al., 1999).

The Laguna Fria and La Barda faunas are found above the IBC (Tejedor et al., 2009). The only
previously published lower age constraint for the faunas is the outdated *°K-*Ar age determination
discussed above (58.6 + 3.0 Ma) for the caldera-forming IBC (Archangelsky, 1974; Mazzoni et al.,
1991), which is separated from the fossil-bearing outcrops by an erosional unconformity of uncertain
duration. The upper age constraint is the Mazzoni et al. (1991) set of ca. 43 Ma *“*K/*Ar ages for flows
of the Andesitas Huancache from areas to the west of the fossil exposures; those beds were considered

stratigraphically higher than the La Barda assemblage by Tejedor et al. (2009).

METHODS
Field Localities and Lithofacies

Fossil-bearing lithofacies were examined in thin-section, hand sample, and outcrop in order to
interpret the burial processes and depositional environments associated with fossil preservation.
Observations within the caldera were concentrated at the Laguna del Hunco site, and at three other sites
with lesser plant-fossil preservation (Central Caldera, Escuela Piedra Parada, and Zeballos Oeste; Fig.
1). Our observations also included the Laguna Fria site, which lies outside of the caldera.

Four samples from lavas or tuffs were collected and analyzed using the *’Ar/*’ Ar method to
constrain age ranges of several fossil localities within the caldera complex (Table 1). The Ignimbrita
Barda Colorada (Spl. QL-9807) records the principal caldera-forming event (Fig. 2), and it establishes
a maximum age for the initial formation of the fossiliferous caldera-lake deposits of the Tufolitas

Laguna del Hunco (Fig. 1). The lower member of the IBC is calc-alkaline and high in sodium (Aragén
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et al., 1987), and the upper member is calc-alkaline with a medium to high-K rhyolitic composition
(Wt.% S10, = 72-79%,; Aragdn et al., 1987). The sample dated in this study was collected from the
uppermost IBC at the extra-caldera Laguna Fria locality, where a paleo valley is incised into the IBC
(Fig. 3K; Fig. 4). The IBC at this locality contains multiple cooling units and is at least 100 meters
thick (Mazzoni and Aragén, 1987; Aragon et al., 1987).

The Southern Ignimbrite (Spl. IDEPP-04) establishes a minimum age for fossils described from
the underlying, southernmost exposures of the Tufolitas Laguna del Hunco at Piedra Parada (Bippus et
al. 2016, 2019; Bonfleur and Escapa, 2019; Fig. 2). It is a six-meter-thick, red, erosion-resistant
ignimbrite that compromises the uppermost strata in the hills in the far southeastern part of the caldera.
The sample was collected ~2.5 km southeast of Escuela Piedra Parada (Fig. 1). It overlies ash-fall tuffs
and fans of reworked pyroclastic material, and lies stratigraphically several hundred meters above the
gray ashy mudstone facies described at the Escuela Piedra Parada locality.

The Laguna Fria Orange Ignimbrite (Spl. VC-20-04) occurs within this locality and establishes
a maximum age for the Laguna Fria fauna (Fig. 2). It is a prominent, fourteen-meter-thick welded
ignimbrite that lies within a paleo-valley eroded into the Upper IBC at the Laguna Fria locality (Fig. 1).
The Orange Ignimbrite thus postdates the IBC, but it predates the Laguna Fria fauna.

The Laguna Fria Basalt (Spl. VC-1-04) is an alkali basalt flow of the Andesitas Huancache that
cap the paleo-valley where the Laguna Fria fauna are found (Figs. 1, 2, 3K). It thus establishes a
minimum age for the fauna (Goin et al., 2000, 2001; Tejedor et al., 2005, 2009). At Laguna Fria, the
basalt has an exposed thickness of 40 meters and is one of many basalt flows that interbed and cover
the ignimbrite plateau south and west of this area (Figs. 1, 3L; Aragoén et al., 1997; Mazzoni et al.,

1991).

Geochronology

10
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A1/’ Ar age determinations were made from one alkali basalt (Spl. VC-1-04) and three felsic
ignimbrites (Spls. VC-20-04, IDEPP-04, QL-9807). Groundmass was separated from basalt, and
feldspar (plagioclase and sanidine) crystals were separated from ignimbrites via crushing, sieving to
250-500 um, magnetic sorting, density separation using methylene iodide, and ultimately hand picking
under a binocular microscope.

Sanidine and plagioclase separates were wrapped in aluminum foil, placed in 2.5 cm aluminum
disks, and irradiated along with the 28.201 Ma Fish Canyon sanidine standard (Kuiper et al., 2008) at
the Oregon State University TRIGA reactor in the Cadmium-Lined In-Core Irradiation Tube (CLICIT).
Two mg of plagioclase from sample VC-1-04 were incrementally heated in 24 steps, whereas single
crystal fusion experiments were performed on the other three samples. Incremental heating is the
method of choice when dating basaltic lavas as it permits interrogation of whether alteration or
inheritance have biased the age of the flow (Singer et al., 2019). All experiments were conducted in
the WiscAr laboratory at the University of Wisconsin-Madison using a 50 W CO; laser and a Noblesse
multi-collector mass spectrometer following the procedures in Jicha et al. (2016). Weighted mean ages
are calculated with the decay constants of Min et al. (2000) and are reported with analytical

uncertainties at the = 2¢ analytical uncertainties (95% confidence level). Atmospheric argon value used

is that of Lee et al. (20006).

RESULTS

Five different fossil-bearing lithofacies were described for this study. Laminated mudstone and
green tuff are interpreted to record deposition in a lacustrine basin floor environment. Gray ashy
mudstone is interpreted to have been deposited both in a lacustrine basin floor environment, and on a
subaerial pyroclastic plain. The coal lithofacies is interpreted to record deposition on a vegetated,

waterlogged pyroclastic plain. The valley-filling pyroclastic lithofacies is interpreted to record

11
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deposition within an incised valley outside of the caldera. An additional fossil-bearing siltstone facies

described in Wilf et al. (2003) was not included during this study.

Laminated Mudstone Lithofacies

The laminated mudstone facies occurs only at the Laguna del Hunco locality (Figs. 1, 3A).,
interbedded with several other lacustrine facies. Beds are several cm to a few dm thick. The laminae
constitute either black and white couplets or black and dark-gray couplets (Fig. 3B), but these two
patterns are not observed within the same bed. Thin-section images show that both the black and the
white laminations contain mud to silt sized crystals and altered glass particles. The black laminations
also have elongate, fibrous, brown organic matter (Fig. 3C). The outcrop surface appears an off-white
or beige color, but a freshly broken surface is medium-brown to black and has a sulfurous odor.
Fractures are either conchoidal or follow laminae. Black fragments of leaves and stems are found
parallel to laminations. Delicate leaf structures are less common.

The laminated mudstone facies is interpreted as suspension fall-out of detrital sediment and
organic matter onto a lacustrine basin floor during lulls in volcanic activity, based its grainsize,
preservation fine laminae, organic matter content, and absence of scour, graded beds, or other evidence
for tractive currents (Fig. 4A). The occasionally conchoidal fractures may reflect high silica content.
The laminations could be explained through variability in fine grain sediment influx, organic matter
influx, organic matter preservation, or some combination of these three. Examinations of thin-sections
reveal that the amount of organic material varies between laminations, while the detrital component is
present throughout. This suggests that the laminations may be primarily due to seasonal variation in the
production or preservation of organic material, whereas fine-grained inorganic sediment accumulated

more uniformly through time.

Green Tuff Lithofacies
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The green tuff facies occurs at the Laguna del Hunco locality (Figure 1), interbedded with the
gray ashy mudstone facies and laminated mudstone facies. This facies consists of pale green, very fine-
to medium-grained tuff with fine- to medium-grained plagioclase and biotite crystals that are often
visible with the naked eye. The tuff has a mottled texture in hand sample but does not display other
sedimentary structure. Fossils in this facies have a light brown stain, but less so than in the gray ashy
mudstone facies. Fossils are generally preserved on planes parallel or at a low angle to bedding. These
fossils typically do not feature as much detail as those in the gray ashy mudstone beds.

The green tuff facies is interpreted as an ash-fall tuff deposited in a lacustrine basin-floor
depositional environment, based on its intercalation with laminated mudstone, coarser grainsize, and
lack of sedimentary structures indicative of tractive transport. Accumulation of these types of deposits

typically spans hours to days (Miller and Casadevall, 2000).

Gray ashy Mudstone Lithofacies

The gray ashy mudstone facies, found at the Laguna del Hunco, Escuela Piedra Parada, and
Central Caldera localities (Figure 1), has a porcelanitic or cryptocrystalline appearance but lacks
crystals visible with the naked eye or hand lens. It weathers to an off-white color, but is gray to brown
on a fresh break. Beds are typically a few cm to dm in thickness and laterally extensive for hundreds of
meters (Fig. 3D). Thin-sections reveal that 95% of the grains are less than five micrometers (Fig. 3E).
Orange staining is commonly observed on fracture surfaces and fossils, making them more visible.
Fossils occur on planes parallel and sub-parallel to bedding surfaces. Fracture is moderately
conchoidal. Swaley cross-stratification has recently been observed in this facies, suggesting episodes of
high-energy wave and combined-flow events in a lake (J.M. Krause and E.A. Hajek, pers. comm.,
2019).

At the Laguna del Hunco locality this facies contains well-preserved fossil plants, frogs, fish,

and insects. Many whole leaves are preserved (Fig. 3F) with well-preserved venation and insect
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damage, along with delicate flowers, fruits, and insect body-fossils, as reported extensively elsewhere
(see Introduction). Bed geometries include sheets, lenses, lobes, and drapes. Gray ashy mudstone beds
at the Laguna del Hunco locality are typically intercalated with turbidite, debris-flow, green tuff,
laminated mudstone, and green-brown mudstone beds (Figs. 3D, G). The sediment gravity-flow
deposits exhibit flame structures and meter-scale soft-sediment folds, which together with current
ripples indicate a depositional gradient that sloped toward the east or northeast, away from the
resurgent caldera dome (see Fig. 1).

Orange staining and fossils are less common at the Escuela Piedra Parada and Central Caldera
localities (Fig. 1). In contrast to the Laguna del Hunco locality, the gray ashy mudstone beds are
frequently stacked on top one another with few interbedded strata, and are associated with extrusive
glass domes (Fig. 3H). The only interbedded units are volcaniclastic sandstone beds rich in angular to
subangular crystals and tuff clasts. However, the sections above and below the gray ashy mudstone
intervals do contain debris-flows, ash-fall tuffs, ash-flow tuffs, and double-graded pyroclastic debris-
flows. Five silicified tree trunks up to 11 m long were observed within the ash flow tuffs at Escuela
Piedra Parada (Fig. 31), in the same general area that preserved a permineralized fossil fern trunk
(Bomfleur and Escapa, 2019; Figure 1, localities 3 and 5). In two cases, the tree roots are preserved in
life orientation, whereas the trunks are oriented sub-parallel to bedding and aligned parallel.

This facies is interpreted to have been deposited in two different environments. At the Laguna
del Hunco locality, it is interbedded with turbidites and other facies indicating a lacustrine basin-floor
depositional environment (Fig. 4A). The presence of swaley cross stratification in the gray ashy
mudstone implies at least partial reworking by waves, possibly in combination with unidirectional flow
(cf., Dumas and Arnott, 2006). At the Central Caldera and Escuela Piedra Parada localities, it was
deposited on a subaerial pyroclastic plain. Associated ash flows knocked down trees and covered the
ground surface. Sheet flood transport processes, shallow channelization, and air-fall pyroclastic events

deposited centimeter to decimeter beds of varying geometries and levels of immaturity (Fig. 4B).
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Meter-scale welded ignimbrites filled-in and reorganized topography above and below the strata

containing gray ashy mudstone facies.

Coal Lithofacies

The coal facies occurs at the Zeballos Oeste (Fig. 1). A single cm-thick coal seam is observed in
place, and is encased by brown-gray tuff. Fragmented plant material is preserved on distorted, sub-
parallel surfaces, but leaves are less well preserved than in other facies. Directly below the coal seam
are dm-scale, compensationally-stacked beds with a lenticular geometry. The coal is overlain by a
massive, several-meter-thick bed that contains coaly intraclasts.

The coal facies is interpreted as a leaf mat deposited under reducing conditions on a vegetated,
waterlogged pyroclastic lake margin (Fig. 4C). Coal intraclasts in the overlying beds suggest erosion

of up-dip coal forming environments.

Valley-Filling Pyroclastic Lithofacies

The valley-filling pyroclastic facies examined for this study is confined to a northwest-
southeast-oriented paleo valley incised into the Ignimbrita Barda Colorada southeast of the caldera (the
Laguna Fria locality; Figs. 1, 2). A modern valley that is oriented northeast-southwest exposes multiple
paleo-valleys in this area. The valley-filling pyroclastic facies is broadly defined to include non-welded
tuffaceous deposits and reworked pyroclastic deposits (Fig. 3J). Dm-thick beds can have erosive bases,
are generally matrix-supported and fining-upwards, and contain lapilli. In contrast, cm-thick beds are
more likely to be grain-supported and contain crossbedding and root casts. Some of these beds are
dominated by crystal grains or ash lapilli of multiple compositions, with a marked reduction in fine-
grained matrix. A few beds have sub-angular tuff clasts up to 1 cm. Most beds continue across the
entire outcrop. A small number of the grain-supported beds have very broad U-shaped geometries up to

two meters across. This facies contains abundant vertebrate specimens described as the Laguna Fria
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367  fauna (Tejedor et al., 2005; 2009). Silicified trunk material was also found as float at this locality, but
368  no leaves or other plant compressions were found. The Laguna Fria vertebrate assemblage occurs
369  predominantly above the prominent Laguna Fria Orange Ignimbrite and below the Laguna Fria

370  Capping Basalt (Fig. 3K).

371 The valley-filling pyroclastic facies is interpreted as a combination of primary and reworked
372 pyroclastic deposits within an extra-caldera paleo-valley incised into the Ignimbrita Barda Colorada
373  (Fig. 4D). Composition, grain distribution, and fluid escape tubes suggest some of the pyroclastic

374  material was deposited by ash-fall and other ash-cloud mechanisms. Some beds were buried intact by
375 later pyroclastic eruptions. Others were partially or fully reworked by a combination of fluvial and
376  sheet flood processes. This is especially apparent in the tops of some dm-scale pyroclastic beds where
377  centimeter-scale cross-bedded intervals, ripples, and well-sorted volcaniclastic sands suggest partial
378  reworking of the tops of the beds only. Channels of only a few meters width were observed, suggesting
379  an environment controlled by small-scale fluvial and sheet-flood processes. The depositional

380 environment was akin to a partially filled alluvial canyon.

381

382 “Ar/Ar Ages

383 The Upper Ignimbrita Barda Colorada

384 Laser fusion experiments were performed on 16 individual crystals. Of these, only two yield
385  K/Caratios consistent with sanidine, whereas the remainder were plagioclase and thus were excluded
386  from analysis. The weighted mean age of the two sanidine dates is 52.54 + 0.17 Ma (Fig. 5).

387

388  Southern Ignimbrite

389 Plagioclase was separated from this ignimbrite because no sanidine was present. Eighteen laser
390 fusion experiments on individual plagioclase crystals give a weighted mean age of 49.38 + 0.12 Ma

391  (Fig. 5). However, the isochron calculated from these 18 crystals gives an intercept of 310.7 £ 3.7,
16
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which is significantly higher than the atmospheric value. Hence, the isochron age of 49.19 + 0.24 Ma is

preferred.

Laguna Fria Orange Ignimbrite

Plagioclase crystals were separated from this ignimbrite because no sanidine was present.
Single-crystal laser fusion experiments were performed on 19 plagioclase crystals. Eleven of these
experiments produced radiogenic 40Ar* concentrations lower than 70%, which may represent post-
depositional loss of *°Ar*. Excluding these from the results yields a distribution of dates with a
weighted mean age of 49.00 = 0.16 Ma (Fig. 5). However, the isochron calculated from these 19
crystals gives an intercept of 290.5 + 3.3, which is lower than the atmospheric value. Hence, the

isochron age of 49.26 + 0.30 Ma is preferred.

Laguna Fria Capping Basalt

A 24-step incremental heating experiment on a two mg groundmass separate yields an age
spectrum with low temperature steps characterized by younger apparent ages. We interpret this
discordance to reflect argon loss due to weathering and excluded the younger steps in the calculation of
a plateau age. Notwithstanding, an age plateau, defined by 87% of the **Ar released, signifies that the
basalt has a largely homogenous distribution of radiogenic argon, and yields an apparent age of 43.50 +

1.14 Ma, which is indistinguishable from the inverse isochron age of 43.50 + 2.22 Ma (Fig. 6).

DISCUSSION

The *Ar/* Ar ages reported here represent new, fully-documented constraints on the timing of
the Laguna del Hunco flora and Laguna Fria fauna (Figure 7). The age of the Ignimbrita Barda
Colorada was previously reported as 58.6 + 3.0 Ma (£10) based on older *’K/**Ar techniques

(Archangelsky, 1974), but can now be revised to 52.54 + 0.17 Ma (£20), a difference of ~6 million
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years. The new age is not distinguishable from the **Ar/*’Ar ages of tuffs at the Laguna del Hunco
locality (52.22 + 0.22 Ma; Wilf, 2012) given the 2c uncertainties, a finding that is consistent with rapid
initial deposition (Fig. 2 and Fig. 7) following the formation of a topographic depression during or
shortly after the initial caldera eruption.

The southern ignimbrite occurs hundreds of meters stratigraphically above the gray ashy
mudstone faices at Escuela Piedra Parada. It’s 49.19 + 0.24 Ma age therefore establishes a minimum
age for the gray ashy mudstone facies at this locality. The same constraint may also extend to the gray
ashy mudstone facies at the Laguna del Hunco locality, if deposition of this facies in both areas
occurred in response to a common eruptive history. The southern ignimbrite may also constrain the
age of fossil fern trunks located ~5 km to the west (Bippus et al., 2019; Bomfleur and Escapa, 2019;
Fig. 1).

Maximum and minimum age constraints for the Laguna Fria fauna are defined by the
underlying 49.26 + 0.30 Ma Laguna Fria Orange Ignimbrite, and the overlying 43.50 + 1.14 Ma
Laguna Fria capping basalt. The relationship of these ages to the nearby La Barda fauna remains
unclear however. Tejedor et al. (2009) inferred that the Laguna Fria capping basalt represents a basal
basalt flow of the Andesitas Huancache, and that the La Barda fauna lies stratigraphically above this
basal flow and therefore must be younger. They assumed a 47-45 Ma age range for the La Barda
fauna, based on a preliminary **Ar/*’Ar age determination for the Laguna Fria basalt of 47.89+1.21 Ma
(Gosses et al., 2006) and on **K/*°Ar ages of ~43 Ma for an overlying lava flow (Mazzoni et al., 1991).
If the stratigraphic relationships inferred by Tejedor et al. (2009) are correct, our revised age for the
Laguna Fria capping basalt requires that the La Barda fauna is in fact younger than ~43.50 Ma. It must
be noted however that these localities lie ~6 km apart in an area that experienced a spatially complex
history of basaltic eruptions. The detailed stratigraphy of these flows has not been mapped, making
precise? correlation between sites problematic. Examination of satellite imagery (Fig. 3L) suggests

that both localities lie stratigraphically below a prominent mesa-forming basalt, which approximately
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corresponds to the Laguna Fria capping basalt sampled in this study. Tejedor et al. (2009) reported
faunistic similarities between the two fossil assemblages. Based on the data presented here, we cannot
conclusively determine the age relationship between the La Barda and Laguna Fria fauna; it appears
possible that they are the same age. A more detailed investigation of field relationships and basalt ages
is needed to resolve this ambiguity. More broadly, the available age constraints on these faunas overlap
with the age ranges proposed by Krause et al. (2017) for the Riochican and Vacan fauna, and therefore
do not directly support the existence of a temporally distinct “Sapoan” SALMA.

Tejedor et al. (2009) considered the vegetation and paleoclimate for the Laguna Fria and La
Barda mammals to be best represented by the ca. 52.2 Ma Laguna del Hunco and ca. 47.7 Ma Rio
Pichileufu (Rio Negro) rainforest floras (Berry, 1938; Wilf et al., 2005a; Wilf, 2012). These sites show
that generally similar floral composition, elevated floral richness, and a mesic rainforest environment
persisted in the region for an extended period of time that encompassed these faunas. Our new
geochronologic results show that this argument remains plausible, but only in the older part of its
possible age range. The younger end of the permissible age range, extending to 43.50 + 1.14 Ma,
corresponds with substantially cooler and drier conditions and major vegetation changes, both

regionally and globally (Palazzesi and Barreda, 2007; Zachos et al., 2008; Dunn et al., 2015)

CONCLUSIONS

The Middle Chubut River Pyroclastic and Volcanic Complex preserves fossil assemblages
associated with multiple terrestrial, volcaniclastic lithofacies, that lie stratigraphically above the
caldera-forming Ignimbrita Barda Colorada. A new *’Ar/*’Ar age for the caldera-forming Ignimbrita
Barda Colorada of 52.54 + 0.17 Ma is preferred over previous age determinations. This age is
indistinguishable, given the 26 uncertainties, from a 52.22 + 0.22 Ma *°Ar/*° Ar age previously reported
for a tuff at the Laguna del Hunco fossil locality (Wilf, 2012), demonstrating rapid onset of lacustrine

deposition and prolific fossil preservation following caldera subsidence. An ignimbrite deposited above
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the fossil-strata gives an age of 49.19 + 0.24 Ma, collectively indicating that the Laguna del Hunco
flora broadly coincided with the Early Eocene Climatic Optimum (~53-50 Ma; Zachos et al., 2008).

The Laguna Fria fauna is younger, constrained between the 49.26 + 0.30 Ma Laguna Fria
orange ignimbrite and the 43.50 + 1.14 Ma Laguna Fria capping basalt. The age of the nearby La
Barda fauna 1s more difficult to confidently determine. If previous stratigraphic relations inferred by
Tejedor et al. (2009) are correct, then the La Barda fauna is at least 2 million years younger than its
previously assumed age range of 47-45 Ma. The detailed stratigraphy of basaltic eruptions is poorly
known however, and it is therefore possible that the La Barda and Laguna Fria faunas are similar in
age. Finally, the Laguna Fria age range overlaps with the age ranges proposed by Krause et al. (2017)
for the Riochican and Vacan faunas and therefore does not directly support the existence of a

temporally distinct “Sapoan” SALMA.
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FIGURE CAPTIONS

Figure 1: Simplified geologic map of the study area, modified from Aragon and Mazzoni, (1997), and
sampling localities. La Barda locality is off the map, approximately 6 km distant from the Laguna Fria
locality on a 192° bearing (Tejedor et al., 2009). Solid lines represent observed boundaries from field
work and satellite imagery. Dashed lines represent inferred boundaries. The resurgent dome area has
not yet been mapped out in detail but contains pyroclastic deposits of the Tufolitas del Hunco; intra-

caldera volcanic flows and dikes; and capping Miocene to Pleistocene basalt flows.

Figure 2: Cross-sectional cartoon across southern portion of Middle Chubut River Pyroclastic Volcanic
Complex. Key fossil sites and rock units with age determinations are emphasized. Figure is not to scale. See
Figure 1 for correct spatial distances between localities. Age determinations cited from Wilf et al., (2003 and

2005) have been adjusted to more recent standard of Kuiper et al., 2008.
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Figure 3: Field photographs of fossil-bearing lithofacies. A. Overview of the Tufolitas Laguna del
Hunco (Laguna del Hunco locality). B. Laminated mudstone facies (Laguna del Hunco locality). C.
Photomicrograph of organic-rich laminated mudstone facies ((Laguna del Hunco locality). D. Gray
ashy mudstone overlain by sediment gravity flow (resistant bed; Laguna del Hunco locality). E.
Photomicrograph showing microcrystalline nature of the gray ashy mudstone facies (Laguna del Hunco
locality). F. Leaf fossil preserved in gray ashy mudstone (Laguna del Hunco locality). G. Volcaniclastic
turbidite showing all 5 Bouma subdivisions (Laguna del Hunco locality). H. Glass dome intruding gray
ashy mudstone facies (Central Caldera locality). I. Petrified tree trunk preserved in a clast-rich ash-flow
tuff (Escuela Piedra Parada locality). J. Root cast and cross-bedding in a crystal-rich reworked
pyroclastic facies (Laguna Fria locality). K. Field relationships between the Ignimbrita Barda
Colorada, valley-filling volcaniclastic facies, orange gnimbrite, and Lagunda Fria capping basalt
(Laguna Fria locality). Fossil locality lies stratigraphically above the orange ignimbrite and below the
basalt. L. Oblique composite satellite image looking east at the area between the Laguna Fria and La
Barda faunal localities (3x vertical exaggeration. Image © 2019 CNES / Airbus, © 2018 Google,

Image © 2019 Maxar Technologies)

Figure 4: Schematic block diagrams of depositional environments interpreted in this study. Scale bars are
approximate horizontal distances. Vertical scale is exaggerated. Localities are in bold. Flora/Fauna and facies

names are (in brackets).

Figure 5: Summary of “*Ar/*’Ar dates from sanidine and plagioclase in Laguna Fria Orange Ignimbrite, Southern
Ignimbrite, and Upper Ignimbrita Barda Colorada. Inverse isochron diagrams for the Southern Ignimbrite and
Laguna Fria Orange Ignimbrite display intercepts which diverge from atmospheric values, and so the isochron
age is preferred in both cases. Open points indicate analyses excluded from weighted mean age calculations.

Weighted mean ages are shown with 2c uncertainties, whereas individual analyses are shown with 1o
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uncertainties. The isochron age of the Laguna Fria Capping Basalt is denoted by a dashed line, with 2o

uncertainties indicated by a gray band.

Figure 6. Age spectrum and inverse isochron diagrams illustrating results of an “’Ar/*’Ar incremental heating
experiment on groundmass from the Laguna Fria Capping Basalt. Steps excluded from analysis are show as open

boxes.

Figure 7: Summary of Eocene age relationships and terrestrial fauna and flora. Modified from Krause
et al. (2017) and Wilf (2012) based on new results from the Piedra Parada caldera (reported in this
study). Age determinations based on *°’Ar/*’Ar and have been adjusted to decay constants of Kuiper et
al., (2008). Shaded boxes indicate potential age range for each fossil assemblage, taking into account

20 errors.

Footnote to be inserted at bottom of page for line 164:

! GSA Data Repository item 0000000, Full documentation of **Ar/*’Ar geochronology, is available at

http://www.geosociety.org/pubs/ft2012.htm or by request to editing@geosociety.org.
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Flgure 3 (continued)
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TABLE 1. SUMMARY OF RADIOISOTOPIC AGES

Latitiude Longitude Plateau Isochron

Sample Unit (°S) (°W) Mineral N % Ar  MSWD K/Ca Age (Ma) 20 Age (Ma) 20 (*Ar/**Ar) +20
Incremental Heating Results
VC-1-04 Laguna Fria 42.72447 69.84536 Plag 15/24 86.6 1.08 0.0 43.50 1.14 43.50 222 29854 7.05

Basalt
Single Crystal Laser Fusion Results
VC-20-04 Orange Ignimbrite 42.72447 69.84536 Plag  9/19 1.17 0.3 49.00 0.16 49.26 0.30 290.5 3.3
IDEPP-1- Southern 42.68194 70.16803 Plag 18/18 1.42 0.3 49.38 0.10 49.19 0.24 310.7 3.7
04 Ignimbrite
QL-9807  Upper Ignimbrita 42.72447 69.84536 San  2/16 0.09 273 52.54 0.17 N.D. N.D. N.D. N.D.

Barda Colorada

Note: Bold font indicates preferred ages. Ages calculated relative to Fish Canyon sanidine interlaboratory standard at 28.201 Ma (Kuiper et al.

2008). Age uncertainty includes analytical uncertainty + J uncertainty. Decay constants and isotopic abundances after Min et al. (2000).
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