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Abstract
This paper is concerned with a nonlinear optimization problem that naturally arises
in population biology. We consider the population of a single species with logistic
growth residing in a patchy environment and study the effects of dispersal and spatial
heterogeneity of patches on the total population at equilibrium. Our objective is to
maximize the total population by redistributing the resources among the patches under
the constraint that the total amount of resources is limited. It is shown that the global
maximizer can be characterized for any number of patches when the diffusion rate
is either sufficiently small or large. To show this, we compute the first variation of
the total population with respect to resources in the two patches case. In the case of
three or more patches, we compute the asymptotic expansion of all patches by using
the Taylor expansion with respect to the diffusion rate. To characterize the shape of
the global maximizer, we use a recurrence relation to determine all coefficients of all
patches.
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1 Introduction

Understanding the effect of dispersal in heterogeneous environment on population
dynamics is an important issue in spatial ecology (Cantrell and Cosner 2003). Gener-
ally large diffusion tends to reduce the spatial variations in population distributions,
while small diffusion might help organisms adapt to the local environment. In this
paper we are interested in the impact of dispersal upon the total population of a single
species residing in a spatially heterogeneous patchy environment. More specifically,
we ask the following question: Given the total amount of resources, how should we
distribute the resources across the habitat in order to maximize the total population of
a species?

To address this question, we consider the following system for a single species with
logistic growth in a patchy environment:

⎧
⎪⎪⎨

⎪⎪⎩

d

dt
vi (t) = vi (mi − vi ) + δ(vi−1 + vi+1 − 2vi ), i ∈ Ω, t ∈ R+,

v0(t) = v1(t), vN+1(t) = vN (t), t ∈ R+,

vi (0) ≥ 0,
∑N

i=1 vi (0) > 0, i ∈ Ω,

(1.1)

where N ≥ 2, Ω := {1, 2, . . . , N }, and {mi }i∈Ω ⊂ R is a sequence which satisfies

mi ≥ 0,
N∑

i=1

mi = m > 0. (1.2)

The problem (1.1) was first studied by Levins (1969), as a multi-patch model for a
single species, where N is the total number of patches and δ > 0 is the diffusion
rate. The unknown function vi (t), i ∈ Ω , t ∈ R≥0 := [0,∞), denotes the number
of individuals in i-th patch at time t . The constant mi , i ∈ Ω , represents the intrinsic
growth rate of the species in i-th patch. If mi > 0, then i-th patch is favorable to the
species. The second equation in (1.1) means that no individuals cross the boundary of
the habitat, so system (1.1) is closed. The constraint (1.2) means that the total amount
of resources is limited.

Under assumption (1.2) it is well known that (1.1) has a unique positive steady
state, denoted as {ui }i∈Ω , which satisfies

{
ui (mi − ui ) + δ(ui−1 + ui+1 − 2ui ) = 0, i ∈ Ω,

u0 = u1, uN+1 = uN .
(1.3)

Furthermore, as shown in Sect. 3, this unique positive steady state is globally stable
and the total population of (1.1) satisfies

N∑

i=1

vi (t) →
N∑

i=1

ui as t → ∞.
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Our purpose is to maximize the total population U := ∑N
i=1 ui at equilibrium under

the constraint (1.2). See (Hastings 1982; Holt 1985; Levin 1974; Takeuchi 1989) for
related works.

This sort of multi-patch model is called “island chain” model or “stepping stone”
model. Such model views the space as a collection of discrete patches. We treat each
patch as a point, and view the overall population of a single species as a vector, with
each component corresponding to the number of individuals in each patch. Further-
more, we can treat the dispersal in this model as a discrete analogue of the continuous
diffusion. For more details, see Allen (1987), Cantrell and Cosner (2003), Hirsch
(1984) and references therein. For this reason, this work is closely relevant to the inves-
tigation of the following reaction-diffusion equation introduced by Skellam (1951):

⎧
⎪⎪⎨

⎪⎪⎩

vt = δΔv + m(x)v − v2, (x, t) ∈ Ω × R+,
∂v

∂ν
= 0, (x, t) ∈ ∂Ω × R+,

v(x, 0) ≥ 0, v(x, 0) �≡ 0, x ∈ Ω,

(1.4)

whereΩ ⊂ R is a smooth bounded domain. We also refer to Bai et al. (2016), Cantrell
and Cosner (2003), Lou (2006), Lou and Yanagida (2006) and references therein for
previous works of (1.4).

The maximization of the total population for the steady state of (1.4) has recently
been studied by Mazari et al. (2020) and Nagahara and Yanagida (2018) in Ω ⊂ R

N .
They showed under some conditions that any global maximizer of the total population
for the steady state must be of “bang-bang” type, which gives a partial answer to the
conjecture raised by Ding et al. (2010). More recently, Mazari et al. (2020) proved
that if δ > 0 is sufficiently large, then the global maximizer is given by m(x) :=
χE , where either E = (0,m) or (1 − m, 1). Their analytical results (Theorem 4,
Mazari et al. (2020)) and numerical simulation results indicate that if the diffusion
constant is sufficiently small, then fragmentation may occur in the one-dimensional
case. However, it is extremely difficult to explicitly determine the maximizer for the
steady state of (1.4) in general. We also refer to Mazari et al. (2020) and Mazari and
Ruiz-Balet (2020) for related works on PDE models.

This motivates us to study the maximization problem for the difference equation
(1.3), for which the computations of the total population can be done (but still fairly
non-trivial) for small and large diffusion rates. Our results show that the global max-
imizer depends crucially on the diffusion rate δ, and the answers are completely
different for small δ and large δ. In several cases we are able to show that the global
maximizer is of the “bang-bang” type and to determine the maximizers explicitly by
finding the specific guiding rules of fragmentation in the multi-patch model (1.3). In
particular, fragmentation occurs when the diffusion rate is sufficiently small, which
echoes the analytical and numerical findings in Mazari et al. (2020).

In this paper, we do not assume the upper bound for the resource distribution in
each patch. There is some difference between the spatially discrete model (1.1) and
the continuous model (1.4) in order to have “bang-bang” type of maximizers. For
patch model, it follows from (1.2) that mi ≤ m for each i , i.e. an upper bound on
the resource distribution in each component is a consequence of the upper bound on
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the total resource. In contrast, for PDE model (1.4) it is not sufficient to assume that
m ≥ 0 and

∫

Ω
m(x) dx is bounded by a fixed positive constant, as there must be an

upper bound on the resource distribution m(x) to avoid Dirac mass concentrations.
Throughout this paper we will adopt the convention of using a letter to denote a

scalar and its boldface to denote a vector or a set, which will be clear from the context.

2 Main results

We define the set

M := {{mi }i∈Ω | {mi }i∈Ω satisfies (1.2)} ⊂ R
N .

For convenience, we express {mi }i∈Ω by m or (m1,m2, . . . ,mN ).
Note that the solution of (1.3) depends on the diffusion constant δ > 0 and resources

m ∈ M. We denote the total population at stable equilibrium as U = U (m, δ); i.e.

U (m, δ) :=
N∑

i=1

ui ,

with (u1, . . . , uN ) being the positive steady states from (1.1).
Given m > 0 and δ > 0, our goal is to find a vector m = (m1, . . . ,mN ) satisfying

(1.2) to maximizeU (m, δ). If we regard the optimal distributionm as a function on the
discrete set Ω = {1, 2, . . . , N }, we might first suspect that m is an indicator function
with weight, i.e. m = aχE for some E ⊂ Ω and constant a > 0. Here χE denotes the
indicator function on set E . The main purpose of this paper is to characterize such set
and weight, and to reveal the complexity in characterizing these optimal distributions.

Our first main result is stated as follows:

Theorem 1 (Global maximizer for large δ) Define

m∗
1 = (0, 0, 0, . . . ,m) and m∗

2 = (m, 0, 0, . . . , 0).

Then there exists a positive constantΔN ,m > 0 such that for any δ > ΔN ,m and for any
m̃ ∈ M \ {m∗

1,m
∗
2}, the total population satisfies U (m∗

1, δ) = U (m∗
2, δ) > U (m̃, δ).

Note that this theorem is consistent with the result of Mazari et al. (2020) for (1.4)
claiming that large diffusion tends to well mix the populations. Biologically, Theorem
1 suggests that it is advantageous to concentrate the resources in a single patch in order
to maximize the total population in well mixed populations.

If we decrease the diffusion rate, the habitats will become less mixed. How should
the resources be distributed in poorly mixed habitats to maximize the total popu-
lation? The next theorem shows that the global maximizer for sufficiently small
δ is fragmented, and there are some specific guiding rules of fragmentation in the
multi-patch model (1.3). Interestingly, these guiding rules look different for the cases
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N = 3p, 3p + 1, 3p + 2, where p is any positive integer. In this connection, for any
given N ≥ 3, we set

p :=
⌊
N

3

⌋

, r :=
⌊
p + 1

2

⌋

, (2.1)

where �x� denotes the floor function of real number x .

Theorem 2 (Global maximizer for small δ) Given any N ≥ 3, let p, r be positive
integers given by (2.1). For any m > 0, define Pm = (0,m/p, 0), Pm∗ = (0,m∗, 0),
m∗ = (0,m∗, 0,m∗, 0

)
, where

m∗ = (1 + √
2)2m

2{4(p − 1) + (1 + √
2)2} , m∗ = 4m

4(p − 1) + (1 + √
2)2

. (2.2)

Choose η ∈ (0, p∗] arbitrarily, where

p∗ :=
{
m/p if N = 3p, 3p + 1,

m∗ if N = 3p + 2.

Define a set

Mη := {m ∈ M | mi ≥ η or mi = 0 for all i ∈ Ω}.

Then there exist positive constant δN ,m,η > 0 and m ∈ Mη such that U (m, δ) >

U (m̃, δ) holds for any δ ∈ (0, δN ,m,η) and any m̃ ∈ Mη. Furthermore, the optimal
resource distribution m is explicitly given as follows:

(i) If N = 3p and p ≥ 1, then

m = (Pm, Pm, . . . , Pm︸ ︷︷ ︸
p

).

(ii) If N = 3p + 1 and p ≥ 1, there are two cases:

(a) For p = 2r and r ≥ 1, then

m = (Pm, . . . , Pm︸ ︷︷ ︸
r

,

3r+1

0̌ , Pm, . . . , Pm︸ ︷︷ ︸
r

).

(b) For p = 2r − 1 and r ≥ 1, then

m = (Pm, . . . , Pm︸ ︷︷ ︸
r

,

3r+1

0̌ , Pm, . . . , Pm︸ ︷︷ ︸
r−1

),
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or

m = (Pm, . . . , Pm︸ ︷︷ ︸
r−1

,

3(r−1)+1

0̌ , Pm, . . . , Pm︸ ︷︷ ︸
r

).

(iii) If N = 3p + 2 and p ≥ 1, there are two cases:

(a) For p = 2r and r ≥ 1, then

m = (Pm∗ , . . . , Pm∗︸ ︷︷ ︸
r−1

,m∗, Pm∗ , . . . , Pm∗︸ ︷︷ ︸
r

),

or

m = (Pm∗ , . . . , Pm∗︸ ︷︷ ︸
r

,m∗, Pm∗ , . . . , Pm∗︸ ︷︷ ︸
r−1

).

(b) For p = 2r − 1 and r ≥ 1, then

m = (Pm∗ , . . . , Pm∗︸ ︷︷ ︸
r−1

,m∗, Pm∗ , . . . , Pm∗︸ ︷︷ ︸
r−1

).

If we regard the patches in model (1.1) as the vertices of a connected graph, such
graphs are the least connected ones among all path connected graphs with N -vertices,
so that the population in (1.1) is less connected in comparison to other graphs. Small
diffusion rate will further weaken the mixing of the population. Biologically, Theorem
2 suggests that in order to maximize the total population in weakly connected and
poorly mixed habitats, it is advantageous to distribute the resources in fragmented
manners. This is in strong contrast with Theorem 1 for large diffusion rate.

Remark 1 Letm ∈ M be given as in Theorem 2. Choose m̃ ∈ M\{m} arbitrarily. The
proof of Theorem 2 implies that there exists some positive number δm̃ such that for
any δ ∈ (0, δm̃), it follows that U (m, δ) > U (m̃, δ). Hence, given any m̃ ∈ M \ {m},
it is not a global maximizer for sufficiently small δ. We suspect that such δm̃ can be
chosen independently of m̃ ∈ M \ {m}, that is, there exists some δ = δ(N ,m) > 0
such that for any δ ∈ (0, δ(N ,m)), U (m, δ) > U (m̃, δ) holds for all m̃ ∈ M \ {m}.
Remark 2 It will be interesting to study the switch of the optimal distributions between
small and large δ. Take N = 4 as an example: For small δ, the optimal resource
distribution is concentrated in either patch #2 or #3 (called type 1). In contrast, for
large δ, it is concentrated in either patch #1 or #4 (called type 2). For intermediate
δ, there might be multiple local maximizers, and it is difficult to determine which
local maximizers are the global maximizers. It is possible that there exists a sudden
switch of the global maximizers from type 1 to type 2, i.e. there exists some δ∗ > 0
such that the global maximizers are of type 1 for δ < δ∗, and they are of type 2 for
δ > δ∗. Determining the global and local maximizers for general diffusion rate is a
challenging question.
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As mentioned earlier, there are some general guiding rules of fragmentation in the
multi-patch model (1.3), as specified by Theorem 2. In the following we use some
graphs to illustrate these guiding rules for N = 3p, 3p + 1, 3p + 2, respectively. It
turns out that there is a unified guiding rule for arbitrary N .

For N = 3, 4, 5, Theorem 2 implies that the optimal resource distributions are
given by, respectively,

m =

⎧
⎪⎪⎨

⎪⎪⎩

(0,m, 0), N = 3;
(0,m, 0, 0) or (0, 0,m, 0) N = 4;
(
0,

m

2
, 0,

m

2
, 0
)

, N = 5.

For general N ≥ 3, Theorem 2(i)-(ii) imply that for N = 3p, 3p + 1, m = (m/p)χE

for some set E ⊂ Ω . Interestingly, the optimal distribution for N = 3p+2 is the sum
of two indicator functions, i.e. m = m∗χE1 + m∗χE2 for two sets Ei ⊂ Ω , i = 1, 2,
with m∗,m∗ given in (2.2). The main contribution of Theorem 2 is to characterize
these sets and corresponding weights.

1. For N = 3p, E = {2, 5, 8, . . . , 3p − 1} and the corresponding weight is m/p, as
illustrated in Fig. 1 for cases N = 3, 6, 9, respectively.

2. For N = 3p + 1, while the weight remains to be m/p as the case N = 3p,
the set E appears to be more complicated. In Fig. 2, we start with 4-patch optimal
distribution (0,m, 0, 0), and add three new patches to its right to obtain the optimal
distribution for N = 7 with E = {2, 6} and weight m/2. Then we add three new
patches to the left of 7-patch to obtain the optimal distribution for N = 10, with
the patches renumbered from left to right, so that E = {2, 5, 9} and weight m/3.
We can repeat this process for N = 3p+1 for all p. Similarly, we can start with the
other optimal distribution (0, 0,m, 0) for N = 4 and repeat the same process (but
switch the order of left and right) to obtain the rest of optimal resource distributions
for N = 3p + 1. For the sake of brevity, we do not include the second scenario in
Fig. 2.

3. For N = 3p + 2, we start with 5-patch optimal distribution in Fig. 3, and add
three new patches to its right to obtain the optimal distribution for N = 8 with
E1 = {2, 4} and weight m∗, E2 = {7} and weight m∗. Then we add three new
patches to the left of 8-patch to obtain the optimal distribution for N = 11, with
E1 = {5, 7} and weight m∗, E2 = {2, 10} and weight m∗. We can repeat this
process for N = 3p + 2 for all p. Similarly, we can start with the same optimal
distribution for N = 5 and repeat the process but switching the order of left and
right to obtain the rest of optimal resource distributions for N = 3p + 2. For the
sake of brevity, we do not include the second scenario in Fig. 3.

In summary, if we start from the cases N = 3, 4, 5, at each step add three new
patches, alternatively to right and left (or switch the order to left and right), then we
can obtain the optimal resource distributions for arbitrary N . Note that for N = 3p+1,
the choice of the left-right order depends on the initial optimal distribution for N = 4.

Theorem 2 refers to a global-maximizer when there is minimum amount of
resources η > 0 for each patch. When η = 0, it is very difficult to determine a
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Fig. 1 Illustrations of the optimal resource distributions for N = 3, 6, 9, from which we can observe the
general pattern for N = 3p, as given in Theorem 2(i). The patches with underbraces are newly added ones.
At each step we renumber the patches from left to right

Fig. 2 Illustrations of the optimal resource distributions for the cases N = 4, 7, 10, starting with the optimal
distribution (0,m, 0, 0) for N = 4, from which we can see the guiding rule in determining the optimal
distributions for N = 3p + 1, as given by Theorem 2(ii). For brevity, we do not include the other scenario,
i.e. starting with the optimal distribution (0, 0,m, 0) for N = 4 and repeating the same process (but switch
the order of left and right)

global maximizer. However, in the two patch case, we obtain the global maximizers
for all δ > 0 in the following result:

Theorem 3 (Global maximizer for two patch) In the case N = 2, define

m∗
1 = (0,m) and m∗

2 = (m, 0).

Then for any m ∈ M \ {m∗
1,m

∗
2}, it follows that U (m∗

1, δ) = U (m∗
2, δ) > U (m, δ)

for all δ > 0.

Two-patch habitat is well connected. Biologically, Theorem 3 suggests that for well
connected habitats, it could be advantageous to concentrate the resources in a single
patch in order to maximize the total population. This also echoes the conclusions of
Theorem 1 for well mixed habitats.
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Fig. 3 Illustrations of the optimal resource distributions for the cases N = 5, 8, 11. from which we can see
the guiding rule in determining the optimal distributions for N = 3p + 2, as given by Theorem 2(iii). For
brevity, we do not include the other scenario, i.e. starting with the same optimal distribution for N = 5 but
switching the order of left and right

Fig. 4 Graphs of the total population as function of m1 ∈ [0, 1] for the two patch case, m = 1, δ =
0.01, 0.1, 1, respectively

In Fig. 4, we assumem1+m2 = 1 andm1,m2 ≥ 0. For δ = 0.01, 0.1, 1, numerical
simulations illustrate that u1 + u2, as a function of m1, attains the maximum value
at m1 = 0, 1, the minimum value at m1 = 1/2, and there is no other critical point.
Hence, u1 + u2 is decreasing in m1 ∈ (0, 1/2) and it is symmetric with respect to
m1 = 1/2.

This paper is organized as follows. In Sect. 3, we establish some basic properties
of the population density in each patch. In Sect. 4, we calculate the global maximizer
of the total population with large diffusion constant and prove Theorem 1. In Sect. 5,
we first calculate the first variation of U with respect to m, and then demonstrate
Theorem 3. In Sect. 6, we consider the case N ≥ 3 and restrict the candidates of
the global maximizer, and give the proof for N = 3p, 4, 5. In Sect. 7, we give the
complete proof of Theorem 2. In Sects. 7.2 and 7.3, we treat the cases N = 3p + 1
and N = 3p + 2, respectively. In Sect. 8 we discuss the main findings in this paper.
Some technical lemmas are postponed to the Appendices.
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3 Preliminaries

In this section, we choose N ≥ 2 and m ∈ M arbitrarily. We define the degree of ui
as δ ↓ 0 by

deg ui := sup

{

γ ∈ R | lim sup
δ↓0

∣
∣
∣
ui
δγ

∣
∣
∣ < ∞

}

.

We also define the order of ui as δ → ∞ by

deg ui := sup

{

γ ∈ R | lim sup
ε↓0

∣
∣
∣
ui
εγ

∣
∣
∣ < ∞

}

,

where ε := 1/δ. The degree and order of ui are used to calculate the leading term of
ui when we expand ui with respect to small and large δ, respectively.

We give two basic results to prove our main results.

Lemma 1 A non-trivial solution of (1.3) exists and satisfies ui > 0 for all i ∈ Ω .
Moreover, it is a globally stable in (1.1).

Proof Themain idea of this proof is due to Takeuchi (1989). Let J0 denote the Jacobian
matrix at the trivial equilibrium point 0 for (1.1). We use Rayleigh quotient to have

sup
x∈RN \{0}

t x J0x

‖x‖ = sup
x∈RN \{0}

{
−δ
∑N−1

i=1 (xi+1 − xi )2 +∑N
i=1 mi x2i

}

‖x‖2

≥
N∑

i=1

mi = m > 0.

Therefore, the trivial equilibrium point is unstable for all δ > 0 and the unique solution
vi (t) is strictly positive for all t ∈ R+ and δ > 0. Moreover, we use (1.3) to obtain
unique positive non-trivial equilibrium point as follows:

u1 = m1 − δ

2
+
(

(m1 − δ)2

4
+ δu2

)1/2

, (3.1)

ui = mi − 2δ

2
+
(

(mi − 2δ)2

4
+ δ(ui−1 + ui+1)

)1/2

, (3.2)

uN = mN − δ

2
+
(

(mN − δ)2

4
+ δuN−1

)1/2

. (3.3)

Global stability of this equilibrium point is in the same manner as Takeuchi (1989),
so we omit the proof. ��
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Next, we show that a global minimizer of the total population is given as follows.
We use this result in Sect. 4.

Proposition 1 (Global minimizer) Let {mi }i∈Ω ∈ M be given by mi = m/N for all
i ∈ Ω . Then {mi } is a unique global minimizer of the total population at equilibrium
for all δ.

Proof We divide (1.3) by ui for each i ∈ N to get

mi − ui + δ

(
ui−1

ui
+ ui+1

ui
− 2

)

= 0. (3.4)

Summing up (3.4) in i ∈ Ω , by the definition of U and (1.2) we have

U (m, δ) − m

= δ

{(
u2
u1

+ u1
u2

)

+
(
u3
u2

+ u2
u3

)

+ · · · +
(

uN

uN−1
+ uN−1

uN

)

− 2(N − 1)

}

≥ δ(2(N − 1) − 2(N − 1)) = 0,
(3.5)

where u0 = u1 and uN = uN+1 are also used. Here the equality holds if and only if
ui ≡ Constant. Hence we obtain mi ≡ m/N , where m > 0 is the lower bound of the
total population. ��
Remark 3 It is known that a globalminimizer of the total population of (1.4) is constant;
see, e.g. Lou (2006). It still holds when we use the multi-patch model (1.1), that is,
mi ≡ m/N for all i ∈ Ω is the global minimizer for all δ > 0. Since we cannot locate
the proof of the global minimizer in the patchy environment, we include a proof here.

4 Global maximizer for large ı: Proof of Theorem 1

In this section, we choose m ∈ M arbitrarily. We first show that an analogy with
Theorem A.2 in Cantrell et al. (1996) holds in any patchy environment. Recall that
ε = 1/δ as in Sect. 3.

Lemma 2 For every m ∈ M, the solution of (1.3) satisfies ui = c0 + o(1) as ε → 0
for all i ∈ Ω , where c0 is a constant independent of i ∈ Ω .

Proof From the argument of Lemma 1, we have ui > 0 for all δ > 0. By themaximum
principle, it is easy to show that

max{ui | i ∈ Ω} ≤ max{mi | i ∈ Ω} ≤ m (4.1)

for all δ > 0. Hence deg ui ≥ 0.
Next, we use (1.3) to have

⎧
⎪⎨

⎪⎩

u2/u1 = 1 + ε(u1 − m1),

(ui−1 + ui+1)/ui = 2 + ε(ui − mi ),

uN−1/uN = 1 + ε(uN − mN ).

(4.2)
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This means that deg ui ≡ γ ≥ 0 for all i ∈ Ω with some constant γ . Assume that
γ > 0. Then we can rewrite ui as

ui := ui,γ εγ + o(εγ ),

where ui,γ is a coefficient of ui of order εγ . Then we have

U (m, ε) =
N∑

i=1

ui,γ εγ + o(εγ ) → 0 as ε → 0.

However, this contradicts Proposition 1. From (4.2), it follows that ui,0 ≡ c0 for all
i ∈ Ω . ��

Let us complete the proof of Theorem 1. We define {vi }i∈Ω as

vi := ui − c0
ε

, i = 1, 2, . . . , N .

From (1.3), we have

⎧
⎪⎨

⎪⎩

u1(m1 − u1) + v2 − v1 = 0,

ui (mi − ui ) + vi−1 + vi+1 − vi = 0,

uN (mN − uN ) + vN−1 − vN = 0.

(4.3)

In fact, |vi − v j | is uniformly bounded for all i, j ∈ Ω since |ui (mi − ui )| ≤ m2

for all i ∈ Ω , which is clear from (4.1). Then we can express vi = εγ ṽi , where ṽi is
bounded for sufficiently small ε. Note that γ > −1 in view of (4.1). To compute c0
explicitly, we rewrite (4.3) as

⎧
⎪⎨

⎪⎩

m1(c0 + ε1+γ ṽ1) − (c0 + ε1+γ ṽ1)
2 + εγ (ṽ2 − ṽ1) = 0,

mi (c0 + ε1+γ ṽi ) − (c0 + ε1+γ ṽi )
2 + εγ (ṽi−1 + ṽi+1 − 2ṽi ) = 0,

mN (c0 + ε1+γ ṽN ) − (c0 + ε1+γ ṽN )2 + εγ (ṽN−1 − ṽN ) = 0.

(4.4)

Adding both sides of these equations, we obtain

c0m − Nc20 + ε1+γ
N∑

i=1

(mi ṽi − 2c0ṽi − ε1+γ ṽ2i ) = 0.

Since 1 + γ > 0, we have c0 = m/N . Further, we claim γ = 0. Suppose that
−1 < γ < 0. From (4.4), we have ṽi ≡ Constant for all i ∈ Ω . This means that ui
is also constant and mi is given by mi ≡ m/N . Indeed, this is a global minimizer of
U (m, ε) by (3.5). Similarly, if γ > 0, then we have mi ≡ m/N , which is again the
global minimizer.
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From the above argument, we have deg vi ≡ 0. Therefore (4.4) must be written as

Av = −c0(
tm − c0) + O(ε2), (4.5)

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m(c)
1 ε − 1 1 0
1 m(c)

2 ε − 2 1

1 m(c)
3 ε − 2

. . .

. . .
. . .

. . .

. . . m(c)
N−1ε − 2 1

0 1 m(c)
N ε − 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

m = (m1,m2, . . . ,mN ), m(c)
i := mi − 2c0, and v = t (v1, v2, . . . , vN ). Then we can

calculate det A as

det A = (−1)N+1
N∑

i=1

m(c)
i ε + O(ε2).

Let ãi, j denote the (i, j)-cofactor of A, which can be expressed as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ãi, j = (−1)N+1
[
1 −

{∑N− j
l=1 (N − j + 1 − l)m(c)

N+1−l +∑i−1
l=1(i − l)m(c)

l

}
ε
]

+O(ε2) if i ≤ j,

ãi, j = (−1)N+1
[
1 −

{∑N−i
l=1 (N − i + 1 − l)m(c)

N+1−l +∑i−1
l=1( j − l)m(c)

l

}
ε
]

+O(ε2) if i ≥ j .

Multiplying A−1 to (4.5) and using these cofactors, we have

N∑

i=1

vi = −(det A)−1
N∑

i=1

⎛

⎝c0(mi − c0)
N∑

j=1

ãi, j

⎞

⎠ .
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Here we compute

N∑

i=1

⎛

⎝c0(mi − c0)
N∑

j=1

ãi, j

⎞

⎠

= (−1)N+1 c0
2

[

2N
N−1∑

i=1

mi

(
N−1∑

k=1

kmi+k

)

+ c0

N−1∑

i=1

(

mi

N−i∑

k=1

{−k2 + (−2(N + i) + 1)k}
)

+ c0

N−1∑

i=1

N−i∑

k=1

kmi+k(2i − 1 + k − 4N ) + 4Nc20

N−1∑

i=1

N−i∑

k=1

k

]

ε + O(ε2).

By c0 = m/N , we obtain

N∑

i=1

vi = m

N

N∑

i=1

(

i − N + 1

2

)2

mi −
∑

1≤i< j≤N

( j − i)mim j

+ m2

12N
(N 2 − 1) + O(ε).

(4.6)

Now let us maximize the right-hand side of (4.6). We compute

m

N

N∑

i=1

(

i − N + 1

2

)2

mi −
∑

1≤i< j≤N

( j − i)mim j

≤
�N/2�∑

i=1

{
m

N

(

i − N + 1

2

)2

(mi + mN+1−i ) − (N + 1 − 2i)mimN+1−i

}

≤ m

N

(
N − 1

2

)2

m,

where the equality holds if and only if m = (m, 0, . . . , 0) or (0, . . . , 0,m). We can
conclude Theorem 1 proved. ��

5 Asymptotic expansion with respect tom: Proof of Theorem 3

In this section, we show Theorem 3. To this purpose, we prepare expansion ofU (m, δ)

with respect to m for all δ > 0.
Choose δ > 0 arbitrarily. We set m := m0 + εg, where ε > 0 is a small parameter,

and compute the first variations of U (m, δ) with respect to m. We indicate the depen-
dence of the positive solution u := (u1, . . . , uN ) to (1.3) on m ∈ M only by writing
u = u(m).
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Proposition 2 For every m0 ∈ M, choose ε > 0 and g := (g1, . . . , gN ) ∈ R
N such

that m := m0 + εg with m ∈ M. Then

U (m0 + εg, δ) =
N∑

i=1

u0i + ε

N∑

i=1

u1i + o(ε) as ε → 0,

where u0 := (u01 . . . , u0N ) and u1 := (u11 . . . , u1N ) are given by

{
(m0

i − u0i )u
0
i + δ(u0i−1 + u0i+1 − 2u0i ) = 0 in Ω,

u00 = u01, u0N+1 = u0N ,
(5.1)

and
(Dδ + diag(m0 − 2u0))u1 = − diag(g)u0, (5.2)

respectively. Here

Dδ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−δ δ 0
δ −2δ δ

δ −2δ
. . .

. . .
. . .

. . .

. . . −2δ δ

0 δ −δ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Moreover, the linear operator Dδ + diag(m0 − 2u0) is invertible.

Proof We first show that the linear operator Dδ + diag(m0 − 2u0) is invertible. We
use properties of the principal eigenvalue of the eigenvalue problem

λΦ = (Dδ + diag q)Φ, (5.3)

where q ∈ R
N . It is well known that (5.3) has a maximum eigenvalue λ0(q), which is

characterized as

λ0(q) = sup
x∈RN \{0}

{
−δ
∑N−1

i=1 (xi+1 − xi )2 +∑N
i=1 qi x

2
i

}

‖x‖2 ,

by the Rayleigh quotient.
Let k > 0 be a sufficiently large constant such that Dδ + diag(m0 − u0 + k) is

an irreducible matrix. By the Perron-Frobenius theorem, λ0(m0 − u0 + k) = k is
the Perron-Frobenius eigenvalue since u0 is the associated eigenvector. Then we have
λ0(m0 − u0) = 0. Hence we get

λ0(m
0 − 2u0) < λ0(m

0 − u0) = 0. (5.4)
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The second half of the proof is devoted to the asymptotic expansion of U (m, δ).
The main idea of this proof is due to (Ding et al. (2010)). Let ε > 0 be a sufficiently
small constant. We shall show below that there exists some constant C1 > 0 such that

∥
∥
∥
∥
u − u0

ε

∥
∥
∥
∥ ≤ C1, (5.5)

where u := u(m0 + εg).
To prove (5.5), we substitute m = m0 + εg for (1.3) to obtain

ui ((m
0
i + εgi ) − ui ) + δ(ui−1 + ui+1 − 2ui ) = 0. (5.6)

Subtracting (5.6) from the first equation in (5.1) and dividing by ε, we have

(
ui−1 − u0i−1

ε
+ ui+1 − u0i+1

ε
− 2

ui − u0i
ε

)

+ (m0
i − (ui + u0i ))

(
ui − u0i

ε

)

+ giu
0
i = 0.

Multiplying both sides of the above equality by (ui − u0i )/ε and adding i = 1 to N ,
we have

N−1∑

i=1

∣
∣
∣
∣
∣

ui+1 − u0i+1

ε
− ui − u0i

ε

∣
∣
∣
∣
∣

2

−
N∑

i=1

(m0
i − (ui + u0i ))

(
ui − u0i

ε

)2

=
N∑

i=1

giui

(
ui − u0i

ε

)

. (5.7)

Now, we give the upper bound in (5.5). By (4.1), we have supi∈Ω m0
i − (ui +u0i ) ≤

3m. Then

− λ0(m
0 − (u + u0))

= inf
x∈RN \{0}

∑N−1
i=1 |xi+1 − xi |2 −∑N

i=1(m
0
i − (ui + u0i ))x

2
i

‖x‖2 .

Choosing x = (u − u0)/ε, we have

− λ0(m
0 − (u + u0))

∥
∥
∥
∥
u − u0

ε

∥
∥
∥
∥

2

≤
N−1∑

i=1

∣
∣
∣
∣
∣

ui+1 − u0i+1

ε
− ui − u0i

ε

∣
∣
∣
∣
∣

2

−
N∑

i=1

(m0
i − (ui + u0i ))

(
ui − u0i

ε

)2

.
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By (5.7) and the Cauchy–Schwarz inequality, we compute

− λ0(m
0 − (u + u0))

∥
∥
∥
∥
u − u0

ε

∥
∥
∥
∥

2

≤
N∑

i=1

giui

(
ui − u0i

ε

)

≤ sup
i∈Ω

gi ‖u‖
∥
∥
∥
∥
u − u0

ε

∥
∥
∥
∥ .

Note that we have λ0(m0 − (u + u0)) → λ0(m0 − 2u0) as ε → 0. From (5.4), there
exists ρδ > 0 such that −λ0(m0 − (u + u0)) > ρδ > 0 for all ε sufficiently small.
Thus, we obtain

∥
∥
∥
∥
u − u0

ε

∥
∥
∥
∥

2

≤ 1

ρδ

(

sup
i∈Ω

gi ‖u‖
∥
∥
∥
∥
u − u0

ε

∥
∥
∥
∥

)

.

This proves (5.5). ��

To prove Theorem 3, we consider a critical point of U (m, δ). By (5.2) we have

N∑

i=1

gi = −
N∑

i=1

(
1

u0i
δ(u1i−1 + u1i+1 − 2u1i ) +

(
m0

i

u0i
− 2

)

u1i

)

= −
N∑

i=1

(

δ

(
1

u0i−1

+ 1

u0i+1

− 2
1

u0i

)

+
(
m0

i

u0i
− 2

))

u1i ,

where g satisfies the condition of Proposition 2. Here, the integrands of the right-hand
side of the above equality can be calculated as

δ

(
1

u0i−1

+ 1

u0i+1

− 2
1

u0i

)

+
(
m0

i

u0i
− 2

)

= δ

(
1

u0i−1

+ 1

u0i+1

− 2
1

u0i

)

+ u0i (m
0
i − u0i )

(u0i )
2

− 1

= −δ

{
u0i−1 + u0i+1 − 2u0i

(u0i )
2

−
(

1

u0i−1

+ 1

u0i+1

− 2
1

u0i

)}

− 1.

Then we obtain

N∑

i=1

gi =
N∑

i=1

(

δ

{
u0i−1 + u0i+1 − 2u0i

(u0i )
2

−
(

1

u0i−1

+ 1

u0i+1

− 2
1

u0i

)}

+ 1

)

u1i .
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As mentioned above, the linear operator of (5.2) is invertible. Suppose that φ ∈ R
N

and define g by

g := − diag

(
1

u01
, . . . ,

1

u0N

)

(Dδ + diag(m0 − 2u0))φ.

Then u1 is equal to φ, that is

(Dδ + diag(m0 − 2u0))φ = − diag(g)u0.

Therefore we can define a function I [φ] by

I [φ] :=
N∑

i=1

gi =
N∑

i=1

(
δwi (u

0) + 1
)

φi ,

where

wi (u
0) := u0i−1 + u0i+1 − 2u0i

(u0i )
2

−
(

1

u0i−1

+ 1

u0i+1

− 2
1

u0i

)

.

Proof of Theorem 3 Suppose that N = 2. Choose m0 ∈ M \ {(m, 0), (0,m)} arbitrar-
ily. Without loss of generality we may assume m0

1 < m0
2. For this case, it is easy to

see u01 < u02. Direct calculations lead to

w1(u
0) = (u02 − u01)(u

0
2 + u01)

u02(u
0
1)

2
> 0,

w2(u
0) = (u01 − u02)(u

0
1 + u02)

u01(u
0
2)

2
< 0.

That is, w1(u0) > 0 > w2(u0).
We also define two constants α, β by

α := δw1(u
0) + 1, β := δw2(u

0) + 1.

Setting φ as

φ := βe1 − αe2,

where e1 and e2 are canonical basis, we have

I [φ] = β
(
δw1(u

0) + 1
)

− α
(
δw2(u

0) + 1
)

= 0.
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Therefore, I [φ] =∑2
i=1 gi = 0. On the other hand,

2∑

i=1

u1i =
2∑

i=1

φi = β − α = δ(w2(u
0) − w1(u

0)) �= 0.

This implies that m0 is not a critical point of U (m, δ). ��

6 Asymptotic expansion of the total population

In this section, we study the expansion of the total population to determine the global
maximizer case by case. To prove Theorem 2, we consider the case that δ is sufficiently
small. We note that (3.1)–(3.3) can be expanded as

u1 =

⎧
⎪⎨

⎪⎩

m1 +
(
u2
m1

− 1

)

δ + o(δ) if m1 > 0,

(δu2)
1/2 − δ

2
+ o(δ) if m1 = 0,

(6.1)

ui =
⎧
⎨

⎩

mi +
(
ui−1 + ui+1

mi
− 2

)

δ + o(δ) if mi > 0,

(δ(ui−1 + ui+1))
1/2 − δ + o(δ) if mi = 0,

(6.2)

uN =

⎧
⎪⎨

⎪⎩

mN +
(
uN−1

mN
− 1

)

δ + o(δ) if mN > 0,

(δuN−1)
1/2 − δ

2
+ o(δ) if mN = 0,

(6.3)

which can be obtained by formally expanding (3.1)–(3.3). However, since the rigorous
proof is tedious, we will postpone it to Appendix.

Before proceeding to the case of 3 or more patches, we study expansion of the
positive solution of (1.3) more precisely. Choose a positive parameter η ∈ (0,m/N )

and m ∈ Mη arbitrarily. We note that expansion of ui can be expressed as

ui = mi + (Ci,1/2
)1/2

δ1/2 + (Ci,1/4
)1/2

δ3/4

+ · · · + (Ci,1/2N−1

)1/2
δ(2N−1−1)/2N−1 + Ci,0δ + o(δ).

(6.4)

Here, Ci,1/2k , i ∈ Ω , k = 1, 2, . . . , N − 1, and Ci,0 can be expressed explicitly by
the elements of m. Then we can show that there exists δN ,m,η > 0 such that for all
δ ∈ (0, δN ,m,η), the total population is expanded as

U = m +
N∑

i=1

N−1∑

k=1

(
Ci,1/2k

)1/2
δ(2k−1)/2k +

N∑

i=1

Ci,0δ + o(δ). (6.5)

Since the computation is long and tedious, we also postpone it to Appendix. Because
the constant term in (6.5) is always equal to m, the first step is to maximize
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∑N
i=1

(
Ci,1/2

)1/2. In the following subsections, in view of (6.5), we restrict candi-
dates of a global maximizer of the total population.

We define the sets

Iη(m) := {i ∈ Ω : mi ≥ η}, I0(m) := {i ∈ Ω : mi = 0}.

We also define a subset of I0(m) by

I∗
0 (m) := {i ∈ I0(m) : mi+1 > 0 or mi−1 > 0}

This subsection will be divided into three parts according to the number of patches.
We first consider the case N = 3p with a positive integer p.

Proof (Proof of Theorem 2 (i)) To evaluate
∑N

i=1

(
Ci,1/2

)1/2 associated with m ∈ Mη,
the proof is divided into three parts according to #Iη(m), where “#” stands for the
number of elements. First, suppose #Iη(m) < p. Then #I∗

0 (m) is at most 2(#Iη(m)−
1) so that

N∑

i=1

(
Ci,1/2

)1/2 ≤
√

2(#Iη(m) − 1)
∑

i∈I0(m)

Ci,1/2

≤ √2(#Iη(m) − 1)2m <
√
2(2p − 2)m < 2

√
p
√
m.

Second, suppose #Iη(m) > p. Then #I∗
0 (m) is at most 3p − #Iη(m) so that

N∑

i=1

(
Ci,1/2

)1/2 ≤
√

(3p − #Iη(m))
∑

i∈I0(m)

Ci,1/2

≤ √(3p − #Iη(m))2m ≤ √2(2p − 1)m < 2
√
p
√
m.

Finally, suppose #Iη(m) = p. Then #I∗
0 (m) is also at most 2p so that

N∑

i=1

(
Ci,1/2

)1/2 ≤
√

2p
∑

i∈I0(m)

Ci,1/2 ≤ √2p(2m) = 2
√
p
√
m.

Therefore, if the equality holds in the last case for some m, then such m must be a
global maximizer.

Now we choose m ∈ Mη as (P̃1, . . . , P̃ p), where P̃i := (0,mi , 0). Then
#I∗

0 (m) = 2p so that

N∑

i=1

(
Ci,1/2

)1/2 = 2(
√
m1 + √

m2 + · · · + √
mp)

≤ 2
√

p(m1 + m2 + · · · + mp) = 2
√
p
√
m,
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where the equality holds if and only if m1 = m2 = · · · = mp = m/p > 0. Thus it is
shown that (P̃1, . . . , P̃ p) is a unique global maximizer. ��

We second consider the case N = 3p + 1. We begin by proving the case N = 4.

Proof of Theorem 2 (ii-a). The idea of this proof is the same as that of Theorem 2 (i).
First, suppose #Iη(m) ≥ 3. Then #I0(m) ≤ 1 so that

4∑

i=1

(
Ci,1/2

)1/2
<

√
m < 2

√
m.

Second, we suppose #Iη(m) = 2. Let m ∈ Mη be given as m = (0,m1, 0,m2) or
m = (m1, 0,m2, 0) with m1 ≥ η, m2 ≥ η so that

4∑

i=1

(
Ci,1/2

)1/2 = √
m1 + √

m1 + m2 = √
m1 + √

m < 2
√
m.

The other case is that m ∈ Mη is given as m = (0,m1,m2, 0) or m = (m1, 0, 0,m2)

with m1 ≥ η and m2 ≥ η so that

4∑

i=1

(
Ci,1/2

)1/2 = √
m1 + √

m2 ≤ √
2
√
m < 2

√
m.

Finally, suppose #Iη(m) = 1 so that

4∑

i=1

(
Ci,1/2

)1/2 ≤ 2
√
m,

where the equality holds if and only if m = (0,m, 0, 0) or (0, 0,m, 0). Therefore,
these are global maximizers for the case N = 4. ��

We next consider the case N = 3p + 1 with p ≥ 2. Define mk
3p+1 ∈ Mη (k =

0, 1, . . . , p) by

mk
3p+1 = (Pm, . . . , Pm︸ ︷︷ ︸

k

,

3k+1

0̌ , Pm, . . . , Pm︸ ︷︷ ︸
p−k

),

and Mr
3p+1 by

Mr
3p+1 := {mk

3p+1 ∈ Mη : r ≤ k ≤ p − r}.

Proposition 3 For every m ∈ M0
3p+1, there exists a positive constant δN ,m,η > 0

such that U (m, δ) > U (m̃, δ) holds for δ ∈ (0, δN ,m,η) and m̃ ∈ Mη \ M0
3p+1.
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Proof The idea of this proof is the same as that of Theorem 2 (i). First, suppose
#Iη(m) < p so that

N∑

i=1

(
Ci,1/2

)1/2 ≤ √2(2p − 2)m < 2
√
p
√
m.

Second, suppose #Iη(m) > p. Then #I∗
0 (m) is at most 3p + 1 − #Iη(m) so that

N∑

i=1

(
Ci,1/2

)1/2 ≤
√

(3p + 1 − #Iη(m))
∑

i∈I0(m)

Ci,1/2

<
√

(3p + 1 − #Iη(m))2m ≤ √2(2p)m = 2
√
p
√
m.

Finally, suppose #Iη(m) = p. Then #I∗
0 (m) is at most 2p so that

N∑

i=1

(
Ci,1/2

)1/2 ≤
√

2p
∑

i∈I0(m)

Ci,1/2 ≤ √2p(2m) = 2
√
p
√
m.

Therefore, if the equality holds in the last case for some m, then such m must be a
global maximizer.

Now we choose m ∈ Mη as

(P̃1, . . . , P̃k,

3k+1

0̌ , P̃k+1, . . . , P̃ p),

where k ∈ Z ∪ [0, p]. Then #I∗
0 (m) = 2p so that

N∑

i=1

(
Ci,1/2

)1/2 = 2(
√
m1 + √

m2 + · · · + √
mp)

≤ 2
√

p(m1 + m2 + · · · + mp) = 2
√
p
√
m,

where the equality holds if and only if m1 = m2 = · · · = mp = m/p > 0. Thus it is
shown that any global maximizer of the total population must satisfy m ∈ M0

3p+1. ��
We finally consider the case N = 3p + 2. We begin by proving the case N = 5.

Proof of Theorem 2 (iii-a). The idea of this proof is the same as that of Theorem 2 (i).
First, suppose #Iη(m) = 1 so that

5∑

i=1

(
Ci,1/2

)1/2 ≤ 2
√
m < (1 + √

2)
√
m.
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Second, suppose #Iη(m) ≥ 3 so that

5∑

i=1

(
Ci,1/2

)1/2 ≤ √
m1 + m2 + √

m2 + m3

< 2
√
m < (1 + √

2)
√
m, (#Iη(m) = 3),

and

5∑

i=1

(
Ci,1/2

)1/2
<

√
m < (1 + √

2)
√
m, (#Iη(m) ≥ 4),

respectively. Finally, suppose #Iη(m) = 2 so that

5∑

i=1

(
Ci,1/2

)1/2 ≤ √
mi + √

m j +√mi + m j

≤ (1 + √
2)

√
m, (1 ≤ i < j ≤ 5),

where the equality holds if and only if m = (0,m/2, 0,m/2, 0). Therefore, this is a
unique global maximizer for the case N = 5. ��

Finally we consider the case N = 3p + 2 with p ≥ 2. Define mk
3p+2 ∈ Mη (k =

0, 1, . . . , p − 1) by

mk
3p+2 = (Pm∗ , . . . , Pm∗︸ ︷︷ ︸

k

,m∗, Pm∗ , . . . , Pm∗︸ ︷︷ ︸
(p−1)−k

),

and Mr
3p+2 by

Mr
3p+2 := {mk

3p+2 ∈ Mη : r ≤ k ≤ (p − 1) − r},

where r ∈ {0, 1, . . . , p − 1}.
Proposition 4 For every m ∈ M0

3p+2, there exists a positive constant δN ,m,η > 0

such that U (m, δ) > U (m̃, δ) holds for δ ∈ (0, δN ,m,η) and m̃ ∈ M \ M0
3p+2.

Proof The idea of this proof is the same as that of Theorem 2 (i). First, suppose
#Iη(m) < p + 1. Then #I∗

0 (m) is at most 2#Iη so that

N∑

i=1

(
Ci,1/2

)1/2 ≤
√

2#Iη(m)
∑

i∈I0(m)

Ci,1/2

≤ √2#Iη(m)2m ≤ √2(2p)m = √4pm.
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Second, suppose #Iη(m) > p + 1. Then #I∗
0 (m) is at most 3p + 2− #Iη(m) so that

N∑

i=1

(
Ci,1/2

)1/2 ≤
√

(3p + 2 − #Iη(m))
∑

i∈I0(m)

Ci,1/2

<
√

(3p + 2 − #Iη(m))2m ≤ √2(2p)m = √4pm.

Finally, suppose #Iη(m) = p + 1. Then #I∗
0 (m) is at most 2p + 1. Note that there

exists at least one index l ∈ I0(m) such that Cl,1/2 = ml−1 + ml+1.
Now we choose m ∈ Mη as

(P̃1, . . . , P̃k−1, m̃k, P̃k+2, . . . , P̃ p+1),

where k ∈ Z ∩ [1, p], m̃k := (0,mk, 0,mk+1, 0). Then #I∗
0 (m) = 2p + 1 so that

N∑

i=1

(
Ci,1/2

)1/2 = √
mk + √

mk+1 +√mk + mk+1 +
∑

i∈{1,2,...,p+1}\{k,k+1}
2
√
mi .

Define the function f k, g : Rp+1 → R as

f k := √
xk + √

xk+1 +√xk + xk+1 +
∑

i∈{1,2,...,p+1}\{k,k+1}
2
√
xi ,

and

g :=
p+1∑

i=1

xi − m,

respectively. We calculate the interior critical point of f k under the constraint of g by
using the Lagrange multipliers. then we have unique solution as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xi = 4m

4(p − 1) + (1 + √
2)2

, (i ∈ {1, 2, . . . , p + 1} \ {k, k + 1}),

xk = xk+1 = (1 + √
2)2m

2{4(p − 1) + (1 + √
2)2} .

(6.6)

In fact, this critical point is maximum point of f k since Hesse matrix of f k is negative
definite. Hence (6.6) is a unique maximizer of f k subject to g = 0. Thus we conclude

max
m∈Mη

N∑

i=1

(
Ci,1/2

)1/2 =
√

(4p + 2
√
2 + 1)m >

√
4pm.

Thus it is shown that any global maximizer of the total population must satisfy m ∈
M0

3p+2. ��
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From Propositions 3 and 4, the calculation of the total population will be naturally
divided into two part. Lemma 3 deals with the case N = 3p + 1, and Lemma 4 deals
with the case N = 3p + 2. By using the definition of Mη, if we choose two positive
parameter η1, η2 satisfying η1 > η2, then Mη1 ⊂ Mη2 must be hold. Further, we
haveM0

3p+1 ⊂ Mm/p andM0
3p+2 ⊂ Mm∗ . Hence any global maximizer of the total

population withinMp∗ are also one withinMη.

Lemma 3 For every m ∈ M1
3p+1, there exists a positive constant δN ,m,η > 0 such

that U (m, δ) > U (m̃, δ) holds for δ ∈ (0, δN ,m,η) and m̃ ∈ M0
3p+1 \ M1

3p+1.

Proof We calculate the total population U (m̃, δ) and U (m, δ). We use (6.5) to have

U (m̃, δ) = m + 2
√
p
√
mδ1/2 +

(
m

p

)1/4

δ3/4 − (3p + 1)δ + o(δ)

and

U (m, δ) = m + 2
√
p
√
mδ1/2 + √

2

(
m

p

)1/4

δ3/4 − (3p + 1)δ + o(δ),

respectively. Therefore, we obtain

U (m, δ) −U (m̃, δ) = (
√
2 − 1)(m/p)1/4δ3/4 + o(δ) > 0.

This completes the proof. ��
Lemma 4 For every m ∈ M1

3p+2, there exists a positive constant δN ,m,η > 0 such

that U (m, δ) > U (m̃, δ) holds for δ ∈ (0, δN ,m,η) and m̃ ∈ M0
3p+2 \ M1

3p+2.

This can be proved in the same manner as Lemma 3, so we omit the proof.

7 Proof of Theorem 2

7.1 Computation of higher order terms

In this subsection, we compute a coefficient of δn/4, where n ∈ Z≥1. To compare the
total population when the resource allocation pattern is included inM0

3p+1 orM0
3p+2,

we calculate an asymptotic expansion with respect to δ. If the resources are placed at
intervals of 4 patches or less, Proposition 7 allows asymptotic expansion in the order
of δn/4. Lemmas 3 and 4 indicate that a global maximizer of U (m, δ) must belong
to M1

3p+1 or M1
3p+2. This means that the resources of the maximizer are placed

at intervals of 4 patches or less. At the end of this section, we identify the resource
allocation that maximizes the total population by comparing the coefficients on the
order of δn/4. In view of (6.4), we already have expansion of the positive solution of
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(1.3) in the case m ∈ M1
3p+1 or M1

3p+2 as

ui =
4∑

q=0

ui,qδ
q/4 + o(δ).

Here, ui,q is a coefficient of ui of δq/4 depending on m and N .
In the next lemma, we expand ui up to a higher order of δ.

Lemma 5 Let n be a positive integer and choose m ∈ M1
3p+1 or m ∈ M1

3p+2 arbi-
trarily. Then the solution of (1.3) is expanded as

ui =
n∑

q=0

ui,qδ
q/4 + o(δn/4)

for all i ∈ Ω .

Proof We proceed by induction on n. Suppose that

ui =
n∑

q=0

ui,qδ
q/4 + o(δn/4)

for all i ∈ Ω and n ≥ 5. We divide the proof into three parts according to the value of
deg ui .

First, we choose i ∈ Ω such that deg ui = 0. By (3.2), we have

ui = mi − 2δ

2
+
⎧
⎨

⎩

(mi − 2δ)2

4
+ δ

⎛

⎝
n∑

q=0

(ui−1,q + ui+1,q)δ
q/4 + o(δn/4)

⎞

⎠

⎫
⎬

⎭

1/2

.

By our assumption, we have deg ui−1 = deg ui+1 = 1/2 to compute

ui = mi − 2δ

2
+
⎧
⎨

⎩

(mi − 2δ)2

4
+ δ

⎛

⎝
n∑

q=2

(ui−1,q + ui+1,q)δ
q/4 + o(δn/4)

⎞

⎠

⎫
⎬

⎭

1/2

= mi − 2δ

2
+
⎧
⎨

⎩

(mi − 2δ)2

4
+

n+4∑

q=6

(ui−1,q−4 + ui+1,q−4)δ
q/4 + o(δ(n+4)/4)

⎫
⎬

⎭

1/2

.

Using binomial series and uniqueness of ui , we obtain

ui =
n+4∑

q=0

ui,qδ
q/4 + o(δ(n+4)/4).
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Second, we choose i ∈ Ω such that deg ui = 1/2. From our assumption, we see
that this condition is satisfied for i = 1 and i = N . By (3.2), we have

ui = −δ +
⎧
⎨

⎩
δ2 + δ

⎛

⎝
n∑

q=0

(ui−1,q + ui+1,q)δ
q/4 + o(δn/4)

⎞

⎠

⎫
⎬

⎭

1/2

.

We use binomial series and uniqueness of ui to obtain

ui = δ1/2

⎛

⎝
n∑

q=0

ui,q+2δ
q/4 + o(δn/4)

⎞

⎠ =
n+2∑

q=0

ui,qδ
q/4 + o(δ(n+2)/4).

Calculation of u1 and uN is the same as above, so we omit the proof.
Finally, we choose i ∈ Ω such that deg ui = 3/4. By (3.2), we have

ui = −δ +
⎧
⎨

⎩
δ2 + δ

⎛

⎝
n∑

q=0

(ui−1,q + ui+1,q)δ
q/4 + o(δn/4)

⎞

⎠

⎫
⎬

⎭

1/2

.

By our assumption, we have deg ui−1 = deg ui+1 = 1/2. Using binomial series and
uniqueness of ui , we obtain

ui = −δ +
⎧
⎨

⎩
δ3/2

⎛

⎝δ1/2 +
n−2∑

q=0

(ui−1,q+2 + ui+1,q+2)δ
q/4 + o(δ(n−2)/4)

⎞

⎠

⎫
⎬

⎭

1/2

= δ3/4

⎛

⎝
n−2∑

q=0

ui,q+3δ
q/4 + o(δ(n−2)/4)

⎞

⎠ =
n+1∑

q=0

ui,qδ
q/4 + o(δ(n+1)/4).

This completes the proof. ��

From the second equation in (1.3), wemay assume u0,q = u1,q and uN+1,q = uN ,q .
In view of Lemma 5, the positive solution of (1.3) must satisfy

mi

⎛

⎝
n∑

q=0

ui,qδ
q/4 + o(δn/4)

⎞

⎠−
⎛

⎝
n∑

q=0

ui,qδ
q/4 + o(δn/4)

⎞

⎠

2

+ δ

⎛

⎝
n∑

q=0

(ui−1,q + ui+1,q − 2ui,q)δ
q/4 + o(δn/4)

⎞

⎠ = 0

123



2 Page 28 of 50 K. Nagahara et al.

for all i ∈ Ω and n ∈ Z+. Rearranging this equation in ascending powers of δ up to
the term in δn/4, we obtain

3∑

q=0

⎛

⎝miui,q −
q∑

j=0

ui, j ui,q− j

⎞

⎠ δq/4

+
n∑

q=4

⎛

⎝miui,q −
⎛

⎝
q∑

j=0

ui, j ui,q− j

⎞

⎠+ (ui−1,q−4 + ui+1,q−4 − 2ui,q−4)

⎞

⎠ δq/4

+ o(δn/4) = 0. (7.1)

Lemma 6 Let n ≥ 5 and q be a positive integer. Choose m ∈ M1
3p+1, or m ∈ M1

3p+2
arbitrarily. Then coefficients of the expansion of the positive solution of (1.3) satisfy
the following equalities:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

miui,q −
q∑

j=0

ui, j ui,q− j = 0, (q = 0, 1, 2, 3),

miui,q −
⎛

⎝
q∑

j=0

ui, j ui,q− j

⎞

⎠+ (ui−1,q−4 + ui+1,q−4 − 2ui,q−4) = 0,

(q = 4, 5, . . . , n).

(7.2)

Proof To prove the cases q = 0, . . . , 4, we substitute every initial term of ui,q to (7.2)
directly, which was determined in Sect. 6. To prove the case q = 5, 6, . . . , n, we use
induction on q. Suppose that (7.2) holds q = 1, 2, . . . , s − 1, where s is a positive
integer satisfying s ≤ n. Substituting (7.2) to (7.1), we have

n∑

q=s

⎛

⎝miui,q −
⎛

⎝
q∑

j=0

ui, j ui,q− j

⎞

⎠+ (ui−1,q−4 + ui+1,q−4 − 2ui,q−4)

⎞

⎠ δq/4

+ o(δn/4) = 0.

Dividing this by δs/4, we have

n∑

q=s

⎛

⎝miui,q −
⎛

⎝
q∑

j=0

ui, j ui,q− j

⎞

⎠+ (ui−1,q−4 + ui+1,q−4 − 2ui,q−4)

⎞

⎠ δ(q−s)/4

+ o(δ(n−s)/4) = 0.

Since this equality must hold for any δ > 0 small, we conclude the proof. ��
Hereafter, we assume that n is sufficiently large. We prepare some recurrence rela-

tion about ui,q for every i ∈ Ω and q = 5, 6, . . . , n, which will be used in Sects. 7.2
and 7.3.
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We choose i ∈ Ω such that deg ui = 0. In this case, the second equality of (7.2)
becomes

miui,q −
⎛

⎝2ui,0ui,q +
q−1∑

j=1

ui, j ui,q− j

⎞

⎠+ (ui−1,q−4 + ui+1,q−4 − 2ui,q−4) = 0.

By (6.4), we have ui,0 = mi . Therefore, ui,q can be expressed by recurrence relation
as

ui,q = mi
−1

⎧
⎨

⎩
−
⎛

⎝
q−1∑

j=1

ui, j ui,q− j

⎞

⎠+ (ui−1,q−4 + ui+1,q−4 − 2ui,q−4)

⎫
⎬

⎭
. (7.3)

We can show the recurrence relation of ui,q satisfying deg ui = 1/2 and deg ui = 3/4
as

ui,q = (2ui,2)
−1

⎧
⎨

⎩
−
⎛

⎝
q−1∑

j=3

ui, j ui,q+2− j

⎞

⎠+ (ui−1,q−2 + ui+1,q−2 − 2ui,q−2)

⎫
⎬

⎭

(7.4)

and

ui,q = (2ui,3)
−1

⎧
⎨

⎩
−
⎛

⎝
q−1∑

j=4

ui, j ui,q+3− j

⎞

⎠+ (ui−1,q−1 + ui+1,q−1 − 2ui,q−1)

⎫
⎬

⎭
,

(7.5)

respectively. Since the proofs of (7.4) and (7.5) can be obtained in the same way as
that of (7.3), we omit the proof.

7.2 Proof of Theorem 2 (ii-b) and (ii-c)

Our objective in this subsection is to express ui,q by using some recurrence relation,
and show that U (mr+1

3p+1, δ) −U (mr
3p+1, δ) is positive for some r .

Let k and r ∈ [1, �p/2�] be positive integers, where �·� is a floor function. We
choose mr

3p+1 ∈ M1
3p+1 and define

⎧
⎪⎨

⎪⎩

ir+(k) := 3r + 1 + k, (1 ≤ k ≤ 3(p − r)),

ir (0) := 3r + 1,

ir−(k) := 3r + 1 − k, (1 ≤ k ≤ 3r).
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Further, we define ir±(k) := ir−(k) or ir+(k). Let {ak} and {bk} be monotone increasing
sequences given by

⎧
⎪⎪⎨

⎪⎪⎩

ak := 3k − 1,

bk := min
2≤k

{

(Z≥1 \ {aλ}λ≥1) \
k−1⋃

λ=1

bλ

}

, b1 = 1.

We define the sets

Ar := {ak ∈ Z | 1 ≤ k ≤ r}, Br := {bk ∈ Z | 1 ≤ k ≤ r} .

We also define {Aq}q∈Z≥0 and {Bq}q∈Z≥0 by the recurrence relation

Aq =
(
m

p

)−1
⎧
⎨

⎩
−

q−1∑

j=1

A j Aq− j + (Bq−4 + Bq−4 − 2Aq−4)

⎫
⎬

⎭
for q ≥ 5,

Bq = 1

2

(
m

p

)−1/2
⎧
⎨

⎩
−

q−1∑

j=3

Bj Bq+2− j + (Aq−2 + Bq−2 − 2Bq−2)

⎫
⎬

⎭
for q ≥ 5,

and the initial conditions

A0 = m

p
, A1 = A2 = A3 = 0, A4 = −2,

B0 = B1 = 0, B2 = (m/p)1/2 , B3 = 0, B4 = −1

2
.

Define {C0,q}q∈Z≥0 by the recurrence relation

C0,q = 1

2
√
2

(
m

p

)−1/4 {
−

q−1∑

j=4

(C0, jC0,q+3− j )

+ (Bq−1 + E1,q−1) + (Bq−1 + E1,q−1) − 2C0,q−1

}
for q ≥ 5,

and the initial condition

C0,0 = C0,1 = C0,2 = 0, C0,3 = √
2

(
m

p

)1/4

, C0,4 = −1.
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Define {Ek,q}(k,q)∈Z≥1×Z≥0 by the recurrence relation

E1,q = 1

2

(
m

p

)−1/2 {
−

q−1∑

j=3

(Bj E1,q+2− j + E1, j Bq+2− j + E1, j E1,q+2− j )

+ (C0,q−2 − Bq−2) + E2,q−2 − 2E1,q−2

}
for q ≥ 5,

Eak ,q =
(
m

p

)−1 {
−

q−1∑

j=1

(A j Eak ,q− j + Eak , j Aq− j + Eak , j Eak ,q− j )

+ (Eak−1,q−4 + Eak+1,q−4 − 2Eak ,q−4)
}
for q ≥ 5, k ≥ 1,

Ebk ,q = 1

2

(
m

p

)−1/2 {
−

q−1∑

j=3

(Bj Ebk ,q+2− j + Ebk , j Bq+2− j + Ebk , j Ebk ,q+2− j )

+ (Ebk−1,q−2 + Ebk+1,q−2 − 2Ebk ,q−2)
}
for q ≥ 5, k ≥ 1,

and the initial condition

E1,0 = E1,1 = E1,2 = E1,3 = 0, E1,4 = −1

2
,

Ek,0 = Ek,1 = Ek,2 = Ek,3 = Ek,4 = 0 for k ≥ 2.

Finally, we define a mapping k : Z≥2 → Z≥0 by

k(η) =

⎧
⎪⎨

⎪⎩

3d − 1 if η = 8d, 8d + 1,

3d if η = 8d + 2, 8d + 3,

3d + 1 if η = 8d + 4, 8d + 5, 8d + 6, 8d + 7,

and its inverse by

d(k) := min k−1({k}).

From the definition of Ek,q , we have

Ek,q = 0 for 0 ≤ q ≤ d(k) − 1, (7.6)

Eak ,d(ak ) =
(
m

p

)−1

Eak−1,d(ak−1), (7.7)

Ebk ,d(bk ) = 1

2

(
m

p

)−1/2

Ebk−1,d(bk−1) for k ≥ 2. (7.8)

We first prove that ui,q can be expressed by using Aq , Bq , and Ek,q .

123



2 Page 32 of 50 K. Nagahara et al.

Proposition 5 Let q be an integer and choose m ∈ M1
3p+1 arbitrarily. If 0 ≤ q ≤

d(6r) + 1, the coefficient of the expanded positive solution of (1.3) can be expressed
as

uir−(ak),q = Aq + Eak ,q + E6r+1−ak ,q for ak ∈ Ar , (7.9)

uir−(bk),q = Bq + Ebk ,q + E6r+1−bk ,q for bk ∈ B2r , (7.10)

uir+(ak),q = Aq + Eak ,q + E6(p−r)+1−ak ,q for ak ∈ Ap−r , (7.11)

uir+(bk),q = Bq + Ebk ,q + E6(p−r)+1−bk ,q for bk ∈ B2(p−r). (7.12)

Moreover,

uir (0),q =
{
C0,q for 0 ≤ q ≤ d(6r),

C0,q + E0 for q = d(6r) + 1,
(7.13)

where E0 := (2
√
2)−1(m/p)−1/4(E6r ,d(6r) + E6(p−r),d(6r)) < 0 is a constant.

Proof We first show (7.9). To prove the case q = 0, 1, . . . , 4, we substitute every
initial term of ui,q to (7.9)–(7.13) directly, which was determined in Sect. 6. To prove
the case q = 5, 6, . . . , d(6r) + 1, we use induction on q. Suppose that (7.9)–(7.13)
hold for q = 1, 2, . . . , s − 1, where s is positive integer satisfying s ≤ d(6r) + 1.
Then the first term of the right-hand side of (7.3) becomes

s−1∑

j=1

uir−(ak ), j uir−(ak ),s− j

= −
s−1∑

j=1

(A j As− j + A j Eak ,s− j + A j E6r+1−ak ,s− j

+ Eak , j As− j + Eak , j Eak ,s− j + Eak , j E6r+1−ak ,s− j

+ E6r+1−ak , j As− j + E6r+1−ak , j Eak ,s− j + E6r+1−ak , j E6r+1−ak ,s− j ).

(7.14)

We claim that

Eak , j E6r+1−ak ,s− j = E6r+1−ak , j Eak ,s− j = 0 (7.15)

for all 1 ≤ j ≤ s−1. The proof of this claimwill be divided into three cases according
to s. First, suppose 5 ≤ s ≤ d(ak). In this case, j satisfies 1 ≤ j ≤ d(ak)−1.This gives
Eak , j = E6r+1−ak , j = 0 by (7.6). Second, suppose d(ak) + 1 ≤ s ≤ d(6r + 1− ak).
If 1 ≤ j ≤ d(ak) − 1, then we can prove (7.15) in the same manner as the first case.
If d(ak) ≤ j ≤ s − 1, then d(6r + 1 − ak) − 1 is the upper bound of j . This gives
E6r+1−ak , j = 0 by (7.6). Moreover, d(6r + 1 − ak) − 1 is the upper bound of s − j ,
since

s − j ≤ s − d(ak) ≤ d(6r + 1 − ak) − d(ak) = d(6r − 2ak)

< d(6r + 1 − ak) − 1.
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From (7.6), we have E6r+1−ak ,q− j = 0. Finally, suppose d(6r + 1 − ak) + 1 ≤ s ≤
d(6r)+ 1. If 1 ≤ j ≤ d(6r + 1−ak)− 1, then we use the same manner as the second
case. If d(6r +1−ak) ≤ j ≤ s−1, then d(ak)−1 is the upper bound of s− j , since

s − j ≤ s − d(6r + 1 − ak) ≤ d(6r) + 1 − d(6r + 1 − ak)

= 8(k − 1) + 3 = d(ak − 2) + 1 < d(ak) − 1.

In view of (7.6), Eak ,q− j = E6r+1−ak ,q− j = 0. Hence we obtain (7.15).
Thus, (7.14) can be rewritten as

s−1∑

j=1

uir−(ak), j uir−(ak ),s− j

= −
s−1∑

j=1

(A j As− j ) −
s−1∑

j=1

(A j Eak ,s− j + Eak , j As− j + Eak , j Eak ,s− j )

−
s−1∑

j=1

(A j E6r+1−ak ,s− j + E6r+1−ak , j As− j + E6r+1−ak , j E6r+1−ak ,s− j ).

(7.16)

The rest of the proof of (7.9) is to calculate the second term of the right-hand side of
(7.3). We have

uir−(ak )−1,s−4 + uir−(ak)+1,s−4 − 2uir−(ak ),s−4

= (Bs−4 + Bs−4 − 2As−4) + (Eak−1,s−4 + Eak+1,s−4 − 2Eak ,s−4)

+ (E6r+1−ak−1,s−4 + E6r+1−ak+1,s−4 − 2E6r+1−ak ,s−4). (7.17)

Combining (7.16) and (7.17), we obtain (7.9).
Next, let us show (7.10) in the same way as the proof of (7.9). Suppose that (7.9)–

(7.13) hold for q = 1, 2, . . . , s − 1. Then the first term of the right-hand side of (7.4)
becomes

s−1∑

j=3

uir−(bk), j uir−(bk),s+2− j

= −
s−1∑

j=3

(Bj Bs+2− j + Bj Ebk ,s+2− j + Bj E6r+1−bk ,s+2− j

+ Ebk , j Bs+2− j + Ebk , j Ebk ,s+2− j + Ebk , j E6r+1−bk ,s+2− j

+ E6r+1−bk , j Bs+2− j + E6r+1−bk , j Ebk ,s+2− j + E6r+1−bk , j E6r+1−bk ,s+2− j ).

We also claim that

Ebk , j E6r+1−bk ,s+2− j = E6r+1−bk , j Ebk ,s+2− j = 0 (7.18)
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for all 3 ≤ j ≤ s − 1.
The proof of this claim will be also divided into three cases depending to s. First,

suppose 5 ≤ s ≤ d(bk). In this case, j satisfies 3 ≤ j ≤ d(bk) − 1. This gives
Ebk , j = E6r+1−bk , j = 0 by (7.6). Second, suppose d(bk)+1 ≤ s ≤ d(6r+1−bk). If
3 ≤ j ≤ d(bk)−1, thenwe use the samemanner as the first case. If d(bk) ≤ j ≤ s−1,
then d(6r + 1− bk) − 1 is the upper bound of j . This gives E6r+1−bk , j = 0 by (7.6).
Moreover, d(6r + 1 − bk) − 1 is an upper bound of s + 2 − j , since

s + 2 − j ≤ s + 2 − d(bk) ≤ d(6r + 1 − bk) + 2 − d(bk)

= d(6r + 1 − 2bk) < d(6r + 1 − bk) − 1.

From (7.6), we have E6r+1−bk ,s− j = 0. Finally, suppose d(6r + 1 − bk) + 1 ≤ s ≤
d(6r)+ 1. If 1 ≤ j ≤ d(6r + 1− bk)− 1, then we use the same manner as the second
case. If d(6r + 1 − bk) ≤ j ≤ s − 1, then d(bk) − 1 is an upper bound of s + 2 − j ,
since

s + 2 − j ≤ s + 2 − d(6r + 1 − bk) ≤ d(6r) + 3 − d(6r + 1 − bk)

= d(bk − 1) + 1 ≤ d(bk) − 1.

In view of (7.6), Ebk ,s+2− j = E6r+1−bk ,s+2− j = 0. Hence we obtain (7.18). Thus,
(7.14) can be rewritten as

s−1∑

j=3

uir−(bk ), j uir−(bk ),s+2− j

= −
s−1∑

j=3

(Bj Bs+2− j ) −
s−1∑

j=3

(Bj Ebk ,s+2− j + Ebk , j Bs+2− j + Ebk , j Ebk ,s+2− j )

−
s−1∑

j=3

(Bj E6r+1−bk ,s+2− j + E6r+1−bk , j Bs− j + E6r+1−bk , j E6r+1−bk ,s+2− j ).

(7.19)

The rest of the proof of (7.10) is to calculate the second term of the right-hand side
of (7.4). We have

uir−(bk)−1,s−2 + uir−(bk)+1,s−2 − 2uir−(bk),s−2

= (As−2 + Bs−2 − 2Bs−2) + (Ebk−1,s−2 + Ebk+1,s−2 − 2Ebk ,s−2)

+ (E6r+1−bk−1,s−2 + E6r+1−bk+1,s−2 − 2E6r+1−bk ,s−2). (7.20)

Combining (7.19) and (7.20), we obtain (7.10). We can apply the same manner as
above to obtain representation formula (7.11) and (7.12). So we omit the proof.
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Finally, we prove (7.13) by induction on q. Suppose that (7.9)–(7.13) hold for
q = 1, 2, . . . , s − 1. By (7.5), we have

uir (0),s = 1

2
√
2

(
m

p

)−1/4{

−
⎛

⎝
s−1∑

j=4

C0, jC0,s+3− j

⎞

⎠

+ (Bs−1 + E1,s−1 + E6r ,s−1) + (Bs−1 + E1,s−1 + E6(p−r),s−1) − 2C0,s−1)

}

= C0,s + 1

2
√
2

(
m

p

)−1/4

(E6r ,s−1 + E6(p−r),s−1).

In view of (7.6), E6r ,s−1 = E6(p−r),s−1 = 0 for 4 ≤ s − 1 ≤ d(6r) − 1. Further, we
have E6r ,d(6r) < 0 by using (7.7)–(7.8) and the initial condition E1,4, so that

uir (0),q = C0,q + 1

2
√
2

(
m

p

)−1/4

(E6r ,d(6r) + E6(p−r),d(6r)) if q = d(6r) + 1.

Thus, we obtain (7.13) and conclude the proof. ��
Let us complete the proof of Theorem 2 (ii). We consider U (mr

3p+1, δ) for 1 ≤ r <

p/2 − 1. By Proposition 5 and (7.6), we have

U (mr
3p+1, δ) =

d(6r)+1∑

q=0

N∑

i=1

ui,qδ
q/4 + o(δ(d(6r)+1)/4)

=
3∑

q=0

(C0,q + pAq + 2pBq)δ
q/4

+
d(6r)∑

q=4

(C0,q + pAq + 2pBq +
k(q)∑

k=1

2Ek,q)δ
q/4

+
∑

q=d(6r)+1

(C0,q + E0 + pAq + 2pBq +
6r∑

k=1

2Ek,q)δ
q/4 + o(δ(d(6r)+1)/4).

Hence we obtain

U (mr+1
3p+1, δ) −U (mr

3p+1, δ) = −E0δ
(d(6r)+1)/4 + o(δ(d(6r)+1)/4) > 0

for sufficiently small δ. This proves Theorem 2 for N = 3p + 1. ��

7.3 Proof of Theorem 2 (iii-b) and (iii-c)

This subsection is organized in the same way as Sect. 7.2. For simplicity, we use the
same notation as in Sect. 7.2. Let k and r ∈ [1, �(p − 1)/2�] be positive integer. We
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choose mr
3p+2 ∈ M1

3p+2 and define

⎧
⎪⎨

⎪⎩

ir+(k) := 3r + 3 + k (1 ≤ k ≤ 3{(p − 1) − r} + 2),

ir (0) := 3r + 3,

ir−(k) := 3r + 3 − k (1 ≤ k ≤ 3r + 2).

We define monotone increasing sequences by

⎧
⎪⎪⎨

⎪⎪⎩

ak := 3k + 1 (k ∈ Z≥0),

bk := min
1≤k

{

(Z≥2 \ {aλ}λ≥1) \
k−1⋃

λ=0

bλ

}

, b0 = 2.

We define the sets

Ar := {ak ∈ Z | 1 ≤ k ≤ r}, Br := {bk ∈ Z | 1 ≤ k ≤ r} .

We also define {Aq}q∈Z≥0 and {Bq}q∈Z≥0 by the recurrence relation

Aq = (m∗)−1

⎧
⎨

⎩
−

q−1∑

j=1

A j Aq− j + (Bq−4 + Bq−4 − 2Aq−4)

⎫
⎬

⎭
for q ≥ 5,

Bq = 1

2
(m∗)−1/2

⎧
⎨

⎩
−

q−1∑

j=3

Bj Bq+2− j + (Aq−2 + Bq−2 − 2Bq−2)

⎫
⎬

⎭
for q ≥ 5,

and the initial condition

A0 = m∗, A1 = A2 = A3 = 0, A4 = −2,

B0 = B1 = 0, B2 = (m∗)1/2 , B3 = 0, B4 = −1

2
.

Define {Ck,q}(k,q)∈Z∩[0,2]×Z≥0 by the recurrence relations

C0,q = 1

2

(
m∗)−1/2

{
−

q−1∑

j=3

(C0, jC0,q+2− j ) + (C1,q−2 + C1,q−2 − 2C0,q−2)
}
,
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C1,q = (m∗)−1/2
{

−
q−1∑

j=1

(C1, jC1,q− j ) + (C0,q−2 + C2,q−2 − 2C1,q−2)
}
,

C2,q = 1

2

(
m∗)−1/2

{
−

q−1∑

j=3

(C2, jC2,q+2− j )

+ (C1,q−2 + (B3,q−2 + E3,q−2) − 2C2,q−2

}
,

for q ≥ 5, and the initial conditions

C0,0 = C0,1 = 0, C0,2 = (2m∗)1/2, C0,3 = 0, C0,4 = −1,

C1,0 = m∗, C1,1 = C1,2 = C1,3 = 0, C1,4 = −2,

C2,0 = C2,1 = 0, C2,2 = (m∗)1/2, C2,3 = 0, C2,4 = 1

2

(m∗
m∗
)1/2 − 1.

Define {Ek,q}(k,q)∈Z≥3×Z≥0 by the recurrence relations

E3,q = 1

2
(m∗)−1/2

{
−

q−1∑

j=3

(Bj E3,q+2− j + E3, j Bq+2− j + E3, j E3,q+2− j )

+ (C2,q−2 − Bq−2) + E4,q−2 − 2E3,q−2

}
for q ≥ 5,

Eak ,q = (m∗)−1
{

−
q−1∑

j=1

(A j Eak ,q− j + Eak , j Aq− j + Eak , j Eak ,q− j )

+ (Eak−1,q−4 + Eak+1,q−4 − 2Eak ,q−4)
}
for q ≥ 5, k ≥ 1,

Ebk ,q = 1

2
(m∗)−1/2

{
−

q−1∑

j=3

(Bj Ebk ,q+2− j + Ebk , j Bq+2− j + Ebk , j Ebk ,q+2− j )

+ (Ebk−1,q−2 + Ebk+1,q−2 − 2Ebk ,q−2)
}
for q ≥ 5, k ≥ 1,

and the initial conditions

E3,0 = E3,1 = E3,2 = E3,3 = 0, E3,4 = −
√
2 − 1

4
√
2

,

Ek,0 = Ek,1 = Ek,2 = Ek,3 = Ek,4 = 0 for k ≥ 4.
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Finally, we define a mapping k : Z≥2 → Z≥2 by

k(η) =

⎧
⎪⎨

⎪⎩

3d + 1 if η = 8d, 8d + 1,

3d + 2 if η = 8d + 2, 8d + 3,

3d + 3 if η = 8d + 4, 8d + 5, 8d + 6, 8d + 7.

and its inverse by

d(k) := min k−1({k}).
From the definition of Ek,q , we have

Ek,q = 0 for 0 ≤ q ≤ d(k) − 1, (7.21)

Eak ,d(ak ) = (m∗)−1 Eak−1,d(ak−1), (7.22)

Ebk ,d(bk ) = 1

2
(m∗)−1/2 Ebk−1,d(bk−1) for k ≥ 2. (7.23)

We also prove that ui,q can be expressed by using Aq , Bq and Ek,q .

Proposition 6 Let q be a non-negative integer. Choose m ∈ M1
3p+2 arbitrarily. If

0 ≤ q ≤ d(6r + 3), the coefficients in the expansion of the positive solution of (1.3)
are expressed as

uir−(ak),q = Aq + Eak ,q + E6r+5−ak ,q for ak ∈ Ar , (7.24)

uir−(bk),q = Bq + Ebk ,q + E6r+5−bk ,q − 2Êq,r for bk ∈ B2r , (7.25)

uir+(ak),q = Aq + Eak ,q + E6(p−1−r)+5−ak ,q for ak ∈ Ap−1−r , (7.26)

uir+(bk),q =
{
Bq + Ebk ,q + E6(p−1−r)+5−bk ,q if r < (p − 1)/2,

Bq + Ebk ,q + E6(p−1−r)+5−bk ,q − 2Êq,r if r = (p − 1)/2,

for bk ∈ B2(p−1−r), (7.27)

uir−(2),q = C2,q + E2, (7.28)

uir+(2),q =
{
C2,q if r < (p − 1)/2,

C2,q + E2 if r = (p − 1)/2,
(7.29)

uir±(1),q = C1,q , (7.30)

uir (0),q = C0,q , (7.31)

where E2 and Êq,r are constants given by

Ê2 =
{
0 if 0 ≤ q < d(6r + 3),

(1/2)(m∗)−1E6r+2,d(6r+2) < 0 if q = d(6r + 3),

Êq,r =
{
0 if 0 ≤ q < d(6r + 3),

Ebk ,d(bk )E6r+5−bk ,d(6r+5−bk ) > 0 if q = d(6r + 3).
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Proof The main idea of this proof is the same as Proposition 5. To prove the case
q = 0, 1, . . . , 4, we substitute every initial term of ui,q to (7.24)–(7.31) directly,
which was determined in Sect. 6. Further, (7.24) may be proved in much the same way
as the proof of (7.9). So we omit the proof.

To prove (7.25), we claim that for every 3 ≤ j ≤ d(6r +2)+1, 0 ≤ q ≤ d(6r +3)
and bk ∈ B2r , the following equalities hold:

Ebk , j E6r+5−bk ,q+2− j = E6r+5−bk , j Ebk ,q+2− j

=
{

Ebk ,d(bk )E6r+5−bk ,d(6r+5−bk ) if j = d(bk),

0 otherwise.
(7.32)

It is easy to verify that d(6r + 3) + 2 − d(bk) = d(6r + 5 − bk) for all bk ∈ B2r .
Hence if q = d(6r + 3) and j = d(bk), then the first two equalities in (7.32) hold.
Otherwise, the proof of the equalities in (7.32) are t almost the same as that of (7.18),
so we omit the proof. The rest steps of the proof of (7.25) is the same way as in that
of (7.10), so we omit the proof. We can apply a similar argument to obtain (7.26) and
(7.27). So we again omit the proof.

We prove (7.28) by induction on q. Suppose that (7.24)–(7.31) hold for q =
1, 2, . . . , s − 1, where s is a positive integer satisfying s ≤ d(6r + 3). By (7.4),
we have

uir−(2),s = 1

2

(
m∗)−1/2

{

−
⎛

⎝
s−1∑

j=3

C2, jC2,s+2− j

⎞

⎠

+ (Bs−2 + E3,s−2 + E6r+2,s−2) + C1,s−2 − 2C2,s−2

}

= C2,s + 1

2

(
m∗)−1/2

(E6r+2,s−2),

In view of (7.21), E6r+2,s−2 = 0 for 4 ≤ s − 2 ≤ d(6r + 2) − 1. Further, we have
E6r+2,d(6r+2) < 0 by using (7.22)–(7.23) and the initial condition E3,4. Hence we
obtain

uir−(2),q = C2,q + 1

2

(
m∗)−1/2

(E6r+2,d(6r+2)) if q = d(6r + 3).

Thus we have shown (7.28). The proof of (7.29)–(7.31) is almost the same as that of
(7.28), so we omit the proof. ��
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Let us complete the proof of Theorem 2. We consider U (mr
3p+2, δ) for 1 ≤ r <

p/2 − 1. By Proposition 6 and (7.21), we have

U (mr
3p+2, δ) =

d(6r+3)∑

q=0

N∑

i=1

ui,qδ
q/4 + o(δd(6r+3)/4)

=
3∑

q=0

(Cq + (p − 1)(Aq + 2Bq)δ
q/4

+
d(6r+2)+1∑

q=4

(Cq + (p − 1)(Aq + 2Bq) +
k(q)∑

k=3

2Ek,q)δ
q/4

+
∑

q=d(6r+3)

(
Cq + E2 + (p − 1)(Aq + 2Bq)

+
6r+2∑

k=3

2Ek,q + E6r+3,q − 4r Êq,r

)
δq/4

+ o(δd(6r+3)/4),

where Cq := C0,q + 2C1,q + 2C2,q . Hence we obtain

U (mr+1
3p+2, δ) −U (mr

3p+2, δ)

= (E6r+3,d(6r+3) − E2 + 4r Êq,r )δ
d(6r+3)/4 + o(δd(6r+3)/4)

=
(

−
√
2 − 1

4
√
2m∗

E6r+2,d(6r+2) + 4r Êq,r

)

δd(6r+3)/4 + o(δd(6r+3)/4) > 0

for sufficiently small δ. This completes the proof of Theorem 2. ��

8 Discussions

In this paper we studied a nonlinear optimization problem from population biology.
We consider the population of a single species in a patchy environment and study
the effects of dispersal and spatial heterogeneity of patches on the total population
of a single species at equilibrium. More specifically, we ask the following question:
Given the total amount of resources, how should the resources be distributed across
the habitat in order to maximize the total population of a species? We show that the
global maximizer can be characterized for any number of patches when the diffusion
rate δ is either sufficiently small or large. Our results show that the global maximizer
depends crucially on the diffusion rate δ, and the answers are completely different
for small δ and large δ. In several cases we show that the global maximizer is of the
“bang-bang” type, and we are also able to determine the maximizers explicitly by
finding the specific guiding rules of fragmentation in the multi-patch model (1.3). In
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particular, fragmentation occurs when the diffusion rate is sufficiently small, which is
in agreement with the findings in Mazari et al. (2020).

A general question is to determine the resource distributions which maximize the
total population at equilibrium for the N -patch model

d

dt
vi (t) = vi (mi − vi ) + δ

N∑

j=1

Li jv j , (8.1)

where (Li j ) is non-negative, irreducible and

Lii = −
∑

j �=i

Li j , 1 ≤ i ≤ N .

For simplicity we assume that Li j = 1 when patches i and j are connected, Li j = 0
when they are disconnected. The patchmodel (1.1),whichmimics the one-dimensional
continuous habitat, has a special diffusion matrix, which shares similarity to the peri-
odic case.

The answers to the above question might be complicated as both dispersal rate and
dispersal matrix affect themixing of populations across the whole habitat. The optimal
resource distributions in patch models (in PDEmodels as well, but with an extra upper
bound) are often of the bang-bang types, i.e. they are indicator functions over some
set E ⊂ Ω or finite sums of indicator functions with different weights. The difficulty
is to determine these sets E and their corresponding weights. Theorems 1, 2 and 3
provided some examples.

We suspect that Theorem 2 holds for small diffusion rate δ when η = 0. To be more
precise, we conjecture that for model (1.1), there exists positive constant δN ,m > 0
such thatU (m, δ) > U (m̃, δ) holds for any δ ∈ (0, δN ,m) and any m̃ ∈ M\{m}. Note
that the diffusion matrix given by model (1.1) is among the least connected dispersal
matrices. Hence, this conjecture suggests that for small diffusion rate, in order to
maximize the total population in weakly connected habitats, it might be advantageous
to distribute the resources in certain fragmented manners, possibly so for model (8.1)
as well.

On the other hand, Theorem 1 implies that it is advantageous to distribute the
resources in a single patchwhendiffusion rate is large. Itwill be of interest to generalize
Theorem 1 to model (8.1) for large δ and determine how the network topology affects
the optimal distribution of resources. We suspect that the optimal distribution in this
scenario might be associated with the boundary patches, i.e. patches only connected
with a single patch.

If we increase the connectivity of the dispersal matrix, the optimal distribution
of resources might also become less fragmented. To support this claim, consider the
extreme case of completely connected habitat, i.e. Li j = 1 for any i �= j . For this case,
it can be formally shown that for small diffusion rate, the optimal resource distribution
is given by one of the following distributions:

m = (m, 0, 0, 0, . . . , 0), (0,m, 0, 0, . . . , 0), . . . (0, 0, 0, 0, . . . ,m),
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with U (m, δ) given by

U (m, δ) = m + (N − 1)m1/2δ1/2 + o(δ1/2).

We wonder whether Theorem 3 can be extended to N -patch model with completely
connected graphs.

Similarly for the PDE model (1.4), an open question is to characterize the global
maximizer of the total population for the unique positive steady state in general
domains. This seems to be a challenging problem even for the one-dimensional spatial
domain with arbitrary dispersal rate.

A Appendix

A.1 Preliminaries for small ı

In this Appendix, we choose N ≥ 2 and m ∈ M arbitrarily.

Lemma 7 Any solution of (1.3) satisfies either deg ui = 0 or 1/2 ≤ deg ui < 1 for
each i ∈ Ω . Moreover, mi > 0 if deg ui = 0, and mi = 0 if 1/2 ≤ deg ui < 1.

Proof By using (3.1)–(3.3), ui → mi as δ → 0. This implies deg ui ≥ 0. First, we
choose i = 1 or i = N . Assume mi > 0. Then by (3.1), we have

u1 = m1 − δ

2
+
(
1

4
(m2

1 − 2m1δ + δ2) + δu2

)1/2

= m1 − δ

2
+ m1

2

(

1 + 2

m2
1

(
u2 − m1

2

)
δ + o(δ)

)

= m1 −
(
u2
m1

− 1

)

δ + o(δ).

Similarly, by (3.3), we have

uN = mN −
(
uN−1

mN
− 1

)

δ + o(δ).

This indicates that if mi > 0, then deg ui = 0.
Next, assume mi = 0. By using (3.1) and (3.3), we have

u1 = − δ

2
+
(
1

4
δ2 + δu2

)1/2

, uN = − δ

2
+
(
1

4
δ2 + δuN−1

)1/2

.

This gives

deg u1 = min

{

1,
1 + deg u2

2

}

, (A.1)
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deg uN = min

{

1,
1 + deg uN−1

2

}

. (A.2)

This argument and Proposition 1 indicate that if mi = 0, then 1/2 ≤ deg ui ≤ 1. It
follows that deg ui = 0 is equivalent to mi > 0. From the above argument, we can
assert that 1/2 ≤ deg ui ≤ 1 is equivalent to mi = 0.

Second, we choose i ∈ Z ∩ (1, N ). Assume mi > 0. By (3.2), we have

ui = mi − 2δ

2
+
(
1

4
m2

i − miδ + δ2 + δ(ui−1 + ui+1)

)1/2

= mi − 2δ

2
+ mi

2

(

1 + 2

m2
i

(ui−1 + ui+1 − mi )δ + o(δ)

)

= mi +
(
ui−1 + ui+1

mi
− 2

)

δ + o(δ).

This implies that if mi > 0, then deg ui = 0. Next, assume mi = 0. We use (3.2)
again to have

ui = −δ +
(
δ2 + δ(ui−1 + ui+1)

)1/2
.

This gives

deg ui = min

{

1,
1 + min{deg ui−1, deg ui+1}

2

}

. (A.3)

Similar argument to the first case shows that deg ui = 0 is equivalent to mi > 0.
Furthermore, 1/2 ≤ deg ui ≤ 1 is equivalent to mi = 0.

Therefore, it is sufficient to prove that 0 ≤ deg ui < 1 for all i ∈ Ω . We assume
that there exists i ∈ Ω such that deg ui = 1. From (A.1)–(A.3), we have

⎧
⎪⎨

⎪⎩

deg u2 = 1 if i = 1,

deg ui−1 = deg ui+1 = 1 if 1 < i < N ,

deg uN−1 = 1 if i = N .

Repeated application of (A.1)–(A.3) enables us to obtain mi = 0 for all i ∈ Ω , which
contradicts our assumption. ��
Recall that (6.1)–(6.3) are obtained by Lemma 7. We next show that deg ui takes a
finite number of values. By Lemma 8, we only have to seek the largest coefficients of
an appropriate order of δ to maximize the total population.

Lemma 8 Any solution of (1.3) satisfies

deg ui ∈ {1 − 2−p | p ∈ Z ∩ [0, N − 1]}

for all i ∈ Ω .

123



2 Page 44 of 50 K. Nagahara et al.

Proof We assume that there exists i ∈ Ω such that

1 − 2−p < deg ui < 1 − 2−(p+1), (A.4)

where p ∈ Z ∩ [0,min{i − 1, N − i}]. By using (A.1)–(A.3), we calculate

⎧
⎪⎨

⎪⎩

deg u1 = (1 + deg u2)/2 if i = 1,

deg ui = (1 + min{deg ui−1, deg ui+1})/2 if i ∈ Z ∩ (1, N ),

deg uN = (1 + deg uN−1)/2 if i = N .

(A.5)

Repeating substitution of (A.4) to (A.5) p times, we obtain

⎧
⎪⎨

⎪⎩

0 < deg u p+1 < 1/2 if i = 1,

0 < min{deg ui−p, deg ui+p} < 1/2 if i ∈ Z ∩ (1, N ),

0 < deg uN−p < 1/2 if i = N .

This contradicts Lemma 7. Finally, we assume that

1 − 2−(N−1) < deg ui .

Applying (A.1)–(A.3) repeatedly max{N − i, i − 1} times to have mini∈Ω {deg ui }.
Since max{N − i, i − 1} ≤ N − 1, we have mini∈Ω {deg ui } > 0. This contradicts our
assumption. ��

We next evaluate the difference of deg ui between two adjacent patches.

Lemma 9 Let i ∈ Ω and p ∈ Z∩[0, N −1]. Suppose that a solution of (1.3) satisfies

deg ui = 2p − 1

2p
.

Then we have
2p−1 − 1

2p−1 ≤ min{deg ui−1, deg ui+1}, (A.6)

where the equality holds if and only if mi = 0, and

max{deg ui−1, deg ui+1} ≤ 2p+1 − 1

2p+1 , (A.7)

where the equality holds if and only if min{mi−1,mi+1} = 0.

Proof It is clear that (A.6) follows immediately from (A.5). Suppose that

max{deg ui−1, deg ui+1} ≥ 2p+2 − 1

2p+2 .
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By (A.6), we have

min{deg ui−2, deg ui } = 2p+1 − 1

2p+1 , or min{deg ui , deg ui+2} = 2p+1 − 1

2p+1 .

This contradicts our assumption. This proves (A.7). ��
Repeated application of Lemma 9 enables us to have the following lemma.

Lemma 10 Let i, k ∈ Ω , and take p ∈ Z∩ [1, N − 1] such that k − p, k + p ∈ Ω . If
a positive solution of (1.3) satisfies deg uk = (2p − 1)/2p, then

min{deg umax{1,k−p}, deg umin{k+p,N }} = 0.

Moreover, mi = 0 for all i ∈ (k − p, k + p).

Lemma 10 allows us to examine the effect of the distance between favorable patches
on deg ui . The following proposition plays an important role in Sect. 6.

Lemma 11 Let k, i, q be positive integers such that k, k + i, k + 2q ∈ Ω .

(i) Suppose that m ∈ M satisfies mk > 0, mk+2q > 0, and mk+i = 0 (0 < i < 2q).
Then the following equalities hold:

deg uk+i = deg uk+2q−i = 2i − 1

2i
(0 ≤ i ≤ q).

(ii) Suppose that m ∈ M satisfies mk > 0, mk+2q > 0, and mk+i = 0 (0 < i <

2q + 1). Then the following equalities hold:

deg uk+i = deg uk+2q+1−i = 2i − 1

2i
(0 ≤ i ≤ q).

Proof (i) Assume that i ∈ Z ∩ [1, q] and

deg uk+i = 2i− j − 1

2i− j
< (2i − 1)/2i ,

where j ∈ Z ∩ [1, i]. Then we have

min{deg uk+ j , deg uk+2i− j } = 0

by Lemma 10. Similarly, assuming that

deg uk+i = 2i+ j − 1

2i+ j
> (2i − 1)/2i ,

where j ∈ Z ∩ [1, N − 1 − i], we have mk = 0 by Lemma 10. This contradicts
our assumption mk > 0. We now apply this argument again, with k + i replaced by
k + 2q − i , to obtain the value of deg uk+2q−i .
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The case (ii) may be proved in much the same way as the case (i), so we omit the
proof. ��

A.2 Expansion of the total population in N patches

To express the total population U (m, δ) in terms of δ for each m ∈ M, we show the
following result.

Proposition 7 Let k, i, q be positive integers such that k, k + i, k + 2q ∈ Ω . Choose
m ∈ M arbitrarily. Then the positive solution of (1.3) are expanded as follows:

(i) If m ∈ M satisfies mk > 0, mk+2q > 0 and mk+i = 0, (1 ≤ i ≤ 2q − 1), then

uk =
⎧
⎨

⎩

mk − δ + o(δ), (k = 1),

mk +
(
mk−1

mk
− 2

)

δ + o(δ), (k > 1),
(A.8)

uk+i = m1/2i

k δ(2i−1)/2−i − δ + o(δ), (1 ≤ i ≤ q − 1), (A.9)

uk+q =
√

m1/2q−1

k + m1/2q−1

k+2q δ(2q−1)/2q − δ + o(δ), (A.10)

uk+2q−i = m1/2i

k+2qδ
(2i−1)/2i − δ + o(δ), (1 ≤ i ≤ q − 1), (A.11)

uk+2q =
⎧
⎨

⎩

mk+2q − δ + o(δ), (k + 2q = N ),

mk+2q +
(
mk+2q+1

mk+2q
− 2

)

δ + o(δ), (k + 2q < N ).
(A.12)

(ii) If m ∈ M satisfies mk > 0, mk+2q+1 > 0 and mk+i = 0, (1 ≤ i ≤ 2q), then

uk =
⎧
⎨

⎩

mk − δ + o(δ), (k = 1),

mk +
(
mk−1

mk
− 2

)

δ + o(δ), (k > 1),

uk+i = m1/2i

k δ(2i−1)/2i − δ + o(δ), (1 ≤ i ≤ q − 1),

uk+q = m1/2q

k δ(2q−1)/2q +
(
1

2

(
mk+2q+1

mk

)1/2q

− 1

)

δ + o(δ), (A.13)

uk+q+1 = m1/2q

k+2q+1δ
(2q−1)/2q +

(
1

2

(
mk

mk+2q+1

)1/2q

− 1

)

δ + o(δ),

uk+2q+1−i = m1/2i

k+2q+1δ
(2i−1)/2i − δ + o(δ), (1 ≤ i ≤ q − 1),

uk+2q+1 =
⎧
⎨

⎩

mk+2q+1 − δ + o(δ), (k + 2q + 1 = N ),

mk+2q+1 +
(
mk+2q+2

mk+2q+1
− 2

)

δ + o(δ), (k + 2q + 1 < N ).
(A.14)
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(iii) If m ∈ M satisfies mk > 0, (k > 1), mi = 0, (1 ≤ i ≤ k − 1), then

u1 = m1/2k−1

k δ(2k−1−1)/2k−1 − δ

2
+ o(δ),

uk−i = m1/2i

k δ(2i−1)/2i − δ + o(δ),

uk =
⎧
⎨

⎩

mk − δ + o(δ), (k = N ),

mk +
(
mk+1

mk
− 2

)

δ + o(δ), (k < N ),
(A.15)

(iv) If m ∈ M satisfies mk > 0, (k < N ), mi = 0, (k + 1 ≤ i ≤ N ), then

uk =
⎧
⎨

⎩

mk − δ + o(δ), (k = 1),

mk +
(
mk−1

mk
− 2

)

δ + o(δ), (k > 1),

uk+i = m1/2i

k δ(2i−1)/2i − δ + o(δ),

uN = m1/2N−k

k δ(2N−k−1)/2N−k − δ

2
+ o(δ).

Proof (i) It is easy to verify (A.8) by noting deg uk+1 = 1/2. So we omit the proof.
We now consider (A.9) by induction on i . By Lemma 11, there exist coefficients Ck+i

for all i ∈ {0, 1, . . . , q} such that

uk+i = Ck+iδ
(2i−1)/2i + o(δ(2i−1)/2i ), Ck = mk .

By (6.1) or (6.2), we have the base case as

uk+1 =
(
mkδ + Ck+2δ

7/4 + o(δ7/4)
)1/2 − δ + o(δ)

= (mkδ)
1/2
(

1 + Ck+2

2mk
δ3/4 + o(δ3/4)

)

− δ + o(δ)

= m1/2
k δ1/2 − δ + o(δ).

Therefore, we have the relation between Ck and Ck+1 given by

Ck+1 = C1/2
k .

Suppose that

uk+i−1 = Ck+i−1δ
(2i−1−1)/2i−1 − δ + o(δ) (3 ≤ i ≤ q − 1).
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By (6.2), we have the induction step as

uk+i =
(
Ck+i−1δ

(2i−1)/2i−1 + Ck+i+1δ
(2i+2−1)/2i+1 + o(δ(2i+2−1)/2i+1

)
)1/2 − δ + o(δ)

= C1/2
k+i−1δ

(2i−1)/2i
(

1 + Ck+i+1

2Ck+i−1
δ1/2

i−1−1/2i+1 + o(δ1/2
i−1−1/2i+1

)

)

− δ + o(δ)

= C1/2
k+i−1δ

(2i−1)/2i − δ + o(δ).

Therefore, we have recurrence relation Ck+i = C1/2
k+i−1 which gives (A.9). From this,

we replace “k” by “k + 2q” to have (A.11) and (A.12).
To prove (A.10), we use (A.9) and (A.11) to have

uk+q−1 = m1/2q−1

k δ(2q−1−1)/2q−1 − δ + o(δ),

uk+q+1 = m1/2q−1

k+2q δ(2q−1−1)/2q−1 − δ + o(δ).

By (6.2), we obtain

uk+q =
(
m1/2q−1

k δ(2q−1)/2q−1 + m1/2q−1

k+2q δ(2q−1)/2q−1 − 2δ2 + o(δ2)
)1/2 − δ + o(δ)

=
(
m1/2q−1

k + m1/2q−1

k+2q

)1/2
δ(2q−1)/2q

⎛

⎝1 − δ1/2
q−1

m1/2q−1

k + m1/2q−1

k+2q

+ o(δ1/2
q−1

)

⎞

⎠

− δ + o(δ)

=
(
m1/2q−1

k + m1/2q−1

k+2q

)1/2
δ(2q−1)/2q − δ + o(δ).

(ii) We give the proof only for (A.13) and (A.14); the other cases can be proved by the
same argument as above. We use Lemma 11 to have

uk+q = Ck+qδ
(2q−1)/2q + o(δ(2q−1)/2q ),

uk+q+1 = Ck+q+1δ
2q−1/2q + o(δ(2q−1)/2q ).

We now compute Ck+q and Ck+q+1 by using (6.2) as

uk+q =
(
m1/2q−1

k δ(2q−1)/2q−1 + Ck+q+1δ
(2q+1−1)/2q + o(δ(2q+1−1)/2q )

)1/2 − δ + (δ)

= m1/2q

k δ(2q−1)/2q
(

1 + Ck+q+1

2m1/2q−1

k

δ1/2
q + o(δ1/2

q
)

)

− δ + (δ)

= m1/2q

k δ(2q−1)/2q +
(
Ck+q+1

2m1/2q

k

− 1

)

δ + (δ).
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Similarly, we have

uk+q+1 = m1/2q

k+2q+1δ
(2q−1)/2q +

(
Ck+q

2m1/2q

k+2q+1

− 1

)

δ + (δ).

By the definition of Ck+q and Ck+q+1, we have

Ck+q = m1/2q

k , Ck+q+1 = m1/2q

k+2q+1.

Therefore, we obtain (A.13) and (A.14).
(iii) We use (6.1) to have

u1 =
(
δ
(
m1/2k−2

k δ(2k−2−1)/2k−2 − δ + o(δ)
))1/2 − δ

2
+ o(δ)

= m1/2k−1

k δ(2k−1−1)/2k−1

(

1 − 1

2m1/2k−2

k

δ1/2
k−2 + o(δ1/2

k−2
)

)

− δ

2
+ o(δ)

= m1/2k−1

k δ(2k−1−1)/2k−1 − δ

2
+ o(δ).

This proves (A.15) The other cases can be proved by the same argument.
(iv) This can be proved in much the same way as (iii). So we omit the proof. ��
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