

FOR PEER REVIEW - CONFIDENTIAL

Facies Interpretation and Geochronology of Diverse Eocene Floras and Faunas, Northwest Chubut Province, Patagonia, Argentina

Tracking no: B35611R

Authors:

Justin Gosses, Alan Carroll (University of Wisconsin), Benjamin Bruck (University of Wisconsin-Madison), Brad Singer (University of Wisconsin-Madison), Brian Jicha (University of Wisconsin - Madison), Eugenio Aragón (Universidad Nacional de La Plata), Andrew Walters (University of Wisconsin-Madison), and Peter Wilf (Pennsylvania State University)

Abstract:

The Eocene La Huirera Formation of northwestern Patagonia, Argentina, is renowned for its diverse, informative, and outstandingly preserved fossil biotas. In northwest Chubut Province, this unit includes one of the most diverse fossil floras known from the Eocene, as well as significant fossil insects and vertebrates, at the Laguna del Hunco locality. It also includes rich fossil vertebrate faunas at the Laguna Fría and La Barda localities. Previous studies of these important occurrences have provided relatively little sedimentological detail, and radiotopic age constraints are relatively sparse and in some cases obsolete. Here we describe five fossiliferous lithofacies deposited in four terrestrial depositional environments: lacustrine basin-floor, subaerial pyroclastic plain, vegetated, waterlogged pyroclastic lake margin, and extra-caldera incised valley. The best fossil preservation is interpreted to result from the favorable intersection of multiple taphonomic factors, such as rapid input of biological remains, lakewater anoxia, and rapid burial by volcanic ash. We also report several new 40Ar/39Ar age determinations. Among these, the uppermost unit of the caldera-forming Ignimbrita Barda Colorado yielded an 40Ar/39Ar age of 52.54 {plus minus} 0.17 Ma, ~6 Ma younger than previous estimates and demonstrating that fossiliferous lacustrine deposition (previously constrained to > 52.22 {plus minus} 0.22 Ma) must have begun almost immediately on the subsiding ignimbrite surface. A minimum age for Laguna del Hunco fossils is established by an overlying ignimbrite with an age 49.19 {plus minus} 0.24, confirming that deposition took place during the Early Eocene Climatic Optimum. The Laguna Fría mammalian fauna is younger, constrained between a valley-filling ignimbrite and a capping basalt with 40Ar/39Ar ages of 49.26 {plus minus} 0.30 Ma and 43.50 {plus minus} 1.14 Ma, respectively. The latter age is ~4 Ma younger than previously reported. These new ages more precisely define the age range of the Laguna Fría and La Barda fauna, allowing greatly improved understanding of its position with respect to South American mammal evolution, climate change, and geographic isolation.

1 *Facies Interpretation and Geochronology of Diverse Eocene Floras and Faunas,*

2 *Northwest Chubut Province, Patagonia, Argentina*

3
4 **Justin Gosses^{1†}, Alan R. Carroll¹, Benjamin T. Bruck¹, Brad S. Singer¹, Brian R. Jicha¹, Eugenio**
5 **Aragón², Andrew P. Walters¹ Peter Wilf³,**

6

*7 ¹Department of Geoscience, University of Wisconsin – Madison, 1215 W. Dayton St., Madison,
8 Wisconsin 53706, USA*

⁹ *²CONICET–Centro de Investigaciones Geológicas, Universidad Nacional de la Plata, B1900FWA La*
¹⁰ *Plata, Argentina*

11 ³*Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania 16802,*
12 *USA*

[†] Present address: Office of the Chief Information Officer, NASA Johnson Space Center, 2101 NASA Parkway, Houston, Texas 77058

15

16

17 ABSTRACT

18 The Eocene Huitrera Formation of northwestern Patagonia, Argentina, is renowned for its
19 diverse, informative, and outstandingly preserved fossil biotas. In northwest Chubut Province, this unit
20 includes one of the most diverse fossil floras known from the Eocene, as well as significant fossil
21 insects and vertebrates, at the Laguna del Hunco locality. It also includes rich fossil vertebrate faunas at
22 the Laguna Fría and La Barda localities. Previous studies of these important occurrences have
23 provided relatively little sedimentological detail, and radiotopic age constraints are relatively sparse
24 and in some cases obsolete. Here we describe five fossiliferous lithofacies deposited in four terrestrial
25 depositional environments: lacustrine basin-floor, subaerial pyroclastic plain, vegetated, waterlogged
26 pyroclastic lake margin, and extra-caldera incised valley. We also report several new $^{40}\text{Ar}/^{39}\text{Ar}$ age

27 determinations. Among these, the uppermost unit of the caldera-forming Ignimbrita Barda Colorada
28 yielded an $^{40}\text{Ar}/^{39}\text{Ar}$ age of 52.54 ± 0.17 Ma, ~6 Ma younger than previous estimates and
29 demonstrating that deposition of overlying fossiliferous lacustrine strata (previously constrained to $>$
30 52.22 ± 0.22 Ma) must have begun almost immediately on the subsiding ignimbrite surface. A
31 minimum age for Laguna del Hunco fossils is established by an overlying ignimbrite with an age 49.19
32 ± 0.24 , confirming that deposition took place during the Early Eocene Climatic Optimum. The Laguna
33 Fría mammalian fauna is younger, constrained between a valley-filling ignimbrite and a capping basalt
34 with $^{40}\text{Ar}/^{39}\text{Ar}$ ages of 49.26 ± 0.30 Ma and 43.50 ± 1.14 Ma, respectively. The latter age is ~4 Ma
35 younger than previously reported. These new ages more precisely define the age range of the Laguna
36 Fría and La Barda faunas, allowing greatly improved understanding of their positions with respect to
37 South American mammal evolution, climate change, and geographic isolation.

38

39 INTRODUCTION

40 The Patagonian region of Argentina holds historic and still rapidly-expanding significance for
41 understanding the evolution and biogeography of terrestrial life in the Southern Hemisphere (e.g.,
42 Ameghino, 1906; Gaudry, 1906; Simpson, 1980; Archangelsky, 2005; Pascual, 2006; Salgado, 2007).
43 In recent years, there has been a marked increase in investigations of early Paleogene strata, which hold
44 vital and still little-studied records of recovery from the end-Cretaceous extinction, biotic responses to
45 climate changes, and biogeographic events related to the final breakup of Gondwana and the beginning
46 of South American isolation (e.g., see summaries by Goin et al., 2012a; Wilf et al., 2013).

47 Fundamental to the rising significance of Patagonia's outstanding fossils is the increase in
48 stratigraphic and sedimentological studies that give the fossiliferous strata geologic context, including
49 high-precision radioisotopic ages and paleomagnetic data. In just the past few years, a high-resolution
50 temporal and general geologic framework has emerged for the classic, extremely fossiliferous

51 Paleocene to Miocene continental sequence of southern Chubut Province (Bellosi, 2010; Dunn et al.,
52 2013; Clyde et al., 2014; Woodburne et al., 2014; Comer et al., 2015; Krause et al., 2017). These data
53 constrain interpretations for a large variety of studies, from those on individual fossil sites and taxa to
54 reinterpretations of mammalian evolutionary faunas and their biozonations, known as South American
55 Land Mammal “Ages” (SALMAs) (Flynn and Swisher, 1995; Gelfo et al., 2009; Woodburne et al.,
56 2014a,b).

57 Our focus here is on another highly fossiliferous area, in northwest Chubut Province, known as
58 the Middle Chubut River Pyroclastic and Volcanic Complex of the Huirera Formation (Fig. 1; Aragón
59 and Romero, 1984; Mazzoni et al., 1991; Aragón and Mazzoni, 1997; Aragón et al., 2001, 2004, 2018).
60 The Piedra Parada caldera preserves diverse Eocene volcanic rocks, including the caldera-floor
61 sIgnimbrita Barda Colorada (IBC), a caldera-filling lacustrine sequence known as the Tufolitas Laguna
62 del Hunco, at least two youger ignimbrite units, and a succession of capping volcanic rocks of the
63 Andesitas Huancache (Archangelsky, 1974; Mazzoni et al., 1989; Aragón and Mazzoni, 1997; Mazzoni
64 et al. 1991; Figs. 1, 2).

65 The fossil richness and significance of the Tufolitas Laguna del Hunco has been well known
66 since Berry’s (1925) first report of the fossil flora from the principal section at Laguna del Hunco in the
67 northeasternmost exposures of the Tufolitas (Fig. 1). This was followed over several decades by
68 publications on fossil plants (e.g., Frenguelli, 1943; Romero and Hickey, 1976; Romero et al., 1988),
69 insects (Fidalgo and Smith, 1987), catfish (Dolgopol de Sáez, 1941; Azpelicueta and Cione, 2011), and
70 pipoid frogs (Casamiquela, 1961; Báez and Trueb, 1997). Over the past 15 years there has been a
71 marked increase in research activity on these strata, fueled by renewed, stratigraphically controlled
72 collecting efforts that have recovered many thousands of specimens (Wilf et al., 2003; Wilf et al.,
73 2005a). Initial phases of this work revealed that the Laguna del Hunco flora is among the most diverse
74 from the Eocene worldwide, currently containing more than 200 species (Wilf et al., 2003, 2005a,

75 2005b). Systematic studies have detailed numerous, novel records of diverse plant genera that live
76 today only in Old World rainforests of Australasia and SE Asia; many of these taxa were previously
77 only known as fossils, if at all, in Australia and New Zealand. These records, and accompanying
78 reports of new fossil insects (e.g., Petrulevičius and Nel, 2013; Petrulevičius, 2016), are far too
79 numerous to cite completely here (for summaries see Wilf et al., 2009; Wilf et al., 2013; Kooyman et
80 al., 2014). However, among the most remarkable discoveries are the outstanding fossils of kauris
81 (*Agathis*, Araucariaceae), gums (*Eucalyptus*, Myrtaceae), tomatillos (*Physalis*, Solanaceae), and beech
82 relatives (*Castanopsis*, Fagaceae) (Gandolfo et al., 2011; Wilf et al., 2014, 2017)(Wilf et al., 2019).
83 The fossil plants from Laguna del Hunco have revealed Eocene Patagonia as the western end of a trans-
84 Antarctic rainforest biome that harbored elevated biodiversity that was largely lost to extinction
85 following Antarctic separation and climate change (e.g., Kooyman et al., 2014). In addition, the ages of
86 many fossil plant lineages from Laguna del Hunco are significantly older than comparable molecular-
87 clock estimates, challenging that widely-used methodology (Wilf and Escapa, 2015; Wilf et al., 2017).

88 The fossil richness of the study area also includes a pair of rich Eocene mammalian faunas, the
89 Laguna Fría and La Barda assemblages, that occur within valley-fill deposits (Fig. 1). These faunas
90 were first collected by R. Pascual in the 1950s and have been the topic of intense study (Goin et al.,
91 2000, 2001; Tejedor et al., 2005; Tejedor et al., 2009; Lorente et al., 2016). Together, these sites have
92 produced more than 50 mammalian species, including the oldest South American bats (Tejedor et al.,
93 2005), the last occurrence of South American gondwanatheres (Goin et al., 2012b), and a diverse array
94 of other marsupial and placental taxa, especially xenarthrans and ungulates (Tejedor et al., 2009;
95 Lorente, 2016; Lorente et al., 2016). These faunas, often referred to collectively as the Paso del Sapo
96 fauna (after the nearby village of the same name; Fig. 1), are noted for their familial affinities with
97 middle Eocene Antarctic Peninsula faunas of the La Meseta Formation (e.g., Goin et al., 1999; Reguero
98 et al., 2013; Reguero et al., 2014; Goin et al., 2018). In addition, some marsupial remains have been

99 assigned to the australidelphid clade (Lorente et al., 2016), which includes all living Australian
100 marsupials and one South American species. Thus, along with the celebrated Danian monotremes from
101 southern Chubut (Pascual et al., 1992), the Laguna Fría and La Barda faunas provide some of the
102 firmest evidence for a Gondwanic biogeographic signal in South America's early Paleogene mammals.
103 These discoveries parallel abundant data from non-mammalian vertebrate groups and plants (e.g., Wilf
104 et al., 2013 for summary) and modern paleogeographic data (e.g., Lawver et al., 2011) and contrast
105 with the classic portrayal of South America as an isolated “island continent” for most of the Cenozoic
106 (Simpson, 1950; Simpson, 1980).

107 Despite the broad significance of the Laguna Fría and La Barda faunas, three issues surround
108 the interpretation of their age, hindering a precise understanding of their position in the evolutionary
109 sequence represented in the SALMA scheme. First, Tejedor et al. (2009; also Woodburne et al., 2014a,
110 b; Goin et al., 2018) proposed that the Laguna Fría and La Barda faunas are, collectively,
111 compositionally and temporally distinct, falling in an otherwise undocumented “Sapoan” provisional
112 SALMA between putatively older Río Chican and younger Vacan faunas. The “Sapoan” concept is
113 widely used, having been followed by all the subsequent workers treating these faunas (citations
114 above). However, the assessment of geologic age of the faunas (Tejedor et al., 2009) was based on a set
115 of unpublished $^{40}\text{Ar}/^{39}\text{Ar}$ dates from a conference abstract reporting the M.S. thesis results of the
116 present lead author (Gosses, 2006; Gosses et al., 2006), as well as uncertain correlations to now-
117 obsolete, whole-rock K-Ar dates on basalts exposed elsewhere (e.g., Mazzoni et al., 1991). We, like
118 Krause et al. (2017), emphasize that the critical $^{40}\text{Ar}/^{39}\text{Ar}$ ages (Gosses et al., 2006) used by Tejedor et
119 al. (2009) and subsequent workers have not, until now, been vetted, revised, or reanalyzed. Second,
120 Laguna Fría and La Barda could be separated enough in time that at least one assemblage temporally
121 overlaps previously defined SALMAs (Krause et al., 2017). Third, and beyond the scope of the present
122 study, is that the temporal bounds of the Río Chican SALMA used for comparison are not well

123 established because the type Río Chican mammal sites (Simpson, 1935) have not been placed in a
124 modern chronostratigraphic framework (Krause et al., 2017). Further, based on a series of new high-
125 precision U-Pb ages from the Koluel Kaike Formation of southern Chubut Province, which is
126 traditionally but perhaps incorrectly correlated with the type Río Chican, the Río Chican SALMA is
127 likely to temporally overlap both the Vacan and the La Barda faunas (Krause et al., 2017).

128 Throughout the study area, reliable stratigraphy that directly constrains the ages of closely
129 associated fossils is, so far, only established at Laguna del Hunco itself (see Previous Geochronology).
130 The Laguna Fría and La Barda faunas are only loosely constrained by a set of obsolete K-Ar age
131 determinations of associated volcanic rocks (Archangelsky, 1974; Mazzoni et al., 1991), excepting the
132 use by Tejedor et al. (2005; 2009) of then-unpublished initial geochronologic data, including those of
133 Gosses (2006), which are revised and formally presented here. Several whole-rock K-Ar ages for other
134 units in the volcanic complex were also pioneering for their time but, likewise, used now-obsolete
135 techniques with very large uncertainties (Mazzoni et al., 1991). Similarly, important earlier work on the
136 depositional environments and processes that preserved the fossils (Petersen, 1946; Feruglio, 1949;
137 Aragón and Romero, 1984; Aragón and Mazzoni, 1997) requires updating from new methods and field
138 observations.

139 In this study, the depositional histories of five fossil-bearing lithofacies are examined to gain
140 insights into volcano-sedimentary evolution across the study area (Fig. 1). $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology is
141 used to improve chronostratigraphic resolution of the uppermost Ignimbrita Barda Colorada, the strata
142 holding the Laguna Fría fauna, and other localities. New age determinations for the Ignimbrita Barda
143 Colorada help to establish the duration of time between the cessation of primary caldera eruption and
144 fossiliferous lacustrine deposition of the Tufolitas Laguna del Hunco. Other ages permit improved
145 understanding of the temporal and geographic evolution of the globally significant caldera fossil-lake

146 system and establish reliable constraints for the Laguna Fría fauna that will allow it to be placed
147 correctly in the SALMA biozonation.

148

149 **GEOLOGIC SETTING**

150 The Tufolitas Laguna del Hunco infill the Piedra Parada caldera within the Eocene Middle
151 Chubut River Pyroclastic and Volcanic Complex of the La Huitrera Formation (Aragón and Romero,
152 1984; Aragón and Mazzoni, 1997; Aragón et al., 2004). The complex occurs along a line of Eocene
153 volcanic centers, referred to as the Pilcaniyeu belt, that stretch in a north-south direction and lie ~150
154 km east of modern arc volcanism (Rapela et al., 1984; Franzese, 1987; Rapela et al., 1988; Iannelli et
155 al., 2017). Many outstanding fossil sites are located elsewhere in the Pilcaniyeu belt, especially in the
156 western exposures near San Carlos de Bariloche in Río Negro (Berry, 1938; Aragón and Romero,
157 1984; Báez and Pugener, 2003; Melendi et al., 2003; Barreda et al., 2010; Wilf et al., 2010;
158 Petrulevičius, 2015). The Piedra Parada caldera is trapdoor style (cf., Lipman, 1997), extends 25-30
159 kilometers N-S, and is located in northwestern Chubut Province, Argentina (Fig. 1). The caldera-
160 forming ignimbrite, known as the Ignimbrita Barada Colorada (IBC), is overlain by the Tufolitas
161 Laguna del Hunco, which consists mainly of sub-aerial and lacustrine ash and lapilli that are variably
162 reworked with a smaller amount of interbedded lava flows and glass domes (Aragon and Mazzoni,
163 1997). Outcropping strata are as thick as 400 m, with the basal contact often not exposed. Nearly all
164 published fossils from the Tufolitas Laguna del Hunco (cited earlier) come from the principal section at
165 Laguna del Hunco, in the northeasternmost exposures (Fig. 1), but recent discoveries are emerging
166 from the southern outcrops as well (Bippus et al., 2016, 2019; Bomfleur and Escapa, 2019).

167 Above the Tufolitas Laguna del Hunco, capping deposits extend past the caldera edge and
168 consist of lava flows and dikes but few pyroclastic or sedimentary deposits. The Huancache and Cerro
169 Mirador Formations are some of the capping units. The Laguna Fría fauna (Figs. 1, 2; citations above)

170 is found within a paleo-valley that was incised into the caldera-forming ignimbrite external to the
171 caldera itself and filled with original and reworked pyroclastic deposits (Tejedor et al., 2009). These
172 lithologies are grossly similar in appearance to the later phases of the Tufolitas Laguna del Hunco as
173 seen inside the caldera, but our geochronologic data presented here indicate that they are not
174 correlative. The La Barda fauna comes from another incised-valley outcrop ~6 km southwest of
175 Laguna Fría (Fig. 1). It occurs within tuff units that are interbedded with basalt flows of the Huancache
176 Formation (Tejedor et al., 2009)

177

178 PREVIOUS GEOCHRONOLOGY

179 Several $^{40}\text{Ar}/^{39}\text{Ar}$ and K-Ar studies have generated age determinations for portions of the
180 Middle Chubut River Pyroclastic and Volcanic Complex. Archangelsky (1974) used whole-rock K-Ar
181 methods to determine the age of a single sample of the Ignimbrita Barda Colorada at Cañadón de Loro,
182 adjacent to Laguna del Hunco (Fig. 1), as 58.6 ± 3.0 Ma ($\pm 1\sigma$; corrected with modern decay constants
183 using Dalrymple, 1979). Mazzoni et al. (1991) reported twelve whole-rock K-Ar age determinations
184 from three different labs for lava flows, dikes, and ignimbrites within the complex. Of these, three
185 samples (VH1, 32-5, 54, and 86-107) appear too young, given reported and observed stratigraphic
186 relationships, while sample 87-44 appears too old. A possible cause for some of these discrepancies is
187 low temperature alteration, which was detected in this study using the $^{40}\text{Ar}/^{39}\text{Ar}$ incremental-heating
188 technique, but would not have easily been recognizable using older K-Ar methods.

189 At Laguna del Hunco, two paleomagnetic reversals are recorded along with three ca. 52 Ma
190 $^{40}\text{Ar}/^{39}\text{Ar}$ ages from tuffs recovered from the 170 m local section of the Tufolitas Laguna del Hunco
191 (Wilf et al., 2003; Wilf et al., 2005a). One of the $^{40}\text{Ar}/^{39}\text{Ar}$ ages, from the middle of the densely
192 fossiliferous interval (ash 2211A), was determined from single crystal fusion analyses of sanidine and
193 is thus considered the most reliable; its age was recalibrated to 52.22 ± 0.22 Ma (Wilf, 2012) relative to
194 a Fish Canyon standard age of 28.201 ± 0.046 Ma (Kuiper et al., 2008) and a value for $\lambda^{40}\text{K}$ of $5.463 \pm$

195 $0.107 \times 10^{-10} \text{ yr}^{-1}$ (Min et al., 2000). The $52.22 \pm 0.22 \text{ Ma}$ age is widely applied to the rich Laguna del
196 Hunco fossil assemblage and is not revised here. Finally, the previously mentioned, initial results for
197 three samples in this study (Gosses, 2006; Gosses et al., 2006) used an age of 28.02 Ma for the Fish
198 Canyon standard (Renne et al., 1999).

199 The Laguna Fría and La Barda faunas are found above the IBC (Tejedor et al., 2009). The only
200 previously published lower age constraint for the faunas is the outdated ^{40}K - ^{40}Ar age determination
201 discussed above ($58.6 \pm 3.0 \text{ Ma}$) for the caldera-forming IBC (Archangelsky, 1974; Mazzoni et al.,
202 1991), which is separated from the fossil-bearing outcrops by an erosional unconformity of uncertain
203 duration. The upper age constraint is the Mazzoni et al. (1991) set of ca. 43 Ma ^{40}K / ^{40}Ar ages for flows
204 of the Andesitas Huancache from areas to the west of the fossil exposures; those beds were considered
205 stratigraphically higher than the La Barda assemblage by Tejedor et al. (2009).

206

207 **METHODS**

208 **Field Localities and Lithofacies**

209 Fossil-bearing lithofacies were examined in thin-section, hand sample, and outcrop in order to
210 interpret the burial processes and depositional environments associated with fossil preservation.
211 Observations within the caldera were concentrated at the Laguna del Hunco site, and at three other sites
212 with lesser plant-fossil preservation (Central Caldera, Escuela Piedra Parada, and Zeballos Oeste; Fig.
213 1). Our observations also included the Laguna Fría site, which lies outside of the caldera.

214 Four samples from lavas or tuffs were collected and analyzed using the ^{40}Ar / ^{39}Ar method to
215 constrain age ranges of several fossil localities within the caldera complex (Table 1). The Ignimbrita
216 Barda Colorada (Spl. QL-9807) records the principal caldera-forming event (Fig. 2), and it establishes
217 a maximum age for the initial formation of the fossiliferous caldera-lake deposits of the Tufolitas
218 Laguna del Hunco (Fig. 1). The lower member of the IBC is calc-alkaline and high in sodium (Aragón

219 et al., 1987), and the upper member is calc-alkaline with a medium to high-K rhyolitic composition
220 (wt.% SiO₂ = 72-79%; Aragón et al., 1987). The sample dated in this study was collected from the
221 uppermost IBC at the extra-caldera Laguna Fría locality, where a paleo valley is incised into the IBC
222 (Fig. 3K; Fig. 4). The IBC at this locality contains multiple cooling units and is at least 100 meters
223 thick (Mazzoni and Aragón, 1987; Aragón et al., 1987).

224 The Southern Ignimbrite (Spl. IDEPP-04) establishes a minimum age for fossils described from
225 the underlying, southernmost exposures of the Tufolitas Laguna del Hunco at Piedra Parada (Bippus et
226 al. 2016, 2019; Bonfleur and Escapa, 2019; Fig. 2). It is a six-meter-thick, red, erosion-resistant
227 ignimbrite that compromises the uppermost strata in the hills in the far southeastern part of the caldera.
228 The sample was collected ~2.5 km southeast of Escuela Piedra Parada (Fig. 1). It overlies ash-fall tuffs
229 and fans of reworked pyroclastic material, and lies stratigraphically several hundred meters above the
230 gray ashy mudstone facies described at the Escuela Piedra Parada locality.

231 The Laguna Fría Orange Ignimbrite (Spl. VC-20-04) occurs within this locality and establishes
232 a maximum age for the Laguna Fría fauna (Fig. 2). It is a prominent, fourteen-meter-thick welded
233 ignimbrite that lies within a paleo-valley eroded into the Upper IBC at the Laguna Fría locality (Fig. 1).
234 The Orange Ignimbrite thus postdates the IBC, but it predates the Laguna Fría fauna.

235 The Laguna Fría Basalt (Spl. VC-1-04) is an alkali basalt flow of the Andesitas Huancache that
236 cap the paleo-valley where the Laguna Fría fauna are found (Figs. 1, 2, 3K). It thus establishes a
237 minimum age for the fauna (Goin et al., 2000, 2001; Tejedor et al., 2005, 2009). At Laguna Fría, the
238 basalt has an exposed thickness of 40 meters and is one of many basalt flows that interbed and cover
239 the ignimbrite plateau south and west of this area (Figs. 1, 3L; Aragón et al., 1997; Mazzoni et al.,
240 1991).

241

242 **Geochronology**

243 $^{40}\text{Ar}/^{39}\text{Ar}$ age determinations were made from one alkali basalt (Spl. VC-1-04) and three felsic
244 ignimbrites (Spl. VC-20-04, IDEPP-04, QL-9807). Groundmass was separated from basalt, and
245 feldspar (plagioclase and sanidine) crystals were separated from ignimbrites via crushing, sieving to
246 250–500 μm , magnetic sorting, density separation using methylene iodide, and ultimately hand picking
247 under a binocular microscope.

248 Sanidine and plagioclase separates were wrapped in aluminum foil, placed in 2.5 cm aluminum
249 disks, and irradiated along with the 28.201 Ma Fish Canyon sanidine standard (Kuiper et al., 2008) at
250 the Oregon State University TRIGA reactor in the Cadmium-Lined In-Core Irradiation Tube (CLICIT).
251 Two mg of plagioclase from sample VC-1-04 were incrementally heated in 24 steps, whereas single
252 crystal fusion experiments were performed on the other three samples. Incremental heating is the
253 method of choice when dating basaltic lavas as it permits interrogation of whether alteration or
254 inheritance have biased the age of the flow (Singer et al., 2019). All experiments were conducted in
255 the WiscAr laboratory at the University of Wisconsin-Madison using a 50 W CO₂ laser and a Noblesse
256 multi-collector mass spectrometer following the procedures in Jicha et al. (2016). Weighted mean ages
257 are calculated with the decay constants of Min et al. (2000) and are reported with analytical
258 uncertainties at the $\pm 2\sigma$ analytical uncertainties (95% confidence level). Atmospheric argon value used
259 is that of Lee et al. (2006).

260

261 RESULTS

262 Five different fossil-bearing lithofacies were described for this study. *Laminated mudstone* and
263 *green tuff* are interpreted to record deposition in a lacustrine basin floor environment. *Gray ashy*
264 *mudstone* is interpreted to have been deposited both in a lacustrine basin floor environment, and on a
265 subaerial pyroclastic plain. The *coal lithofacies* is interpreted to record deposition on a vegetated,
266 waterlogged pyroclastic plain. The *valley-filling pyroclastic lithofacies* is interpreted to record

267 deposition within an incised valley outside of the caldera. An additional fossil-bearing siltstone facies
268 described in Wilf et al. (2003) was not included during this study.

269

270 *Laminated Mudstone Lithofacies*

271 The laminated mudstone facies occurs only at the Laguna del Hunco locality (Figs. 1, 3A.),,
272 interbedded with several other lacustrine facies. Beds are several cm to a few dm thick. The laminae
273 constitute either black and white couplets or black and dark-gray couplets (Fig. 3B), but these two
274 patterns are not observed within the same bed. Thin-section images show that both the black and the
275 white laminations contain mud to silt sized crystals and altered glass particles. The black laminations
276 also have elongate, fibrous, brown organic matter (Fig. 3C). The outcrop surface appears an off-white
277 or beige color, but a freshly broken surface is medium-brown to black and has a sulfurous odor.
278 Fractures are either conchoidal or follow laminae. Black fragments of leaves and stems are found
279 parallel to laminations. Delicate leaf structures are less common.

280 The laminated mudstone facies is interpreted as suspension fall-out of detrital sediment and
281 organic matter onto a lacustrine basin floor during lulls in volcanic activity, based its grainsize,
282 preservation fine laminae, organic matter content, and absence of scour, graded beds, or other evidence
283 for tractive currents (Fig. 4A). The occasionally conchoidal fractures may reflect high silica content.
284 The laminations could be explained through variability in fine grain sediment influx, organic matter
285 influx, organic matter preservation, or some combination of these three. Examinations of thin-sections
286 reveal that the amount of organic material varies between laminations, while the detrital component is
287 present throughout. This suggests that the laminations may be primarily due to seasonal variation in the
288 production or preservation of organic material, whereas fine-grained inorganic sediment accumulated
289 more uniformly through time.

290

291 *Green Tuff Lithofacies*

292 The green tuff facies occurs at the Laguna del Hunco locality (Figure 1), interbedded with the
293 gray ashy mudstone facies and laminated mudstone facies. This facies consists of pale green, very fine-
294 to medium-grained tuff with fine- to medium-grained plagioclase and biotite crystals that are often
295 visible with the naked eye. The tuff has a mottled texture in hand sample but does not display other
296 sedimentary structure. Fossils in this facies have a light brown stain, but less so than in the gray ashy
297 mudstone facies. Fossils are generally preserved on planes parallel or at a low angle to bedding. These
298 fossils typically do not feature as much detail as those in the gray ashy mudstone beds.

299 The green tuff facies is interpreted as an ash-fall tuff deposited in a lacustrine basin-floor
300 depositional environment, based on its intercalation with laminated mudstone, coarser grainsize, and
301 lack of sedimentary structures indicative of tractive transport. Accumulation of these types of deposits
302 typically spans hours to days (Miller and Casadevall, 2000).

303

304 *Gray ashy Mudstone Lithofacies*

305 The gray ashy mudstone facies, found at the Laguna del Hunco, Escuela Piedra Parada, and
306 Central Caldera localities (Figure 1), has a porcelanitic or cryptocrystalline appearance but lacks
307 crystals visible with the naked eye or hand lens. It weathers to an off-white color, but is gray to brown
308 on a fresh break. Beds are typically a few cm to dm in thickness and laterally extensive for hundreds of
309 meters (Fig. 3D). Thin-sections reveal that 95% of the grains are less than five micrometers (Fig. 3E).
310 Orange staining is commonly observed on fracture surfaces and fossils, making them more visible.
311 Fossils occur on planes parallel and sub-parallel to bedding surfaces. Fracture is moderately
312 conchoidal. Swaley cross-stratification has recently been observed in this facies, suggesting episodes of
313 high-energy wave and combined-flow events in a lake (J.M. Krause and E.A. Hajek, pers. comm.,
314 2019).

315 At the Laguna del Hunco locality this facies contains well-preserved fossil plants, frogs, fish,
316 and insects. Many whole leaves are preserved (Fig. 3F) with well-preserved venation and insect

317 damage, along with delicate flowers, fruits, and insect body-fossils, as reported extensively elsewhere
318 (see Introduction). Bed geometries include sheets, lenses, lobes, and drapes. Gray ashy mudstone beds
319 at the Laguna del Hunco locality are typically intercalated with turbidite, debris-flow, green tuff,
320 laminated mudstone, and green-brown mudstone beds (Figs. 3D, G). The sediment gravity-flow
321 deposits exhibit flame structures and meter-scale soft-sediment folds, which together with current
322 ripples indicate a depositional gradient that sloped toward the east or northeast, away from the
323 resurgent caldera dome (see Fig. 1).

324 Orange staining and fossils are less common at the Escuela Piedra Parada and Central Caldera
325 localities (Fig. 1). In contrast to the Laguna del Hunco locality, the gray ashy mudstone beds are
326 frequently stacked on top one another with few interbedded strata, and are associated with extrusive
327 glass domes (Fig. 3H). The only interbedded units are volcaniclastic sandstone beds rich in angular to
328 subangular crystals and tuff clasts. However, the sections above and below the gray ashy mudstone
329 intervals do contain debris-flows, ash-fall tuffs, ash-flow tuffs, and double-graded pyroclastic debris-
330 flows. Five silicified tree trunks up to 11 m long were observed within the ash flow tuffs at Escuela
331 Piedra Parada (Fig. 3I), in the same general area that preserved a permineralized fossil fern trunk
332 (Bomfleur and Escapa, 2019; Figure 1, localities 3 and 5). In two cases, the tree roots are preserved in
333 life orientation, whereas the trunks are oriented sub-parallel to bedding and aligned parallel.

334 This facies is interpreted to have been deposited in two different environments. At the Laguna
335 del Hunco locality, it is interbedded with turbidites and other facies indicating a lacustrine basin-floor
336 depositional environment (Fig. 4A). The presence of swaley cross stratification in the gray ashy
337 mudstone implies at least partial reworking by waves, possibly in combination with unidirectional flow
338 (cf., Dumas and Arnott, 2006). At the Central Caldera and Escuela Piedra Parada localities, it was
339 deposited on a subaerial pyroclastic plain. Associated ash flows knocked down trees and covered the
340 ground surface. Sheet flood transport processes, shallow channelization, and air-fall pyroclastic events
341 deposited centimeter to decimeter beds of varying geometries and levels of immaturity (Fig. 4B).

342 Meter-scale welded ignimbrites filled-in and reorganized topography above and below the strata
343 containing gray ashy mudstone facies.

344

345 *Coal Lithofacies*

346 The coal facies occurs at the Zeballos Oeste (Fig. 1). A single cm-thick coal seam is observed in
347 place, and is encased by brown-gray tuff. Fragmented plant material is preserved on distorted, sub-
348 parallel surfaces, but leaves are less well preserved than in other facies. Directly below the coal seam
349 are dm-scale, compensationally-stacked beds with a lenticular geometry. The coal is overlain by a
350 massive, several-meter-thick bed that contains coaly intraclasts.

351 The coal facies is interpreted as a leaf mat deposited under reducing conditions on a vegetated,
352 waterlogged pyroclastic lake margin (Fig. 4C). Coal intraclasts in the overlying beds suggest erosion
353 of up-dip coal forming environments.

354

355 *Valley-Filling Pyroclastic Lithofacies*

356 The valley-filling pyroclastic facies examined for this study is confined to a northwest-
357 southeast-oriented paleo valley incised into the Ignimbrita Barda Colorado southeast of the caldera (the
358 Laguna Fría locality; Figs. 1, 2). A modern valley that is oriented northeast-southwest exposes multiple
359 paleo-valleys in this area. The valley-filling pyroclastic facies is broadly defined to include non-welded
360 tuffaceous deposits and reworked pyroclastic deposits (Fig. 3J). Dm-thick beds can have erosive bases,
361 are generally matrix-supported and fining-upwards, and contain lapilli. In contrast, cm-thick beds are
362 more likely to be grain-supported and contain crossbedding and root casts. Some of these beds are
363 dominated by crystal grains or ash lapilli of multiple compositions, with a marked reduction in fine-
364 grained matrix. A few beds have sub-angular tuff clasts up to 1 cm. Most beds continue across the
365 entire outcrop. A small number of the grain-supported beds have very broad U-shaped geometries up to
366 two meters across. This facies contains abundant vertebrate specimens described as the Laguna Fría

367 fauna (Tejedor et al., 2005; 2009). Silicified trunk material was also found as float at this locality, but
368 no leaves or other plant compressions were found. The Laguna Fría vertebrate assemblage occurs
369 predominantly above the prominent Laguna Fría Orange Ignimbrite and below the Laguna Fría
370 Capping Basalt (Fig. 3K).

371 The valley-filling pyroclastic facies is interpreted as a combination of primary and reworked
372 pyroclastic deposits within an extra-caldera paleo-valley incised into the Ignimbrita Barda Colorada
373 (Fig. 4D). Composition, grain distribution, and fluid escape tubes suggest some of the pyroclastic
374 material was deposited by ash-fall and other ash-cloud mechanisms. Some beds were buried intact by
375 later pyroclastic eruptions. Others were partially or fully reworked by a combination of fluvial and
376 sheet flood processes. This is especially apparent in the tops of some dm-scale pyroclastic beds where
377 centimeter-scale cross-bedded intervals, ripples, and well-sorted volcaniclastic sands suggest partial
378 reworking of the tops of the beds only. Channels of only a few meters width were observed, suggesting
379 an environment controlled by small-scale fluvial and sheet-flood processes. The depositional
380 environment was akin to a partially filled alluvial canyon.

381

382 **$^{40}\text{Ar}/^{39}\text{Ar}$ Ages**

383 *The Upper Ignimbrita Barda Colorada*

384 Laser fusion experiments were performed on 16 individual crystals. Of these, only two yield
385 K/Ca ratios consistent with sanidine, whereas the remainder were plagioclase and thus were excluded
386 from analysis. The weighted mean age of the two sanidine dates is 52.54 ± 0.17 Ma (Fig. 5).

387

388 *Southern Ignimbrite*

389 Plagioclase was separated from this ignimbrite because no sanidine was present. Eighteen laser
390 fusion experiments on individual plagioclase crystals give a weighted mean age of 49.38 ± 0.12 Ma
391 (Fig. 5). However, the isochron calculated from these 18 crystals gives an intercept of 310.7 ± 3.7 ,

392 which is significantly higher than the atmospheric value. Hence, the isochron age of 49.19 ± 0.24 Ma is
393 preferred.

394

395 *Laguna Fría Orange Ignimbrite*

396 Plagioclase crystals were separated from this ignimbrite because no sanidine was present.

397 Single-crystal laser fusion experiments were performed on 19 plagioclase crystals. Eleven of these
398 experiments produced radiogenic $^{40}\text{Ar}^*$ concentrations lower than 70%, which may represent post-
399 depositional loss of $^{40}\text{Ar}^*$. Excluding these from the results yields a distribution of dates with a
400 weighted mean age of 49.00 ± 0.16 Ma (Fig. 5). However, the isochron calculated from these 19
401 crystals gives an intercept of 290.5 ± 3.3 , which is lower than the atmospheric value. Hence, the
402 isochron age of 49.26 ± 0.30 Ma is preferred.

403

404 *Laguna Fría Capping Basalt*

405 A 24-step incremental heating experiment on a two mg groundmass separate yields an age
406 spectrum with low temperature steps characterized by younger apparent ages. We interpret this
407 discordance to reflect argon loss due to weathering and excluded the younger steps in the calculation of
408 a plateau age. Notwithstanding, an age plateau, defined by 87% of the ^{39}Ar released, signifies that the
409 basalt has a largely homogenous distribution of radiogenic argon, and yields an apparent age of $43.50 \pm$
410 1.14 Ma, which is indistinguishable from the inverse isochron age of 43.50 ± 2.22 Ma (Fig. 6).

411

412 **DISCUSSION**

413 The $^{40}\text{Ar}/^{39}\text{Ar}$ ages reported here represent new, fully-documented constraints on the timing of
414 the Laguna del Hunco flora and Laguna Fría fauna (Figure 7). The age of the Ignimbrita Barda
415 Colorado was previously reported as 58.6 ± 3.0 Ma ($\pm 1\sigma$) based on older $^{40}\text{K}/^{40}\text{Ar}$ techniques
416 (Archangelsky, 1974), but can now be revised to 52.54 ± 0.17 Ma ($\pm 2\sigma$), a difference of ~6 million

417 years. The new age is not distinguishable from the $^{40}\text{Ar}/^{39}\text{Ar}$ ages of tuffs at the Laguna del Hunco
418 locality (52.22 ± 0.22 Ma; Wilf, 2012) given the 2σ uncertainties, a finding that is consistent with rapid
419 initial deposition (Fig. 2 and Fig. 7) following the formation of a topographic depression during or
420 shortly after the initial caldera eruption.

421 The southern ignimbrite occurs hundreds of meters stratigraphically above the gray ashy
422 mudstone facies at Escuela Piedra Parada. It's 49.19 ± 0.24 Ma age therefore establishes a minimum
423 age for the gray ashy mudstone facies at this locality. The same constraint may also extend to the gray
424 ashy mudstone facies at the Laguna del Hunco locality, if deposition of this facies in both areas
425 occurred in response to a common eruptive history. The southern ignimbrite may also constrain the
426 age of fossil fern trunks located ~ 5 km to the west (Bippus et al., 2019; Bomfleur and Escapa, 2019;
427 Fig. 1).

428 Maximum and minimum age constraints for the Laguna Fría fauna are defined by the
429 underlying 49.26 ± 0.30 Ma Laguna Fría Orange Ignimbrite, and the overlying 43.50 ± 1.14 Ma
430 Laguna Fría capping basalt. The relationship of these ages to the nearby La Barda fauna remains
431 unclear however. Tejedor et al. (2009) inferred that the Laguna Fría capping basalt represents a basal
432 basalt flow of the Andesitas Huancache, and that the La Barda fauna lies stratigraphically above this
433 basal flow and therefore must be younger. They assumed a 47-45 Ma age range for the La Barda
434 fauna, based on a preliminary $^{40}\text{Ar}/^{39}\text{Ar}$ age determination for the Laguna Fría basalt of 47.89 ± 1.21 Ma
435 (Gosses et al., 2006) and on $^{40}\text{K}/^{40}\text{Ar}$ ages of ~ 43 Ma for an overlying lava flow (Mazzoni et al., 1991).
436 If the stratigraphic relationships inferred by Tejedor et al. (2009) are correct, our revised age for the
437 Laguna Fría capping basalt requires that the La Barda fauna is in fact younger than ~ 43.50 Ma. It must
438 be noted however that these localities lie ~ 6 km apart in an area that experienced a spatially complex
439 history of basaltic eruptions. The detailed stratigraphy of these flows has not been mapped, making
440 precise correlation between sites problematic. Examination of satellite imagery (Fig. 3L) suggests
441 that both localities lie stratigraphically below a prominent mesa-forming basalt, which approximately

442 corresponds to the Laguna Fría capping basalt sampled in this study. Tejedor et al. (2009) reported
443 faunistic similarities between the two fossil assemblages. Based on the data presented here, we cannot
444 conclusively determine the age relationship between the La Barda and Laguna Fría fauna; it appears
445 possible that they are the same age. A more detailed investigation of field relationships and basalt ages
446 is needed to resolve this ambiguity. More broadly, the available age constraints on these faunas overlap
447 with the age ranges proposed by Krause et al. (2017) for the Riochican and Vacan fauna, and therefore
448 do not directly support the existence of a temporally distinct “Sapoan” SALMA.

449 Tejedor et al. (2009) considered the vegetation and paleoclimate for the Laguna Fría and La
450 Barda mammals to be best represented by the ca. 52.2 Ma Laguna del Hunco and ca. 47.7 Ma Río
451 Pichileufú (Río Negro) rainforest floras (Berry, 1938; Wilf et al., 2005a; Wilf, 2012). These sites show
452 that generally similar floral composition, elevated floral richness, and a mesic rainforest environment
453 persisted in the region for an extended period of time that encompassed these faunas. Our new
454 geochronologic results show that this argument remains plausible, but only in the older part of its
455 possible age range. The younger end of the permissible age range, extending to 43.50 ± 1.14 Ma,
456 corresponds with substantially cooler and drier conditions and major vegetation changes, both
457 regionally and globally (Palazzi and Barreda, 2007; Zachos et al., 2008; Dunn et al., 2015)

458

459 CONCLUSIONS

460 The Middle Chubut River Pyroclastic and Volcanic Complex preserves fossil assemblages
461 associated with multiple terrestrial, volcaniclastic lithofacies, that lie stratigraphically above the
462 caldera-forming Ignimbrita Barda Colorada. A new $^{40}\text{Ar}/^{39}\text{Ar}$ age for the caldera-forming Ignimbrita
463 Barda Colorada of 52.54 ± 0.17 Ma is preferred over previous age determinations. This age is
464 indistinguishable, given the 2σ uncertainties, from a 52.22 ± 0.22 Ma $^{40}\text{Ar}/^{39}\text{Ar}$ age previously reported
465 for a tuff at the Laguna del Hunco fossil locality (Wilf, 2012), demonstrating rapid onset of lacustrine
466 deposition and prolific fossil preservation following caldera subsidence. An ignimbrite deposited above

467 the fossil-strata gives an age of 49.19 ± 0.24 Ma, collectively indicating that the Laguna del Hunco
468 flora broadly coincided with the Early Eocene Climatic Optimum (~53-50 Ma; Zachos et al., 2008).

469 The Laguna Fría fauna is younger, constrained between the 49.26 ± 0.30 Ma Laguna Fría
470 orange ignimbrite and the 43.50 ± 1.14 Ma Laguna Fría capping basalt. The age of the nearby La
471 Barda fauna is more difficult to confidently determine. If previous stratigraphic relations inferred by
472 Tejedor et al. (2009) are correct, then the La Barda fauna is at least 2 million years younger than its
473 previously assumed age range of 47-45 Ma. The detailed stratigraphy of basaltic eruptions is poorly
474 known however, and it is therefore possible that the La Barda and Laguna Fría faunas are similar in
475 age. Finally, the Laguna Fría age range overlaps with the age ranges proposed by Krause et al. (2017)
476 for the Riochican and Vacan faunas and therefore does not directly support the existence of a
477 temporally distinct “Sapoan” SALMA.

478

479 **ACKNOWLEDGMENTS**

480 We thank Jessica Lopez for help in the field, Lauren Chetel and Bryan Wathen for assistance in
481 the laboratory, and E.A. Hajek and J.M. Krause for their helpful comments on an earlier version of the
482 manuscript. We also thank two anonymous reviewers for their constructive comments. This research
483 was supported by a 2005 AAPG Student Grant-In-Aid, NSF grants DEB-0345750, DEB-1556666, and
484 EAR-1925755, and the University of Wisconsin Department of Geoscience.

485

486 **REFERENCES**

487
488 Alric, V., 1997, Estudio de los basaltos portadores de xenolitos ultrabásicos aflorantes en la Hoja 45c,
489 Paso de Indios, Provincia del Chubut [Ph.D. thesis]: San Juan Bosco, Universidad Nacional de
490 la Patagonia, 168 p.
491 Ameghino, F., 1906, Les formations sédimentaires du Crétacé Supérieur et du Tertiaire de Patagonie
492 avec un parallèle entre leurs faunes mammalogiques et celles de l'ancien continent: Anales del
493 Museo Nacional de Historia Natural de Buenos Aires, v. 15, no. 8, p. 1-568.
494 Aragón, E., Aguilera, Y. D., González, P. D., Gómez Peral, L., Cavarozzi, C. E., and Ribot, A., 2001,
495 El Intrusivo Florentina del complejo volcánico piroclástico del Río Chubut medio (Paleocene-

496 Eoceno medio): un ejemplo de etmolito o embudo: Revista de la Asociación Geológica
497 Argentina, v. 56, no. 2, p. 161-172.

498 Aragón, E., and Mazzoni, M.M., 1997, Geología y estratigrafía del complejo volcánico piroclástico del
499 Río Chubut medio (Eoceno), Chubut, Argentina: Revista de la Asociación Geológica Argentina,
500 v. 52, no. 3, p. 243-256.

501 Aragón, E., and Romero, E. J., 1984, Geología, paleoambientes y paleobotánica de yacimientos
502 Terciarios del occidente de Río Negro, Neuquén y Chubut: Actas del IX Congreso Geológico
503 Argentino, San Carlos de Bariloche, v. 4, p. 475-507.

504 Aragón, E., Castro, A., Diaz-Alvarado, J., Pinotti, L., D'eramo, F., Demartis, M., Coniglio, J.,
505 Hernando, I., and Rodriguez, C., 2018, Mantle derived crystal-poor rhyolitic ignimbrites:
506 Eruptive mechanism from geochemical and geochronological data of the Piedra Parada caldera,
507 Southern Argentina: Geoscience Frontiers, v. 9, no. 5, p. 1529-1553.

508 Aragón, E., González, P. D., Aguilera, Y., Marquett, C., Cavarozzi, C., and Ribot, A., 2004, El domo
509 vitrofírico Escuela Piedra Parada Piedra Parada del Complejo Volcanico Piroclastico del Río
510 Chubut Medio: Revista de la Asociación Geológica Argentina, v. 59, no. 4, p. 634-642.

511 Aragón, E., Mazzoni, M.M., and Merodio, J., 1987, Caracterización geoquímica de Ignimbrita Barda
512 Colorada en el Río Chubut medio, Argentina; Actas 10º Congreso Geológico Argentino, p. 171-
513 173.

514 Archangelsky, S., 1974, 2005, La paleobotánica en Argentina y su desarrollo durante los últimos 50
515 años: Asociación Paleontológica Argentina. Publicación Especial, v. 10, p. 37-49.

516 Archangelsky, S., 1974, Sobre la edad de la taflora de la Laguna del Hunco, Prov. de Chubut:
517 Ameghiniana, v. 11, p. 413- 417.

518 Azpelicueta, M. M., and Cione, A. L., 2011, Re-description of the Eocene catfish *Bachmannia*
519 *chubutensis* (Teleostei: Bachmanniidae) of southern South America: Journal of Vertebrate
520 Paleontology, v. 31, p. 258-269.

521 Báez, A. M., and Pugener, L. A., 2003, Ontogeny of a new Palaeogene pipid frog from southern South
522 America and xenopodinomorph evolution: Zoological Journal of the Linnean Society, v. 139,
523 no. 3, p. 439-476.

524 Báez, A. M., and Trueb, L., 1997, Redescription of the Paleogene *Shelania pascuali* from Patagonia
525 and its bearing on the relationships of fossil and Recent pipoid frogs: Scientific Papers, Natural
526 History Museum, The University of Kansas, v. 4, p. 1-41.

527 Barreda, V. D., Palazzesi, L., Tellería, M. C., Katinas, L., Crisci, J. V., Bremer, K., Passalia, M. G.,
528 Corsolini, R., Rodríguez Brizuela, R., and Bechis, F., 2010, Eocene Patagonia fossils of the
529 daisy family: Science, v. 329, no. 5999, p. 1621.

530 Bellosi, E. S., 2010, Physical stratigraphy of the Sarmiento Formation (middle Eocene-lower Miocene)
531 at Gran Barranca, central Patagonia, in Madden, R. H., Carlini, A. A., Vucetich, M. G., and
532 Kay, R. F., eds., The Paleontology of Gran Barranca: Cambridge, UK, Cambridge University
533 Press, p. 19-31.

534 Berry, E. W., 1925, A Miocene flora from Patagonia: Johns Hopkins University Studies in Geology, v.
535 6, p. 183-251.

536 Berry, E. W., 1938, Tertiary flora from the Río Pichileufú, Argentina: Geological Society of America
537 Special Paper, v. 12, p. 1-149.

538 Bippus, A. C., Escapa, I. H., and Tomescu, A., 2016, Tiny ecosystems: bryophytes and other biotic
539 interactions around an osmundaceous fern from the Eocene of Patagonia: Botany 2016,
540 Savannah Georgia, Abstract 243.

541 Bippus, A. C., Escapa, I. H., Wilf, P., and Tomescu, A. M. F., 2019, Fossil fern rhizomes as a model
542 system for exploring epiphyte community structure across geologic time: evidence from
543 Patagonia: PeerJ, v. 7, p. e8244.

544 Bomfleur, B., and Escapa, I., 2019, A silicified Todea trunk (Osmundaceae) from the Eocene of
545 Patagonia: *Paläontologische Zeitschrift*, doi:10.1007/s12542-019-00479-6.

546 Busby-Spera, C., 1984, Large-volume rhyolite ash flow eruptions and submarine caldera collapse in the
547 lower Mesozoic Sierra Nevada, California: *Journal of Geophysical Research B*, v. 89, p. 8417-
548 8427.

549 Carlini, A.A., Ciancio, M., and Scillato-Yane', G.J., 2005, Los xenarthros de Gran Barranca: más de 20
550 Ma de Historia in *Actas 16º Congreso Geológico Argentino*, La Plata, p. 315-322.

551 Casamiquela, R. M., 1961, Un pipoideo fósil de Patagonia: *Revista del Museo de La Plata, Sección*
552 *Paleontología*, v. 4, no. 22, p. 71-123.

553 Clyde, W. C., Wilf, P., Iglesias, A., Slingerland, R. L., Barnum, T., Bijl, P. K., Bralower, T. J.,
554 Brinkhuis, H., Comer, E. E., Huber, B. T., Ibañez-Mejia, M., Jicha, B. R., Krause, J. M.,
555 Schueth, J. D., Singer, B. S., Raigemborn, M. S., Schmitz, M. D., Sluijs, A., and Zamaloa, M.
556 C., 2014, New age constraints for the Salamanca Formation and lower Río Chico Group in the
557 western San Jorge Basin, Patagonia, Argentina: *Geological Society of America Bulletin*, v. 126,
558 no. 2-4, p. 289-306.

559 Comer, E. E., Slingerland, R. L., Krause, J. M., Iglesias, A., Clyde, W. C., Raigemborn, M. S., and
560 Wilf, P., 2015, Sedimentary facies and depositional environments of diverse early Paleocene
561 floras, north-central San Jorge Basin, Patagonia, Argentina: *Palaios*, v. 30, p. 553-573.

562 Dalla Salda, L.H., and Franzese, J., 1987, Las Megaestructuras de macizo y cordillera Norpatagónica
563 Argentina y la génesis de las cuencas volcano-sedimentarias terciarias: *Revista Geológica de*
564 *Chile*, v. 31, p. 3-13.

565 Dalrymple, G., 1979, Critical tables for conversion of K-Ar ages from old to new constraints: *Geology*,
566 v. 7, p. 558-560.

567 Diessel, C.F.K., 1992, Coal-Bearing Depositional Systems: New York City, Springer-Verlag Telos.
568 721 p.

569 Dolgopol de Sáez, M., 1941, Noticias sobre peces fósiles Argentinos. Siluroideos Terciarios de Chubut:
570 Notas del Museo de La Plata, v. 35, p. 451-457.

571 Dumas, S., and Arnott, R.W.C., 2006, Origin of hummocky and swaley cross-stratification-the
572 controlling influence of unidirectional current strength and aggradation rate: *Geology*, v. 34, p.
573 1073-1076.

574 Dunn, R. E., Madden, R. H., Kohn, M. J., Schmitz, M. D., Strömberg, C. A. E., Carlini, A. A., Ré, G.
575 H., and Crowley, J., 2013, A new chronology for middle Eocene-early Miocene South
576 American Land Mammal Ages: *Geological Society of America Bulletin*, v. 125, no. 3-4, p. 539-
577 555.

578 Dunn, R. E., Strömberg, C. A. E., Madden, R. H., Kohn, M. J., and Carlini, A. A., 2015, Linked
579 canopy, climate, and faunal change in the Cenozoic of Patagonia: *Science*, v. 347, no. 6219, p.
580 258-261.

581 Feruglio, E., 1949, Descripción geológica de la Patagonia, vol. II, Buenos Aires, Ministerio de
582 Industria y Comercio de la Nación, Dirección General de Yacimientos Petrolíferos Fiscales.

583 Fidalgo, P., and Smith, D. R., 1987, A fossil Siricidae (Hymenoptera) from Argentina: *Entomological*
584 *News*, v. 98, no. 2, p. 63-66.

585 Flynn, J. J., and Swisher, C. C., III, 1995, Cenozoic South American Land Mammal Ages: correlation
586 to global geochronologies, Volume *Geochronology time scales and global stratigraphic*
587 *correlation*, SEPM, p. 317-333.

588 Frenguelli, J., 1943, Restos de Casuarina en el Mioceno de El Mirador, Patagonia central: *Notas del*
589 *Museo de La Plata*, v. 8, no. 56, p. 349-354.

590 Gandolfo, M. A., Hermsen, E. J., Zamaloa, M. C., Nixon, K. C., González, C. C., Wilf, P., Cúneo, N.
591 R., and Johnson, K. R., 2011, Oldest known *Eucalyptus* macrofossils are from South America:
592 *PLoS One*, v. 6, no. 6, p. e21084.

593 Gaudry, M. A., 1906, Fossiles de Patagonie. Étude sur une portion du monde antarctique: Annales de
594 Paléontologie, v. 1, p. 101-143.

595 Gelfo, J. N., Goin, F. J., Woodburne, M. O., and de Muizon, C., 2009, Biochronological relationships
596 of the earliest South American Paleogene mammalian faunas: *Palaeontology*, v. 52, no. 1, p.
597 251-269.

598 Goin, F. J., Case, J. A., Woodburne, M. O., Vizcaíno, S. F., and Reguero, M. A., 1999, New
599 discoveries of "opossum-like" marsupials from Antarctica (Seymour Island, medial Eocene):
600 *Journal of Mammalian Evolution*, v. 6, no. 4, p. 335-365.

601 Goin, F. J., Gelfo, J. N., Chornogubsky, L., Woodburne, M. O., and Martin, T., 2012a, Origins,
602 radiations, and distribution of South American mammals: from greenhouse to icehouse worlds,
603 in Patterson, B. D., and Costa, L. P., eds., *Bones, Clones, and Biomes: the History and*
604 *Geography of Recent Neotropical Mammals*: Chicago, University of Chicago Press, p. 20-50.

605 Goin, F. J., Tejedor, M., Chornogubsky, L., López, G. M., Gelfo, J. N., Bond, M., Woodburne, M. O.,
606 Gurovich, Y., and Reguero, M., 2012b, Persistence of a Mesozoic, non-therian mammalian
607 lineage (Gondwanatheria) in the mid-Paleogene of Patagonia: *Naturwissenschaften*, v. 99, no. 6,
608 p. 449-463.

609 Goin, F. J., Vieytes, E. C., Gelfo, J. N., Chornogubsky, L., Zemicz, A. N., and Reguero, M. A., 2018,
610 New metatherian mammal from the early Eocene of Antarctica: *Journal of Mammalian*
611 *Evolution*, doi: 10.1007/s10914-10018-19449-10916.

612 Goin, F., Tejedor, B. M., Lopez, G., and Reguero, M., 2000, Mamíferos Eocenos de Paso del Sapo,
613 Chubut, Argentina: *Ameghiniana*, v. 37, p. 25R-26R.

614 Goin, F., Tejedor, M., and Abello, A., 2001, Conclusiones preliminares sobre la asociación de
615 marsupiales Paleogenos de Laguna Giordanella, Paso del Sapo, Chubut, Argentina; Eocene
616 Medio: *Ameghiniana*, v. 38, p. 9R-10R.

617 Gosses, J., 2006, Stratigraphy and 40Ar/39Ar geochronology of the Laguna del Hunco Formation: a
618 lacustrine and sub-aerial caldera moat formation [M.S.: University of Wisconsin, Madison, 1-
619 265 p.

620 Gosses, J., Carroll, A., Aragón, E., and Singer, B., 2006, The Laguna del Hunco formation: Lacustrine
621 and Sub-Aerial Caldera Fill, Chubut Province, Argentina: *Geological Society of America*
622 *Annual Meeting Abstracts*, v. 38, no. 7, p. 502.

623 Harding, I. C. and Chant, L.S., 2000, Self-sedimentation diatom mats as agents of exceptional fossil
624 preservation in the Oligocene Florissant Lake Beds, Colorado, United States: *Geology*, v. 29,
625 no. 3, p. 195-198.

626 Iannelli, S. B., Litvak, V. D., Fernández Paz, L., Folguera, A., Ramos, M. E., and Ramos, V. A., 2017,
627 Evolution of Eocene to Oligocene arc-related volcanism in the North Patagonian Andes (39–
628 41°S), prior to the break-up of the Farallon plate: *Tectonophysics*, v. 696–697, p. 70-87.

629 Ivany, L.C. 2007, Contributions to the Eocene climatic record of the Antarctic Peninsula: United States
630 Geological Survey Open File Report 1047, U.S. Geological Survey and the National Academies
631 Extended Abstracts, v. 68, p. 1-4.

632 Jicha, B.R., Singer, B.S., Sobol, P., 2016. Re-evaluation of the ages of 40Ar/39Ar sanidine standards
633 and supereruptions in the western U.S. using a Noblesse multi-collector mass spectrometer.
634 *Chem. Geol.* 431, 54–66, <https://doi.org/10.1016/j.chemgeo.2016.03.024>.

635 Kay, R.F., Madden, R.H., Vucetich, M.G., Carlini, A.G., Mazzoni, M.M., Re, G., Heizler, M., and
636 Sandeman, H., 1999, Revised geochronology of the Casamayoran South American Land
637 Mammal Age: climatic and biotic implications: *Proceedings of the National Academy of*
638 *Sciences of the United States of America*, v. 95, p. 13235–13240.

639 Kooyman, R. M., Wilf, P., Barreda, V. D., Carpenter, R. J., Jordan, G. J., Sniderman, J. M. K., Allen,
640 A., Brodribb, T. J., Crayn, D., Feild, T. S., Laffan, S. W., Lusk, C. H., Rossetto, M., and
641 Weston, P. H., 2014, Paleo-Antarctic rainforest into the modern Old World Tropics: the rich

642 past and threatened future of the "southern wet forest survivors": American Journal of Botany,
643 v. 101, no. 12, p. 2121-2135.

644 Krause, J. M., Clyde, W. C., Ibañez-Mejía, M., Schmitz, M., Barnum, T., Bellosi, E., and Wilf, P.,
645 2017, New age constraints for early Paleogene strata of central Patagonia, Argentina:
646 implications for the timing of South America land mammal ages: Geological Society of
647 America Bulletin, v. doi: 10.1130/B31561.1.

648 Kuiper, K. F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., and Wijbrans, J.R., 2008,
649 Synchronizing Rock Clocks of Earth History: Science, v. 320, p. 500-504.

650 Labandeira, C. C., Wilf, P., Cuneo, N. R., and Johnson, K., 2004, Eocene plant-insect associational
651 diversity at Laguna del Hunco, Patagonia, Argentina: Geological Society of America, Abstracts
652 with Programs, v. 36, no. 5, p. 95.

653 Lawver, L. A., Gahagan, L. M., and Dalziel, I. W. D., 2011, A different look at gateways: Drake
654 Passage and Australia/Antarctica, in Anderson, J. B., and Wellner, J. S., eds., Tectonic,
655 climatic, and cryospheric evolution of the Antarctic Peninsula: Washington, DC, AGU, p. 5-33.

656 Lee, J.-Y., Martí, K., Severinghaus, J.P., Kawamura, K., Yoo, H.-S., Lee, J.B., Kim, J.S., 2006. A
657 redetermination of the isotopic abundance of atmospheric Ar. *Geochim. Cosmochim. Acta* 70,
658 4507–4512.

659 Lipman, P.W., 1997, Subsidence of ash-flow calderas: relation to caldera size and magma-chamber
660 geometry: *Bulletin of Volcanology*, v. 59, p. 198-218.

661 Lorente, M., 2016, Isolated litopterna postcranial remains from La Barda Tuff (early Eocene), Paso del
662 Sapo, Chubut, Argentina: proposed association with dental taxa and their implications:
663 *Ameghiniana*, v. 53, no. 1, p. 26-38.

664 Lorente, M., Chornogubsky, L., and Goin, F. J., 2016, On the existence of non-microbiotherian
665 Australidelphian marsupials (Diprotodontia) in the Eocene of Patagonia: *Palaeontology*, v. 59,
666 no. 4, p. 533-547.

667 Lorente, M., Chornogubsky, L., and Goin, F. J., 2016, On the existence of non-microbiotherian
668 Australidelphian marsupials (Diprotodontia) in the Eocene of Patagonia: *Palaeontology*, v. 59,
669 no. 4, p. 533-547.

670 Madden, R.H., Bellosi, E., Carlini, A.A., Heizler, M., Vilas, J.J., Re, G., Kay, R.F., and Vucetich,
671 M.G., 2005, Geochronology of the Sarmiento Formation at Gran Barranca and elsewhere in
672 Patagonia: calibrating middle Cenozoic mammal evolution in South America: *Actas 16º*
673 Congreso Geológico Argentino, La Plata, no. 4, p. 411-412.

674 Mazzoni, M. M., Aragón, E., and Merodio, J. C., 1989, La Ignimbrita Barda Colorada del complejo
675 volcánico piroclástico del Río Chubut Medio: *Revista de la Asociación Geológica Argentina*, v.
676 44, no. 1-4, p. 246-258.

677 Mazzoni, M. M., Kawashita, K., Harrison, S., and Aragón, E., 1991, Edades radimétricas Eocenas.
678 Borde occidental del Macizo Norpatagónico: *Revista de la Asociación Geológica Argentina*, v.
679 46, no. 1-2, p. 150-158.

680 Mazzoni, M. M., Kawashita, K., Harrison, S., and Aragón, E., 1991, Edades radimétricas Eocenas.
681 Borde occidental del Macizo Norpatagónico: *Revista de la Asociación Geológica Argentina*, v.
682 46, no. 1-2, p. 150-158.

683 Mazzoni, M.M., and Aragón, E., 1987, La Ignimbrita Barda Colorada del Complejo Volcánico
684 Piroclástico del Río Chubut Medio: *Actas 10º Congreso Geológico Argentino*, La Plata, p. 168-
685 170.

686 Melendi, D. L., Scafati, L. H., and Volkheimer, W., 2003, Palynostratigraphy of the Paleogene Huitrera
687 Formation in N-W Patagonia, Argentina: *Neues Jahrbuch für Geologie und Paläontologie-*
688 *Abhandlungen*, v. 228, no. 2, p. 205-273.

689 Min, K., Mundil, R., Renne, P.R., Ludwig, K.R., 2000. A test for systematic errors in $40\text{Ar}/39\text{Ar}$
690 geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. *Geochim.*
691 *Cosmochim. Acta* 64, 73–98.

692 Palazzi, L., and Barreda, V., 2007, Major vegetation trends in the Tertiary of Patagonia (Argentina):
693 a qualitative paleoclimatic approach based on palynological evidence: *Flora*, v. 202, p. 328-337.

694 Pascual, R., 2006, Evolution and geography: the biogeographic history of South American land
695 mammals: *Annals of the Missouri Botanical Garden*, v. 93, no. 2, p. 209-230.

696 Pascual, R., and Ortíz-Jaureguizar, E., 1991, El ciclo faunístico Cochabambiano (Paleoceno temprano):
697 su incidencia en la historia biogeográfica de los mamíferos sudamericanos in Suárez Soruco, R.,
698 ed., *Fósiles y facies de Bolivia: Vertebrados*, v. 1, *Revista Técnica de Yacimientos Petrolíferos*
699 *Fiscales Bolivianos*, v. 12, no. 3-4, p. 559–574.

700 Pascual, R., Archer, M., Ortiz-Jaureguizar, E., Prado, J. L., Godthelp, H., and Hand, S. J., 1992, First
701 discovery of monotremes in South America: *Nature*, v. 356, no. 6371, p. 704-706.

702 Petersen, C. S., 1946, Estudios geológicos en la región del Río Chubut medio: *Boletín de la Dirección*
703 *Nacional de Geología y Minería*, no. 59, 137 p.

704 Petrulevičius, J., 2015, A new *Synlestidae* damselfly (Insecta: Odonata: Zygoptera) from the early
705 Eocene of Nahuel Huapi Este, Patagonia, Argentina: *Arquivos Entomológicos*, v. 14, p. 287-
706 294.

707 Petrulevičius, J. F., 2016, A new pentatomoid bug from the Ypresian of Patagonia, Argentina: *Acta*
708 *Palaeontologica Polonica*, v. 61, no. 4, p. 863-868.

709 Petrulevicius, J. F., and Nel, A., 2013, A new *Frenguelliidae* (Insecta: Odonata) from the early Eocene
710 of Laguna del Hunco, Patagonia, Argentina: *Zootaxa*, v. 3616, no. 6, p. 597-600.

711 Rapela, C.W., Spalletti, L.A., Merodio, J.C., and Aragón, E., 1984, El vulcanismo Paleoceno – Eoceno
712 de la provincial volcánica Andino - Patagónica: *Actas 9º Congreso Geológico Argentino*, no. 1,
713 p. 189-213.

714 Rapela, C. W., Spalletti, L. A., Merodio, J. C., and Aragón, E., 1988, Temporal evolution and spatial variation of early
715 Tertiary volcanism in the Patagonian Andes (40° S-42°30' S): *Journal of South American Earth Sciences*, v. 1, p.
716 75-88.

717 Reguero, M. A., Gelfo, J. N., López, G. M., Bond, M., Abello, A., Santillana, S. N., and Marenssi, S.
718 A., 2014, Final Gondwana breakup: the Paleogene South American native ungulates and the
719 demise of the South America–Antarctica land connection: *Global and Planetary Change*, v.
720 123B, p. 400-413.

721 Reguero, M., Goin, F., Hospitaleche, C. A., Dutra, T., and Marenssi, S., 2013, Late
722 Cretaceous/Paleogene West Antarctica terrestrial biota and its intercontinental affinities,
723 Dordrecht, Springer, *Springer Briefs in Earth System Sciences*.

724 Reguero, M.A., Marenssi, S.A., and Santillana, S.N., 2002, Antarctic peninsula and South America
725 (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships:
726 *Paleogeography, Palaeoclimatology, Palaeoecology*, v. 179, p. 189-210.

727 Renne, P., Swisher, C., Deino, A., Karner, D., Owens, T., and DePaola, D., 1998, Intercalibration of
728 standards, absolute ages and Uncertainties in $40\text{Ar}/39\text{Ar}$ dating: *Chemical Geology*, v. 145, p.
729 117-152.

730 Renne, P.R., 2000, K-Ar and $40\text{Ar}/39\text{Ar}$ Dating in Quaternary Geochronology: Methods and
731 Applications, in Noller, J.S., Sowers, J.M., and Lettis, W.R., eds., *American Geophysical*
732 *Union Reference Shelf Series* v. 4, p. 77-100.

733 Romero, E. J., and Hickey, L. J., 1976, A fossil leaf of Akaniaceae from Paleocene beds in Argentina:
734 *Bulletin of the Torrey Botanical Club*, v. 103, no. 3, p. 126-131.

735 Romero, E. J., Dibbern, M. C., and Gandolfo, M. A., 1988, Revisión de *Lomatia bivascularis* (Berry)
736 *Frenguelli* (Proteaceae) del yacimiento de la Laguna del Hunco (Paleoceno), Pcia. del Chubut:

737 Actas del IV Congreso Argentino de Paleontología y Bioestratigrafía, Mendoza, v. 3, p. 125-
738 130.

739 Salgado, L., 2007, Patagonia and the study of its Mesozoic reptiles: a brief history, in Gasparini, Z.,
740 Salgado, L., and Coria, R. A., eds., Patagonian Mesozoic Reptiles: Bloomington, Indiana,
741 Indiana University Press, p. 1-28.

742 Simpson, G. G., 1935, Occurrence and relationships of the Río Chico fauna of Patagonia: American
743 Museum Novitates, v. 818, p. 1-21.

744 Simpson, G. G., 1950, History of the fauna of Latin America: American Scientist, v. 38, no. 3, p. 361-
745 389.

746 Simpson, G. G., 1980, Splendid Isolation: the Curious History of South American Mammals, New
747 Haven, Yale University Press.

748 Singer, B.S., Jicha, B.R., Mochizuki, N. and Coe, R.S., 2019. Synchronizing volcanic, sedimentary,
749 and ice core records of Earth's last magnetic polarity reversal. *Science advances*, 5(8),
750 p.eaaw4621.

751 Smith, M.E., Singer, B., and Carroll, A., 2003, $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology of the Eocene Green River
752 Formation Wyoming: *GSA Bulletin*, v.15, p. 540-565.

753 Smith, M.E., Singer, B., Carroll, A.R., and Fournelle, J.L., 2006, High-resolution calibration of Eocene
754 strata: $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology of biotite in the Green River Formation: *Geology*, v. 34, p. 392-
755 396.

756 Tejedor, M. F., Czaplewski, N. J., Goin, F. J., and Aragón, E., 2005, The oldest record of South
757 American bats: *Journal of Vertebrate Paleontology*, v. 25, p. 990-993.

758 Tejedor, M. F., Goin, F. J., Gelfo, J. N., López, G., Bond, M., Carlini, A. A., Scillato-Yané, G. J.,
759 Woodburne, M. O., Chornogubsky, L., Aragón, E., Reguero, M. A., Czaplewski, N. J., Vincon,
760 S., Martin, G. M., and Ciancio, M. R., 2009, New early Eocene mammalian fauna from western
761 Patagonia, Argentina: *American Museum Novitates*, v. 3638, p. 1-43.

762 Wilf, P., 2012, Rainforest conifers of Eocene Patagonia: attached cones and foliage of the extant
763 Southeast Asian and Australasian genus *Dacrycarpus* (Podocarpaceae): *American Journal of*
764 *Botany*, v. 99, no. 3, p. 562-584.

765 Wilf, P., Carvalho, M. R., Gandolfo, M. A., and Cúneo, N. R., 2017, Eocene lantern fruits from
766 Gondwanan Patagonia and the early origins of Solanaceae: *Science*, v. 355, no. 6320, p. 71-75.

767 Wilf, P., and Escapa, I. H., 2015, Green Web or megabiased clock? Patagonian plant fossils speak on
768 evolutionary radiations: *New Phytologist*, v. 207, no. 2, p. 283-290.

769 Wilf, P., Cúneo, N. R., Escapa, I. H., Pol, D., and Woodburne, M. O., 2013, Splendid and seldom
770 isolated: the paleobiogeography of Patagonia: *Annual Review of Earth and Planetary Sciences*,
771 v. 41, p. 561-603.

772 Wilf, P., Cúneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D., 2003, High
773 plant diversity in Eocene South America: evidence from Patagonia: *Science*, v. 300, no. 5616,
774 p. 122-125.

775 Wilf, P., Escapa, I. H., Cúneo, N. R., Kooyman, R. M., Johnson, K. R., and Iglesias, A., 2014, First
776 South American *Agathis* (Araucariaceae), Eocene of Patagonia: *American Journal of Botany*, v.
777 101, no. 1, p. 156-179.

778 Wilf, P., Johnson, K. R., Cúneo, N. R., Smith, M. E., Singer, and B. S., Gandolfo, M. A., 2005, Eocene
779 plant diversity at Laguna del Hunco and Rio Pichileufu, Patagonia, Argentina: *The American*
780 *Naturalist*, v. 165, p. 634-650.

781 Wilf, P., Labandeira, C. C., Johnson, K. R., and Cúneo, N. R., 2005b, Richness of plant-insect
782 associations in Eocene Patagonia: a legacy for South American biodiversity: *Proceedings of the*
783 *National Academy of Sciences USA*, v. 102, no. 25, p. 8944-8948.

784 Wilf, P., Little, S. A., Iglesias, A., Zamaloa, M. C., Gandolfo, M. A., Cúneo, N. R., and Johnson, K. R.,
785 2009, *Papuacedrus* (Cupressaceae) in Eocene Patagonia: a new fossil link to Australasian
786 rainforests: American Journal of Botany, v. 96, no. 11, p. 2031-2047.

787 Wilf, P., Nixon, K. C., Gandolfo, M. A., and Cúneo, N. R., 2019, Eocene Fagaceae from Patagonia and
788 Gondwanan legacy in Asian rainforests: Science, v. 364, no. 6444, eaaw5139.

789 Wilf, P., Singer, B. S., Zamaloa, M. C., Johnson, K. R., and Cúneo, N. R., 2010, Early Eocene
790 $^{40}\text{Ar}/^{39}\text{Ar}$ age for the Pampa de Jones plant, frog, and insect biota (Huitrera Formation, Neuquén
791 Province, Patagonia, Argentina): Ameghiniana, v. 47, no. 2, p. 207-216.

792 Woodburne, M.O., Goin, F.J., Bond, M. Carlini, A.A., Gelfo, G.M.L., Iglesias, A., and Zemicz, A.N.,
793 2014a, Paleogene Land Mammal Faunas of South America; a Response to Global
794 Climatic Changes and Indigenous Floral DiversityJournal of Mammalian Evolution, v.
795 21, p. 1-73. doi:10.1007/s10914-012-9222-1

796 Woodburne, M. O., Goin, F. J., Raigemborn, M. S., Heizler, M., Gelfo, J. N., and Oliveira, E. V.,
797 2014b, Revised timing of the South American early Paleogene Land Mammal Ages: Journal of
798 South American Earth Sciences, v. 54, p. 109-119.

799

800 Zachos, J. C., Dickens, G. R., and Zeebe, R. E., 2008, An early Cenozoic perspective on greenhouse
801 warming and carbon-cycle dynamics: Nature, v. 451, no. 7176, p. 279-283.

802

803
804

805 FIGURE CAPTIONS

806 Figure 1: Simplified geologic map of the study area, modified from Aragón and Mazzoni, (1997), and
807 sampling localities. La Barda locality is off the map, approximately 6 km distant from the Laguna Fría
808 locality on a 192° bearing (Tejedor et al., 2009). Solid lines represent observed boundaries from field
809 work and satellite imagery. Dashed lines represent inferred boundaries. The resurgent dome area has
810 not yet been mapped out in detail but contains pyroclastic deposits of the Tufolitas del Hunco; intra-
811 caldera volcanic flows and dikes; and capping Miocene to Pleistocene basalt flows.

812

813 Figure 2: Cross-sectional cartoon across southern portion of Middle Chubut River Pyroclastic Volcanic
814 Complex. Key fossil sites and rock units with age determinations are emphasized. Figure is not to scale. See
815 Figure 1 for correct spatial distances between localities. Age determinations cited from Wilf et al., (2003 and
816 2005) have been adjusted to more recent standard of Kuiper et al., 2008.

817

818 Figure 3: Field photographs of fossil-bearing lithofacies. A. Overview of the Tufolitas Laguna del
819 Hunco (Laguna del Hunco locality). B. Laminated mudstone facies (Laguna del Hunco locality). C.
820 Photomicrograph of organic-rich laminated mudstone facies ((Laguna del Hunco locality). D. Gray
821 ashy mudstone overlain by sediment gravity flow (resistant bed; Laguna del Hunco locality). E.
822 Photomicrograph showing microcrystalline nature of the gray ashy mudstone facies (Laguna del Hunco
823 locality). F. Leaf fossil preserved in gray ashy mudstone (Laguna del Hunco locality). G. Volcaniclastic
824 turbidite showing all 5 Bouma subdivisions (Laguna del Hunco locality). H. Glass dome intruding gray
825 ashy mudstone facies (Central Caldera locality). I. Petrified tree trunk preserved in a clast-rich ash-flow
826 tuff (Escuela Piedra Parada locality). J. Root cast and cross-bedding in a crystal-rich reworked
827 pyroclastic facies (Laguna Fría locality). K. Field relationships between the Ignimbrita Barda
828 Colorada, valley-filling volcaniclastic facies, orange gnimbrite, and Laguna Fría capping basalt
829 (Laguna Fría locality). Fossil locality lies stratigraphically above the orange ignimbrite and below the
830 basalt. L. Oblique composite satellite image looking east at the area between the Laguna Fría and La
831 Barda faunal localities (3x vertical exaggeration. Image © 2019 CNES / Airbus, © 2018 Google,
832 Image © 2019 Maxar Technologies)

833

834 Figure 4: Schematic block diagrams of depositional environments interpreted in this study. Scale bars are
835 approximate horizontal distances. Vertical scale is exaggerated. Localities are in **bold**. Flora/Fauna and facies
836 names are (in brackets).

837

838 Figure 5: Summary of $^{40}\text{Ar}/^{39}\text{Ar}$ dates from sanidine and plagioclase in Laguna Fría Orange Ignimbrite, Southern
839 Ignimbrite, and Upper Ignimbrita Barda Colorada. Inverse isochron diagrams for the Southern Ignimbrite and
840 Laguna Fría Orange Ignimbrite display intercepts which diverge from atmospheric values, and so the isochron
841 age is preferred in both cases. Open points indicate analyses excluded from weighted mean age calculations.
842 Weighted mean ages are shown with 2σ uncertainties, whereas individual analyses are shown with 1σ

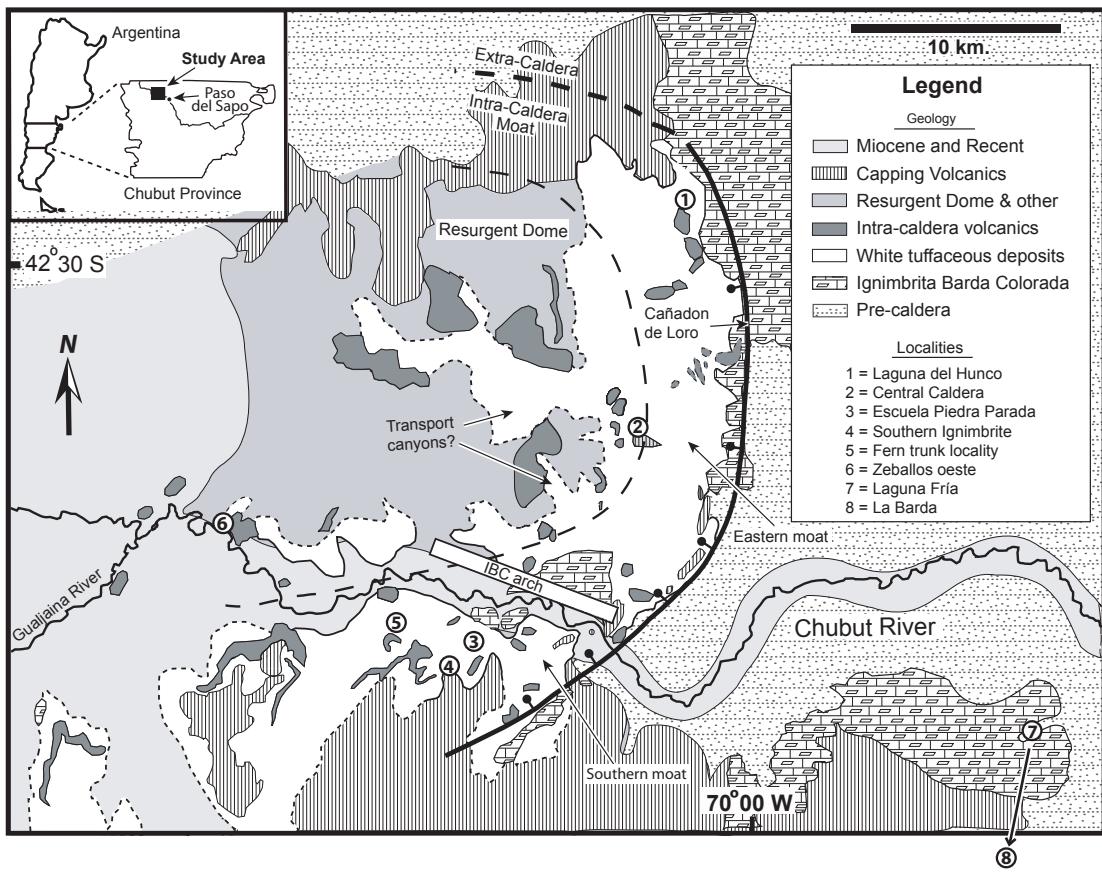
843 uncertainties. The isochron age of the Laguna Fría Capping Basalt is denoted by a dashed line, with 2σ
844 uncertainties indicated by a gray band.

845

846 Figure 6. Age spectrum and inverse isochron diagrams illustrating results of an $^{40}\text{Ar}/^{39}\text{Ar}$ incremental heating
847 experiment on groundmass from the Laguna Fría Capping Basalt. Steps excluded from analysis are show as open
848 boxes.

849

850 Figure 7: Summary of Eocene age relationships and terrestrial fauna and flora. Modified from Krause
851 et al. (2017) and Wilf (2012) based on new results from the Piedra Parada caldera (reported in this
852 study). Age determinations based on $^{40}\text{Ar}/^{39}\text{Ar}$ and have been adjusted to decay constants of Kuiper et
853 al., (2008). Shaded boxes indicate potential age range for each fossil assemblage, taking into account
854 2σ errors.


855

856 **Footnote to be inserted at bottom of page for line 164:**

857 ¹ GSA Data Repository item 0000000, Full documentation of $^{40}\text{Ar}/^{39}\text{Ar}$ geochronology, is available at
858 <http://www.geosociety.org/pubs/ft2012.htm> or by request to editing@geosociety.org.

859

Figure 1

Figure 1

Figure 2

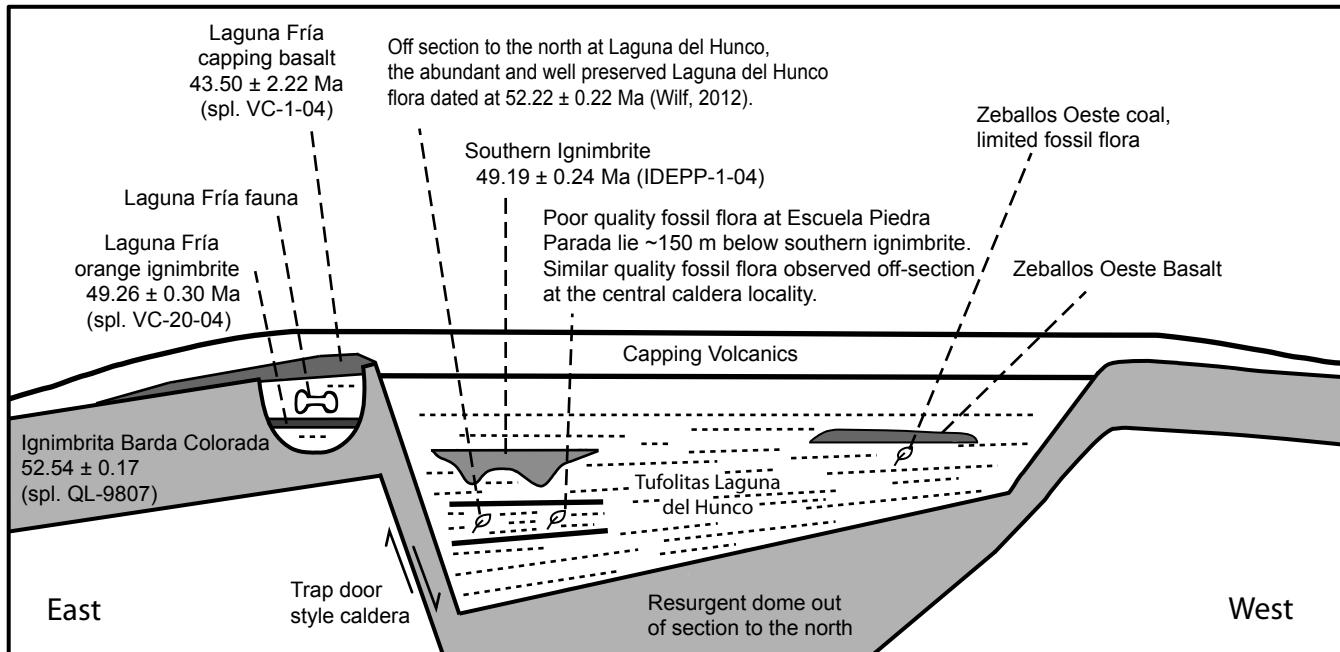


Figure 2

Figure 3, part 1

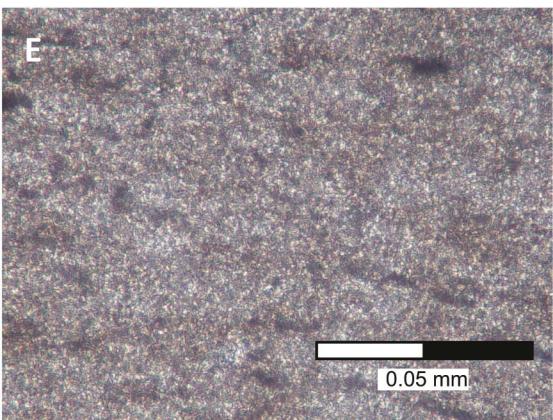
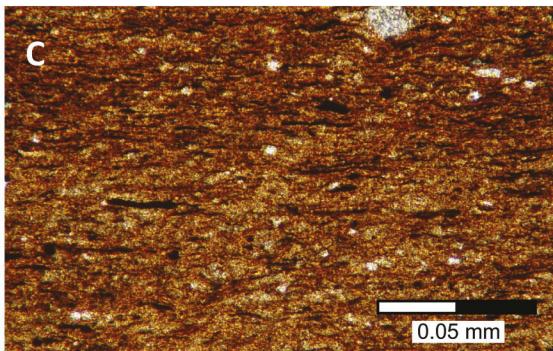
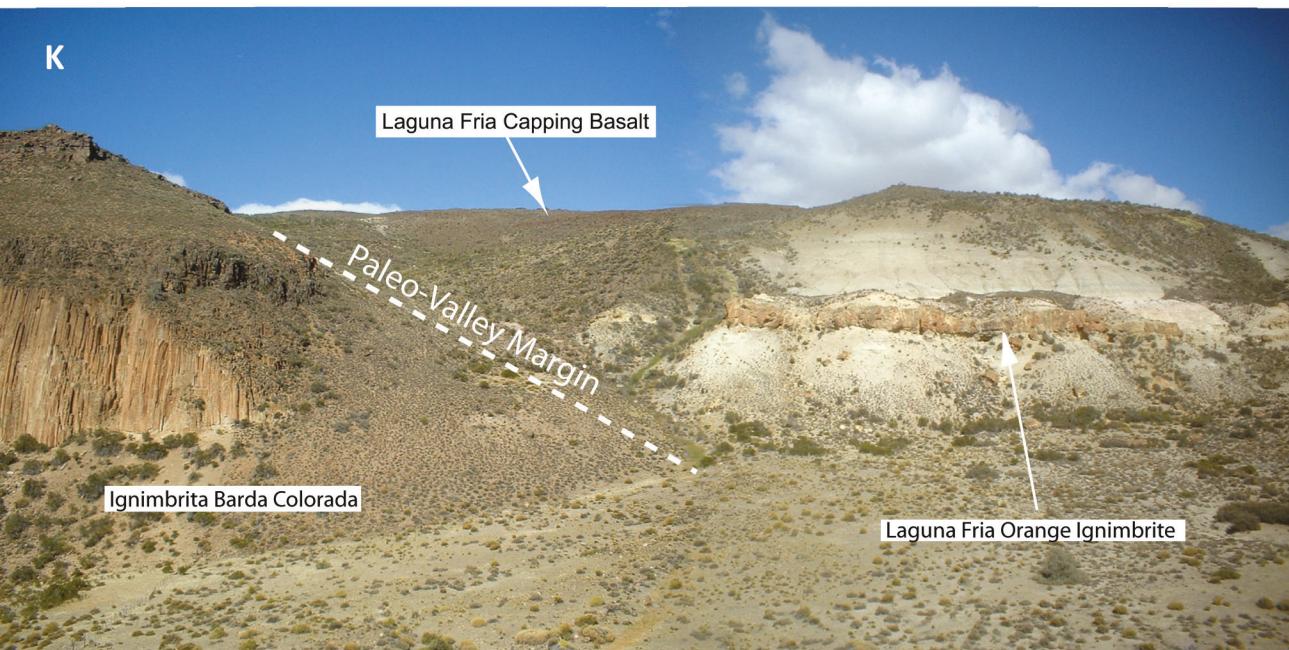
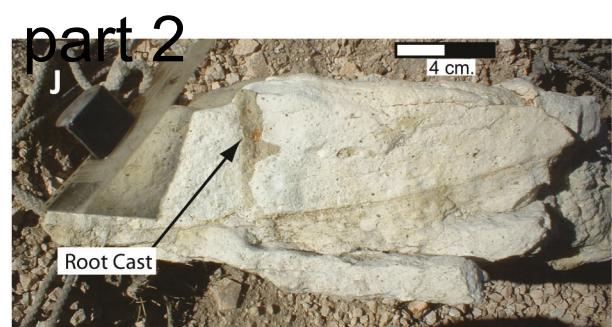
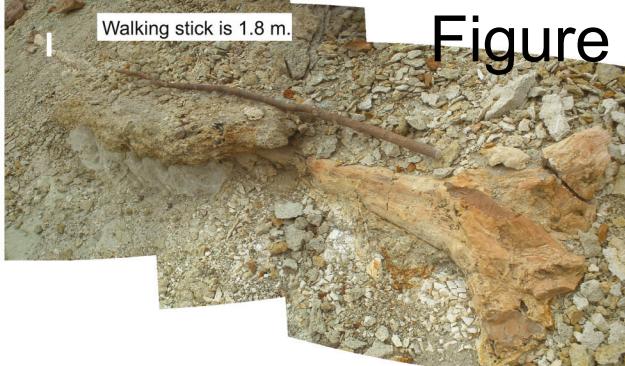
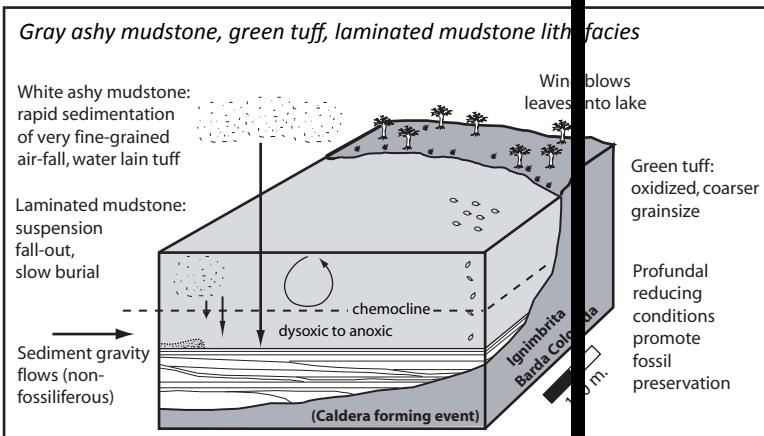



Figure 3

Figure 3, part 2

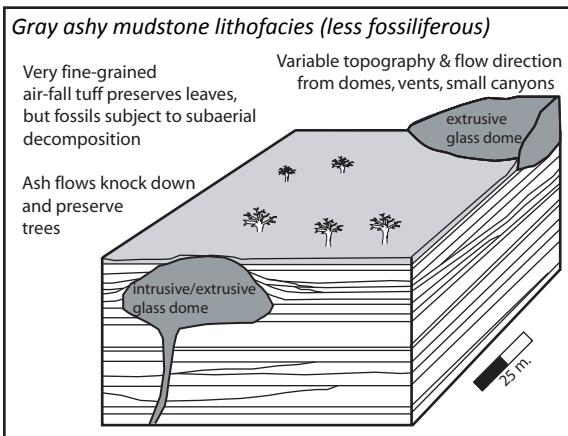
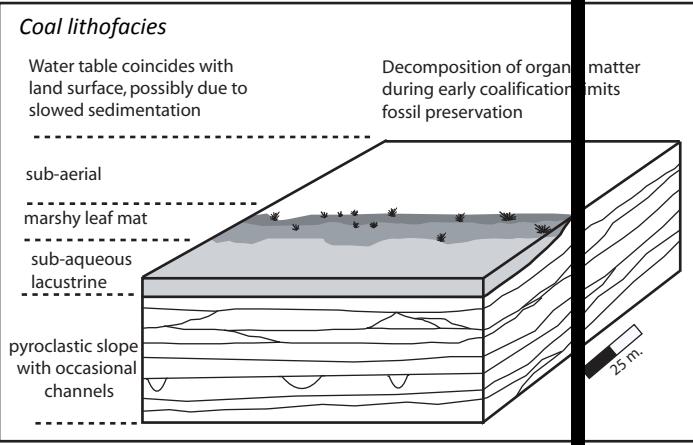

Figure 3 (continued)

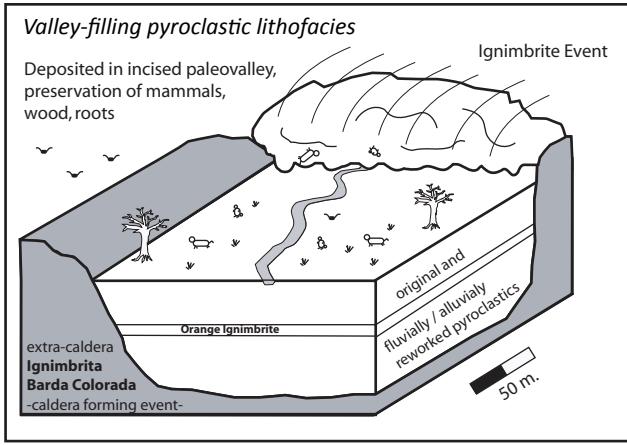
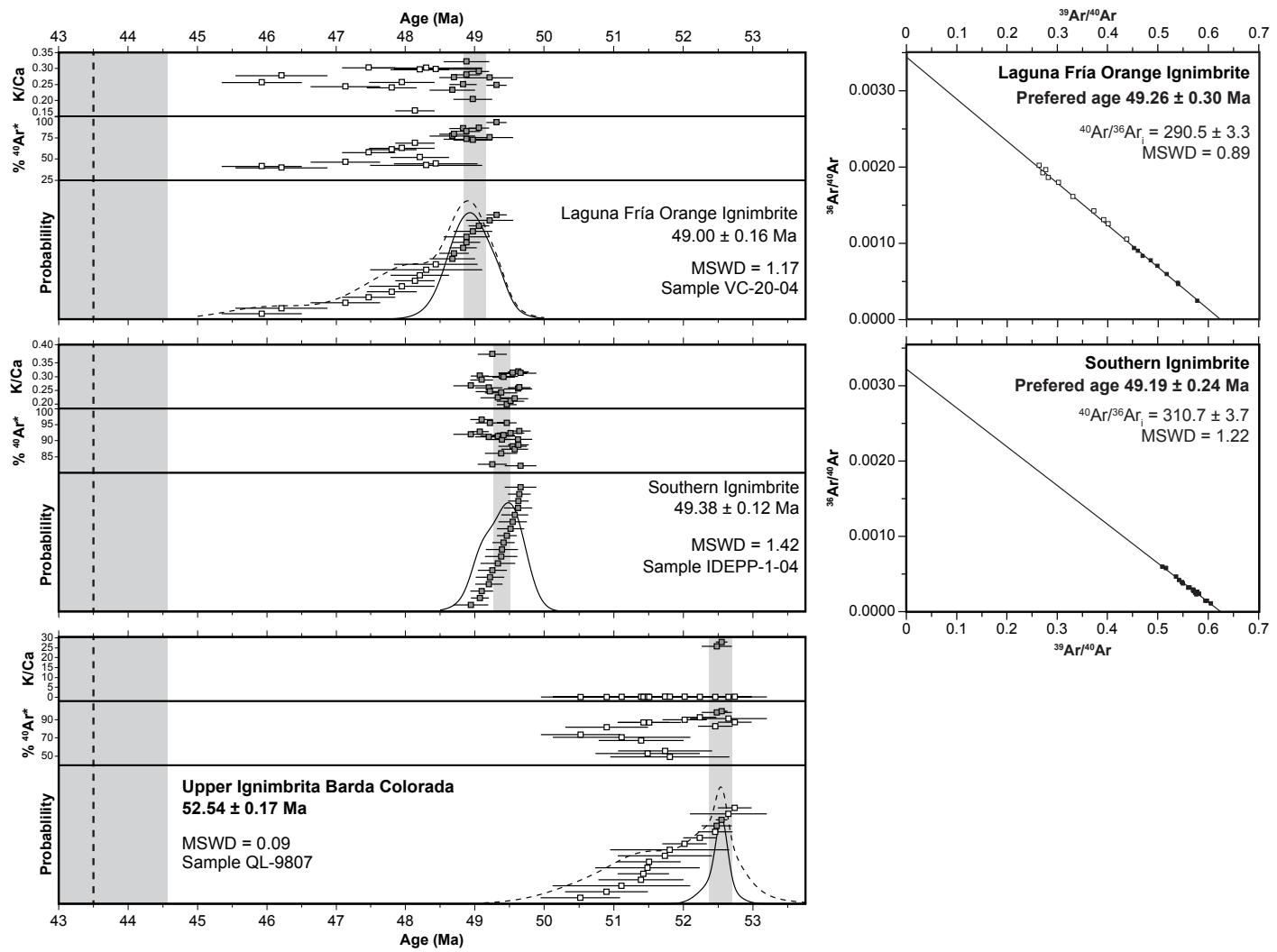
Figure 4


A. Laguna del Hunco

B. Escuela Piedra Parada, Central Caldera

C. Zeballos Oeste

D. Laguna Fria

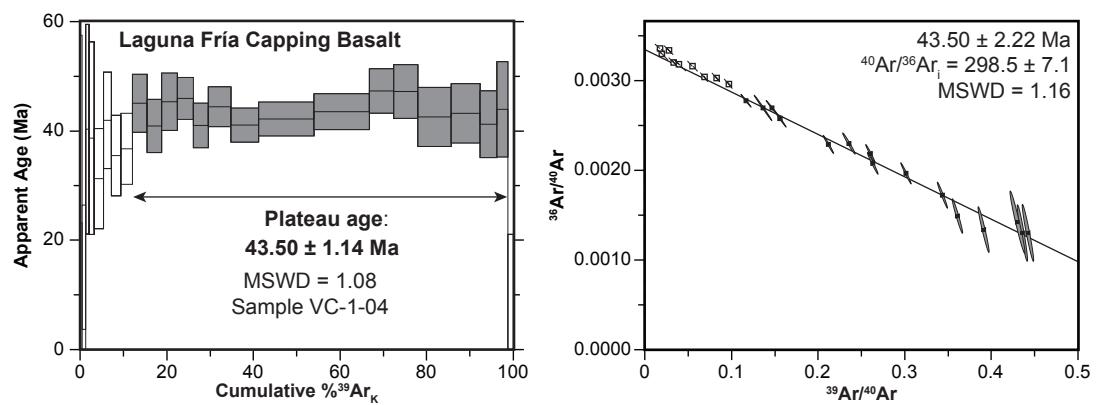

Figure 4

Figure 5

Figure 5

Figure 6

Figure 6

Figure 7

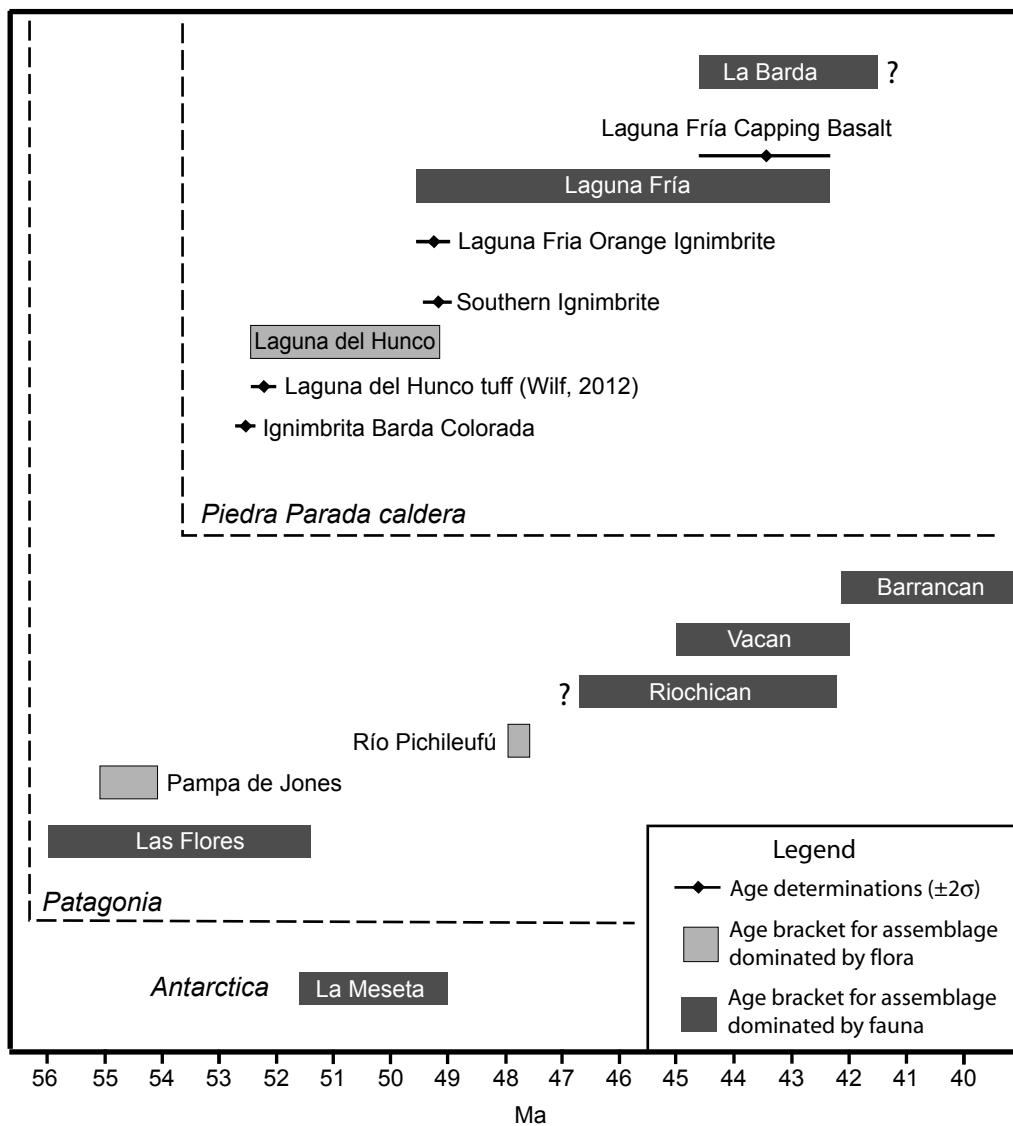


Figure 7

TABLE 1. SUMMARY OF RADIOISOTOPIC AGES

Sample	Unit	Latitude (°S)	Longitude (°W)	Mineral	N	% ³⁹ Ar	MSWD	K/Ca	Plateau Age (Ma)	Isochron Age (Ma)	±2σ	±2σ	(⁴⁰ Ar/ ³⁶ Ar) _i	±2σ
<u>Incremental Heating Results</u>														
VC-1-04	Laguna Fria Basalt	42.72447	69.84536	Plag	15/24	86.6	1.08	0.0	43.50	1.14	43.50	2.22	298.54	7.05
<u>Single Crystal Laser Fusion Results</u>														
VC-20-04	Orange Ignimbrite	42.72447	69.84536	Plag	9/19		1.17	0.3	49.00	0.16	49.26	0.30	290.5	3.3
IDEPP-1-04	Southern Ignimbrite	42.68194	70.16803	Plag	18/18		1.42	0.3	49.38	0.10	49.19	0.24	310.7	3.7
QL-9807	Upper Ignimbrite Barda Colorado	42.72447	69.84536	San	2/16		0.09	27.3	52.54	0.17	N.D.	N.D.	N.D.	N.D.

Note: Bold font indicates preferred ages. Ages calculated relative to Fish Canyon sanidine interlaboratory standard at 28.201 Ma (Kuiper et al. 2008). Age uncertainty includes analytical uncertainty + J uncertainty. Decay constants and isotopic abundances after Min et al. (2000).