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ASYMPTOTICS OF THE PRINCIPAL EIGENVALUE
FOR A LINEAR TIME-PERIODIC PARABOLIC OPERATOR II:
SMALL DIFFUSION

SHUANG LIU, YUAN LOU, RUI PENG, AND MAOLIN ZHOU

ABSTRACT. We investigate the effect of small diffusion on the principal eigen-
values of linear time-periodic parabolic operators with zero Neumann boundary
conditions in one dimensional space. The asymptotic behaviors of the prin-
cipal eigenvalues, as the diffusion coefficients tend to zero, are established for
non-degenerate and degenerate spatial-temporally varying environments. A
new finding is the dependence of these asymptotic behaviors on the periodic
solutions of a specific ordinary differential equation induced by the drift. The
proofs are based upon delicate constructions of super/sub-solutions and the
applications of comparison principles.

1. INTRODUCTION

In this paper, we consider the following linear time-periodic parabolic eigenvalue
problem in one dimensional space:

Orp — DOpyp — 0:mOpp + Vo = A(D)p in (0,1) x (0,7,
(1.1) 0 p(t,0) = 0pp(1,t) =0 on [0, T,
o(z,0) = o(x,T) on (0,1),

where D > 0 represents the diffusion rate, and the functions m € C%1([0, 1] x [0, T1)
and V € C([0,1] x [0,T7]) are assumed to be periodic in ¢ with a common period T

By the Krein-Rutman Theorem, (1.1) admits a simple and real eigenvalue (called
principal eigenvalue), denoted by A(D), which corresponds to a positive eigen-
function (called principal eigenfunction) and satisfies ReA > A(D) for any other
eigenvalue A of (1.1); see Proposition 7.2 of [12]. The principal eigenvalue A(D)
plays a fundamental role in the study of reaction-diffusion equations and systems
in spatio-temporal media, e.g. in the stability analysis for equilibria [3,4,12,14].
Of particular interest is to understand the dependence of A\(D) on the parameters
[15,16,19,20]. The present paper continues our previous studies in [17,18] on the
principal eigenvalues for time-periodic parabolic operators, where the dependence
of A(D) on frequency and advection rate were investigated. Our main goal here is
to establish the asymptotic behavior of A(D) as the diffusion rate D tends to zero.
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For notational convenience, given any T-periodic function p(z,t), we define

T
po)i= 7 [ plos)ds and p(e0) = max oo, )0},
0
and redefine 0,,m(0) and Jy,mM (1) via

(1.2)
g (0) = {

—oo it 3ym(0) <0,
oo if 9,m(0T) >0,

oo if ym(17) <0,

d Bpuin(1) =
a (1) {—oo it 9, (17) > 0.

For the case when V and d,m depend upon the space variable alone, i.e. V(x,t) =
V(z) and 9;m(z,t) = m/(x), problem (1.1) reduces to the following elliptic eigen-
value problem:

(1.3) {—DW” —m'(z)¢’ + V(z)e = A(D)p in (0,1),

#(0) = ¢'(1) = 0.

This sort of advection-diffusion operator in (1.3) with small diffusion can be re-
garded as a singular perturbation of the corresponding first order operator [24],
and was studied in [11] by the large deviation approach. Therein, the limit of the
principal eigenvalue A(D) as D — 0 plays a pivotal role in studying the large time
behavior of the trajectories of stochastic systems; see also [7,10]. Recently the as-
ymptotic behavior of A\(D) for problem (1.3) has been considered in [6] for general
bounded domains, and their result in particular implies

Theorem 1.1 ([6]). Assume V(z,t) = V(z) and d,m(z,t) = m/(x). Suppose that
m’(0) £ 0, m’(1) # 0, and all critical points of m are non-degenerate. Then

lim A(D) = pesnin {V(z) + [m"]+ (2)},

where ¥ := {x € (0,1) : m/(z) = 0} and m”(0),m" (1) are defined by (1.2).

We refer to [21] for recent progress on problem (1.3) under general boundary
conditions.

Theorem 1.1 indicates that the limit of A(D) relies upon the set of critical points
of function m in the elliptic scenario. Turning to the time-periodic parabolic case
where m depends on both spatial and temporal variables, it seems reasonable to
anticipate that the limit of A(D) will be associated to the curves z(t) satisfying
0ym(x(t),t) = 0. This is indeed the case for the limit of the principal eigenvalue
with large advection, and we refer to Theorem 1.1 in [18] for further details. How-
ever, it turns out that this is generally not true while considering the limit of A(D)
as D tends to zero. Instead, the asymptotic behavior of A(D) depends heavily on
the periodic solutions of the following ordinary differential equation:

(1.4) P(t) = —8,m (P(t),t),
) Pit)y=Pt+T).
More specifically, our main result can be stated as follows.
Theorem 1.2. Assume that 0,m(0,t) # 0 and Oym(1,t) # 0 for allt € [0,T]. Let
022(0) and Oy, (1) be defined by (1.2).

(i) If (1.4) has at least one but finitely many T-periodic solutions, denoted by
{P,()}Y,, satisfying 0 < Pi(t) < ... < Py(t) < 1, and Opom (P;(t),t) # 0 for
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1<i< N andte€|[0,T], then

. . e
Jm AD) = min {f / [V (P(5),8) + [l (Pi(s),5) ] ds} ,
where Py(t) =0 and Pyy1(t) = 1;

(i) If (1.4) has no periodic solutions, then

Jim A(D) = min {V(0) + (D] (0), V(1) + D]+ (1) }.

If V and m are independent of time, all solutions of (1.4) are constants which
correspond to the critical points of function m, and part (i) of Theorem 1.2 is
reduced to Theorem 1.1. When m(z,t) is monotone in z, part (ii) of Theorem 1.2
was first established in [22].

One potential application of Theorem 1.2 is the study of large-time behaviours
of solutions to the Cauchy problem for singularly perturbed parabolic equations in
spatio-temporal media [1,8,12], in which the growth or decay rate of the solutions
can be described in terms of A(D). In a very recent work [9], the asymptotics of
A(D) for small D was considered in a case of underlying advection d,m being a
constant, when analyzing the effect of small mutations on phenotypically-structured
populations in a shifting and fluctuating environment.

The restriction Ozpm (P(t),t) # 0 in Theorem 1.2, in fact guarantees the non-
degeneracy of advection d,m along periodic solution P of (1.4). See [5,18] for the
definitions of degeneracy and non-degeneracy. To complement Theorem 1.2, we
consider a type of degenerate advection in the following result:

Theorem 1.3. Suppose that for each 1 < i < N, d,m(ki,t) =0 for all t € [0,T],
and 0 < k1 < -+ < ky < 1. Furthermore, assume that {i : 0 <i < N} = AUB,
where

A={i: 0<i<N, Oym(z,t) #0, (2,t) € (Ki, kip1) x [0,T]};
B={i: 0<i<N, d,m(z,t) =0, (z,t) € [k, kip1) x [0, T},

with kg =0 and ky4+1 = 1. Then we have

(1.5)

lim \(D) = min{ min {V(m) + [8mm]+(m)} , miél{ min V(x)}} :
S

D—0 0<i<N+1 TE[Ki,Kit1]
where Oy (0) and 0.7 (1) are defined by (1.2).

The main contribution of Theorem 1.3 is to allow B # (, i.e. the spatial-
temporal degeneracy of function d,m. When B = (), which means d,m(z,t) # 0
for all z # k;,0 < i < N + 1, all solutions of (1.4) are nothing but constant
solutions P = k;,1 < i < N, and consequently, Theorem 1.3 becomes a special case
of Theorem 1.2 when B = ().

The assumption ¢ € A implies there are no periodic solutions of (1.4) in [k, Ki+1]
x [0, T] except for constant solutions P = k,; and P = k;11. Without this assump-
tion, the situation becomes even more complicated. To illustrate the complexity,
we consider the special case m(x,t) = ab(t)z as in [18], where a > 0 denotes the
advection rate, and the T-periodic function b is Lipschitz continuous. In this case,
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problem (1.1) becomes
Orp — DOy — ab(t)0pp + Vo = A(D)p in (0,1) x [0,T7,
(1.6) 0:0(0,t) = 9,p(1,t) =0 on [0, 77,
p(x,0) = o(z,T) on (0, 1).
For different o and b, we have the following result:

Theorem 1.4. Let A(D) denote the principal eigenvalue of (1.6).
(i) If b # 0, then for all a > 0,

lim A(D) = 4 L) for b>0,
D=0 V(0) for b<O.
(i) Ifb =0, set P(t) = — [ b(s)ds, P = maxqr P, and P = ming 7y P. Then
i 1
lim \(D) = TIH%E[—a§71—aP { Iy V(aP(s)+y,s )ds}, R T
b0 7 Jo V(Pa(s), s)ds, a> 5l

where P, € C([0,T);[0,1]) is the unique T-periodic solution of P(t) = —aF(P(t),t)
in [0,1], and F is given by

b(t) O<z<l1,tel0,T],
(1.7) F(z,t) = { min{b(t),0}, = =0,t€[0,T],

max{b(t),0}, xz=1,¢t€][0,T].
Remark 1.5. When b = 0 and a = ﬁ part (ii) of Theorem 1.4 implies that

A fo ( ___ ) ds as D — 0. Direct calculation yields that % is

in fact a periodic solution of P( ) = —ﬁ—lpF(p(t) t), so that the uniqueness part
in Lemma 4.1 implies P, (t) — Pl(f) poasa— ﬁ 5- This means that the limit of
A(D) as D — 0 is continuous at o = ﬁ. a

For m(xz,t) = ab(t)x, Theorem 1.4 gives a complete description of the behaviors
of A(D) as D — 0, and it provides a type of complicated spatial-temporal degen-
eracy not covered by Theorem 1.3. To further illustrate Theorem 1.4, consider the

case b(t) = —Z sin (27t), in which
P(t)=1cos(Z) -1, P=0, P=-1

More precisely, (1) when 0 < o < 1, we could find some y,, € [e, 1] such that A\(D) —
7 fo ) + Yo, s)ds as D — 0, and the trajectory {aP(t) + yo : ¢t € [0,T]} in
x-t plane is 1llustrated by the red solid curve in Fig. 1(a), where the two red dotted
curves represent {aP (¢ )+a t 6 [0, T]} and {aP( )+1:t€[0,T]}, respectively; (ii)
When o = 1, we have A\(D) — # fo s)+1,s)ds as D — 0, and the trajectory
{P( ) it e [0 T]} is shown in Flg 1(b); (iii) When a > 1, it follows that
T fo P,(s),s)ds, and the corresponding trajectory {P,(t) : t € [0,T]}
is glven in Fig. 1( )— (d)
As the proofs of Theorems 1.2, 1.3, and 1.4 are fairly technical, in the following
we briefly outline the main strategies in proving Theorems 1.2 and 1.3:
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(@) O<a<l (8) a= (¢) =2 (d) a>2

(i)

(iii)

FIGURE 1. Each rectangle corresponds to the region [0,1] x [0, 7]
in z-t plane. The limit of A(D) as D — 0 is determined by the
average of V over the red solid curves, illustrated for various ranges

of a and m(xz,t) = —2%% sin (%)

We note that A\(D) for (1.3) in the elliptic situation can be characterized by
variational formulation [5,6,21,23]. In contrast, the time-periodic parabolic
problem (1.1) has no variational formulations. Our general strategy is to
construct super/sub-solutions and apply generalized comparison principle
developed in [18, Theorem A.1]. This technique was first introduced by
Berestycki and Lions [2] to the elliptic scenario, whereas its adaptation to
our context is more subtle because of the presence of temporal variable; see
[22] for further discussions.

We first establish Theorem 1.3 which assumes that 0, m is strictly positive,
negative, or identically zero in each sub-interval (k;, £;41). The main dif-
ficulty is to establish the lower bound of the principal eigenvalue in (1.5).
The construction of super-solutions near the curves {(x;,t),t € [0,T]} is
rather subtle, due to the fact that the spatio-temporal derivatives of the
principal eigenfunction of (1.1) restricted to the curves may be unbounded
as D tends to zero. Our strategy is to construct the super-solution almost
coinciding with the principal eigenfunction of (1.1) near these curves, and
then use an iterated argument to extend the super-solution to the whole
domain.

A key ingredient in the proof of Theorem 1.2 is to recognize the critical
role of the solutions of (1.4). Our idea is to reduce the proof of Theorem
1.2 to that of Theorem 1.3 with B = (). As Theorem 1.3 assumes that 9,m
is either strictly positive or negative in each sub-interval (k;, k;t1), there
are two difficulty in doing so: First, the solutions P;(t) of (1.4) are not
constant ones as specified in Theorem 1.3. This difficulty can be overcome
by introducing a proper transformation so that P;(t) become constant after
the transformation. The second difficulty is that a priori we do not know
the sign of the term 9, m in each (k;, K;41). Our idea is to introduce another
transformation, which is associated with the trajectories of (1.4). We prove
that after the second transformation, d,m is indeed either strictly positive
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or negative in each (k;, k;41), so that the proof of Theorem 1.3 is directly
applicable to complete the proof of Theorem 1.2.

This paper is organized as follows: In Section 2 we present some results associated
with the case when all of periodic solutions of (1.4) are constants and establish
Theorem 1.3. These results are used in Section 3 to give the proof of Theorem
1.2, by combining with an idea of “straightening periodic solutions”. Section 4
is devoted to the proof of Theorem 1.4. A generalized comparison result will be
presented in the Appendix.

2. PROOF OF THEOREM 1.3

This section is devoted to the proof of Theorem 1.3. Hereafter, we use Lp to
denote the time-periodic parabolic operator

Lp: =0 —D0yp — 0ymd, + V.
For any z € [0, 1], we define a T-periodic function f, : [0,7] — (0, 00) by

(2.1) fa(t) = exp {_/o V(z,s)ds + V(x)t|,

which solves, for fixed = € [0,1], that (log f.) = V(z) — V(z, t).
Proposition 2.1. For any constant k € (0,1), suppose that

Oym(z,t) >0, (z,t)€]0,k)x[0,T],
Ozm(z,t) <0, (x,t) € (k,1] x [0,T].

Then we have

Lim A(D) = V(k).

Proof. We first prove the upper bound
(2.2) limsup A(D) < V (k).
D—0

Fix any € > 0. For sufficiently small D, we construct a strict non-negative
sub-solution ¢ in the sense of Definition A.1 (see Appendix A) such that

Lop< [V +ee i ((0,)\X) x (0,7),
(2.3) 3:0(0,t) = d,p(1,t) =0 on [0, 7],
o(z,0) = ¢(z,T) on (0,1),

for some point set X determined later.
To this end, by continuity of V', we choose small § € (0, 1) such that

(2.4) [V (z,t) —V(k,t)] <€/2 on [k—0,k+0] x][0,T].
Then we define ¢ by

ez, t) = fult) - z(2),
where f,;(t) is defined in (2.1) with = &, and z € C([0, 1]) is given by

(2) = {—(x—n) +9* on[k—4d,k+],

(25) Z O on [0,/4}—5) U (f{"_éa 1]
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Observe that 9, ((n +6)", ) > Oy ((K +46), ) We identify X in (2.3) as
X ={rk+£d}.

To verify (2.3), note from definition (2.1) that f, = (V(k) — V(k,t))f,, direct
calculations on [k — 4, k + 6] x [0, 7] yield that for small D,

Lpp = f.(t)z — DOprp — 0xmOpp + V(z,t)p
= [V9) =V (5,5) + V(@.1)| ¢ — 0mOup — DOsaso

[V (k) + ¢/2] ¢ = Dumdup — Douagp

<[V +¢| e,

where —0,m0,¢ — DOyrp < S in the last inequality is due to the fact that
—0,m0,p < 0 < €p in the nelghborhoods of {k £d} x [0,T]. Hence (2.3) holds,
and (2.2) follows from (2.3) and Proposition A.2 by letting € — 0.

Next, we show that

IA

(2.6) liminf A(D) > V (k).
D—0
Define p € C*1([0,1] x [0,T]) by

B(,t) 1= fult) - M=)

with M; > 0 to be specified later. For any given ¢ > 0, we shall choose M; large
so that for sufficiently small D, & satisfies

Lopz [V =7 in(0,1)x (0,7),
(2.7) 0,9(0,t) <0< 8,5(1,t) on [0,T]
?(x,0) = p(2,T) on (0,1)
To establish (2.7), we first recall that ¢ is chosen as in (2.4). For z € (0,x — ] U
[k + d,1), there exists some ¢y > 0 such that |0, m| > €, and thus

)

—0,m0;(logp) = 2M10,m - (x — k) > 2M;dep,
from which direct calculation leads to
(2.8) Lpp > {V(n) +V(2,8) = V (5, t) — D [2M; + AM2 (2 — 1)?] + 2M1560} "

We choose M, large such that 2M70ey > 2||V|| . Letting D be small enough in
(2.8), we deduce Lpp > V (k)7 as desired.
For z € [k — 0,k + ¢], by —0,md, P > 0 and the definition of § we have

Lnp > {f/(n) 4V (2,) = V (5, t) — D [2M; + AM2 (2 — 5)?] } 5> [V(H) - e} "

for sufficiently small D.
Therefore, (2.7) holds and (2.6) follows from Proposition A.2 with X =0. O
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To proceed further, we will need the following result:

Lemma 2.2. Let p(t) > 0(# 0) be any T-periodic function. For each R > 0,
denote by ugr the principal eigenvalue of the following problem.:

Orp — Opap — xp(t)0zp = pre in (—R,R) x (0,T),

(2.9) o(—=R,t) = ¢(R,t) =0 on [0,T7,
QO(I,O) = @(IvT) on [_Rv R}
Then we have
i in =

Proof. For each 6 > 0, in view of p(¢t) > 0(% 0) in [0,T], we choose f35(t) as the
unique positive solution of the problem

(2.10) {@ = B(t) [p(t) +6 = ()] in [0,T],
B(0) = B(T).
Denote by (as(t), ps) an eigenpair, with as(t) > 0, of the eigenvalue problem

{d@)+ﬂﬂﬂa@)—ua@)inULTL

(2.11) a(0) = o(T).

Dividing both sides of (2.10) by Ss, and integrating the resulting equation over
[0,T], by periodicity of 85 we have 85 = p + 4. Similarly, (2.11) implies us = Bs.

Therefore,
(2.12) ps = Bs = p+ 9.

For any J > 0, we define T-periodic function 15 € C*1(R x [0,T]) by
(2.13) sl ) == as(tye H,

which, by definitions (2.10) and (2.11), solves
(2.14)  Lstps := Opips — Ozaths — x(p(t) + 0)0xt0s = pstps  in R x[0,7].

We first show liminfr_oo up > p. For 6 = 0, 1y defined by (2.13) is a super-
solution to (2.9) in the sense of Definition A.1 for any R > 0. By Proposition A.2,
we have ur > po = p for any R > 0, and thus liminfr_,.c pur > p.

Next, we show limsupp_, ., ptr < p. Fix any § > 0. Choose Rs > 0 large such
that d2265(t) > p+ 6 for all |z| > Rs and t € [0,T]. Then let € = €(§) > 0 be small
so that us(Rs,t) > e(p+26) for all t € [0,T]. Set 1bs = max{is —e,0}. Note that
we can choose ¢ smaller if necessary such that ts(x,t) > 0 holds for all |z| < Rs
and ¢ € [0, 7.

On {(z,t) : Ys(x,t) > 0, |z| > Rs}, by (2.12) and (2.14) we calculate that

at"/;é - 3@9@1;5 - xp(t)ax'(/’;é - (ﬁ + 26)";6
= (p+ 8)s — 82> B5(t)ebs — (p+ 26) (b5 — ©)

<(p+ 8)ps — 622 Bs ()5
<0

(2.15)

)

where the last inequality follows from the choice of Rs.
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On {(z,t) : ¥s(z,t) > 0, |z| < Rs}, we have

Obs — Dpaths — xp(t)Dutls — (p + 20)0s
=(p+ 8)bs — 62 Bs(t)s — (p+ 20) (s — €)

(2.16) <(p+0)hs — (p+20) (Y5 —€)
<e(p+20) — dps(Rs,t)
<0,

where the last inequality is due to the choice of e.

Choose some large Rs > R such that ¢s(Rs,t) = 0 for all t € [0,T]. By (2.15)
and (2.16), the constructed 5 is a sub-solution to (2.9) in the sense of Definition
A.l for any R > Rj. A direct application of Proposition A.2 yields pr < p+ 26
for all R > Rj, and thus lim SUPR_ oo UR < P+ 25. Letting § — 0 completes the
proof. O

Proposition 2.3. For any € (0,1), suppose that

d:m(x,t) <0, (z,t) € (0,k) x [0,T7,
Oym(z,t) >0, (z,t) € (k,1) x [0,T],
Opzm(k,t) > (£)0, te]0,T],
m(z,0) =m(z,T), =€]l0,1].

Then we have

lim A(D) :min{v(m, V (k) + Opain(k), f/(1)}.

Proof. For any given € > 0, we choose some small § > 0 such that
|V(x,t)—V((),t)| < 6/2, ({E,t) € [035] X [OvT]a
(2.17) |[V(z,t) = V(k,t)| <€/2, (z,t) €[k—0,k+ x][0,T],
|[V(z,t) = V(1,t)] <e€/2, (x,t)€[l—46,1]x €][0,T].
Part I. In this part, we establish the upper bound
limsup A(D) < Apin := min {V(O), V (k) 4 Operin(), V(l)} .
D—0
By a similar argument as in Proposition 2.1, it is straightforward to show that

lim sup A(D) < min {V(O), V(l)} .
D—0
It remains to prove
(2.18) limsup A(D) < V(&) + Opetn(k).
D—0
Fix any € > 0. For sufficiently small D, we construct a sub-solution ¢ such that

Lpp < |V (k) + Oparn(k) + 26} ¢ in ((0,1)\ X) x 0,7,
(2.19) 02p(0,t) = 0 p(1,t) =0 on [0,T7,

o(x,0) = p(x,T) on (0,1),

where the set X will be determined later.
To this end, we define

m(xz,t) := [Ozam(k,t) + € - (ac—zm)z7
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and further choose ¢ smaller if necessary such that
(2.20) |0xm| > |0,m| in [k—6 K+ 6] x[0,T].
Let Ap denote the principal eigenvalue of the problem
O4) — DOyyth — 0pmOph = Apyp  in (k — 0,k +6) x [0,T],
(2.21) Y(k—=6,t)=¢v(k+4,t)=0 on [0,77,
Y(x,0) = ¢Y(x,T) on [k — 4§,k + 4],
and the corresponding eigenfunction ¢ pis chosen to be positive in (k — J, kK + §) x
[0,7]. Under the scaling y = %, we set ¢ (y,t) == QD(\/Ey + ,t), which is the

principal eigenfunction (associated to Ap) of the problem

Oup = Oy = YlDwem(rt) + Oy = App in (=5, F5) x [0,7],
p(=5:t) = (F5:1) = 0 on [0, 7],
o(z,0) = p(x,T) on [ \/5_57 %}

By Lemma 2.2, we deduce that

(2.22) Jlim Ap = Opatii(K) + €.

We extend ¢, the principal eigenfunction of (2.21), to [0,1] x [0, T] by setting
Y,=0 on ([0,k—6]U[k+d,1])x[0,T].
Applying the Hopf boundary lemma to (2.21), we have
9t (k=08)",)>0= &Y, (k=98)","),

Dty (K+0)F,-) =0> 0, (k+6)7,),

so that we choose X by X = {k £ §}.
Define

e(@,t) = fult) - (2, t) in [0,1] x[0,T],
where f,(t) is given by (2.1) with # = x. We verify that ¢ satisfies (2.19). By
properties of ¢ and (2.20) we can derive that

—Omdyp, < —0umdytp, i [0,1] x [0,7].
Hence, direct calculations on ((0,1) \ X) x [0, 7] give
Lop ==V (5,0) + V(&) + V(@ )| ¢ + [0, = DOsato, — Damutp | fiult)
< v (k) + 6/2} o+ [at% — DOyt — 0emat) | fu(t)

= f/(n) +Ap +6/2} %

< V (K) + Opatin(k) + 26} ®,

provided that D is small enough, where the last inequality is a consequence of
(2.22). Therefore, ¢ defines a sub-solution satisfying (2.19), which together with
Proposition A.2 implies (2.18).
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Part II. We shall establish the lower bound
(2.23) liminf A(D) 2 Ain = min {V(O), V (k) + Duarn(r), f/(1)} .
—

For each small € > 0, the main ingredient in the proof is to construct a positive
continuous super-solution @ in the sense of Definition A.1, i.e. for sufficiently small

D7

ED@ > (1 - E)O‘min - 6)@ in ((07 1) \X) X [OvT]v
(2.24) 8,5(0,t) = 0, 3(1,1) =0 on [0,T],

E(x,O) :a(va) on (Oal)v

where the point set X will be determined in Step 3. Then (2.23) follows from
Proposition A.2 and arbitrariness of e.

Step 1. We prepare some notations. First, we choose suitable T-periodic function
p(t) ># 0 and small § > 0 such that

(2.25) {max{%m('ﬁﬂ =60} < p(t) < 0pam(s,t), te€[0,T],

p(t)|x - K" < |8mm(x,t)|, (l',t) € [5_57'%"_5] X [OaT]

Due to p > 0, define r(t) as the unique positive T-periodic solution of

(2.26) ;(_t)g - r(t) {B(t) - (ﬁ + g) r(t)] ,

where the small parameter ¢ € (0, €/2] can be specified as follows: Note that there
exist 0 < r < 7 independent of ¢ € (0, ¢/2] such that

O<r<r(t)<7 foralte[0,T]and € [0,¢/2].
We fix £ € (0,€/2] small such that

2
_427[—5 Z 1- €,
(2.27) o7 t2

V= 25_7[ < {,/ﬁ-f—%—l}ﬁ.
Without loss of generality, we assume there is some n, € N (n, > 3) such that

(2.28) 1/ =2""2%

and further choose ¢ smaller if necessary such that
d<kh—(me+1D)d<k+m.+1)<1-06.
For fixed r(¢t) and ¢, we define (1 (t), A¢) as the eigenpair of
{al(t) + 5201 (B)r(t) = Adear (t)  in [0,T],
a1(0) = oy (7).
Similar to (2.12), we deduce from (2.26) and (2.29) that

(2.29)

2 P
AZ: r= 4 €
2=t G ts

which, together with (2.27), leads to
(2.30) A > (1-e)p.
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Step 2. We construct a positive super-solution ¢ € C(R x [0,T]) for the auxiliary
problem

(2.31) {8“/} — Oy —yp(t)0yh = (1 —€)pyp  in R x [0,T7,

b(w,0) = ¥(x,T) on R.
Using the notations introduced in Step 1, we define
(), 2

al(t)e z—¢¥ on [_y()uy()] X [07T]7
— (r(M)+)yf 2o
(2.32) Py, t) == S m(t)e” eyt on (yo,00) x [0,T],
(r(H+v)vh -
771(15)672;21(7?’)2 " on (=00, —yo) % [0, T,

M

vy,
where 1 is a constant to be determined later, and 71 (f) = o1 (t)e=¢, so that

1 € C(R x [0,T)) and (logn;)" = (log )’ independent of yq.
By the definition of v in (2.27), we may assert that for any yo > 0,

(2.33) ay<loga><yo,~>—[ 2“')}@/ S = () + )] 9o = B, (08 B) i,

2—14

and similarly, 9,9 ((—yo)~,) > 9,¥((—=yo)*,-). Therefore, in view of (2.30), to
verify that v defined by (2.32) is a super-solution of (2.31), it remains to choose
large 1o such that

(2.34) O — Dyy ¥ — yp()dy = Ay in (R {Zyo}) x [0, 77,
which can be verified by the following computations:
(i) For y € (=0, %0), by (2.26) and (2.32), direct calculations yield

815@ - ayya - yﬁ(t)aya

; r 7“2 T —
— [ioseny - ; (_t)g 2, ; _(t; - (;1 _%)2 . ;tzgét) yz} ¥

- . _ P r2 v
> ok + 2905+ [- 22 - 20 0] 5
> _(log ay) + ;T_(t;] ¢

=\t
(ii) For y € (yo,00), again by (2.26) and (2.32), we calculate that
875% - ayyw - yﬁ(t)ayw - )\ZE

=[(logm)" — A] ¥ + y5y*~* {_M

T+ 1= 000 + 2|

+ oy [=(r () + ) ygy =+ (r() +v)p(t)] ¥
> [(log o)’ = Al ¥ + oy ™" { 5 (_)g (r(t) +v)? r(t)B(t)} ¥
(o) = MT+ 0 (o g + 5 ) PO - (0 + 2]
In light of (ﬁ + %) r2(t) > (r(t ) v)? (due to (2.27)), we may pick yo
large enough to ensure (2.34) on (yo,o0) x [0, 7).
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(iii) For y € (—o0, —yo), we can verify (2.34) by the same argument as in (ii).

Consequently, (2.34) holds true, and v constructed by (2.32) is a super-solution
of (2.31) in the sense of Definition A.1.

In what follows, we divide the construction of super-solution » which satisfies
(2.24) into the following several steps via separating different regions; see Fig. 2 for
the profile of @ to be constructed.

SO "‘D",.
)

Ky(xx) . &K’_)
&(x e T a(xpe
Sy (2cx) \. S0#()
~/7 AV
Jo()8y(2xx) £()45(x)
VF (20 £0)2.(x)
MWD 0 N w5

0 K« xnd --- kK-36x-28 K'-5T K Tx‘+5 k+28 k436 --- xtné 1 x
x-Dy, x+JDy,

FIGURE 2. The profile of g for fixed ¢ € [0, T]

Step 3. We construct super-solution @ on [k — J, k + ] x [0, 7] satisfying (2.24).
Let ¢ be given by (2.32) with fixed yo chosen in Step 2. We assume v/ Dyy < 0,
and define X by

(2.35) X = @{niné}u{é,l—é}u{ni\/ﬁyo},

n=1
where n, is chosen in (2.28). Set

(2.36) B(a,t) = fult) - (L\@”” t> on [k —d,k+6] x[0,T],

where f,;(t) is defined by (2.1) with = k. Note that ¥ is symmetric in x with
respect to x = K, and is decreasing in z for > x and ¢ € [0,7]. Thus by (2.25)

and (2.36) we arrive at
—(z—kK
0 ¢
7 (55

|z — K|

VD

= —f,{(t)g(f) . yaya (y7 t) )
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4908 SHUANG LIU ET AL,
where y = £2£. This implies that on ([k — 6,k + 0]\ {x = VDyo}) x [0,T),
P2 [V (. 0) + V(1) + V(w,0)] 5+ [0 — 0,8 — p(t)y0, ) fu(t

[ K)—€/2+(1—€)p|lp
[V (5) + (1 = )Ouiin() - (1 - )] 7

2(1 = €)(Amin — )P,
where the first inequality is due to (2.37), the second inequality follows from (2.17)
and the fact that 1 is a super-solution of (2.31) (see Step 2), and the third inequality

follows from (2.25).
On the other hand, by (2.33), we have

0:(1ogB)((k + VDyo) ™, ) < 9, (log@)((k+ VDyo)~,-)  (as k+VDyo € X).
Therefore, @ defined by (2.36) satisfies (2.24) on [k — d, k + d] x [0, T.

Y%

—

Y

Step 4. We construct @ which satisfies (2.24) on (k + d,x + 28] x [0,T]. Since
V/Dyo < 8, by (2.36) in Step 3 and (2.32) in Step 2, we have

¥ = (r(t)+v)y5e>—*
(2.38) {log P(k +6,t) =log fu(t) + logm(t) — W’

—¢

_ _ 151
9 (log@)((k+06)7,-) = —(r(-) + v) pr=e,
whence there is some constant Ky > 0 such that

i (t) 50" Ky

(2.39)  |0c(log®)(k + 6, )| = |(log fﬂ)/ + (logm)" — (2 - g)Dl—é/Q < D1—¢/2°

We introduce a small parameter ¢y > 0 such that
|0.m| > € on ([6,k—0]U[k+6,1—14]) x[0,T],
and fix constant K7 so that
K> (F+v)y5et =t + 2Ky /eo.
Then we define

Ky(z—k)
(2.40) D(x,t) == (G(a,t)-e d2  on (k4 6,k —+ 2] x [0,7T].
Here (; € C?'((k + 8,k + 26) x [0,T7)) is determined by
(2.41)

log Ga () = [CH20=2] [ K9 L logp(s +6,0)] + [22EH2] log £ (1),

with T-periodic function f(t) defined in (2.1) with = 1, so that

K6

Gi(k+6,t) =ep2 - p(Kk + 4,1).
This implies immediately that @ defined by (2.40) is continuous at {x+d} x [0, T7.
In light of 9,¢; < 0 (for small D), using (2.38) and (2.40), by choice of K; we can
verify that
9. (log @) ((k+6)T, ) < =K1 /D% < 8,(log @) ((k + ), ") (as k40 €X).
On the other hand, combined with (2.38), (2.39), and (2.41), we see that

2K 3K
010 )| < 5775 ~pias < Oa(log(1) <0, and  Bra(log(r) =
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PRINCIPAL EIGENVALUE FOR PARABOLIC OPERATOR 4909

for small D, and thus

0z 9K?
Tl = |8mw(10g<:1) + [6w(10g<1)]2| < DTJZ?
from which, using (2.40) and —9,m - 9, (log (1) > 0, we may calculate that

_ 690:10 2K K2 7
Lpp = {8t(log§1) -D [ Cfl - —Dl_el/an(logCI) + D;J } P

+ {—@Cm- [8I(log§1) - %} +V}¢

2KQ 16K12 60K1
= [_D1—fz/2 T pie T D1-¢t/2 4
1
T pDl-¢/2
Since ¢gK; > 2K (by the definition of K;), we may choose D small such that
(2.24) holds. Step 4 is thereby completed.

P

[—QKO + ek — 16K2DY? + DH/QV} 5.

Step 5. We construct 3 on (k + 26, k +36] x [0,T]. By (2.40) and (2.41) in Step 4,

we have
(2.42)
_ 2K46 _ _ 4K
log P +26,t) = log f1(t) = 57z and  Du(logB)((k+20)7,) > — 5.

Fix a constant K5 such that Ky > 16K12/6(), where € is given in Step 4 such that
0xm > €y on [k + 8,1 — §] x [0,T]. Define
(2.43) B(w,t) == fi(t) - do(x) on (k+ 28,k +35] x 0,77,
where ¢, solves
(2.44)

{aogaz)’(w) = — Sy [mt3=e] - o | =] in (426, 5+ 30)

log ¢y (K + 26) = —DQle;‘fz.

Together (2.43) with (2.42) and (2.44), we discover that @ is continuous at
{k+20} x [0,T], and
9, (log@)((k+26)T, ) = —4K,/D'"%? < 9,(log ) ((k+20)",-) (as k+26 € X).
For all x € (k + 24, k + 34], by (2.44) we have

—I!

s

_ _ 4K, 16 K2
= |(log 2)" + [(log 6,) | < s5=775 + pa=r>

2

from which we arrive at
—) — —
Lop = |(log 1)/ = Dy /3y — em - (log 6)' + V| %

4K 16 K2 K.
2 |:(10gf1)/ _ _1D€/2 _ 6 1 €L 2

S pi—t T pize T V] (2

In view of ¢gK> > 16K?%, we once more would select D small enough such that

(2.24) holds.
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4910 SHUANG LIU ET AL.

Step 6. We construct @ on (k + 39, k + (n. + 1)d] x [0,T], where n, is determined
by (2.28) in Step 1. By the definition of ¢, in (2.44), we have
(2.45) 9:(1og®) ((k +36)7,-) = (log dy)’ (k + 30) = —Ko /D"~

We introduce a sequence {K,}n, independent of D such that K, > K2_,/eo.
With ¢, in hand, by induction we define ¢, € C%'([x + né,x + (n + 1)8]) (n =
3,...,n4) to solve

(log 8, () = — [ ity +¢] - [mm0=e] — M [z=leind)]
(2.46) in (k 4+ nd, k + (n+ 1)d],
log ¢,,(k +né) = log ¢,,_;(k + nd).

Then we define

(2.47) ?(z,t) == f1(t) - ¢, (x) on (k+nd K+ (n+1)d] x[0,T].
By (2.45) and (2.46), it can be verified that
9 (log ) ((k+36)F, ) = 0, (log ¢3) (k + 36)

=— {% + e} < 9:(logp) ((k+36)7,-),

and similarly for 4 < n < n,,
9:(1og®) ((k+nd)T, ) < 8,(logP) (k+nd)~,-) (as &+ nd € X).

For each 3 <n < n,, it follows from (2.46) that for z € (k + nd, k + (n + 1)J]

K7 —1 - K7
(2.48) - {W + 6] < (logg,)" < —DlT:,_QW

and then as in Step 5, we derive that

=

by

— — 2K, 1 K2_
=[(0g6.)" + (g 9) '] < 5pi-vsy + paiar:

(2.49)

n

By (2.48) and (2.49), on (k + nd, k + (n+ 1)d] x [0,T], we calculate that

Lo = [(108 1Y = D34 /3, - 0um- (g 3,) + V]

2Kn_1 n—3 K?Lf GoKn _
2 |:(10gf1)/ - TD2 ¢ - D1,2n32£ + D1,2n—2£ + V SD

Since €gK,, > K2_;, we choose D to be small so that @ satisfies (2.24).

Step 7. We construct @ on (k+ (n.+1)d,1] x [0, T]. Set * = K+ (n.+1)d. Observe
from Step 6 and the definition of n, in (2.28) that

9, (10gP) (k") ", ) = =K, /D72 " = —K,_.
We define

_ L - . e Ku(z=r7) on (k*,1—4] x (0,7,
(2.50) o(z,t) == f1 (t)(bn* (k%) - { Bete(1—a)?40, on (1—4,1] x [0,T],

e 25
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where K, > K,,, will be determined later, and the parameter 6 is chosen such that
© is continuous at {1 — ¢} x [0,7]. It follows that

0z (log®)(2™", ) < Oy (logP)(a™,) for

It remains to verify that @ defined by (2.50) satisfies (2.24). For « € (k*,1 — ¢],
since 9, m > €, using (2.50) we deduce that

ze{k"1-0}cCcX

Lpp > [(log /i) — DK + e K. + V] .

By choosing K, large and then choosing D small, we see that @ satisfies (2.24).
For z € (1 — 4, 1], since —0,md,® > 0, by (2.50), letting D be so small that

o2 {(log i) = D(K. +€)/0- [(K. + )z = 1)*/5+1] +V}

Y

[WU—VQQ+V@w—qﬂ¢

2 (Amin - 6)@7

where the last inequality is due to (2.17).

By Steps 3-7, we have already constructed the strict super-solution @ satisfying
(2.24) on [k — 0, 1] x [0, T] with the set X given by (2.35), which is summarized in
the following table for the convenience of readers; see also Fig. 2.

Construction of @ on [k — 9,1] x [0,T]

o(x,t) Region Defined in
N0 -a(%,t) [k — 6,k + 6] X [0,T] (2.36) in Step 3
_ Ky le—n)
Ci(z,t)-e DI/ [k 46,k + 28] x [0,T] (2.40) and (2.41) in Step 4

fi(t) - dn(2)

(k+nd, k + (n+ 1)d] x [0,T]
(n=2,...,n%)

(2.46) and (2.47) in
Steps 5 and 6

fir®)dy, (v7) -e” KelomrT)

(k1 - 0] x [0, 7]

(2.50) in Step 7

J1 (t)an* (k*)-e KS;F (1-2)2+61

(1-6,1] x [0,7]

(2.50) in Step 7

Finally, we construct @ on [0,k — §) x [0, T] symmetrically; and precisely, define

(2.51)
Ca(z,t) - elgl(f;/? on [k — 20,k — ) x [0,T7],
_ k—(n+1)d,k—nd 0, T
oty — ] o) B2 =) on {En e >n’) )% (0,7,
fo(t)an* (Ks) - eK*(”*fI) on [0, k) % [0,T7,
Jo(t),, (k) - 7557 +%on [0,8) x [0, T,

where £, = kK — (n« + 1)d, and similar to (2.41), {3 solves

log Go(a, 1) = 25720 - [ K95 1 log (s — 6,0)] + [==272] log fo(1),

with fo defined in (2.1) with z = 0, and 65 is chosen such that % is continuous
at {d} x [0,T]. Using the same arguments as in Steps 4-7, we may conclude that
® defined by (2.51) verifies (2.24), and thus ¥ constructed above defines a super-
solution on the entire region [0, 1] x [0, T] with X given by (2.35). Therefore, (2.23)
follows from Proposition A.2. O
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By assuming 9,m(0,¢) > 0 and d;m(1,t) < 0 for each ¢t € [0,T], it is shown in
Proposition 2.1 that the limit of A\(D) as D — 0 does not depend upon the value of
V on boundary points {0,1} x [0,T]. However, without the positivity assumption
of 9,m(0,t), one can prove

Lemma 2.4. Suppose that Oym(z,t) > 0 for all (z,t) € (0,1) x [0,T]. Then

Tim A(D) = min {V/(0) + [8,.1]4 (0), V(1)},

where Oy (0) is defined by (1.2).

Proof. If 9,m(0,t) = 0 for all ¢ € [0,T], Lemma 2.4 can be proved directly by
constructing the same super/sub-solutions as those in Proposition 2.3 defined on
[k,1] x [0, T]. Tt suffices to consider the remaining case 9,1(0) > 0 and in view of
Oz (0) = 0o in this case, i.e. to show

lim A(D) = V().

First, similarly as in the proof of Proposition 2.1, we may construct a sub-solution
to prove limsupp_,o A(D) < V(1). In the sequel, we show

(2.52) lim inf \(D) > V/(1).
D—0
For any given ¢ > 0, we fix some small § > 0 such that
[V(xz,t) = V(1,t)] <€/2 on [1—0,1] x [0,T].

The strategy is to construct a positive super-solution p € C*1(]0,1] x [0, T]), which

satisfies
Lpp > [V(l) —e}@ in (0,1) x [0, 7],
(2.53) ,7(0,1) <0, 9,%(1,6)=0 on [0,T],
?(2,0) =9(z,T) on (0,1)

for sufficiently small D. To this end, we proceed as follows:
On [1 —4,1] x [0,T], we define

Bla,t) = fi(t) - e on 16,1 x [0,7],

where My > 0 will be determined later, and fi(¢) is given by (2.1) with z = 1.
Similar to Step 2 in Proposition 2.1, one can verify that (2.53) holds on [1 — 4, 1] x
[0,T7.

On [0, 6] x [0, T, since 9,m(0,t) > (#£)0 for t € [0,T] (due to 9,7 (0) >0 ), one
can find some ty € (0,T) and positive constants €g, dg such that

Oxm(z,t) > ¢y forany (z,t) €10,d] X [to — do,to + do)-
Fix 1y € C*°([0,T]) to be a positive T-periodic function such that
(2.54) (logna (1)) > |V (-, )|~ + [V(1)| for t e [0,to — 0] U [t + 6, T).
We then define, for (z,t) € [0, ] x [0, T,

B(x,t) = no(t) - e M2,
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On [0,0] x [to — do, to + do], since O,m(x,t) > €g, by straightforward computations
we deduce

Lop > [(logme)’ — DM + Maeo — V|7,

whence by choosing M, large and then choosing D small, we have £p3 > V(1)%.
On the other hand, on [0,0] x ([0,tp — ] U [to +6,T]), in view of (2.54) and
—0,m0,p > 0, by letting D be small, we arrive at

Lop > |(logme) — DME ~ V|5 > V(1)7,

whence (2.53) is verified on [0, 6] x [0, T7].
On (6,1 — 0) x [0,T], notice from the definition of B above that

0:(log®)(0) = 9, (logp)(1 — 0) = —Mo>.
We can always find g € C%1([§,1 — 6] x [0,T]) such that B(-,0) = p(-,T) and
Oplog® < =M, and [0 logP| < 2|||(log f1)'| + [(logn2) [l Lo -

and then (2.53) can be verified directly by further choosing M, large and D small.
Therefore, such a super-solution @ defined above satisfies (2.53), and Proposition
A.2 concludes the proof. |

Corollary 2.5. Assume V(x,t) = V(z) and O,m(x,t) = m/(z). Suppose that
m/(z) > 0 for all x € (0,1). Then we have

lim A(D) = min {V(0) + [m"](0), V(1)}.

Remark 2.6. Corollary 2.5 cannot be covered by Theorem 1.1. It also provides an
example such that Theorem 1.2 in [6] fails without the assumption |Vm| # 0 on
0N therein.

To establish Theorem 1.3, we prepare the following

Lemma 2.7. Given any 0 < k <& < 1, let A(D) be the principal eigenvalue of the

problem
Orp — DOrwp + Vo = XD)p in (k,R) X [0,T],
(2 55) Clamgo(ﬁv t) - (1 - cl)@(ﬁa t) =0 on [OvT]a
. 628$¢(E7 t) =+ (1 - 02)<P(Ea t) =0 on [OvT]a
go(x, O) = (p((E,T) on [ﬁa E]v

where c1,cq € [0,1]. Then we have

lim \(D) = min V(z).

D50 c€[r,7]
Remark 2.8. Lemma2.7 is proved in Lemma 2.4(c) of [14] for the case ¢; = ¢ = 1.
Proof of Lemma 2.7. For the upper bound, it suffices to claim that
limsup A(D) < V(%) for any z € (k,R).
D—0

Indeed, we follow the ideas as in Proposition 2.1 and define a sub-solution

(2.56) p(z,t) = fz(t) - Z(x)
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with fz(t) defined in (2.1) with z = Z and
Ha) = cos (26(30—5&)) n [z — 4, )
0 n (0,7 14,1
Here § is chosen such that |V (z,t) — V(&,t)| < ¢/2 in [Z — 6, % +
given € > 0. One may verify readily that
Lpp < {V(a}) + e] ®,

so that the upper bound follows from Proposition A.2.
It remains to prove

(2.57) liminf A(D) > min V(z).

D—0 v€[r,]

5] x [0, T] for any

For any € > 0, choose some T-periodic function V. € C?1([x, ®] x [0,T]) such that

Ve — VHLOO([O,l]x[O,T]) <e
Then we define T-periodic function ¢, by

(2.58) 0e(z,t) = exp {_ /O t Vi(z, s)ds + M(x)] Be(),

where 3. € C*([x, E]) is a positive function and is chosen such that
(2.59) 10,0 (K,t) —(1—c1)pe(k,t) <0 and 20,0 (R, t)+ (1—c2)p (R, t) > 0.
By (2.58) and the definition of V., we may choose D small to derive that

Oupe = Diyape + Vipe = [Velw) = Velw,t) + V(w,0)| ¢ = DOraioc
> { min V(x) — 36:| Des
T€[K,K]

which together with (2.59) implies that ¢, defined by (2.58) is a super-solution in
the sense of Definition A.1 with X = ). Thus (2.57) follows from Proposition A.2,
and the proof of Lemma 2.7 is now complete. O

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. The proof can be carried out by the same ideas as in Propo-
sitions 2.1 and 2.3 with the help of Lemmas 2.4 and 2.7. Here we just outline it for
completeness.

Step 1. We establish the upper bound of limsup_,, A(D). First, using a similar
argument as in Lemma 2.7, one can establish

limsup A(D) < min{ min V(z)}
D—0 1€B | z€[ki, Kit1]
by constructing a suitable sub-solution like (2.56). Similarly, the estimate
lim sup A\(D) < min {V(o) + [Dar] £ (0), V(1) + [amm}+(1)}
D—0

can also be proved; the details are omitted here. It remains to show

(2.60) limsup A(D) < V (k;) + [0amn] 4 (ks) forall 1 <i < N.
D—0
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Fix any € > 0. Choose some small § > 0 such that |V (z,t) — V (s, )| < €/2 on
[k; — 0, k; + 6] x [0, T] for all 1 <4 < N. To prove (2.60), we define

o (2t) = {fm(t) 2(x) it Oyri(s) <0,

= Ji: (1) -1/)D(x,t) if amm("ii) >0,

where f,, and z are defined respectively by (2.1) and (2.5), and 1 denotes the
principal eigenfunction of (2.21) with £ = k;. The same arguments as in Step 1
of Propositions 2.1 and 2.3 allow us to verify that such a function @, defines a
sub-solution in the sense of Definition A.1 such that for sufficiently small D,

Lpg, < [Vk:) + Dawii] s (55) +2¢| @, in ((0,1)\ {wi & 6}) x 0,7,
9xp,(0,t) = Oyp, (1,8) = 0 on [0, 7],
¢ (2,0) = ¢ (z,T) on (0,1).
Then (2.60) is a direct consequence of Proposition A.2.
Step 2. We establish the lower bound of liminfp o A(D). It suffices to find a
super-solution @ € C([0, 1] x [0,T]) satisfying (2.24) with Ap;, being replaced by
the right hand side of (1.5) and X will be determined later. Recall the sets A and

B defined in the statement of Theorem 1.3. The construction of @ can be given as
follows; see Fig. 3 for an illustrated example.

0 K, K, Ky K, K 1

2

v =)

SIS ] & @ w0

F1GURE 3. The black solid curve corresponds to an example of m
for fixed ¢t. The super-solution @ is constructed respectively on
different regions (i)—(v).

(i) On ([k; — 0, Kit1 + 0] N [0,1]) x [0,7] for 0 < ¢ < N and ¢ € B with the
small constant § > 0 to be determined later, we define % as in the form of (2.58)
in Lemma 2.7 with

k=k; —0, R=Kiy1+9, and (31:(:2:%.

(ii) On ([0, 5] U [H%, 1]) x [0,T],if 0 ¢ B or N ¢ B, then such a super-solution
@ can be constructed by adapting the same arguments as in the proof of Lemma
2.4; Otherwise, it has been constructed in (i).
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(iif) On [fe=tt2re 2retrin) o 0 7] for i € A and i — 1 € A, one constructs 3
by Step 2 of Proposition 2.1 (with k = k;) for the case 0,,m(k;) <0, and by Part
IT of Proposition 2.3 (with xk = k;) for the case 0,,m(k;) > 0.

(iv) On the remaining region Q x [0, 7], where

(rtrin mik2iin) foric Aandi— 1€ A,
Q=1 (ki1 +6, 255y forje Aand i — 1€ B,
). for i € B,

we construct @ by monotonically connecting the endpoints on 0f2, such that
(a) ¥ is continuous at 99 x [0, T7;
(b) |0:(log®)| > M3 for some large Ms;
(c) O:(logp)(at, ) < O.(logp)(z~,-) for x € ON.

Define X = 0. By Lemmas 2.4 and 2.7, explicit calculations as in Propositions
2.1 and 2.3 imply that we may choose § smaller if necessary such that the super-
solution @ defined above satisfies (2.24) with A, being replaced by the right hand
side of (1.5). Then the lower bound of liminfp_,g A(D) can be established by
Proposition A.2. The proof is now complete. (]

3. PROOF OF THEOREM 1.2

In this section, we study the case when the ODE (1.4) possesses finitely many
periodic solutions and establish Theorem 1.2 with the help of Theorem 1.3.

Proof of Theorem 1.2. We first prove part (i) of Theorem 1.2. Let {x; }o<i<n+1 be
any strictly increasing sequence such that

0=ko<K1 <...<KN <EKNng1 =1
Fix small ¢ such that 0 < ¢ < ming<;<n(Ki+1 — k;)/3 and
(3.1)  Ogzm(z,t) #0 forall = e [P(t)—0,Pi(t)+6],t€[0,T],1<i<N.
To “straighten the periodic solution P;(t)”, we first define a C%!-diffeomorphism
¥ :[0,1] x [0,T] — [0, 1] such that 0, ¥(y,t) # 0 and
— ki +Pi(t) foryelx;—3d,k +3d,t€[0,T],1<i<N,

y
(3.2) \If(y,t)—{y for y € [0,8] UL —4,1], ¢ € [0, 7.

Define V(y,t) = V (¥(y,t),t). By direct calculations, A(D) is also the principal
eigenvalue of

(3.3)
&% — Dgus — [a i — D g q,)s]aym Vg, )@= D)g  in (0,1) x [0,T],
9y9(0,t) = 0yp(1,t) =0 on [0, T,
a(ya O) = @(yaT) on (07 1),

for which the principal eigenfunction becomes @(y,t) = ¢ (¥(y,t),t). Here ¢ de-
notes the principal eigenfunction of problem (1.1), and m is given by
t

Oy (V(y,1).t) O,V
8, 9,0

Next, we focus on problem (3.3), and divide the proof into several steps.

(3.4) Oy(y.t) =
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Step 1. We show that the ODE problem

(3.5) {ﬁu) — —0,m(P(t),t),

P(t)=P(t+T)
has only N periodic solutions P;(t) = k;, and Oyym (y,t) # 0 for all (y,t) € [k; —
0,k; + 6] x[0,T) andi=1,...,N.

First, we claim that P;(t) = k; is a solution of (3.5). This is due to the following
calculations:

- _0om(V(ky,t),t) | Oy (ky,t)
Dm(rist) = =5 G D) T BW (k)
= 0ym(Py(t),t) + Pi(t) = 0,

where the first equality follows from (3.4), and the second equality is due to (3.2).
Suppose on the contrary that there exists a periodic solution P(t) such that
P(t) # k; for any 1 < ¢ < N. Then by (3.2) and (3.4), one can verify that

U (P(t),t) # P;(t) is a periodic solution to (1.4) by the following calculations:

B(P(),t) = P()3,V + 0,0 = —8,i(B(t),1)0,V + 8,

= —3,m(U(P(t),1),t) — 8, + 9, ¥
1),1),

(

= —0.m(V(P(t),1)
which is a contradiction. Therefore, (3.5) has only N periodic solutions P;(t) = k;
(¢t=1,...,N). Furthermore, from (3.1) and (3.2), it is easily seen that dy,m (y,t) #
0 on [k; — 0, k; + 0] x [0, T], which completes Step 1.

In the sequel, we aim to find a proper C?!-transformation ® : [0,1] x R — [0, 1]
such that 9,® > 0, and if for some m € C%1([0,1] x [0, T]) satisfying
_ 8yﬁl (@(Z,T),T‘) &"_Q
N 0,P 0,9’
then 9,m > 0 or 9,/m < 0 holds on (k;, K;41) X [0,T] for each 0 < i < N. Then we
may apply Theorem 1.3 to complete the proof.

Fix any 0 < ¢ < N. We assume without loss of generality that dy,m (x;,t) <0,
so that 9ym (k; +6/2,t) < 0. For any s € R, denote by ¢,(¢) the unique solution of

() = ~0(a(t), b+ ),
37 {qw) B

)
)

(3.6) d.m(z,7)

where m is given by (3.4). Obviously, ¢s(t) = ¢s+7(t) for all s,t € R. We define
(3-8) Q(t) == A{(gr—e(t),r) : 7 € R},
which is a continuous curve and is referred as the isochron of (3.7).

Step 2. Fix any 0 < t; < t2. We show that Q(¢1) < Q(t2) (see Fig. 4) in the sense
that

(3.9) Gr—t,(t1) < @r—1,(t2)  for any r€R.
We argue by contradiction by assuming Q(t1) N Q(t2) # 0 or Q(t2) < Q(t1).
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K+6/2 Q) o) K,

i+l

FIGURE 4. The isochrons Q(t;) and Qt2) of (3.7)

(i) If Q(t1) N Q(t2) # O, then by definition (3.8), there exists some ry € R such
that

(310) Gro—ty (tl) = Qro—ts (tQ)
Then we define

q(t) == qro—t, (t —ro+t1) and q(t) := qry—t,(t — 70 + t2),
both of which satisty ¢(t) = —9,m (q(t),t), and

(3.11) q(ro —t1) = q(ro —t2) = k; + /2 and  G(ro) = q(ro),
where G(rg) = g(ro) follows from (3.10). In view of t; < t2, we have ro—t; > ro—to.
Thanks to the uniqueness of solutions to ¢(t) = —9,m (¢(t),t), we conclude from

(3.11) that g(t) = ¢(t) for any t € [ro — t1,70], and particularly, q(ro —t1) =
6(7"0 - tl) = K; —|—5/2 = Q(TO - tg), i.e. Qro—to (tQ - tl) = K; —|—6/2 = Qro—to (O), which
contradicts 9ym (k; +6/2,t) < 0.

(i) If Q(t2) < Q(t1), then given any (¢r,—, (t1),71) € Q(t1), there is some
to € (0,t1) such that (gr,—¢ (to),72) € Q(t2), where ro = r4 — (t; — tg). By
definition (3.8), we also have (gr,—, (t2),72) € Q(t2), so that ¢, i, (to) = Gro—t, (t2)-
This, together with ro — g = r1 — t1, leads to ¢r,—t,(t0) = @ry—t,(t2), whence
(Gry—t,(t2),72) € Q(to) N Q(t2), i-e. Q(to) NQ(t2) # B. Since ty < t2, we can apply
(i) to reach a contradiction.

Step 3. We show
t1i>m Q(t) = {(5i+17r) HEAES R}v

in the sense that for any r € R, g,.—+(t) = ki1 as t — oo.

By M we denote the set of all continuous curves in [k; + 6/2, K;41] x [0,T]. By
Step 2, there is some curve Qo := {(goo(s),s) : s € R} € M such that Q(t) = Qoo
as t — oo. It suffices to show goo = ki;y1. To this end, we claim that ¢ is a
periodic solution of (3.5), and then ¢o, = k;41 is a direct consequence of Step 1.
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Indeed, the periodicity of g is due to the fact that gqs(t) = gsqr(t) for all
s,t € R. We show that g is a solution to (3.5). Suppose not, then for given
so € R, there exists some ¢y > so such that the unique solution ps,(¢) of

P(0) = goo(50),
satisfies ps, (to — S0) 7 doo(to). Let t. =to — so. For any ¥, := {(¢(s),s) : s e R} €
M, we denote by ps the unique solution of

p(t) = =0ym (p(t),t + s),

p(0) = q(s),

and define a continuous operator F': M — M by
F(Xq) = {(ps(t), te +5) 1 s € R} = {(pr—s. (t),7) : » € R}
It is straightforward to verify that F(Q(t)) = Q(t + t.), and thus

F(Qoo) = ron

from which we deduce in particular that py,—¢, (t+) = ¢oo(to), that is ps, (to — so) =
Goo(to), a contradiction. Therefore, g, is a periodic solution of (3.5). Step 3 is
thereby completed.

Step 4. We define the transformation & satisfying 0.® > 0, and for m given by
(3.6), we show that 9,/ > 0 or 9,/m < 0 holds in (k;, k;41) % [0,T] for each
0<?7< N.

For any 0 < i < N, we define ®; : [k; + /2, ki4+1 — 0/2] X R — [K4, Ki11] such
that for any (z,7) € [k; + 9, ki1 — 0] X R,

(3.12) Qi(2,7) = Gr—r,()(1:(2)),
where g, (. is the solution of (3.7) with s = r — 7;(2) and 7;(z) is determined by
(3.13) q—r,()(Ti(2)) = 2.

Obviously, {(®;(z,7),7) : r € R} = Q(7:(2)). It is easily seen that z — 7;(z) is a
bijection (where the surjection follows from Step 3), is of class C? and is increasing
(by Step 2), so that ®; € C?1([k; + 6, ki11 — 6] x R) and 9.®; > 0 by (3.9).

We claim that for (z,7) € (k; +0/2, K11 — /2) X R,

(3.14) 7/(2) >0 and 9ym (®;(z,7),r) + 0, P; = —

For the sake of clarification, write ¢s(t) = ¢(t; s), where ¢, is defined by (3.7).
Differentiating both sides of (3.13) by z, we derive that

|:6tq7‘ri(z) (TZ(Z)) - asqfri(z) (TZ(Z)):| TZ/(Z) =1,

which implies 7/(z) # 0, and thus 7/(z) > 0 since 7;(2) is increasing. Similarly, by
(3.12), we deduce that 0,®;(z,7) = 0sqr—r,(2)(7i(2)), and thus

0:0i(2:7) = [0, (1)) = Oty ri(2) (:(2)) 7 (2)

(3.15)
= |:8tqr77'i(z) (T'L(Z)) - arq)i(zv T):| T{(Z)
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By the definition of ¢, _,,(.)(7:(2)) in (3.7) with s = r — 7;(2) and t = 7;(z), we note
that

8tqr—n(z) (Tz(Z)) = _8yﬁl(q)z(zv T)? T)a

which, together with (3.15), implies (3.14).
We then claim that

(3.16) 0,P;(z,7) >0 forany (z,7)€ (ki +3/2,ki41—0/2) xR.
To this end, denote by p(¢; s) the unique solution of the problem
p(t) = —0ym (p(t), 1),
]3(8) = ki + 6/27

whence by (3.7), we observe that ¢s(¢t) = p(t + s;s). For any 7 € R, we have

p(r) = —/ Aym (p(t),t)dt + k; +6/2,
so that
0.5(r) = B, (s + 5/2:5) ~ | 0, (3(t).1) 050 )
and thus dsp(s) = Oym (k; +0/2,s) < 0. We further calculate that

97 (9sp(7)) = =0yym (B(7),7) 9sp(7),

which implies immediately that for any r € R,
(3.17) D.5(r) = Dup(s) exp {— / By (5(7), ) dT] <.

By (3.12) and the fact that ¢5(t) = p(t + s; s), we can see ®;(z,r) = p(r;r — 1;(2)),
so that
0,9;(z,7) = =0sp(r) - 7/(2) > 0
by noting that 7/(z) > 0 in (3.14) and 9;p(r) < 0 in (3.17).
Then we define a C*!-transformation ® : [0,1] x R — [0, 1] such that 9,® > 0
and for any 0 <7 < N,

(3.18)  ®mr)= {fi(z’r) on [ﬁfﬁ? f;lz]_ué[i:lR—’ 5/2, ki) X R,
where 01 € (0/2,4] is chosen to be close to §/2 such that
(3.19) Oym+0,® <0 on ([Ki,Ki + 1] U [Kix1 — 01, Kig1]) X R.
This is possible since by (3.18) and Step 1, it follows that
Oym + 0,® = dym <0 on ([ki, ki +0/2]U[Kkix1 — /2, Kix1]) x R.

Let m satisfy (3.6) with ® defined by (3.18). For any z € [k4, ki + 91] U [Kit1 —
01, Kit+1], it follows from (3.6), (3.18), and (3.19) that 9,m(z,r) < 0; For z €
[k; + 01, Kir1 — 01], by (3.18) we have ®(z,r) = ®;(2,r), whence comparing (3.6)
with (3.14) gives 0,m(z,r) = —% < 0. This completes Step 4.
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Step 5. We apply Theorem 1.3 to complete the proof. Let the C%!-transformation
® be defined by (3.18) in Step 4. Denote
V(zr) =V (®(zr),r)  and  Blzr) = 3(@(zr),7),

where V and @ are defined in (3.3). Using the definition of 7 in (3.6), direct
calculation enables us to transform (3.3) into the following equation:

(3.20)
0,7 — 5By — |0+ Dis|0.5+ Vo = AD)p  in (0,1) x [0,T),
az@(ovr) = az@(lar) =0 on [0, T],
@(27 0) = @(Za T) on (0, 1),

where n3 is given by
Oyy ¥ 0,,P
Yt n _
(0,9)30,2  (0,9)3(0,¥)?

For each 0 < i < N, by Step 4, 9,/m > 0 or 9,7 < 0 holds for all z € (k;, Kit1);
by the definitions of ¥ and ® in (3.2) and (3.18), we find that for any z € [k;, k; +
0/2] U [Kit1 — 6/2, kit1], Oyy¥ = 0,,® = 0, so that n3(z,7) = 0. Therefore, we
conclude that for any small ¥ > 0, there exists some ¢y = () > 0, independent
of small D, such that
(321) 9,m+Dns>¢ or O,m+ Dns<—e on [k +0,Kkir1 — ] x[0,T].

Moreover, from (3.6) and (3.18), we observe that for any 1 <i < N,

0.m(k;,r) = Oym (®(Ki,7),7) = Oym (ki,7) =0,
which implies that 0,m(k;,r) + Dns(kq,7) = 0 since N3(Ki,T) = 0. Together with
(3.21), noting that 9,¥ = 9,® = 1 on [k, ki + V] U [Ki41 — U, Ki41] with some
0 <9 «1forany 0 <i< N, we can follow directly the same proof of Theorem
1.3 with B = 0 to (3.20) and deduce that

n3(z,r) ==

(3.22) lim A(D) = O&iﬁﬂ {V(m) + [ammh(m)} .

Noting that V (ki) = 7 fo s)ds and
azzm(ﬁivr) = 8yym (Ki,7) = Ogam (P(r),7)
part (i) of Theorem 1.2 follows from (3.22).
Finally, part (ii) of Theorem 1.2 can be established by Steps 2-5 with N = 0.
The proof is now complete. |

4. PROOF OF THEOREM 1.4

This section is devoted to the case m(z,t) = ab(t)z and the proof of Theorem
1.4. We start with the existence and uniqueness of P, defined in Theorem 1.4.

Lemma 4.1. Let F be defined by (1.7) and P,P be given in Theorem 1.4. If
az == , then

P(t) = —aF (P(t),t
(4.1) (t) = —aF (P(t),1),

Pt)=Pt+T)

has a unique T-periodic solution in W1 (R).
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Proof. Recalling the definition of F' in (1.7), we observe that F'(0,¢) = min{b(¢),0}
< 0 and F(1,t) = max{b(t),0} > 0, so that P, = 0 and P* = 1 are a pair of
sub- and super-solutions to (4.1). Hence, as F' is bounded, there exists at least one
T-periodic solution in W1 (R).

For the uniqueness, given any two T-periodic solutions P and P, of (4 1), we
show P = P,. Suppose not, without loss of generality we may assume P(0) <
P.(0). We consider two cases:

(i) If P(t;) = Pa(t1) for some t; € (0,7), in view of P(T) = P(0) < P, (0) =
Py (T), by continuity there is some t1 € [t1,T) such that P(f;) = P,(f;) and
P(t) < P,(t) for any t € (£;,T]. Then by the definition of F, it can be verified that
for any t € [t1, T,

(4.2) [Pu(t) — P()] — [Pa(fr) — P(R1)] = o / [P(P(s). )~ F(Pa(s).5)] ds <0

which implies PQET) P(T) < P,(t;) — P(t;) = 0, a contradiction.
(ii) If P(t) < Pa(t) for all t € 0,77, then (4.2) holds for all ¢ € [0, 7] and t; =0.
In view of P, (T) — P(T) = P,(0) — P(0), we deduce that

P, (t) — P(t) = P,(0) — P(0) forall te0,T).
In such a case, again by the definition of F', we infer that
Py = P+ (Pa(0) - P(0))/2 € (0,1)

defines a T-periodic solution of (4.1), and thus ]5+ = —ab( ), where P, € (0,1) is
dueto 0 < P < P+ <P, <1. By recalling P(t) = — fo s)ds, this implies that
P, = aP(t) +c € (0,1) for some constant ¢ € R, so that

1> P, — P,=a(P-P
Wl e iy P P D)

which contradicts o > P Lemma 4.1 thus follows. O

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. The proof is divided into three steps.

Step 1. Assume b # 0 and show part (i) of Theorem 1.4. Let ¥y : [0,1] x[0,7] — R
denote a T-periodic diffeomorphism given by

Uy (y,t) = o {Bt - /Ot b(s) ds} -

Under the transformation @ = ¥y (y,t), as in (3.3), direct calculation from (1.6)
yields that A(D) defines the principal eigenvalue of the problem

Oip—Ddyyp—ab- 9o+ Vig=A(D)g, y€(=1(0,t),1-V1(0,2)),t [0, T,
B,0(—01(0,), 1) =dyo(1 — U1 (0,0),6) =0,  te0,T],
gO(y,O):QO(y,T), yE[—\I’l(0,0),l —\111(0,0)],
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where Vi (y,t) =V (¥4(y,t),t). Then we can conclude that part (i) of Theorem 1.4
is a direct consequence of Theorem 1.2. Indeed, if b > 0 for example, then ODE
(1.4) with 9,m = ab > 0 has no periodic solutions, so that by part (i) of Theorem
1.2 we deduce that

T
lim \(D) = %/0 Vi(1 —®1(0,5),s)ds = V(1).

The same argument can be adapted to the case b< 0, which completes Step 1.

Step 2. Assume b=0and 0 < o <55 . We prove the first part of (ii) in Theorem
1.4. Recall P(t fo s)ds deﬁned in Theorem 1.4. Taking the transformation
x=y+ aP(t ) (1 6), we derlve that A(D) is also the principal eigenvalue of the
problem

Orp — DOyyp + Vap = A(D) g, y € (—aP(t),1 —aP(t)), t €[0,T],

81/()0(_04P(t)’t) = 81}()0(1 - OéP(t),f,) =0, te [07T]7

e(y,0) = ¢y, T), y € (=aP(0),1—aP(0)),

where Va(y,t) = V (aP(t) + y,t). Under the transformation z = y + aP(¢), all
periodic solutions of (1.4) are constants in the interval [~aP, 1—aP]. This includes
the special case @ = =*—, for which the interval reduces to a single point. It is

- PP’
desired to show that

lim \(D) = min _ Va(y).
D—0 yE[—aP,1—aP)]

First, the upper bound limsupp, ,o A(D) < Va(y), for any y € [~aP,1—aP], can
be established by the same arguments as in Step 1 of Lemma 2.7 by constructing
the sub-solution locally. We thus omit the details here.

It remains to show the lower bound of liminfp_,o A(D). For any € > 0, we define
T-periodic function Vo, € C%1(R x [0, 7)) satisfying ||Vae — Va||z~ < €, and choose
small § > 0 such that

(4.3) Amin i= min Vge(y) > min _ Va(y) — 2e.
yE[—aP—25,1—aP+26] yE[—aP,1—aP]

We define ¢ € C%1([—aP — 25, 1 — aP + 24] x [0,T]) by

(4.4) By, 1) = exp [— / Vae(y, s)ds + V. (9) | Bu(y),

where 3. € C?([—aP — 26, 1 — aP + 24)) is a positive function chosen such that
(5) 9y <0 on [—aP — 25§, —aP] x [0,T]
' and 9,¢ >0 on [l —aP,1—aP + 28 x [0,T].

Next, we aim to find a super-solution ¥ € C([0, 1] x [0,T]) which satisfies

(4.6)
0, — DOy + Vo > [xmin _ 36} 5, ye(—aP(t),1—aP®))\X, t € [0,T],
Oyp(—aP(t),t) <0< 0,5(1 —aP(t),t), tel0,T],
@(yv O) = @(va)’ AS (_aP(O)a 1- aP(O)),
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where X = {—aP — 2§, 1 — aP + 2§}. Then it follows from Proposition A.2 and
(4.3) that

lim inf \(D) > min _ Va(y);
D—0 y€[—aP, 1-aP]

see also Remark A.3.

We only construct % for y € (—aP(t),1 —aP +§) and t € [0,7]. The construc-
tions of the remaining regions are similar. To this end, by the definition of P, there
exist t3 > t such that

[ta,t3] C {t €[0,T]: —aP(t) > —aP — 4}.

We then choose 1y € C%!((—00,1 — aP + §] x [0,T]) to be a positive T-periodic
function, and satisfy that d,n4 < 0 and

=1 on [~aP —§, 1 —aP + 6] x [0,T],
(4.7 O¢(logns) >0  on [—aP — 25, —aP —6) x ([0,T]\ [t2,13]),
O¢(logny) > My on (—oo, —aP — 28] x ([0,T] \ [t2,ts]) -

Here M, is chosen such that
My > |[Va Lo + Amin + [|0; log 6 o,

where ¢ is defined by (4.4). Moreover, we extend ¢ to (—oo,1 — aP + 28] x [0, 7]
by setting ¢(-,t) = ¢(—aP — 2§,t) on (—o0, —aP — 25) x [0,T], so that by (4.5) we

have

(4.8) Fyp((—aP —26)",-) <0 =8,¢((—aP —26)7,-).
Let ¢ and 74 be given by (4.4) and (4.7), then we define

(4.9) D(y,t) == na(y,t) - $(y, 1).

By (4.8), as 14 is smooth, one can infer that

Oylog@ ((—aP —28)",) < d,logp ((—aP —26)",-) as —aP —20€X.

It remains to check that @ defined above satisfies (4.6).

(i) For y € (—aP(t),1 — aP(t)) N [-aP — §,1 — aP + §] and t € [0,T], since
ny = 1 in (4.7), we have @(y,t) = ¢(y,t). By the definition of ¢ in (4.4), direct
calculations yield that

/@ — DAy + Vaip = |Vacly) = Vae(y, t) + Va(y, t)| & — DIy, é.

By the definition of V5., we can argue as in Lemma 2.7 to choose D small such
that the first inequality in (4.6) holds. Then the part of boundary conditions on
{—aP(t),1—aP(#)}N[-aP — 6,1 —aP+4§] and t € [0, T] can be verified by (4.5).

(i) For y € (—aP(t),1 — aP(t)) N [-aP — 20, —aP — §) and t € [0,T], since
t €10, T]\ [t2,ts] in this case, we use (4.7) and (4.9) to deduce that

019 — DOy + Vap = [Vze(y) — Vac(y, t) + Va(y, t)} % + [0 (logna) — DO, @] P
2 |:5\min — 2¢ + at(log 7]4) + O(D)j| @

Since 9;(logns) > 0 in this case, again we choose D small such that (4.6) holds.
And the boundary conditions in this case can be verified by aya <0 and 9yns <0.
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(iii) For y € (—aP(t),1 — aP(t)) N (—o0, —aP — 2§) and t € [0,T], since ¢ is
independent of y, by (4.7) and (4.9) direct calculation yields that
/% — DOy + V2 > |(log ¢)' + My — DOyyna/na + V2| .

Thus the first inequality in (4.6) is verified by the definition of My, and the boundary
condition follows from J,n4 < 0. Step 2 is now completed.
Step 3. Assume b =0 and o > ﬁ. We establish the second part of (ii) in Theo-
rem 1.4. ~Let P, denote the unique solution of (4.1). We apply the transformation
x =y + P,(t) to rewrite problem (1.6) as

dep — DOy — ab(t)dyp + Vap = A(D)p,  (y,1) € O,

Oyp(—Py(t),t) = Oyp(1 — Pya(t),t) =0, t € 10,7,

o(y,0) = oy, T), y €

where b(t) := b(t) — F(Pu(t),t), Va(y,t) = V(Pa(t) + y,t), and

Q= {(yvt) cy € (—Py(t),1—Py(t), t € [O,T]}.

See Fig. 5 for an example of this transformation.

FIGURE 5. The diagram of Q under transformation = y+ P, (t).
The red colored curve in the left side picture corresponds to Isa(t),
whereas the red colored line in the right side picture is the image
of P,(t) after the transformation.

It remains to prove

lim A(D) = Vs(0).

The upper bound limsupp,_,, A(D) < VS(O) can be established by using the argu-
ments in Step 1 of Proposition 2.1. We next prove liminfp_,o A(D) > V3(0).
We claim that if o > ﬁ, then

mes{t €[0,7] : Pa(t) € {0,1} and b # 0} >0,

ie. there exist 0 < ¢4 < ¢5 < T such that b # 0, and P, (t) =0or Py(t) =1
on [t4,%5]). Suppose not, then P, is also a periodic solution of P(t) = —ab(t), so
that P, (t) = P(t) + ¢ for ¢ € R, where P(t) = — fot b(s)ds as defined in part (ii) of
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Theorem 1.4. Since P, € [0,1], we have

1> max P, —min P, = a(P - P),
[0,7] [0,7]

which contradicts o > ﬁ.
In what follows, we assume P,(t) = 1 on [ty, 5], and the proof is similar for the
other case. To proceed further, we introduce positive functions z5; € C?(R) and

ns € C([0,T]) as follows: For any € > 0, we choose some small § > 0 such that
(4.10) [Va(y,t) — V5(0,t)] < €e/2 on [—26,26] x [0,T].

We first choose 75 to be T-periodic and

(411)  (ogns)’ > 2|V~ + log f1)/ = on [0,t+ 0] Ufts — 8,71,
Then we choose Z5 such that

{Eg(y) <0 in (—00,0), z5(y) >0 in (0,00),

4.12
(4.12) (logzs) < —Mj; in (—o0,—9),

where M35 is some large constant to be determined later.

We define
(t) for [y| <4,
(y,t)  for —20 <y < =9,
Cs(—y,t) for d <y < 26,
n5(t) for |y| > 26,

(4.13) Py, t) =75(y) -

where f; is defined by (2.1) with 2 = 1. Due to the choice of 75 in (4.11), (5 can
be chosen such that g € C%1(R x [0,T]) and

(4.14) 0y(log (5) = (log f1)" on [0,t4 + 0] U [ts — 6, T].
We shall verify that @ defined by (4.13) satisfies
(4.15) Lp® = 0,8 — DIy — ab()0,8 + Vsp > (V3(0) — )7 for (y,1) €O,

provided that D is small enough. The verification is divided into the following
cases: 3
(i) For (y,t) € ([-0,d] x [0,T]) N2, we note that (see Fig. 5)

b(t) >0 in ([=6,0]x [0,T))NQ and b(t) <0 in ([0,8] x [0,T]) N Q.

One can check (4.15) by the same arguments as in Step 2 of Proposition 2.1.

(ii) For (y,t) € ((—o0, —0] X [ta+0,t5 —0])NQ = (=1, —=8) X [t4+J,t5 — ] (since
P,(t) =1 on [ty,15)), there exists some ey > 0 such that b(t) > €. By the choice
of Z5 in (4.12) and construction (4.13), direct calculation gives

LoP = | = |(logns)' + du(log Gs)'| = Dy, P + acoMs — ab|Gs| + Vi .

By choosing M5 large and D small, we can verify that (4.15) holds.

(iii) For (y,t) € ([~26, 8] x ([0,t4 + 8] U [t5 — ,T]))NQ, by construction, F(y, t)
= Z5(y)¢5(y, t). Observe that b > 0 in this case. Using (4.12), we choose Mj large
such that

—b(t)9y% = B(t) [Ms5 — 9y(log ¢5)] % > 0.
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Hence, by (4.10) and (4.14), for small D we arrive at
Lpp = :8t(10g G)+Vs— 6/4@
> [(log /1) + Vi — /2]
= [ 75(0) = Va(0,6) + Va(y.t) — /2]
> :V3(0) - 6} .

(iv) For (y,t) € ((—00,—26) x ([0,t2 + ] U [ts — 6, T7)) N Q, by (4.13) we have
B(y,t) = Z5(y)ns(t). Also since b > 0, the choice of Z5 in (4.12) implies —b(t)0,% >
0. Choosing D smaller if necessary, we use (4.11) to deduce that

Lop > |(logns)' — Dz} /%5 — Va| = Va(0)3.

(v) For (y,t) € ((8,00) x [0,T]) N, the verification of (4.15) is rather similar
to that in cases (ii)—(iv), and thus is omitted.
Finally, we verify the boundary conditions

(4.16) Dy P(—Pa(t),t) <0 and 8,5(1 — Py(t),t) >0 for te[0,T].

For the set {t € [0,T] : —aP.(t) € [-26,—8] or 1 — aP,(t) € [0, 20]}, we can
choose My large such that Ms > ||0,(log(s)||ze to verify (4.16) as in case (iii).
The verification of (4.16) for the remaining cases is straightforward.

By (4.15) and (4.16), we apply Proposition A.2 and Remark A.3 to conclude
liminfp_,0 A(D) > Vg(O) The proof of Theorem 1.4 is thereby completed. |

APPENDIX A. GENERALIZED SUPER/SUB—SOLUTION FOR A PERIODIC PARABOLIC
OPERATOR

In this section, we introduce a generalized definition of super/sub-solution for a
time-periodic parabolic operator and then present a comparison result. This result
is a mortification of Proposition A.1 in [18], and it plays a vital role in this paper.

Let £ denote the following linear parabolic operator over (0,1) x [0, T]:

L =0 —a1(x,1)0ps — a2(x,t)0; + ap(x, t).

In the sequel, we always assume a;(z,¢) > 0 so that £ is uniformly elliptic for each
t € [0,T], and assume ag,ay,as € C([0,1] x [0,T]) are T-periodic in ¢.
Consider the linear parabolic problem

Lo=0 in (0,1) x [0, 7],

(A1) c10,9(0,t) — (1 —¢1)p(0,t) =0  on [0,T],
' c20,0(0,t) + (1 —c2)p(1,) =0  on [0,T],
@(x’ O) = @(va) on (Ov 1)a

where ¢1, c2 € [0,1]. We now define the super/sub-solution corresponding to (A.1)
as follows.

Definition A.1. The function @ in [0, 1] x [0, 7] is called a super-solution of (A.1)
if there exists a set X consisting of at most finitely many points:

X=0 or X={k;€(0,1): i=1,...,N}
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for some integer N > 1, such that
(i) B € C((0,1) x [0,T]) N C? (((0,1) \ X) x [0,T7);
(i) O,0(xt,t) < d,p(z—,t) forevery z € X and ¢ € [0,T];
(iii) @ satisfies
£7>0 in ((0,1)\ X) x (0,7),

c10,9(0,t) — (1 — ¢1)p(0,¢) <0 on [0,7],
c20:0(1,t) + (1 — c2)p(1,t) >0 on [0,T],
?(z,0) > @(x,T) on (0,1).

A super-solution @ is called to be strict if it is not a solution of (A.1). Moreover, a
function ¢ is called a (strict) sub-solution of (A.1) if —¢ is a (strict) super-solution.

Let A(£) denote the principal eigenvalue of the problem

Lo=ML)p in (0,1) x [0,T],
(A.2) c10,9(0,t) = (1 = c1)p(0,£) =0 on [0, 7],

20.0(0,1) + (1~ e2)o(1,) =0 on 0,7,

o(z,0) = p(z,T) on (0,1).

The following result was proved in [18, Proposition A.1] for the case ¢; = ¢o = 1,
and it can be extended to the general case ¢1, ¢z € [0,1].

Proposition A.2. Let A(L) denote the principal eigenvalue of (A.2). If (A.1)
admits some strict positive super-solution defined in Definition A.1, then A(L) > 0.

Moreover, if (A.1) admits some strict nonnegative sub-solution defined in Definition
A1, then A\(L£) <0.

Remark A.3. Instead of [0, 1] x [0, T], Proposition A.2 also holds for the general do-
main given by {(z,t) : f1(t) < = < Ba(t), t € [0,T]}, where By, f2 € C(]0,T]) satisfy
b1 < B2. This fact is applied in Section 4 to prove Theorem 1.4.
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