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Abstract
We study the evolutionary stability of dispersal strategies, including but not limited to
those that can produce ideal free population distributions (that is, distributions where
all individuals have equal fitness and there is no net movement of individuals at equi-
librium). The environment is assumed to be variable in space but constant in time.
We assume that there is a separation of times scales, so that dispersal occurs on a fast
timescale, evolution occurs on a slow timescale, and population dynamics and inter-
actions occur on an intermediate timescale. Starting with advection–diffusion models
for dispersal without population dynamics, we use the large time limits of profiles for
population distributions together with the distribution of resources in the environment
to calculate growth and interaction coefficients in logistic and Lotka–Volterra ordinary
differential equations describing population dynamics. We then use a pairwise inva-
sibility analysis approach motivated by adaptive dynamics to study the evolutionary
and/or convergence stability of strategies determined by various assumptions about
the advection and diffusion terms in the original advection–diffusion dispersal mod-
els. Among other results we find that those strategies which can produce an ideal free
distribution are evolutionarily stable.
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4 R. S. Cantrell et al.

1 Introduction

1.1 Background andmotivation

The fact that ecological and evolutionary processes occur across a range of timescales
has long been recognized as a significant challenge in ecological theory; see for exam-
ple Hastings (1983) and Levin (1992, 2000). The goal of this paper is to use models
for populations where the movement occurs on a faster timescale than population
dynamics to study the evolution of dispersal in spatially heterogenous environments
when evolution occurs on a slower timescale than population dynamics. To describe
movement we use the modeling approach of aggregating (i.e. amalgamating) spa-
tial models for dispersal, specifically reaction–diffusion–advection models, to obtain
ordinary differential equations at the scale of population dynamics. This approach is
developed and described in some detail by Auger et al. (2012) where it is applied
to a reaction–diffusion system describing competition. To describe the evolution of
dispersal we use a version of adaptive dynamics, specifically pairwise invasibility
analysis, to study the evolutionary stability of dispersal strategies in the aggregated
population models to study the evolution of dispersal from the viewpoint of adaptive
dynamics. That approach is discussed in Brännström et al. (2013) and Geritz et al.
(1997). It embodies an assumption that evolutionary change arises from mutations
that occur rarely, that is, on a slow timescale, relative to population dynamics. What is
novel in our work is that we consider spatially heterogeneous environments and con-
ditional dispersal as well as simple diffusion in the spatial models that we aggregate
to obtain ordinary differential equations, and we link those aggregated equations to a
slower evolutionary timescale via adaptive dynamics. We envision dispersal patterns
as traits arising from local movement processes based on diffusion and advection, but
allow those local processes to be conditional on environmental quality as measured by
local population growth rates at low densities. The assumption that movement occurs
by advection and diffusion is not essential for aggregating the spatial models, but it
allows us to make a mechanistic connection to yet another timescale. This is because
diffusion and advection models for movement on relatively large spatial scales and
a given timescale arise as the continuum limits of possibly biased random walks by
individuals on smaller spatial scales at a faster timescale; see for example Aronson
(1985), Farnsworth and Beecham (1999), Okubo and Levin (2001) and Potapov et al.
(2014). The traits that determine how individuals perform random walks determine
the forms of diffusion and advection that can arise as continuum limits, which in turn
determine the patterns that those processes can produce, which then determine the
evolutionary stability of the strategies arising from the traits. We study this process in
detail starting with local movement by diffusion and advection on what we consider a
fast timescale, then moving up to the level of population dynamics and global spatial
patterns at an intermediate timescale, and then onward to the level of evolution at
a slow timescale. Thus, we explicitly consider the effects and evolution of dispersal
across three distinct timescales, with implicit connections to a fourth scale (even faster
in time and smaller in space) on which individual movement determines the details of
the forms of diffusion and advection can arise at our fast timescale.
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Evolution of dispersal in spatial population models with… 5

There are two key features of our modeling approach that may be advantageous.
First, the assumption that dispersal occurs on a faster timescale than population dynam-
ics may be more realistic for some populations than the assumption embodied in the
reaction–advection–diffusion approach, and its nonlocal and spatially discrete ana-
logues, that dispersal and population dynamics occur on the same timescale. Second,
the separation of timescales using weighted spatial averages allows us to employ
methods from the theory of ordinary differential equations and real analysis rather
than partial differential equations and functional analysis to study the models. The
analysis of the models is still nontrivial, but at least the methods are more elemen-
tary and hence may be more accessible to a wider range of researchers, and we can
still capture effects due to spatially heterogeneous patterns of population distribution
arising from dispersal strategies that are conditional on environmental quality.

Our models are not universally applicable; specifically, they do not apply to organ-
isms such as plants, sessile animals, or other animals where movement is strictly by
natal dispersal, since for those organisms the processes of dispersal and population
dynamics do occur on the same timescale. They are not intended to replace reaction–
advection–diffusion models, which in effect assume that population dynamics and
dispersal occur on the same timescale, but rather as a complement to such models.
Furthermore, there may not always be a separation of timescales between population
dynamics and evolution; see Hairston et al. (2005). In this paper we assume that the
spatial environment in which dispersal, population dynamics and species interactions,
and evolution occur is constant in time but heterogeneous in space. The way that
we connect dispersal and population dynamics at different timescales is by using the
quasi-equilibrium hypothesis that dispersal patterns go to an equilibrium at the fast
timescale, as in Auger et al. (2012), so that we can describe the effects of dispersal in
spatially heterogeneous environments on population dynamics by systems of ordinary
differential equations with coefficients depending on averages of environmental vari-
ables such as resource densities weighted by the spatial distributions of populations
instead of using reaction–advection–diffusion systems.Wewill take the formulation of
models in terms of ordinary differential equations with coefficients based on weighted
spatial averages as a modeling ansatz, but the methods of Auger et al. (2012) could be
adapted to give a more detailed derivation. The weighted spatial averages occurring
in the coefficients of the systems we study connect the reaction–diffusion–advection
approach to spatial ecology and the evolution of dispersal as in Cantrell and Cos-
ner (2003) and Cosner (2014) with the ideas of scale transition and spatial moment
approaches developed in Bolker and Pacala (1999), Chesson (2009, 2012) and Ches-
son et al. (2005). The way that we connect population dynamics to evolution which
occurs at a slower timescale is by using the approach of pairwise invasibility anal-
ysis from the theory of adaptive dynamics, which is based on the assumption that
evolutionary changes occur rarely, by means of invasion and displacement of a resi-
dent population by a small population of mutants with a novel trait; see for example
Brännström et al. (2013) and Geritz et al. (1997). That general approach has been
widely used to study the evolution of dispersal traits; see Averill et al. (2012), Cantrell
et al. (2006, 2010, 2012a, b), Chen et al. (2008), Dockery et al. (1998), Hambrock
and Lou (2009), Hastings (1983), Kao et al. (2010), Korobenko and Braverman (2012,
2014) and the discussion and references in section 4 of Cosner (2014).
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6 R. S. Cantrell et al.

There has been a considerable amount of work of various kinds on modeling eco-
logical and evolutionary systems with multiple timescales, and on ways of connecting
models that operate on different scales, including an entire issue of the journal Eco-
logical Complexity, see Auger et al. (2000) and Morozov and Poggiale (2012). The
review (Auger et al. 2000) provides many references, see also Bravo de la Parra et al.
(1997, 1999, 2013, 2016), Constable (2014), Hastings (2010), Mose et al. (2012),
Nguyen-Ngoc et al. (2012) and Sanz andBravo de la Parra (2000).As noted previously,
separation of ecological and evolutionary timescales is the basis for adaptive dynamics,
but also arises in other approaches to evolutionary ecology, for example quantitative
genetics (Polechová and Barton 2015). Patch occupancy models in metapopulation
and metacommunity theory are based on the assumption that population dynamics
within patches are fast relative to the rates of colonizations and extinctions among
patches (Law and Leibold 2005). Aggregation across space based on a separation of
timescales is used to study population models that are initially set in discrete space
in Mose et al. (2012) and Nguyen-Ngoc et al. (2012) in the case of continuous time
and Bravo de la Parra et al. (1997, 1999, 2013, 2016), Sanz and Bravo de la Parra
(2000) in the case of discrete time. [See Auger et al. (2000) for additional references.]
Stochastic population models with fast timescales are considered in Constable (2014)
and Sanz and Bravo de la Parra (2000).

There has also been a considerable amount of work based on using invasibility anal-
ysis to compare dispersal strategies and identify evolutionarily stable or convergence
stable strategies, or stable polymorphisms of strategies, in the context of reaction–
advection–diffusion models and their discrete and nonlocal analogues. Much of the
literature in that area prior to 2012 is cited and discussed in Cosner (2014), so we will
only give a brief review of the area and describe more recent work here. In a classic
paper (with the same title), Hastings (1983) asked the question “Can spatial variation
alone lead to selection for dispersal?” and used a version of invasibility analysis to
give the answer “No”, at least in the case of dispersal by diffusion modeled by Fick’s
law and the analogous form of discrete diffusion. That conclusion was reaffirmed a
few years later by Dockery et al. (1998), who used a somewhat more sophisticated
form of invasibility analysis which has since become a standard approach to such
questions. More precisely, Hastings (1983) and Dockery et al. (1998) showed that
in environments that vary in space but not in time, among dispersal strategies based
on simple diffusion, there is selection for slower diffusion rates so that the strategy
of not diffusing at all is convergence stable. It turns out that this property holds for
various types of dispersal models where dispersal is not conditioned on environmen-
tal factors; see for example Hutson et al. (2003) for the case of nonlocal dispersal,
or the discussion in section 4 of Cosner (2014). However, when diffusion cannot be
avoided (for example because of small scale random movements due to searching for
resources or avoiding enemies), there are circumstances where invasibility analysis of
reaction–advection–diffusion models suggests that there is selection for some amount
of directedmovement, or alternatively if individuals always advect rapidly up resource
gradients there may be selection for faster diffusion. See again the discussion and ref-
erences in section 4 of Cosner (2014), and Averill et al. (2012), Cantrell et al. (2006,
2007, 2010, 2012a, b), Chen et al. (2008), Hambrock and Lou (2009) and Lam and
Lou (2014a, b). In particular, Lam and Lou (2014a, b) obtained conditions where there
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Evolution of dispersal in spatial population models with… 7

are evolutionarily and convergent stable strategies for dispersal in the context of suit-
able classes of strategies combining diffusion and advection. A related but different
type of result is that in some cases a competitor using a small to moderate amount of
advection up a resource gradient can exclude a competitor that disperses by simple
diffusion, but if the advection up the resource gradient is too fast the populations will
coexist because the rapidly advecting population concentrates on resource peaks; see
Cantrell et al. (2007), Lam (2011) and Lam and Ni (2010).

In the present paper we compare strategies involving diffusion and advection on
environmental gradients with strategies such as simple diffusion which produce a spa-
tially constant population distribution.We also compare strategies with different ratios
of advection and diffusion rates. The results we obtain are generally consistent with
those obtained in reaction–advection–diffusion models. Furthermore, we consider a
special class of dispersal strategies that can produce an ideal free distribution of popula-
tions that use them. In the context of spatially explicit populationmodels in temporally
static environments a population achieves an ideal free distribution if the fitness of
individuals (which in this setting is typically measured by local per capita population
growth rate) is constant in space, and there is no net movement at population equilib-
rium. In the presenceof populationdynamics the onlyway that fitness canbe constant at
equilibrium is for it to be zero, which inmodels of logistic type typicallymeans that the
distribution of populationmust exactlymatch the distribution of resources. [SeeCosner
(2014) section 4 for additional discussion and references.] Dispersal strategies that can
produce an ideal free distribution have been shown to be evolutionarily stable, versus
those that cannot in various different types of models and classes of strategies, includ-
ing reaction–diffusion–advection models and their nonlocal and discrete analogues;
see for example Averill et al. (2012), Cantrell et al. (2010, 2012a, b), Korobenko and
Braverman (2012, 2014). We find that this is also true in the modeling framework in
this paper, and in fact can be established by means of phase plane analysis.

1.2 Organization of the paper

The paper is divided into sections by general topics. The sections are divided into sub-
sections that treat more specific topics. The subsections are further subdivided. They
generally start with statements of results and/or discussions of their interpretation
which include most of the key ideas of the paper. Lengthy mathematical proofs and
calculations, and some abstract discussions of mathematical background issues, are
presented in subsubsections whose titles contain terms such as “technical” or “tech-
nicalities”. Readers who are primarily interested in the biological interpretations and
applications of the ideas and results and want to get the “big picture” may want to skip
the technical subsections, at least on the first reading. In Sect. 2 we develop the mod-
els and discuss their general properties, aspects of their dynamics, and connections to
other models. In Sect. 3 we present three case studies of interacting populations that
are ecologically identical in terms of resource use but which have different dispersal
traits and thus different spatial distributions: first, where one population can achieve
an ideal free distribution and the other cannot, second, where one population diffuses
and advects on resource gradients but the other has a spatially uniform distribution, as
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8 R. S. Cantrell et al.

would arise from fast simple diffusion, and third, where both populations advect and
diffuse but may have different ratios of advection rate to diffusion rate. Depending on
the casewefind conditions for coexistence or competitive exclusion on the timescale of
population dynamics, which allow us to then draw conclusions about the evolutionary
or convergence stability of certain dispersal strategies, or the coexistence of others, on
the timescale of evolution. In Sect. 4we summarize our conclusions from themodeling.

2 Modeling framework

2.1 Dispersal

2.1.1 Description of the models

The key idea underlying themodeling in this paper is that the timescale of dispersal for
the organisms in the models is sufficiently fast compared to timescale of their popula-
tion dynamics that it is reasonable to assume the spatial distribution of the organisms is
always effectively at equilibrium when viewed on the timescale of population dynam-
ics. We will generally assume that the organisms disperse by some combination of
diffusion and advection, although either or both of those may be conditioned on envi-
ronmental conditions. Specifically, we will assume that the spatial region where the
dispersal processes occur is a bounded region � ⊂ R

n (where n = 1, 2 or 3), and we
will usually assume that dispersal processes are described on the fast timescale by an
advection–diffusion equation

∂u

∂t
= Lu on � × (0,∞), (1)

where L is a second order elliptic partial differential operator of the form

Lu = ∇ · [μ1(x)∇μ2(x)u − u �P(x)] (2)

with μ1, μ2 ≥ μ0 for some constant μ0 > 0. Operators of this type arise naturally as
continuum limits for biological diffusion processes where organisms may condition
their small scale movement probabilities on various environmental factors and/or may
engage in directed movement or be subject to physical advection. The derivation
of such movement models from the underlying mechanisms operating at the level of
stochasticmovements by individuals is discussed in some detail inAronson (1985) and
Okubo and Levin (2001). We will supplement the operator L with no-flux boundary
conditions:

[μ1(x)∇μ2(x)u − u �P(x)] · �n = 0 on ∂�. (3)

Such boundary conditions incorporate the assumption that individuals do not cross
the boundary of � when they encounter it. We use no-flux boundary conditions so
that there is no loss or gain of population arising from dispersal (specifically, dispersal
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Evolution of dispersal in spatial population models with… 9

across the boundary of �). This can be seen by integrating the Eq. (1) over � and
using the divergence theorem to obtain d

dt

∫
�
udx = 0.

If the coefficients in (2) and (3) and the boundary of the region � are smooth,
then the operator L in (2) with the boundary conditions (3) has a unique principal
eigenvalue, whose eigenfunction φ(x) is positive. The theory underlying this fact is
based on results analogous to the Perron-Frobenius Theorem for nonnegativematrices.
It turns out that the principal eigenvalue is 0. In the absence of population dynamics,
solutions to (1) with positive initial densities converge to multiples of φ as t → ∞.
This observation will be a key element of our modeling approach. The details are
described in Theorem 1, which is stated after a brief discussion of some technicalities.
Readers interested mainly in the applications of the models may want to skip those
and go directly to the theorem.

2.1.2 Some technical points

We will assume that ∂� and the coefficients of L are sufficiently smooth that stan-
dard existence and regularity theory apply to (1) and the corresponding equilibrium
equation, and that the adjoint operator L∗ is well defined and has coefficients smooth
enough that standard existence and regularity theory apply to it as well. [It is suffi-
cient to have ∂� of class C2+γ , with μ1, μ2 ∈ C2+γ (�̄), and �P ∈ [C1+γ (�̄)]n ; see
López-Gómez (2013) or (Cantrell and Cosner 2003, section 1.6), and the references
therein]. The adjoint operator L∗ associated with L is given by

L∗u = μ2∇ · μ1∇u + �P · ∇u (4)

with Neumann boundary condition

∂u

∂ �n = 0 on ∂�. (5)

It follows from the maximum principle that the operator L∗ has a positive resolvent,
and elliptic regularity theory implies that the resolvent is compact on appropriate
spaces, for example Hölder or Sobolev spaces. Thus, the spectrum of L∗ consists of
eigenvalues, and the Krein–Rutman theorem can be applied to L∗ to show that L∗
has a principal eigenvalue. (To be more precise, the Krein–Rutman theorem applies to
the resolvent of L∗). A statement of the Krein–Rutman theorem and some references
and discussion are given in section 2.5.1 of the book by Cantrell and Cosner (2003).
Detailed discussions of the Krein–Rutman theorem and its applications to principal
eigenvalues of second order elliptic operators such as L∗ are given by López-Gómez
(2013). It is easy to see that L∗u = 0 if u ≡ 1, so the principal eigenvalue is 0. It
follows that the principal eigenvalue of L is also zero. Furthermore, because L and L∗
are second order elliptic operators, we have that Re λ < 0 for any other eigenvalue
λ of L∗ or L . This last observation is based on results that are specific to second
order elliptic operators; a result of this type was proved by Protter and Weinberger
(1966); see López-Gómez (2013) for a more general and unified treatment. Thus, all
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10 R. S. Cantrell et al.

the terms in the eigenfunction expansions for solutions to (1) which are multiples of
higher eigenfunctions will decay to 0 as t → ∞.

2.1.3 A fundamental result about dispersal

Recall that (1) keeps
∫
�
u(x, t)dx fixed because of the no-flux boundary condition.

Combining our previous observations, we have the following:

Theorem 1 Let φ0(x) > 0 be the eigenfunction corresponding to the eigenvalue 0 for
the operator L in (2)with boundary condition (3), normalized so that

∫
�

φ0(x)dx = 1.
If u(x) is a solution to (1) with u(x, 0) = u0(x) ≥ 0 then u(x, t) → U0φ0(x) as
t → ∞, where U0 = ∫

�
u0(x)dx.

In some cases we can explicitly characterize φ0. Specifically, if

�P(x)

μ1(x)μ2(x)
= ∇q(x) (6)

for some function q(x) then

φ0(x) = eq(x)/μ2(x)∫

�

[eq(y)/μ2(y)]dy
. (7)

The fact that φ0 as defined in (7) is an eigenfunction for L for the eigenvalue 0 can
be seen by direct calculation. We will use the result of Theorem 1 to formulate our
models for population dynamics.

2.2 Population dynamics

2.2.1 The logistic equation: modeling

Suppose that the dispersal process reaches equilibrium on the fast timescale of dis-
persal, so that we can write u(x, t) = U (t)φ0(x) where U (t) = ∫

�
u(x, t)dx . If we

substitute this into the equation

∂u

∂t
= Lu + a(x)u − b(x)u2 on � × (0,∞), (8)

where L is as in (2) with boundary conditions (3), and integrate over �, we obtain

dU

dt
=

(∫

�

a(x)φ0(x)dx

)

U (t) −
(∫

�

b(x)φ2
0(x)dx

)

U (t)2. (9)

(Here we would normally assume b(x) > 0.) The interpretation of (9) is that the popu-
lation it describes interacts locally with the environmental quality, which is determined
by levels of risks and resources, and with itself, according to the principle of mass

123



Evolution of dispersal in spatial population models with… 11

action, but the local population density is given by the spatial distribution arising from
dispersal on the fast timescale multiplied by the total population. The coefficients of
the terms describing linear growth and logistic self-interaction can be viewed as spatial
averages of the local values of the corresponding quantities weighted by the spatial
distribution of the population.

Remark We have u(x, t) = U (t)φ0(x) where by the normalization of φ0 we have
U (t) = ∫

�
u(x, t)dx . The forms of the coefficients in (9) are closely related to those

that havebeenused to provide a currency to compare dispersal strategies or to formulate
models in other contexts in theoretical ecology. Note that under our modeling formu-
lation the first term in (9) could be written as

∫
�
a(x)u(x, t)dx . Fagan et al. (2017)

used this formulation, with a(x) allowed to depend on time and denoted as m(x, t),
to define a currency to assess the effectiveness of the use of nonlocal information by
foraging organisms in acquiring resources in spatiotemporally varying environments.
There is an important body of work on general scaling properties of ecological mod-
els developed largely by Chesson (2009, 2012) and Chesson et al. (2005), and often
referred to as scale transition theory, that relates population dynamic terms that are
similar to those in (9) to means and variances of local population growth rates (or
more broadly local fitness) and environmental quality. To see the connection, denote
themean of u(x, t) as u(t) = U (t)/|�|, and similarly themeans of a, φ0, and products
of those quantities by a, φ0, etc. Note that by our scaling of φ0 we have φ0 = 1/|�|,
u = U/|�|, and u(x, t) = |�|uφ0(x). Using these definitions and observations, a
standard identity relating the average of a product with the averages of its factors and
their covariance, and the linearity of covariance in each of its arguments, we can then
write the first term on the right of (9) as

(∫

�

a(x)φ0(x)dx

)

U (t) = |�|(aφ0)U (t)

= |�|[aφ0 + Cov(a(x), φ0(x))]U (t)

= aU (t) + |�|Cov(a(x), φ0(x)U (t))

= aU (t) + |�|Cov(a(x), u(x, t)).

(10)

Variations on this equation or related equations based on these general ideas appear
in Chesson (2012) and Chesson et al. (2005). See “boxed” equations 12.B2.6 and
12.B2.7 and equations 12.4, 2.14-17 of Chesson et al. (2005) or equations 2–7 of
Chesson (2012). Related ideas were used to set up simulation models by Bolker and
Pacala (1999).

2.2.2 The logistic equation: additional technical comments on connections to scale
transition theory

We can also rewrite the linear growth model corresponding to (9) in terms of the
average density u(t) by dividing by |�| and use the scaling of φ0 and the equations in
(10) to get
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12 R. S. Cantrell et al.

du

dt
= 1

|�|
dU

dt
= a

U (t)

|�| + |�|Cov(a(x), φ0(x))
U (t)

|�|
= a u(t) + Cov(a(x), φ0(x))

φ0
u(t)

= a u(t)

[

1 + Cov(a(x), φ0(x))

a φ0

]

.

(11)

Analogously to (10), if b(x) is constant (reflecting the idea that crowding effects do
not depend on resource levels), and using Cov(X , X) = Var(X) the second term on
the right of (9) can be written as

(

−b
∫

�

φ2
0(x)dx

)

U 2(t) = −b|�|(φ2
0)U

2(t)

= −b|�|[(φ0)
2 + Var(φ0(x))]U 2(t)

= −b|�|
[(

U (t)

|�|
)2

+ Var(φ0(x)U (t))

]

= −b|�|
[(

U (t)

|�|
)2

+ Var(u(x, t))

]

.

(12)

Combining (9), (10), and (12) we get

du

dt
=

(
1

|�|
)
dU

dt

= a
U (t)

|�| + Cov(a(x), u(x, t)) − b

[(
U (t)

|�|
)2

+ Var(u(x, t))

]

= a u(t) + Cov(a(x), u(x, t)) − b[u(t)2 + Var(u(x, t))],

(13)

which is very much in the spirit of models developed from Chesson’s modeling view-
point.

2.2.3 Lotka–Volterra competition models

If we start with a competition system

∂u

∂t
= L1u + a(x)u − b(x)u2 − c(x)uv on � × (0,∞)

∂v

∂t
= L2v + d(x)v − e(x)uv − f (x)v2 on � × (0,∞),

(14)

where the operators L1 and L2 are of the form shown in (2) with no-flux boundary
conditions as in (3) we can follow the derivation of (9) to obtain the analogous compe-
tition system. (In this case we would assume that the competitive interactions occur on
the same timescale as the population dynamics arising from the birth and death rates
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Evolution of dispersal in spatial population models with… 13

of each competitor in the absence of the other rather than on the faster timescale of
dispersal. This would probably be a reasonable assumption for many cases of resource
competition but might not be appropriate if competition is mediated, for example, by
direct aggressive behavior or transmission of a disease that is lethal for one competitor
but not the other. In what follows we will be thinking primarily about resource com-
petition between populations that are ecologically similar, so the assumption should
be reasonable in that context.)

If we denote the total populations of the competitors asU and V , and the normalized
principal eigenfunctions of L1 and L2 as φ1 and φ2 respectively, the resulting model
takes the form

dU

dt
=

(∫

�

a(x)φ1(x)dx

)

U (t) −
(∫

�

b(x)φ2
1(x)dx

)

U (t)2

−
(∫

�

c(x)φ1(x)φ2(x)dx

)

U (t)V (t)

dV

dt
=

(∫

�

d(x)φ2(x)dx

)

V (t) −
(∫

�

e(x)φ1(x)φ2(x)dx

)

U (t)V (t)

−
(∫

�

f (x)φ2
2(x)dx

)

V (t)2,

(15)

where the functions b, c, e, and f describing intra- and inter-species interactions are
assumed to be positive. The system (15) is a standard Lotka–Volterra competition
model. We could also derive the analogous predator–prey model by making one of the
interspecific interaction terms negative. The general type of modeling approach that
we have introduced here could be used in the context of any type of Lotka–Volterra
model for any number of interacting species. However, the approach is completely
based on assumption that local population interactions can be described by the mass
action principle, so it is not clear if it can be extended to other types of interactions in a
reasonableway.Thedynamics of theLotka–Volterra systemarewell understood. Itwill
have single-species equilibria (U∗, 0) and (0, V ∗) if and only if

∫
�
a(x)φ1(x)dx >

0 and
∫
�
d(x)φ2(x)dx > 0, respectively. If the single species equilibrium for the

first population is linearly unstable then the second population will persist if it is
initially present. If in addition there is no coexistence equilibrium, which will be
true in particular if the single-species equilibrium for the second species is linearly
asymptotically stable, then the secondwill exclude the first. The analogous results hold
if the roles of the species are reversed. If both the single species equilibria are linearly
unstable then the model has a unique globally attracting coexistence equilibrium, so
the populations will coexist. If both are linearly asymptotically stable then there is an
unstable coexistence equilibrium and which competitor will persist is determined by
initial conditions. The equilibrium (U∗, 0) is linearly asymptotically stable if σ < 0
and unstable when σ > 0, where

σ =
∫

�

d(x)φ2(x)dx −

(∫

�

e(x)φ1(x)φ2(x)dx

) (∫

�

a(x)φ1(x)dx

)

∫

�

b(x)φ2
1(x)dx

. (16)
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14 R. S. Cantrell et al.

Similarly, the equilibrium (0, V ∗) is linearly asymptotically stable if τ < 0 and unsta-
ble when τ > 0, where

τ =
∫

�

a(x)φ1(x)dx −

(∫

�

c(x)φ1(x)φ2(x)dx

) (∫

�

d(x)φ2(x)dx

)

∫

�

f (x)φ2
2(x)dx

. (17)

In what follows our primary interest will be the evolution of dispersal for a single
population. To describe thatwewill use competitionmodelswhere the two competitors
are assumed to be ecologically identical except for their dispersal strategies.

2.3 Evolution

We will approach the question of evolution of dispersal from a viewpoint suggested
by evolutionary game theory and the theory of adaptive dynamics. Specifically, we
will look for strategies that can arise from evolution, specifically convergent stable
strategies or neighborhood invader strategies, and strategies that can persist if they
evolve, namely evolutionarily stable strategies. We assume that mutations affecting
dispersal strategies are relatively rare, so that evolution acts on a timescale that is
even slower than population dynamics. To determine what the outcome of evolution
will be we will use pairwise invasibility analysis. What that means is that we will
consider situations where there is a resident population that is using some strategy
and a small population of mutants using some other strategy, but otherwise identical
to the resident population is introduced. The models then predict whether the mutant
population can invade the resident population. A strategy that can resist invasion by
any population using any other available strategy is considered to be evolutionarily
stable. A strategy that allows a population using it to invade some populations using
other strategies is considered to be a neighborhood invader strategy. In cases where
strategies are restricted to some class that can be parameterized, the properties of being
evolutionarily stable or being a neighborhood invader can be either local or global in
parameter space. Also, within a class of strategies that can be parameterized, a strategy
is said to be convergent stable if strategies closer to it in parameter space can invade
those that are farther away, at least within some subset of parameter space. To study
the evolution of dispersal we will consider the invasibility of single species equilibria
in the special case where a(x) = d(x) and b(x) = c(x) = e(x) = f (x). This
assumption embodies the idea that the two competitors are ecologically equivalent
and differ only in their dispersal strategies. A more specific version of this assumption
about population interactions where a(x) = d(x) = m(x) and b(x) = c(x) = e(x) =
f (x) = 1 has been used widely in models for the evolution of dispersal; see for
example Averill et al. (2012), Cantrell et al. (2006, 2007, 2010, 2012b), Chen et al.
(2008), Dockery et al. (1998), Hambrock and Lou (2009), Kao et al. (2010) and Lam
and Lou (2014a, b). It embodies the additional assumption that only the linear birth or
death rates for the interacting populations, which would serve as proxies for their local
fitness when the populations are at low densities, are spatially dependent. However,
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Evolution of dispersal in spatial population models with… 15

we note that for each species by itself, in the case where the birth or death rate m(x)
is always positive, the logistic equation for local population dynamics at the point x
in the absence of dispersal could be written as

∂u

∂t
= m(x)

(

1 − u

m(x)

)

u. (18)

Thus, in that case, one could use the formulation of the logistic equation in terms of
r and K to make the interpretation m(x) = r = K at the point x . In our study of the
evolution of dispersal and related questions in the special case used in Averill et al.
(2012), Cantrell et al. (2006, 2007, 2010, 2012b), Chen et al. (2008), Dockery et al.
(1998), Hambrock and Lou (2009), Kao et al. (2010) and Lam and Lou (2014a, b), the
Eqs. (16), (17) take the special forms

σ =
∫

�

m(x)φ2(x)dx −

(∫

�

φ1(x)φ2(x)dx

) (∫

�

m(x)φ1(x)dx

)

∫

�

φ2
1(x)dx

, (19)

τ =
∫

�

m(x)φ1(x)dx −

(∫

�

φ1(x)φ2(x)dx

) (∫

�

m(x)φ2(x)dx

)

∫

�

φ2
2(x)dx

. (20)

We will make use of (19), (20) in what follows.
A common theme inmany results about the evolution of dispersal is that in spatially

variable but temporally constant environments, “the slower diffuser wins”. This was
observed by Hastings (1983); related results are proved in Dockery et al. (1998) and
Hutson et al. (2003). However, in the modeling approach we use here, all dispersal,
diffusive or otherwise, is fast. Our approach distinguishes between strategies only if
they lead to distinct equilibrium distributions as given by the principal eigenfunctions
φ1 and φ2. Thus, if constant diffusion is combined with advection up the gradient of
m(x), as was studied in models on a single timescale in Cantrell et al. (2006, 2007),
Chen et al. (2008) and Hambrock and Lou (2009), the only thing that matters is the
ratio of the diffusion rate to the advection rate, since that determines the principal
eigenfunction via (7). An important class of dispersal strategies are those that lead to
an ideal free distribution. Inmodels on a single timescale those are exactly the dispersal
strategies that allow a population to match the local quality of the environment, that
is, for which the unique positive equilibrium of the Eq. (8) or the analogous spatially
discrete or nonlocal models is given by the equilibrium that would arise without any
dispersal at all, namely u∗(x) = a(x)/b(x) provided a(x) > 0 on �̄, or in the special
casewherea(x) = m(x) and b(x) = 1, by u∗(x) = m(x); see for exampleAverill et al.
(2012), Cantrell et al. (2010, 2012a, b), and Korobenko and Braverman (2012, 2014)
and the references therein. In (Averill et al. 2012; Cantrell et al. 2012a, b; Korobenko
and Braverman 2012, 2014), strategies leading to ideal free distribution have been
shown to be globally evolutionarily stable and also to be global neighborhood invaders.
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16 R. S. Cantrell et al.

We will see that something similar is true in the context of our models with multiple
timescales, where the corresponding condition is that the principal eigenfunction of
the dispersal operator is a scalar multiple of a(x)/b(x). There are various ways in
which a dispersal operator of the form (2) can have a scalar multiple of a(x)/b(x), or
in the more special case m(x), as its principal eigenfunction. For example in the case
where a(x) = m(x) > 0 and b(x) = 1, operators of the form∇ ·μ(x)∇(u/m(x))will
have that property for any μ(x) > 0. Those include the special cases μ = 1, which
leads to Lu = ∇2(u/m(x)), as used in Korobenko and Braverman (2012, 2014), and
μ = 1/m(x), which leads to Lu = ∇·[∇u−(u/m)∇m] as used in Averill et al. (2012)
and Cantrell et al. (2010) among other possibilities. In the case of a general dispersal
operator as in (2) in a logistic equation such as (8) the condition for the operator to
lead to an ideal free distribution is that

�P = b

a
μ1∇

(μ2a

b

)
. (21)

It is interesting to consider how ideal free dispersal can act on the fitness of a
population of fixed size. It turns out that in the special case of the logistic equation
where only the density dependent self-regulation term varies, ideal free dispersal acts
to increase population level fitness. Specifically, suppose that the local rate of growth
or decline for a population on the slow timescale is given by r(1−u/K (x)) (so that in
the formulation of (8) we would have a(x) = r and b(x) = r/K (x)). Looking at the
system on the fast timescale of dispersal, we can suppose that the overall population
remains constant but its spatial distribution varies, and use the local fitness weighted
by the population distribution as a proxy for population level fitness:

F =
∫

�

r

(

1 − u

K (x)

)

udx . (22)

For such a population the distribution of the population would change on the fast
timescale as governed by (1).

Proposition 1 Suppose that the dispersal operator L has the form (2) with boundary
conditions (3), and that L supports an ideal free distribution with respect to K (x),
that is, LK (x) = 0 on �, so that (21) holds with a/b = K. Suppose that u(x, t) is
a population density corresponding to a fixed population (so that

∫
�
udx is assumed

to be constant on the fast timescale) but that the spatial distribution of the population
changes according to (1). Then F as defined in (22) is increasing on the fast timescale.

Proof Differentiating F with respect to t (which is currently being interpreted as
representing the fast timescale of dispersal) and using (1) yields

dF

dt
=

∫

�

[

rut −
(

2ru

K (x)

)

ut

]

dx =
∫

�

[

r Lu dx −
(

2ru

K (x)

)

Lu

]

dx . (23)

The first term in the last integral is zero because of the boundary conditions on L .
Using (2) and the divergence theorem we can then rewrite (23) as
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dF

dt
= 2r

∫

�

∇
(

u

K (x)

)

·
(
μ1∇(μ2u) − u �P

)
dx . (24)

By using (21) with a/b = K and direct calculation we obtain

μ1∇(μ2u) − u �P = μ1∇(μ2u) − uμ1∇(μ2K )

K
= μ1μ2∇u − μ1μ2u∇K

K
= Kμ1μ2∇

( u

K

)
(25)

so that (24) can be written as

dF

dt
= 2r

∫

�

Kμ1μ2

∣
∣
∣∇

( u

K

)∣
∣
∣
2
dx ≥ 0, (26)

proving the claim. ��
The property of ideal free dispersal shown in Proposition 1 does not appear to

extend directly to logistic equations with other forms of spatial variation; however,
we shall see that on the slow timescale ideal free dispersal strategies in general are
evolutionarily stable in a strong sense relative to strategies that do not produce an ideal
free distribution.

3 Case studies

3.1 Ideal free dispersal

3.1.1 Main result and remarks

Consider the case of (15) where a(x) = d(x) > 0 and b(x) = c(x) = e(x) =
f (x) > 0. This corresponds to a scenario of competition between ecologically identi-
cal populations. In that setting the first population has an ideal free dispersal strategy
if

φ1 = a(x)/b(x)
∫
�
[a(y)/b(y)]dy . (27)

We have the following:

Theorem 2 In the setting of (15) with a(x) = d(x) > 0 and b(x) = c(x) = e(x) =
f (x) > 0, any ideal free dispersal strategy is a global evolutionarily stable strategy
and a global neighborhood invader strategy relative to any class of strategies that
does not include any other ideal free strategy.

Remark We will see that any population using an ideal free strategy will exclude
any population that is not using an ideal free strategy if both populations are present
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18 R. S. Cantrell et al.

initially. This result is analogous to those obtained in Averill et al. (2012), Cantrell
et al. (2012a, b) and Korobenko and Braverman (2014) for various sorts of models on
a single timescale.

Whether or not a population can disperse so as to achieve an ideal free distribution by
using diffusion, or a combination of diffusion and advection, depends on behavioral
traits at the spatiotemporal scale of random walks. That scale is faster in time and
smaller in space than the scales where diffusion and advection models operate. The
ability to develop traits that can ultimately produce an ideal free distribution depends
on the sensory and motor capabilities of individuals. Roughly speaking, to achieve an
ideal free distribution, individuals must be able to sense and respond to environmental
quality or more generally local fitness, or gradients of such quantities, at the scale
of random walks. This point is noted in Cosner (2014) and discussed in detail in
Farnsworth and Beecham (1999) and Potapov et al. (2014); see Aronson (1985) and
Okubo and Levin (2001) for background material. In particular, diffusive movement
at the scale of random walks which is not conditioned on the local environment, for
example, classical diffusion as described by Fick’s law, cannot produce an ideal free
distribution.

3.1.2 Technicalities: proof of Theorem 2

Suppose that the first competitor uses an ideal free dispersal strategy. The dynamics
of the system (15) can be determined from the invasion criteria arising from (16) and
(17). We have

σ =
∫

�

a(x)φ2(x)dx −

(∫

�

a(x)φ2(x)dx

) (∫

�

[a(x)2/b(x)]dx
)

∫

�

[a(x)2/b(x)]dx
= 0. (28)

It follows that (U∗, 0) is always linearly neutrally stable. Also,

τ =

∫

�

[a(x)2/b(x)]dx
∫

�

[a(x)/b(x)]dx
−

(∫

�

a(x)φ2(x)dx

)2

(∫

�

[a(x)/b(x)]dx
) (∫

�

b(x)φ2
2(x)dx

) . (29)

The sign of τ is the same as the sign of

(∫

�

[a(x)2/b(x)]dx
) (∫

�

b(x)φ2
2(x)dx

)

−
(∫

�

a(x)φ2(x)dx

)2

. (30)

Since (a(x)/b(x)1/2)2 = a(x)2/b(x), (b(x)1/2φ2(x))2 = b(x)φ2(x)2, and
(a(x)/b(x)1/2)(b(x)1/2φ2(x)) = a(x)φ2(x), it follows from the Cauchy-Schwartz
inequality that τ is positive unless a(x)/b(x)1/2 is a constantmultiple of b(x)1/2φ2(x),
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which will be true only if φ2(x) is a constant multiple of a(x)/b(x), that is, only if the
strategy used by the second competitor is also ideal free. Thus, a population using an
ideal free dispersal strategy can always invade a population using any strategy that is
not ideal free. The existence or nonexistence of a positive equilibrium in this case of
(15) is determined by a system equivalent to

(∫

�

[a(x)2/b(x)]dx
) (∫

�

[a(x)/b(x)]dx
)

=
(∫

�

[a(x)2/b(x)]dx
)

U∗∗ +
(∫

�

a(x)φ2(x)dx

) (∫

�

[a(x)/b(x)]dx
)

V ∗∗

(∫

�

a(x)φ2(x)dx

) (∫

�

[a(x)/b(x)]dx
)

=
(∫

�

a(x)φ2(x)dx

)

U∗∗ +
(∫

�

b(x)φ2
2(x)dx

) (∫

�

[a(x)/b(x)]dx
)

V ∗∗.

(31)

The determinant of the coefficientmatrix of (31) is the expression that occurs in (30)
multiplied by

∫
�
[a(x)/b(x)]dx , so if the second competitor is using a strategy that is

not ideal free then the determinant is nonzero. Solving for V ∗∗ then yields V ∗∗ = 0.
Hence there is no positive equilibrium. (The isoclines of the system (15) intersect
at (U∗∗, 0) in this case.) It then follows by general competition theory that since
the system (15) does not have a positive equilibrium and the equilibrium (0, V ∗) is
unstable, the equilibrium (U∗, 0) is globally asymptotically stable. Thus, a population
using an ideal free dispersal strategy can resist invasion by any population using a
dispersal strategy that is not ideal free, and furthermore can invade any such population.
It follows that ideal free dispersal strategies are globally evolutionarily stable relative
to strategies that are not ideal free, as claimed. They are also global neighborhood
invader strategies.

3.2 Diffusion versus diffusion with advection

3.2.1 Background andmain results

In the case where a(x) > 0 and all dispersal strategies of the form (2) are available to
a population, ideal free dispersal strategies are possible, and the results of the previous
section show that they can be expected to evolve and persist. However, there may
be situations where a(x) < 0 for some values of x , which would reflect ecological
situations where any sort of diffusive movement leads to source-sink dynamics even
if arbitrary choice of advection is possible. Also, the dispersal strategies available to
organisms may be limited in ways that prevent them from achieving an ideal free
distribution. In this section and the next we will explore some scenarios where ideal
free dispersal is not feasible for one reason or another. Specifically, we will consider
cases where a(x) = d(x) = m(x) and b(x) = c(x) = e(x) = f (x) = 1 and where
the only available strategies are simple diffusion or simple diffusion with advection
on ∇m(x). In this section we will consider competition between a population that
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simply diffuses and one that diffuses and advects on ∇m(x). In the next section we
will study the evolution of the rate of advection on ∇m(x) when both competitors can
use arbitrary rates of advection on ∇m(x). Models on a single timescale with these
features were studied in Cantrell et al. (2006, 2007), Chen et al. (2008), Hambrock
and Lou (2009) and Lam and Lou (2014a, b).

The first observation in the case where m(x) can change sign is that since the
principal eigenfunction corresponding to the case of simple diffusion is constant, our
models predict that a population that simply diffuses will persist only if

∫
�
m(x)dx >

0. On the other hand, if a population diffuses at a constant rate and advects on ∇m(x)
with rate α times as large [for example if μ1 = μ2 = 1 and �P(x) = α∇m(x) in
(2)] then the principal eigenfunction is a multiple of eαm(x) and our models predict
persistence if

∫
�
m(x)eαm(x)dx > 0, which will always be true for α sufficiently large

ifm(x) is differentiable andm(x) > 0 somewhere. The same condition is sufficient for
persistence in the analogous reaction–diffusion–advectionmodel on a single timescale;
see for example Cantrell and Cosner (2003, p. 106). Suppose that we allow m(x) to
change sign but assume that

∫
�
m(x)dx > 0 so that our models predict persistence

for a single population for all α ≥ 0. Suppose further that the first competitor diffuses
at a fixed rate and advects on ∇m(x) at α times the diffusion rate, while the second
competitor just diffuses. In that case the condition for a small population of the first
competitor to be able to invade a resident population of the second, as given by τ > 0
in (20), is

∫

�

meαmdx
∫

�

eαmdx
− 1

|�|
∫

�

mdx > 0. (32)

It turns out that (32) holds for α > 0 provided m(x) is not constant.
Let m̄ = 1

|�|
∫
�
mdx .

Proposition 2 Assume that the second competitor simply diffuses at a constant rate
while the first competitor diffuses and also advects on ∇m at a rate equal to α times
its diffusion rate. Assume further that m̄ > 0 so that (0, V ∗) exists. If m(x) is not
identically equal to m̄ then for all α > 0 the inequality (32) holds so that (0, V ∗) is
unstable and hence the first competitor can invade a resident population of the second
competitor if a small population of the first competitor is introduced.

Proof Observe that
∫
�
(m(x) − m̄)dx = 0 and that if m(x) is not identically equal

to m̄ then d
dα

∫
�
eα(m(x)−m̄)(m(x) − m̄) > 0, so that

∫
�
eα(m(x)−m̄)(m(x) − m̄) > 0

for α > 0. Dividing by e−αm̄ and distributing eαm(x) yields
∫
�
eαm(x)m(x)dx −

m̄
∫
�
eαm(x)dx > 0, which is equivalent to (32). ��

Although a competitor that advects on ∇m can always invade a competitor that
simply diffuses in the setting of Proposition 2, it cannot always resist invasion by such a
competitor. This phenomenonwas shown to occur in some cases formodels on a single
timescale in Cantrell et al. (2007) when the competitor that both diffuses and advects
on ∇m has a sufficiently large advection rate. In that situation the mechanism that

123



Evolution of dispersal in spatial population models with… 21

allows invasion by the purely diffusing competitor is that the density of the advecting
and diffusing competitor concentrates at certain maxima ofm(x); see Lam (2011) and
Lam and Ni (2010). A similar mechanism appears to produce the analogous effect in
our models on multiple timescales. Additionally, in our models the purely diffusing
competitor can also invade the advecting and diffusing competitor when the advection
rate is large in cases wherem(x) has a positive lower bound. The condition for a small
population of the second (purely diffusing) competitor to be able to invade a resident
population of the first, as given by σ > 0 in (19), is equivalent to

G(α) :=
∫

�

mdx −

(∫

�

meαmdx

) (∫

�

eαmdx

)

∫

�

e2αmdx
> 0. (33)

Observe that G(0) = 0 and that for non-constant m(x)

G ′(0) = 1

|�|
(∫

�

mdx

)2

−
(∫

�

m2dx

)

< 0 (34)

by the Cauchy-Schwartz inequality. Thus for small positive values of α we have
G(α) < 0 and hence the second competitor cannot invade a resident population of the
first. For large α there are conditions on m(x) under which G(α) > 0 so the second
competitor can invade the first. We have the following:

Lemma 1 Suppose that m(x) attains its global maximum on �̄ at finitely many points
and all global maxima are non-degenerate. Then

lim
α→∞

(∫

�

meαmdx

) (∫

�

eαmdx

)

∫

�

e2αmdx
= 0. (35)

Lemma 1 implies that for α large (33) holds so that there is mutual invasibility by
the competitors so they can coexist. We have:

Corollary 1 If the hypotheses of Proposition 2 and Lemma 1 are satisfied then the
equilibrium (U∗, 0) is unstable so a small population of the second competitor can
invade a resident population of the first competitor if the first competitor advects on
∇m at a sufficiently large rate α. In that case, since each population can invade the
other if introduced at low density, the competitors can coexist.

The condition in Lemma 1 is not the only one that implies coexistence for suffi-
ciently large α:

Proposition 3 Suppose that m0 = min{m(x) : x ∈ �} > 0. If α > 1/m0 then the
equilibrium (U∗, 0) is unstable, so there is mutual invasibility by the two competitors
and hence they can coexist.
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To summarize the case where one competitor simply diffuses and the other advects
up the gradient of m at a rate α > 0, by combining the previous results in this
section with the known dynamics of the Lotka–Volterra competition model, we have
the following:

Theorem 3 Suppose that the hypotheses of Proposition 2 are satisfied and m(x) is not
identically equal to m̄. For all α > 0 the competitor that both diffuses and advects up
the gradient ofm canpersist and can invadea resident populationof the competitor that
simply diffuses. If the advection rate α is sufficiently small the competitor that advects
up the gradient of m will exclude the competitor that simply diffuses. If in addition the
hypotheses of Corollary 1 or Proposition 3 are satisfied then for α sufficiently large
the competitor that simply diffuses can invade a resident population of the competitor
that diffuses and advects up the gradient of m, so the two competitors can coexist.

The conditions given in the hypotheses of Corollary 1 and Proposition 3 are suf-
ficient for our model to predict that the competitor which simply diffuses can invade
a resident population of the competitor that both advects on the gradient of m and
diffuses, provided that the advection rate α is large, but they are not necessary for
that prediction. Also, in general we do not know if there is a unique value of α where
the prediction of the model changes from competitive exclusion to coexistence, or
whether it may switch between those more than once. As an example, if � = (0, 1)
then m(x) = x does not satisfy the hypotheses of either Corollary 1 or Proposition 3,
but the conclusion that the model predicts coexistence for large α still holds. Specifi-
cally, the global maximum ofm(x) is not nondegenerate in the sense of Corollary 1 in
the example, and m(x) does not have a positive minimum. Furthermore, in that exam-
ple, it turns out that the value of α where the prediction switches from exclusion to
coexistence is unique.Details of that example areworked out in the next subsubsection.

3.2.2 Technicalities: proofs and analysis of the examplem(x) = x

Proof of Lemma 1 Suppose that max�̄ m(x) = m(xi ) = m0 for i = 1 . . . N . Assume
that xi ∈ � for each i . (The case where xi ∈ ∂� for some i is similar.) By Taylor’s
theorem and the fact that m has a nondegenerate maximum at xi , for each i

m(x) − m0 = 1

2
(x − xi )

T∇2m(xi )(x − xi ) + o(|x − xi |2),

where ∇2m(xi ) denotes the Hessian of m at xi . By hypothesis, ∇2m(xi ) is strictly
negative definite. Hence, since the set of local maxima is finite, there exists some
δ > 0 such that for i = 1 . . . N , if |x − xi | < δ, then

3

4
(x − xi )

T∇2m(xi )(x − xi ) ≤ m(x) − m0 ≤ 1

4
(x − xi )

T∇2m(xi )(x − xi ),

(36)

and for some ε > 0, m(x) < m0 − ε for x ∈ �\{∪N
i=1{|x − xi | < δ}. We then have
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∫

�

eαmdx =
N∑

i=1

∫

{|x−xi |<δ}
eαmdx +

∫

�\{∪N
i=1{|x−xi |<δ}

eαmdx

≤
N∑

i=1

∫

{|x−xi |<δ}
eα(m0+ 1

4 (x−xi )T ∇2m(xi )(x−xi ))dx + eα(m0−ε)|�|.
(37)

For any given i let y = √
α(x − xi ). Then dx = α−n/2dy and

∫

{|x−xi |<δ}
eα(m0+ 1

4 (x−xi )T ∇2m(xi )(x−xi ))dx= eαm0α−n/2
∫

{|y|<δ
√

α}
e
1
4 y

T ∇2m(xi )ydy

≤ Cie
αm0α−n/2,

(38)

where Ci = ∫
Rn e

1
4 y

T ∇2m(xi )ydy. Combining (37) and (38) we obtain

∫

�

eαmdx ≤ eαm0α−n/2
N∑

i=1

Ci + eα(m0−ε)|�|. (39)

It follows from (39) that

∫

�

meαmdx ≤ m0e
αm0α−n/2

N∑

i=1

Ci + m0e
α(m0−ε)|�|. (40)

On the other hand, we have

∫

�

e2αmdx ≥
N∑

i=1

∫

{|x−xi |<δ}
e2αmdx

≥
N∑

i=1

∫

{|x−xi |<δ}
e2α(m0+ 3

4 (x−xi )T ∇2m(xi )(x−xi ))dx .

(41)

Again, for any given i let y = √
α(x − xi ), and we have

∫

{|x−xi |<δ}
e2α(m0+ 3

4 (x−xi )T ∇2m(xi )(x−xi ))dx = e2αm0α−n/2
∫

{|y|<δ
√

α}
e
3
4 y

T ∇2m(xi )ydy. (42)

There exists a constant ci > 0 such that for α ≥ 1/δ we have

∫

{|y|<δ
√

α}
e
3
4 y

T ∇2m(xi )ydy ≥ ci .

Thus, for α ≥ 1/δ we have

∫

{|x−xi |<δ}
e2α(m0+ 3

4 (x−xi )T ∇2m(xi )(x−xi ))dx ≥ ci e
2αm0α−n/2, (43)
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so that

∫

�

e2αmdx ≥ e2αm0α−n/2
N∑

i=1

ci . (44)

Letting C = ∑N
i=1 Ci and c = ∑N

i=1 ci it follows from (39), (41), and (44) that for
α ≥ 1/δ we have

(∫

�

meαmdx

) (∫

�

eαmdx

)

∫

�

e2αmdx
≤ m0(eαm0α−n/2C + eα(m0−ε)|�|)2

ce2αm0α−n/2 . (45)

Since

m0(eαm0α−n/2C + eα(m0−ε)|�|)2
ce2αm0α−n/2 = (m0/c)(Cα−n/4 + αn/4e−εα|�|)2,

the estimate (45) implies (35). ��
Proof of Proposition 3 Let

H(α) :=

∫

�

mdx
∫

�

eαmdx
−

∫

�

meαmdx
∫

�

e2αmdx
. (46)

Observe that (33) holds if H(α) > 0. Note that

∫

�

⎡

⎢
⎢
⎣

eαm(x)
∫

�

eαm(y)dy
− e2αm(x)

∫

�

e2αm(y)dy

⎤

⎥
⎥
⎦ dx = 0 (47)

so that for any constant c we can write H(α) as

H(α) =
∫

�

[
m(x)e−αm(x) − c

]

⎡

⎢
⎢
⎣

eαm(x)
∫

�

eαm(y)dy
− e2αm(x)

∫

�

e2αm(y)dy

⎤

⎥
⎥
⎦ dx . (48)

Also, the integrand in (47) must change sign, which means that there are points x ∈ �

where m(x) = a such that

eαa
∫

�

eαm(y)dy
= e2αa

∫

�

e2αm(y)dy
,
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that is, eαa = ∫
�
e2αm/

∫
�
eαm , so that a = (1/α)ln(

∫
�
e2αm/

∫
�
eαm). For noncon-

stant m,

eαa >

∫

�

eαm(x)eαm0dx
∫

�

eαm(x)dx
= eαm0

so we have a > m0, and then by hypothesis a > 1/α. For z > 1/α, ze−αz is decreas-
ing. Choose c = ae−αa in (48). Sincem ≥ m0, a ≥ m0, andm0 > 1/α, it follows that
if m > a then me−αm − ae−αa < 0. Also, eαm > eαa = ∫

�
e2αm(x)dx/

∫
�
eαm(x)dx

so multiplying by eαm(x) and rearranging terms gives e2αm(x)/
∫
�
e2αm(x)dx >

eαm(x)/
∫
�
eαm(x)dx . Thus, ifm > a, both factors in the integrand in (48) are negative

so their product is positive. Similarly, both factors are positive in the case m < a, so
again the product is positive. It follows that H(α) > 0 for α > 1/m0, so that (33)
holds, implying instability of (U∗, 0) and hence coexistence. ��
Example 1 Let � = (0, 1) and m(x) = x . Direct calculations give

G(α) = 1

2
−

( [(α − 1)eα + 1]
α2

) (
2

eα + 1

)

from which we obtain

lim
α→0

G(α) = 0, lim
α→∞G(α) = 1/2.

We will see that there is a unique value α# > 0 such that G ′(α) < 0 for 0 < α < α#

and G ′(α) > 0 for α > α#, from which it follows that G(α) changes sign exactly
once, from negative to positive, for α ∈ (0,∞). Direct calculations show that

G ′(α) = −2[α2(eα + 1)eα − ([α − 1]eα + 1)(αeα + 2eα + 2)]
α3(eα + 1)2

.

For convenience, we consider the numerator of −G ′(α)/2 and expand it to determine
the sign of G ′(α). Let

S(α) := −G ′(α)α3(eα + 1)2/2 = α2eα − 3αeα − αe2α + 2e2α − 2.

We want to show that there is a unique value α# > 0 such that S(α) > 0 for
0 < α < α# and S(α) < 0 for α > α#. Note that S(0) = 0 and the dominant term in
S(α) as α → ∞ is −αe2α so that S(α) → −∞ as α → ∞. Computing derivatives
of S yields

S′(α) = α2eα − αeα − 3eα + 3e2α − 2αe2α,

S′′(α) = α2eα + αeα − 4eα + 4e2α − 4αe2α,

S′′′(α) = α2eα + 3αeα − 3eα + 4e2α − 8αe2α,

S(4)(α) = α2eα + 5αeα − 16αe2α.

(49)
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We have S(4)(0) = 0, and S(4)(α) = αeα(α + 5 − 16eα). Since 16eα > 16 + 16α
for α > 0, we have S(4)(α) < 0 for α > 0. We have S′′′(0) = 1 > 0, and the
dominant term in S′′′(α) is −8αe2α , which is negative for α > 0, so S′′′(α) < 0 for
α sufficiently large. It then follows that for some unique α1 > 0 we have S′′′(α) > 0
for α < α1 and S′′′(α) < 0 for α > α1. Furthermore, S′′(0) = 0 and the dominant
term in S′′(α) is −4αe2α , which is negative for α > 0, so S′′(α) < 0 for α sufficiently
large. Hence, S′′(α) is positive and increasing on (0, α1), has a maximum at α = α1,
and then decreases toward −∞, so there exists a unique α2 so that S′′(α) > 0 for
0 < α < α2 and S′′(α) < 0 for α > α2. Similarly, we have S′(0) = 0 and S′(α) < 0
for α sufficiently large, so repeating the last argument shows there is a unique α3 so
that S′(α) > 0 for 0 < α < α3 and S′(α) < 0 for α > α3. Finally, since S(0) = 0 and
S(α) < 0 for α large, the same argument shows that there is a unique α# > 0 so that
S(α) > 0 for 0 < α < α# and S(α) < 0 for α > α#, which gives the desired result.

3.3 Evolution of advection rates

3.3.1 Background andmain results

In this section we will consider the case where both competitors must diffuse at the
same fixed rate but both advect on the gradient of the local population growth rate at
low density and can choose the size of their advection rates relative to the diffusion
rate. Again, we will consider cases where a(x) = d(x) = m(x) and b(x) = c(x) =
e(x) = f (x) = 1, with

∫
�
mdx > 0. Suppose that the first competitor advects on

∇m at a rate equal to α times the diffusion rate while the second competitor advects
on ∇m at β times the diffusion rate. In that case the condition σ > 0 in (19) for the
equilibrium (U∗, 0) to be unstable, so that a small population of the second competitor
can invade a resident population of the first, is equivalent to

σ̃ (α, β) :=
∫

�

meβmdx −

(∫

�

meαmdx

) (∫

�

e(α+β)mdx

)

∫

�

e2αmdx
> 0. (50)

Using σ̃ as a proxy for σ , we see that the strategy corresponding to an advection rate

α∗ will be evolutionarily singular if ∂σ̃

∂β
(α∗, α∗) = 0 and will be convergence stable if

∂

∂α

(
∂σ̃

∂β
(α, α)

) ∣
∣
∣
α∗ < 0. See Geritz et al. (1997). What we will actually show is that

under suitable conditions on m(x) there is an evolutionarily singular strategy α∗ with
the property that for α ≈ α∗, we have ∂σ̃

∂β
(α, α) > 0 for α < α∗ and ∂σ̃

∂β
(α, α) < 0 for

α > α∗, which is still sufficient for convergence stability. A simple computation yields

∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

=
∫

�

m2eαmdx −

(∫

�

meαmdx

) (∫

�

me2αmdx

)

∫

�

e2αmdx
. (51)
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It follows immediately from Hölder’s inequality that for nonconstant m(x),
∂σ̃

∂β

(α, β)

∣
∣
∣
β=α=0

> 0. To show there exist evolutionarily singular strategies we will

find conditions so that
∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

< 0 for large α. The first is similar to those in

Lemma 1:

Lemma 2 Suppose that m(x) attains its global maximum on �̄ at finitely many points
xi ∈ � and all global maxima are non-degenerate. Then for α sufficiently large,

∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

< 0. (52)

The second set of conditions for the existence of evolutionary singular strategies are
similar to those given for coexistence of populations dispersing by simple diffusion
and by diffusion with advection up the gradient of m in Proposition 3.

Proposition 4 Let m0 = min{m(x) : x ∈ �} and m1 = max{m(x) : x ∈ �}.
Suppose that m0 > 0. Then for 0 ≤ α < 1/m1,

σ̃ (α, β) < 0 if α > β; σ̃ (α, β) > 0 if α < β. (53)

For α > 1/m0,

σ̃ (α, β) > 0 if α > β; σ̃ (α, β) < 0 if α < β. (54)

We can now give conditions for the existence of α∗ such that the strategy of advec-
tion on ∇m at a rate equal to α∗ times the diffusion rate is locally convergence stable:

Theorem 4 Suppose that m(x) is nonconstant and that the hypotheses of either
Lemma 2 or Proposition 4 are satisfied. Then there exists at least one valueα∗ such that
advection on ∇m at a rate equal to α∗ times the diffusion rate is a local convergence
stable strategy. If the hypotheses of Proposition 4 are satisfied thenα∗ ∈ [1/m1, 1/m0]
where m0,m1 are as in Proposition 4.

Proof Wealways have
∂σ̃

∂β
(α, β)

∣
∣
∣
β=α=0

> 0.Under the hypotheses of either Lemma 2

or Proposition 4 we have
∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

< 0 if α is sufficiently large. Thus, there must

be at least one value α∗ where
∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

= 0, and if the hypotheses of Proposi-

tion 4 are satisfied we have α∗ ∈ [1/m1, 1/m0] where m0,m1 are as in Proposition 4.

It is easy to see that
∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

is an analytic function of α and is not identically

zero, so at α = α∗ it must have at least one nonzero derivative. If the lowest order

nonzero derivative is positive for every suchα∗ then ∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

cannot change sign
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from positive to negative, which yields a contradiction, so there must be some value
α∗ such that the lowest order nonzero derivative is negative. For any such value of α∗

we have
∂σ̃

∂β
(α, α) > 0 for α < α∗, α ≈ α∗ and

∂σ̃

∂β
(α, α) < 0 for α > α∗, α ≈ α∗,

which is sufficient for local convergence stability.
As in the case of diffusion with advection versus simple diffusion, the sufficient

conditions we have derived for the existence of a convergence stable strategy are not
necessary, and we do not know if the value α∗ which determines a convergence stable
strategy is unique. The fact the our conditions are not necessary can be seen in the
case � = (0, 1) with m(x) = x , which is worked out in the next subsection. It turns
out that the value α∗is unique in that case. ��

3.3.2 Technicalities: proofs and analysis of the examplem(x) = x

Proof of Lemma 2 As in Lemma 1, suppose that max�̄ m(x) = m(xi ) = m0 for
i = 1 . . . N with that xi ∈ �. Let

g(α) :=
∫

�

m2eαmdx
∫

�

e2αmdx −
∫

�

meαmdx
∫

�

me2αmdx . (55)

It is clear that g(α) has the same sign as
∂σ̃

∂β
(α, β)

∣
∣
∣
β=α

. Sincem has a nondegenerate

maximum at xi , for each i , the Hessian ∇2m(xi ) is strictly negative definite. Let

m1(x) = m(x) − m0, and for each i,
Mi (x) = xT∇2m(xi )x,
and �δ = ∪N

i=1{x ∈ R
n||x − xi | < δ}.

(56)

Note that m1 ≤ 0. Since the set of global maxima is finite, for any sufficiently small
ε > 0 we can choose δ > 0 so that if |x − xi | < δ then

m0 + (1 + ε)Mi (x − xi ) ≤ m(x) ≤ m0 + (1 − ε)Mi (x − xi ) (57)

and m(x) < m0 − ε for x ∈ �\�δ . We can express the first integral in (55) as

∫

�

m2eαmdx =
∫

�δ

m2eαmdx +
∫

�\�δ

m2eαmdx, (58)

and observe that

∣
∣
∣

∫

�\�δ

m2eαmdx
∣
∣
∣ ≤ Ceα(m0−ε) (59)

for some constant C , and similarly for the remaining integrals in (55). If we multiply
out the decomposed integrals then since m ≤ m0 everywhere and m < m0 − ε on
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�\�δ , any of the resulting product terms with a factor where one of the integrals is
taken over �\�δ will be bounded by Ceα(3m0−ε) so that

g(α) ≤
∫

�δ

m2eαmdx
∫

�δ

e2αmdx −
∫

�δ

meαmdx
∫

�δ

me2αmdx + Ceα(3m0−ε). (60)

If we now write m = m0 + m1 in (60), expand and combine or cancel like terms,
then rearrange we obtain

g(α) ≤ m0

(∫

�δ

m1e
αmdx

∫

�δ

e2αmdx −
∫

�δ

eαmdx
∫

�δ

m1e
2αmdx

)

+
∫

�δ

m2
1e

αmdx
∫

�δ

e2αmdx −
∫

�δ

m1e
αmdx

∫

�δ

m1e
2αmdx

+ Ceα(3m0−ε).

(61)

The second term in the second line of (61) is nonpositive. To estimate the first term
in the second line of (61) observe that by (56)

∫

�δ

m2
1e

αmdx =
N∑

i=1

∫

|x−xi |<δ

m2
1e

αmdx

≤ eαm0(1 + ε)2
N∑

i=1

∫

|x−xi |<δ

M2
i (x − xi )e

α(1−ε)Mi (x−xi )dx .

(62)

Since Mi (x) is a negative definite quadratic form, for each i we can make the
substitution y = α1/2(1 − ε)1/2(x − xi ) and obtain

∫

|x−xi |<δ

M2
i (x − xi )e

α(1−ε)Mi (x−xi )dx = [α(1 − ε)]−( n2+2)
∫

|y|<δα1/2(1−ε)1/2
M2

i (y)eMi (y)dy

≤ [α(1 − ε)]−( n2+2)
∫

Rn
M2

i (y)eMi (y)dy

≤ Cα−( n2+2)

(63)

for some generic constant C which can be chosen independent of ε and δ. It follows
that

∫

�δ

m2
1e

αmdx ≤ Cα−( n2+2)eαm0 . (64)

Using the analogous substitutions where y = 21/2α1/2(1 − ε)1/2(x − xi ) we also
have

∫

�δ

e2αmdx =
N∑

i=1

∫

|x−xi |<δ

e2αmdx

≤ e2αm0

N∑

i=1

∫

|x−xi |<δ

e2α(1−ε)Mi (x−xi )dx
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= e2αm0

N∑

i=1

[2α(1 − ε)]− n
2

∫

|y|<δ21/2α1/2(1−ε)1/2
eMi (y)dy (65)

≤ e2αm0 [2α(1 − ε)]− n
2

∫

Rn
eMi (y)dy

≤ Ce2m0α− n
2 .

Thus, the first term in the second line of (61) is bounded by Cα−(n+2)e3αm0 . To
estimate the terms in the first line of (61) we observe that they can be rewritten as

m0

⎛

⎝
N∑

i, j=1

∫

|x−xi |<δ

m1e
αmdx

∫

|x−x j |<δ

e2αmdx −
N∑

i, j=1

∫

|x−xi |<δ

eαmdx
∫

|x−x j |<δ

m1e
2αmdx

⎞

⎠

= m0e
3αm0

N∑

i, j=1

(∫

|x−xi |<δ

m1e
αm1dx

∫

|x−x j |<δ

e2αm1dx −
∫

|x−xi |<δ

eαm1dx
∫

|x−x j |<δ

m1e
2αm1dx

)

.

(66)

Recalling that m1 ≤ 0 and Mi ≤ 0, i = 1 . . . N , and using (57) we have

∫

|x−xi |<δ

m1e
αm1dx

∫

|x−x j |<δ

e2αm1dx −
∫

|x−xi |<δ

eαm1dx
∫

|x−x j |<δ

m1e
2αm1dx

≤ (1 − ε)

∫

|x−xi |<δ

Mi (x − xi )e
α(1+ε)Mi (x−xi )dx

∫

|x−x j |<δ

e2α(1+ε)Mj (x−x j )dx

− (1 + ε)

∫

|x−xi |<δ

eα(1−ε)Mi (x−xi )dx
∫

|x−x j |<δ

Mj (x − x j )e
2α(1−ε)Mj (x−x j )dx,

(67)

where the term in the first line of right hand side of the inequality is negative and the
term in the second line is positive. We can estimate those terms by substitution as in
(62)–(65). Using y = α1/2(1 + ε)1/2(x − xi ) in the first integral on the right in (67)
yields

∫

|x−xi |<δ

Mi (x − xi )e
α(1+ε)Mi (x−xi )dx = [α(1 + ε)]−( n2+1)

∫

|y|<δα1/2(1+ε)1/2
Mi (y)e

Mi (y)dy. (68)

Making the analogous substitutions in the remaining integrals on the right in (67)
yields

∫

|x−x j |<δ

e2α(1+ε)Mj (x−x j )dx = [2α(1 + ε)]− n
2

∫

|y|<δ21/2α1/2(1+ε)1/2
eMj (y)dy

∫

|x−xi |<δ

eα(1−ε)Mi (x−xi )dx = [α(1 − ε)]−( n2+1)
∫

|y|<δα1/2(1−ε)1/2
eMi (y)dy

∫

|x−x j |<δ

Mj (x − x j )e
2α(1−ε)Mj (x−x j )dx = [2α(1 − ε)]−( n2+1)

∫

|y|<δ21/2α1/2(1−ε)1/2
Mj (y)e

Mj (y)dy.

(69)
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Let

I1i (α) :=
∫

|y|<δα1/2(1+ε)1/2
Mi (y)e

Mi (y)dy I2i (α) :=
∫

|y|<δ21/2α1/2(1−ε)1/2
Mi (y)e

Mi (y)dy

J1i (α) :=
∫

|y|<δ21/2α1/2(1+ε)1/2
eMj (y)dy J2i (α) :=

∫

|y|<δα1/2(1−ε)1/2
eMi (y)dy.

(70)

We have

I ∗
i :=

∫

Rn
Mi (y)e

Mi (y)dy = lim
α→∞ I1i (α) = lim

α→∞ I2i (α) < 0

J ∗
i :=

∫

Rn
eMi (y)dy = lim

α→∞ J1i (α) = lim
α→∞ J2i (α) > 0.

(71)

Using (68)–(70) in (67) yields

∫

|x−xi |<δ

m1e
αm1dx

∫

|x−x j |<δ

e2αm1dx −
∫

|x−xi |<δ

eαm1dx
∫

|x−x j |<δ

m1e
2αm1dx ≤

α−(n+1)

[
(1 − ε)2− n

2

(1 + ε)(n+1)
I1i (α)J1 j (α) − (1 + ε)2−( n2+1)

(1 − ε)(n+1)
I2i (α)J2 j (α)

]

.

(72)

As α → ∞ the expression inside the brackets on the right side of (72) approaches

Ci j := 2− n
2

[
(1 − ε)

(1 + ε)(n+1)
− (1 + ε)

2(1 − ε)(n+1)

]

I ∗
i J

∗
j . (73)

For sufficiently small ε > 0 we have Ci j < 0. Thus, for α sufficiently large, we have
by (66)–(73)

m0

⎛

⎝
N∑

i, j=1

∫

|x−xi |<δ

m1e
αmdx

∫

|x−x j |<δ

e2αmdx −
N∑

i, j=1

∫

|x−xi |<δ

eαmdx
∫

|x−x j |<δ

m1e
2αmdx

⎞

⎠

≤ −C0e
3αm0α−(n+1)

(74)

for some constant C0 > 0. Hence, choosing ε > 0 sufficiently small, it follows from
(61), (64), (65), and (74) that for α large,

g(α) ≤ e3m0α
(
−C0α

−(n+1) + Cα−(n+2) + Ce−εα
)

(75)

so that g(α) < 0 for large α, which proves the lemma. ��
Proof of Proposition 4 By direct calculation and proper rearrangement we have

∂σ̃

∂β
=

∫

�

me(α+β)m
(

me−αm −
∫
�
meαm dx

∫
�
e2αm dx

)

dx . (76)
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Since

σ̃ (α, β) =
∫

�

e(α+β)m
(

me−αm −
∫
�
meαm dx

∫
�
e2αm dx

)

dx, (77)

we have, for any constant c,

∂σ̃

∂β
− cσ̃ (α, β) =

∫

�

e(α+β)m(m − c)

(

me−αm −
∫
�
meαm dx

∫
�
e2αm dx

)

dx . (78)

Since
∫
�
meαm dx

∫
�
e2αm dx

∈
[

min
�̄

(me−αm),max
�̄

(me−αm)

]

,

there exists some x∗ ∈ �̄ such that
∫
�
meαm dx

∫
�
e2αm dx

= m(x∗)e−αm(x∗).

Choose c = m(x∗) we have

∂σ̃

∂β
− cσ̃ (α, β) =

∫

�

e(α+β)m(m − m(x∗))
(
me−αm − m(x∗)e−αm(x∗)

)
dx . (79)

Recall that the function ze−αz is increasing if z < 1/α and decreasing if z > 1/α.
It follows that the last two factors in the integrand in (79) have the same sign if
m(x) < 1/α on�,whichwill be true ifα < 1/m1, andof opposite signs ifm(x) > 1/α
on�, whichwill be true ifα > 1/m0. Thefirst factor in the integrand is always positive,
so ∂σ̃

∂β
− cσ̃ (α, β) is positive for α < 1/m1 and negative for α > 1/m0. This together

with σ̃ (α, α) = 0 proves the proposition. ��
Example 2 As in Example 1, let � = (0, 1) and m(x) = x . In this case there is a
unique value of α∗ that determines a convergence stable strategy. We have

g(α) =
∫ 1

0
x2eαxdx

∫ 1

0
e2αxdx −

∫ 1

0
xeαxdx

∫ 1

0
xe2αxdx .

Direct calculationof g in the caseα = 0 and l’Hospital’s rule show g(0) = lim
α→0

g(α) =
1/12.

The proof of the first part of Proposition 4 is still valid for this case and implies that
g(α) > 0 for 0 < α < 1/m1 = 1. Direct calculations yield

g(α) = (−α + 3)e3α + (−3 − 2α)e2α + (−2α2 + 3α − 3)eα + 3

4α4 .
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Numerical evaluation gives g(1) > 0 so g(α) > 0 for 0 ≤ α ≤ 1. Further calculations
give

g′(α) = −3(α − 2)2e3α + 4(−α2 + 3)e2α + (α − 2)(−2α2 + 3α − 6)eα − 12

4α5
.

The quantity−2α2+3α−6 is always negative because its discriminant is negative, so
we have g′(α) < 0 for α > 2, and by numerical evaluation g(2) < 0. Hence we have
g(α) < 0 for α ≥ 2. Furthermore, by numerical evaluation, g′(1) > 0. We will show
that g′(α) changes sign exactly once on (1, 2), which then implies that g(α) changes
sign exactly once on (1, 2), which yields the desired result. It will be convenient to
write 4α5g′(α) = V (α) = T (α) − Z(α), where

T (α) := −3(α − 2)2e3α + (2 − α)(2α2 − 3α + 6)eα − 12,

Z(α) := 4(α2 − 3)e2α.
(80)

Clearly the signs of V and g′ are the same. Also, Z(α) ≥ 0 for α ≥ √
3. Note that

the expression 2α2 − 3α + 6 is increasing on [1, 2] and equals 8 when α = 2, and
that eα > 1 + α ≥ 2. Thus, T (α) < −6(α − 2)2e2α − 8(α − 2)eα − 12 on [1, 2].
Viewing the last expression as a quadratic in (α − 2)eα we see that the discriminant
is negative, so that T (α) < 0 on [1, 2]. It follows that V (α) < 0 on [√3, 2] so we can
restrict our attention to α ∈ [1,√3). Direct calculations yield

V ′(α) = −3(α − 2)(3α − 4)e3α − 8(α2 + α − 3)e2α

+ (−2α3 + α2 + 2α)eα,

V ′′(α) = (−27α2 + 72α − 42)e3α − 8(2α2 + 4α − 5)e2α

+ (−2α3 − 5α2 + 4α + 2)eα,

V ′′′(α) = (−81α2 + 162α − 54)e3α + (−32α2 − 96α + 8)e2α

+ (−2α3 − 11α2 − 6α + 6)eα.

(81)

By numerical evaluation we have V ′(1) = −3e3 + 8e2 + e > 0 and V ′′(1) =
3e3−8e2−e < 0. Clearly V ′′′(α) < (−81α2+162α−54)e3α+(−32α2−96α+8)e2α

on [1,√3]. We claim that V ′′′(α) < 0 on [1,√3]. Let k(α) = (−81α2 + 162α −
54)eα + (−32α2 − 96α + 8), so that V ′′′(α) < 0 if k(α) < 0. Numerical evaluation
gives k(1) < 0. We have k′(α) = (−81α2 + 108)eα − 64α − 96 = (−81α + 81)eα +
27eα − 64α − 96. For α ∈ [1,√3) we have 64α + 96 ≥ 160 and (by numerical
evaluation) 27eα < 27e

√
3 < 153 so that k′(α) < 0. It follows that V ′′′(α) < 0

on [1,√3), and hence that V ′′(α) < 0 on [1,√3) since V ′′(1) < 0. We know that
g′(1) > 0 and g′(α) < 0 for α ∈ [√3, 2], so the same is true for V (α), so that
V ′(α) must be negative somewhere in the interval [1,√3). Since V ′(1) > 0, this
together with V ′′(α) < 0 implies that V ′(α) changes sign exactly once, from positive
to negative, in the interval [1,√3). Since V (1) > 0 and V (2) < 0 it follows by
the same logic that V (α) and hence g′(α) changes sign exactly once, from positive to
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negative, in [1, 2]. Applying the same argument once again, since g(1) > 0, g(2) < 0,
and g′(α) changes sign exactly once from positive to negative, we conclude that g(α)

must do the same, as desired.

4 Conclusions

Our fundamental conclusion about modeling, supported by our case studies, is that by
using systems of ordinary differential equations whose coefficients are weighted spa-
tial averages of parameters describing environmental heterogeneity where the weights
are given by eigenfunctions of reaction–diffusion–advection operators describing the
dispersal of populations, we can recover many of the sorts of results about the effects
and evolution of dispersal which have been developed for models based on reaction–
diffusion–advection systems and their nonlocal analogues. This suggests that for
populations where dispersal occurs on a more rapid timescale than population dynam-
ics, the method of aggregation discussed in Auger et al. (2012) can be used effectively
to address questions related to conditional dispersal in spatially heterogeneous envi-
ronments. The reduction of models from partial differential equations to ordinary
differential equations represents a significant simplification, although teasing out the
effects of dispersal strategies in heterogeneous environments is still a nontrivial prob-
lem in the simplified setting. Additionally, our methods and results give a way to
connect population models incorporating mechanistic descriptions of dispersal based
on reaction–diffusion–advection models to landscape models based on spatial aver-
aging of the type discussed in Chesson (2009, 2012) and Chesson et al. (2005). Our
fundamental conclusion about the biological implications of models is that many of
the qualitative conclusions about the evolution of dispersal and related topics that have
been developed using models that operate on a single timescale (Averill et al. 2012;
Cantrell et al. 2006, 2007, 2010, 2012a, b; Chen et al. 2008; Cosner 2014; Hambrock
and Lou 2009; Kao et al. 2010; Korobenko and Braverman 2012, 2014; Lam and Lou
2014a, b) still obtain. Thus, predictions about the effects and evolution of dispersal
made by various types of models where dispersal and population dynamics act on a
single timescale appear to be robust relative to the presence and separation of different
timescales for those processes. Specific examples are the predictions that an appro-
priate amount of advection on environmental gradients (not too much or too little) is
advantageous, and that dispersal strategies that can produce an ideal free distribution
are evolutionarily stable relative to strategies that cannot.

We believe that there are many possible extensions of the ideas in this paper that
might beworth pursuing. There aremany questions about theways that the interplay of
dispersal strategies and environmental heterogeneity which could be addressed using
the same approach. We only considered a few specific questions about the effects
of dispersal strategies on competition, and only in the context of the evolution of
dispersal in otherwise identical populations. There are many more possibilities. The
same methods could be applied to predator–prey systems, or systems with several
trophic levels, or with several species interacting in a mixture of ways (for example,
one might consider a predator with two prey species and ask how dispersal patterns
influence apparent competition.) The reduction from partial differential equations to
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ordinary differential equations might be even more useful in studying models with
several populations, or for models of the coevolution of dispersal in pairs of interacting
species (leading to a system of four equations) than in the relatively simple context of
the monotone systems describing pairwise competition.
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