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Abstract

We consider a system of two competing populations in two-dimensional heterogeneous
environments. The populations are assumed to move horizontally and vertically with
different probabilities, but are otherwise identical. We regard these probabilities as
dispersal strategies. We show that the evolutionarily stable strategies are to move in
one direction only. Our results predict that it is more beneficial for the species to choose
the direction with smaller variation in the resource distribution. This finding seems to
be in agreement with the classical results of Hastings (1983) and Dockery et al. (1998)
for the evolution of slow dispersal, i.e. random diffusion is selected against in spatially
heterogeneous environments. These conclusions also suggest that broader dispersal
strategies should be considered regarding the movement in heterogeneous habitats.
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1 Introduction
1.1 Background and motivation

In this paper, we consider populations of individuals that disperse in a bounded two-
dimensional habitat, where the resources are distributed heterogeneously across the
landscape. A natural question (see Fretwell and Lucas Jr (1969) or Clobert et al. (2001)
for instance) is: how organisms should distribute themselves in space to better match
the available resources, and, accordingly, what kind of dispersal strategies organisms
should adopt to reach such distributions? Most of the previous studies on the evolution
of dispersal assume that individuals move in two orthogonal directions with the same
probability, which we refer to as random dispersal (see Hastings (1983) for instance).
For spatially varying but temporally constant environments, Hastings considered a
scenario in which the resident is randomly dispersing and reaches the equilibrium;
some rare mutant, which is also randomly dispersing but differs from the resident only
in the diffusion rate, is introduced to the habitat. He found that slower rates of dispersal
will be selected, as the mixing of populations tends to reduce the growth (Altenberg
1984, 2012). Dockery et al. (1998) considered a system of two randomly diffusing
competing populations in spatially varying but temporally constant environments, the
two being identical except for their dispersal rates. They showed that the population
with the smaller dispersal rate always drives the population with the larger dispersal
rate to extinction, irrelevant of the initial data. This phenomenon is often termed as
the evolution of slow dispersal, as any population with a positive dispersal rate will
be replaced by a mutant with a smaller dispersal rate.

If we assume that individuals move, e.g., horizontally and vertically with two dif-
ferent probabilities (with the sum of probabilities equal to one) and regard these
probabilities as dispersal strategies, what kind of strategies will be evolutionarily
stable? Here, we are referring to the situation where the population moves east or west
with probability p/2, and north or south with probability (1 — p)/2, respectively, with
p being chosen in [0, 1]. Intuitively, random dispersal strategies, i.e. p = 1/2, might
not be evolutionarily stable as the distribution of resources is generally not the same
in the horizontal and vertical directions, so that it could be more advantageous for the
population to have a higher probability moving in one direction than the other. This
is indeed the case, and one might attempt to conjecture that some mixed strategy p*
in (0, 1), allowing the population to move in horizontal and vertical directions with
different probabilities, would emerge as an evolutionarily stable dispersal strategy in
this particular setting. A bit surprisingly, our results suggest that the only evolutionar-
ily stable dispersal strategies are p* = 0 and/or p* = 1, i.e. it is more advantageous
for the population to move in only one direction.

More specifically, we consider a system of two competing populations in two-
dimensional heterogeneous environments. The populations are assumed to move
horizontally and vertically with different probabilities, but are otherwise identical.
We introduce a function F of the dispersal probability, which measures the difference
between the spatial variations of the population distribution at equilibrium in horizon-
tal and vertical directions: when it is positive, the species has more variations in the
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horizontal direction; when it is negative, it has more variations in the vertical direction.
We show that it is monotone decreasing and that the evolutionarily stable dispersal
strategies are to maximize the function when it is positive and to minimize it when
it is negative, i.e. the evolutionarily stable strategies are to move in one direction. As
the population distribution is often positively correlated with the resource distribution,
the function F' indirectly measures the difference between the resource variations in
horizontal and vertical directions. Therefore, our results seem to predict that it is more
favorable for a species to choose the direction with smaller variation in the resource
distribution.

To explain these findings intuitively, consider a peculiar scenario in which the under-
lying habitat is a rectangular region and the resources are distributed inhomogeneously
in the horizontal direction but homogeneously in the vertical one. For such case, as
there are only spatial variations in the horizontal direction, the results of Hastings
(1983) and Dockery et al. (1998) for the evolution of slow dispersal suggest that it
might be better for the population not to move horizontally, which is in agreement with
our findings in the present paper. These considerations also suggest that we should
probably consider a broader set of dispersal strategies, e.g., strategies which allow for
condition-dependent movement (Cantrell et al. 2010; Cosner 2014; Gyllenberg et al.
2016; Kisdi et al. 2012; Lam and Lou 2014a, b; Potapov et al. 2014).

1.2 Organization of the paper

Section 2 contains the formal derivations of the mathematical models at stage and the
main results. We present numerical simulations in Sect. 3 to complement the analytical
results and to provide some intuition and insights. In Sect. 4, we discuss the stability of
semi-trivial equilibria and investigate properties of the invasion fitness. In Sect. 5, we
further study the stability of the semi-trivial equilibria and identify all evolutionarily
stable strategies. Section 6 is devoted to the classification of the global dynamics of
the two-species competition model introduced in Sect. 2. In Sect. 7, we summarize
our conclusions, and discuss possible extensions of the present work. Finally, some
technical materials are given in the Appendix.

2 The models and analytical results
2.1 Formal derivation from random walks

In this section, we will closely follow the approach in (Slover 2019). Let the habitat be
the discrete lattices of steps Ax and Ay in the full two-dimensional space R?. Assume
that each individual moves horizontally to the left and to the right with probability
g and vertically up and down with probability 1%9, with 6 in (0, 1). Let N(z, x, y)
denote the number of individuals of the population at time 7 and location (x, y) in R2.
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Then
0
N(t + At, x,y) =§ [N(t,x + Ax,y) + N(t,x — Ax, y)]
1-6
+ T[N(t,x, y+ Ay)+ N(t,x,y — Ay)].

Using Taylor series expansions, we have

N(t+ At,x,y) — N(t,x,y) (Ax)? (Ay)?
= ON. 1 —0)N,y,
At QAL xx 2At ( INyy
Ax)? Ay)?
+(At) coax) + B oy,

where O(Ax) and O(Ay) denote terms which are bounded with respect to Ax and
2 N2
Ay, respectively. Assuming that both % and % tend to some positive constant

D as the lengths of the time step Az and of the space steps Ax and Ay tend to 0, we
obtain, passing to the limit in the relation above,

Ni =D [0Nex + (1 —0)Nyy], 2.1

which is the type of anisotropic diffusion operator to be considered in the present
article.

The parameter 0 can be regarded as a dispersal strategy. Namely, when 6 = 0, the
whole population will either move north or south with probability 1/2. Similarly, when
6 = 1, the population will only move east or west. Most of previous studies assume
that individuals are randomly diffusing, i.e. they move in two orthogonal directions
with the same probability (6 = 1/2). Given arbitrarily distributed resources, is there
some particular strategy 6 in [0, 1] which can convey a competitive advantage? The
main goal of the present article is to address this question.

2.2 The single-species model

We are given two orthogonal space directions e; = (1, 0) ande; = (0, 1), sothat (x, y)
are the Cartesian coordinates in this basis. Incorporating the population dynamics into
Eq. (2.1), we arrive at the following reaction-diffusion equation:

N; = D®)Nyx + D(1 —6)Nyy + (@ — N)NinQ, 1 >0,
D(B)Nyv, 4+ D(1 —6)Nyvy =00ndQ, 1 > 0, 2.2)
N(,-,-) =Ny = 0in Q.

Here, the domain 2 is a smooth open bounded subset of R2, and we denote its
boundary by 9. We assume without any further notice that Q is strictly convex and
92 is of class C!. The unit outward normal vector to 32 is denoted by v = (vy, vy).
Thus, the map v is one-to-one and continuous from 32 to S'. The free growth rate
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a is an heterogeneous function of the space variables x and y, that is assumed to be
positive, Holder continuous and non-constant in €2.
For any 0 in [0, 1], the function D is defined by

D®):=D+(D—-D)d, 6¢€[0,1].

Note that if D = 0, D(#) = D@ is reduced to the form of diffusion considered in
equation (2.1), which is degenerate when 6 = 0. To avoid such degeneracy, we assume
in the remainder of the paper that D and D are positive constants satisfying

0<D<D.

The equation is complemented with zero flux boundary conditions, so that the num-
ber of individuals that enter the domain is equal to the number that leave. The model
is not mass conservative since individuals may reproduce according to monostable
non-linearities.

By standard regularity theory for parabolic equations and a comparison argument
(see for instance (Cantrell and Cosner 2003)), it can be shown that N is positive in Q
at all times and that N (, -, -) tends to Ny uniformly in Q as ¢ tends to infinity, where
Np, the equilibrium distribution of the population, is the unique positive steady state
of system (2.2), i.e. Ny satisfies

D(0)(Ng)xx + D(1 — 0)(Ng)yy + (@ — No)No = 01in £, 23)
(D(@)(Np)x, D(1 — 0)(Ng),) - v =0 0on 9L '
Note that if the free growth rate a is non-constant, so is the steady state Ny.

Clearly, the parameter 6 has a strong influence on Ny. As 6 increases, the single
species has a tendency to move more horizontally than vertically, which may reduce the
spatial variations of the population distribution in the horizontal direction and increase
the variations in the vertical direction. In this connection, we have the following result.

Theorem 2.1 Define, for 0 in [0, 1], the function
F©) = [ [0 = (@,)"] avay. 24)

Then F'(0) < 0 for 0in (0, 1). In particular, F is either strictly positive, strictly
negative or sign-changing exactly once in (0, 1).

The function F, which plays a critical role in later analysis, can be regarded as a
measurement of the difference between the variations of the population distribution in
horizontal and vertical directions: when F is positive, we envision that the species at
equilibrium has more spatial variations horizontally; when F is negative, it has more
variations in the vertical direction. Theorem 2.1 implies that as the species increases
the horizontal diffusion and reduces the vertical diffusion, then it tends to have more
variations in the vertical direction than in the horizontal direction.
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As the population distribution is often positively correlated with the resource distri-
bution, the function F can also be viewed as an indirect measurement of the difference
between the resource variations in the horizontal and vertical directions. Numerical
results on the shape of the function F are presented in the next section (see Fig. 1).

2.3 The two-species competition model

Given arbitrarily distributed resources across the habitat, we may regard the parameter
0 as a dispersal strategy and ask whether there is some value of the parameter which
is evolutionarily stable. To address this question, we now move to the situation where
two populations are competing for the same resources but adopt different dispersal
strategies. We thus consider the following reaction-diffusion system for two competing
species:

Uy = D(p)Urx + D(1 — p)Uyy +(a—U = V)U inQ, 1 >0,
Vi=D(@)Vir + D1 —q)Vyy+ (a—U —V)VinQ, 1 >0,

(D(p)Uy, D(1 = p)U,) -v=00n0Q, t > 0, 2.5)
(D(q)Ve, D(1 —q)Vy) -v=00n0Q, ¢ > 0,

U@©,-,)=Up=0, V(O0,-,) = Vo = 0in Q,

in which the functions U and V represent the respective population densities of two
competing species. By standard regularity theory and the maximum principle for
parabolic equations, it can be shown that U and V are positive in € at all times. The
competition for resources is neutral and independent of the dispersal strategy of the
individuals, so that the death rate is given by U + V for both populations.

We may emphasise that, since we are given two orthogonal space directions e; and
e, the problem is not rotationally invariant. As such, the two populations disperse
with their own dispersal strategies, assimilated to the respective probabilities p and g
to move in the direction e1, with p and g chosen in [0, 1]. As formally explained in
Subsection 2.1, this way of dispersing results in a diffusion coefficient given by D(p)
(resp. D(q)) in the direction ey and D(1 — p) (resp. D(1 — g)) in the direction e, for
the first (resp. second) density.

We will adopt a viewpoint from the theory of adaptive dynamics, in which an
important concept is that of evolutionarily stable strategies (ESS). A strategy is said
to be evolutionarily stable if a population using it cannot be invaded by any small
population using a different strategy. In system (2.5), p and g represent strategies for
the two populations. In terms of adaptive dynamics, we say that p in [0, 1] is an ESS
if the semi-trivial steady state (N, 0) is locally asymptotically stable for ¢ # p, with
g in [0, 1] and ¢ close to p (note here that N, is a function of x and y only).

The following result characterizes the local stability of (N, 0) for p and ¢ in
[0, 1].

Theorem 2.2 There exists some continuous function ¢ = q*(p), defined in [0, 1],
satisfying 0 < g*(p) < 1 and such that the following statements hold.
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(i) If F is positive in [0, 1], then g*(p) > p for pin (0, 1) and g*(p) = 1 for p
close to 1 such that (N, 0) is stable for p < q < q*(p), unstable when either
q > q*(p) or g < p holds. In particular, if g*(p) = 1, then (N, 0) is stable
for q > p, unstable for g < p.

(ii) If F has a unique root 6* in (0, 1), then q*(p) > p for p in [0,60%) and
q*(p) < p for pin (0%, 1], such that (Np,0) is stable for min{g*(p), p} <
q < max{qg*(p), p}, unstable when either ¢ > max{qg*(p), p} or q <
min{g*(p), p} holds.

(iii) If F is negative in [0, 1], then g*(p) < p for p in (0, 1) and g*(p) = 0 for p
close to 0 such that (N, 0) is stable for q*(p) < q < p, and unstable when
either g < q*(p) or q > p holds. In particular, if ¢*(p) = 0, then (N, 0) is
stable for g < p and unstable for g > p.

This result follows from Theorems 5.2, 5.4, and 5.6. In the next section, numerical
simulations shed some insight into the stability of (N, 0) and illustrate the conclusions
of Theorem 2.2 (see Fig. 5). Some biological intuition can also be gained from this
result, as it provides a criterion for finding the ESS of system (2.5).

Corollary 2.3 The following conclusions hold.

(i) If F is positive in [0, 1], then p = 0 is the only ESS.

(ii) If F has exactly one root 0* in (0, 1) so that F is positive in [0, 6*) and negative
in (6%, 1], then both p = 0 and p = 1 are ESS, and 6* is not evolutionarily
stable.

(iii) If F is negative in [0, 1], then p = 1 is the only ESS.

Our remaining goals include understanding the global dynamics of system (2.5).
This system possesses two semi-trivial steady states, given by (Np, 0) and (0, N),
respectively. Theorem 2.2 addresses the local stability of (N, 0) for arbitrary values
of p and g, and the stability of (0, N,) can be similarly determined. Furthermore, we
shall show that there are only three alternatives for the global dynamics of system (2.5):

(i) the state (N, 0) is globally stable;
(ii) the state (0, Ny) is globally stable;
(iii) the states (Np, 0) and (0, N, ) are both unstable, and there exists a unique positive
steady state which is globally stable.

We refer to the statements of Theorems 6.4, 6.5 and 6.6 for further details on the
characterizations of the global dynamics of system (2.5). These analytical results on
the dynamics of system (2.5), complemented by numerical simulations in the next
section for a free growth rate of the form a(x, y) = AA(x) + (1 — X)A(y), with A in
[0, 1], will help provide a more clear picture on the dynamics of system (2.5).

3 Numerical simulations
All the simulations presented here were achieved using the free and open-source soft-

ware FREEFEM (Hecht 2012). The numerical approximation of the large-time solution
to system (2.2) is based on a variational form of the problem and achieved using a
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spatial discretisation based on the finite element method, with P; Lagrange elements,
combined with an implicit-explicit IMEX) Euler scheme (see (Asher et al. 1995) for
instance) for the time-integration of the resulting ordinary differential equations. The
linear terms in the reaction-diffusion equation are then treated implicitly in time, while
the non-linear reaction term is dealt with explicitly, in order to enforce the stability of
the scheme.

The mesh used to discretise the domain €2 realised as a disk of radius 2 was com-
prised of 3916 triangles and the length of the time step used was 0.01. The chosen initial
state Ny is the constant one, with value 0.5. Once the stationarity of the approximate
solution was obtained in relative L2-norm within a prescribed tolerance of le—15, the
approximate steady state was used to compute an approximate value of F'(p) and also
for a finite element discretisation of the linear eigenvalue problem (4.1). The computa-
tion of an approximation of the smallest eigenvalue of (4.1), denoted by A(p, g), was
done with the ARPACK package. Representations of an approximation to the nodal set
of A(p, gq) for different values of A were then obtained by repeating the computation
for numerous values of the parameters p and ¢ taken in a discrete grid of the interval
[0, 1].

Note that the state (N, 0) is linearly stable when A(p, ¢) is positive, and unstable
when A(p, q) is negative. Furthermore, A(p, ¢) vanishes whenever p = ¢, i.e. the
nodal set of A(p, q) always contains the diagonal line p = ¢ in the (p, ¢) plane.

3.1 The function F

Numerical approximations of the graph of the function F in the case of a free growth
rate of the form a(x,y) = AA(x) + (1 — A)A(y) are provided in Fig. 1. For the
simulations, we considered a disk of radius 2 centered at the origin for the domain €2,
anisotropic diffusion parameters D and D respectively equal to 0.1 and 10, and the
function A(x) = 2 — sin(mwx).

It is easily seen that, for all A in [0, 1] and all € in [0, 1], the value F(0) for X is
equal to the value of —F (1 —6) for 1 — A. Due to the symmetry in the function F with
respect to A, we only plot the graph of F for different values of A between 0 and 0.5,
illustrating how the function goes from strictly negative, to sign-changing once, and
to strictly positive as A varies. As shown in Fig. 1, the function F is strictly decreasing
in 0, as predicted by Theorem 2.1.

Figures 2 and 3 present the numerical approximations of the free growth rate a and
of the steady state Ny for various values of 6 in [0, 1] and A respectively equal to 0.4 and
0.6, in the case where 2 is a disk of radius 2 centered at the origin, D = 0.1, D =10,
and A(x) = 2 — sin(;rx). For such values of A, the function does not appear more
biased in the horizontal direction than in the vertical one. Yet, one can see clearly that
the steady state shows very little variation in vertical direction for 6 = 0, but changes
as the value of the parameter 6 grows to end with very little variation in the horizontal
direction for & = 1. This illustrates how the function F' goes from being negative to
positive as 6 varies.

For the simulations in Fig. 4, we considered a disk of radius 2 centered at the origin
for the domain €2, anisotropic diffusion parameters D and D respectively equal to 0.1

@ Springer



Evolution of anisotropic diffusion in two-dimensional...

Page90f34 36

(©) =02

0 0.2 0.4 0.6 0.8 1

0
() A=04

—10

0.2 0.4 0.6 0.8 1
0
(b) x=0.1
012 0.‘4 0i6 018 1
0
d Xx=0.3

0.2

04 06 08 1
0
® x=05

Fig. 1 Numerical approximations of the graphs of the function F' for 2 taking the values 0, 0.1, 0.2, 0.3,
0.4, and 0.5, in the case where 2 is a disk of radius 2 centered at the origin, D = 0.1, D = 10, and

A(x) =2 —sin(wx)
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(b) The steady state for 6§ = 0. (¢) The steady state for § = 0.2.
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(d) The steady state for § = 0.4.
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(f) The steady state for 8 = 0.8. (&) The steady state for § = 1.

Fig. 2 Isolines for numerical approximations of the free growth rate a and of the steady state Ny for 6
taking thelalues 0,0.2,0.4,0.6,0.8, and 1, in the case where 2 is a disk of radius 2 centered at the origin,
D=0.1,D=10,2=0.4,and A(x) =2 — sin(mrx)
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Fig. 3 Isolines for numerical approximations of the free growth rate a and of the steady state Ny for 6
taking thelalues 0,0.2,0.4,0.6,0.8, and 1, in the case where 2 is a disk of radius 2 centered at the origin,
D=0.1,D =10, =0.6,and A(x) =2 — sin(;rx)
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and 10, and the function A(x) =4 — 4—1‘ x2. Fixing values of 8, we observe that F(9),
seen as a function of A, is not necessarily monotone.

3.2 Local stability of (Np, 0)

Figure 5 presents numerical approximations of the nodal sets of A(p, q) for a free
growth function of the form a(x, y) = AA(x)+ (1 —1) A(y), the choice of the problem
parameters being the same as for the graphs of F in Fig. 1.

Here, A(p, q) is positive if and only if (N, 0) is linearly stable and A(p,gq) < 0
if and only if (0, Ny) is linearly unstable. Again, for all A in [0, 1] and all (p, ¢) in
[0, 1]2, the value of A(p, g) for A is equal to the value of A(1 — p, 1 —g) for 1 — A.
Due to the symmetry of A(p, g) with respect to A, we only plot the nodal sets for
values of A between 0 and 0.5, providing a graphical illustration of how the nodal set
of A(p, g) changes as A varies, in connection with the results of Theorem 2.2 or, more
broadly, the conclusions of Theorems 5.2, 5.4, and 5.6.

Subfigure 5(a) corresponds to statement (iii) of Theorem 2.2 with ¢*(p) = 0, which
shows that (N, 0) is stable for p > g and unstable for p < ¢. In particular, p = 1is
the only ESS. In this case, the nodal set of A(p, ¢g) consists precisely of the diagonal
line ¢ = p. These conclusions are consistent with Subfigure 1(a), in which F is strictly
negative.

Subfigures 5(b) to 5(f) correspond to statement (ii) of Theorem 2.2, which shows
that (N, 0) is stable for min{g*(p), p} < g < max{g*(p), p}, unstable when either
max{q*(p), p} < qorg < min{g*(p), p}holds, and the nodal set of A(p, g) consists
of the curve ¢ = ¢*(p) and the diagonal line ¢ = p. Hence, both p = 0 and p = 1
are the only ESS. These conclusions are in accordance with Subfigures 1(b) to 1(f),
in which F' changes sign exactly once in (0, 1), from positive to negative.

3.3 Global dynamics

Figure 6 presents numerical approximations of the nodal sets of A(p, ¢) and A(q, p)
for a free growth rate of the form a(x, y) = LA(x) + (1 — A) A(y), which correspond
to the stability of semi-trivial steady states (N, 0) and (0, N,), respectively. The
domain €2 is again a disk of radius 2 centered at the origin, the anisotropic diffusion
parameters D and D are respectively equal to 0.1 and 10, but the function A is now
Ax) =4 — J—‘xz. Due to a symmetry of A(p, g) and A(g, p) with respect to A, we
only plot the nodal sets for values of A between 0 and 0.5.

For Fig. 6, in the green colored region, (N, 0) is stable and (0, N, ) is unstable. By
Theorems 6.4, 6.5 and 6.6, (N, 0) is globally stable for (p, ¢) in the green region.
Similarly, the one colored in red is the one in which (0, N,) is globally stable. The
white region is where both (N, 0) and (0, N,) are unstable, and there is a unique
positive steady state which is globally stable. The white regions for A = 0.4 and
A = 0.5 are substantially greater than those for smaller values of A. Biologically, this
suggests that if the spatial variations of the resource distribution in the vertical and
horizontal directions become more comparable, the chances for coexistence of the two
competing populations could be greater.
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Fig. 4 Numerical approximations of the graphs of F'(¢) as a function of A for 6 taking the values 0, 0.1,
0.2, 0.3, 0.4, and 0.5, in the case where €2 is a disk of radius 2 centered at the origin, D = 0.1, D = 10,

and A(x) =4 — 12
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@ x=0 (b) x=0.1
() A=0.2 d X=03

0 1 1 1 1 0 1 1 | 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

p p
&) A=04 ) Xx=05
Fig. 5 Numerical approximations of the nodal sets of A(p, g) for A taking the values 0, 0.1, 0.2, 0.3,
0.4, and 0.5, in the case where 2 is a disk of radius 2 centered at the origin, D = 0.1, D = 10, and

A(x) = 2 — sin(mrx). The subset colored in green is the one in which A(p, ¢) > 0, that is in which the
steady state (Np, 0) is linearly stable (colour figure online)
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Fig. 6 Numerical approximations of the nodal sets of A(p, g¢) and A(q. p) for A taking the values 0, 0.1,
0.2, 0.3, 0.4, and 0.5, in the case where €2 is a disk of radius 2 centered at the origin, D = 0.1, D = 10,
and A(x) =4 — ixz. The subset colored in green is the one in which A(p,q) > 0 > A(q, p), i.e. in
which (N, 0) is stable, while that colored in red is the one in which A(g, p) > 0 > A(g, p), i.e. in which
(0, Ng) is stable. The white region is where both (N, 0) and (0, Ng) are unstable
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4 Invasion fitness

In this section, we consider the stability of (N, 0), study some properties of the
invasion fitness and establish Theorem 2.1.

By the spectral theorem for compact self-adjoint operators, it can be shown that for
the linear eigenvalue problem

D(q)¢xx + D(1 — q)¢yy + (@ — Np)p + Ap = 0in Q,

(D(@)¢x. D(1 — @)py) - v = 0 on 4L, “-1

all of the eigenvalues are real and can be arranged in increasing order. Furthermore,
the smallest eigenvalue of (4.1) is simple (i.e., the eigenspace is a one-dimensional
vector space) and its corresponding eigenfunctions can be chosen positive in 2 (see
(Cantrell and Cosner 2003) and references therein). As N, is smooth with respect
to p and D(q) is smooth in g, it follows from the implicit function theorem and the
simplicity of the smallest eigenvalue that the corresponding eigenfunctions are also
smooth with respect to p and g (see (Belgacem and Cosner 1995)).

Let A := A(p, q) denote the smallest eigenvalue of (4.1). The linear stability of
(Np, 0) is determined by the sign of A, as seen in the following result.

Lemma 4.1 The semi-trivial equilibrium (N, 0) is linearly stable if A(p, q) is posi-
tive and unstable if A(p, q) is negative. Similarly, the semi-trivial equilibrium (0, N )
is linearly stable if A(q, p) is positive and unstable if A(q, p) is negative.

The proof of Lemma 4.1 is the same as that of Lemma 5.5 in (Chen et al. 2008)
and is thus omitted.

In the theory of adaptive dynamics (Dieckmann and Law 1996; Diekmann 2003;
Geritz et al. 1998), A(p, q) is termed as the invasion fitness or invasion exponent,
which can be regarded as the payoff function for the mutant phenotype with trait g,
when the resident phenotype with trait p is at the equilibrium. Namely, if A(p, q) is
positive, the mutant with trait ¢ can invade when rare; on the contrary, when A(p, q)
is negative, the mutant with trait g cannot invade when rare. We shall now give some
properties of the map (p,q) — A(p, q) that will be used later to describe more
precisely the stability of both semi-trivial steady states.

From now on, for notational ease, we will drop the dxdy in the integrals.

4.1 The selection gradient

If p = ¢q, that is when both phenotypes are identical, A(p, p) = 0 for any p in [0, 1],
both semi-trivial steady states (N, 0) and (0, N,) are neutrally stable. In this section,
we consider the stability of (N, 0) for p and ¢ sufficiently close to each other. The
following result provides a criterion in determining the sign of A(p, ¢) in such case
(see also (Slover 2019)).
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Lemma 4.2 There holds

9a|  _ (D-D

- = +——— F(p),
8q q=p _/Q (Np)2
where F is the function defined by (2.4).

Proof As the eigenspace corresponding to A(p,q) is one-dimensional, we can
normalize the positive eigenfunction ¢ associated with A(p, g) by imposing that
Jo9* = [o(Np)?, so that it is uniquely determined. As indicated earlier, ¢ is a

smooth function of p and ¢, and, for simplicity of notation, we denote g—ﬁ by ¢’.
Differentiating system (4.1) with respect to ¢, we obtain

IA
D(@)¢y, + D1 — @)y, + (@ = Np)¢' + A(p, 9)¢" + g(p, Q)¢

+(5 - Q)(@xx - (pyy) =0in Q,

(D(@)¢y + (D — D)px, D(1 = q)¢;, — (D — D)gy) - v =0 on §<.
4.2)
Multiplying the first equation in system (4.1) by ¢’, integrating by parts the result over
€2 and using the second equation in system (4.1), we have

—/Q(D(q)fpxcp; + D1 — @y + /Q(a — Np)og' + A(p,q)/gw’ =0.

Similarly, multiplying the first equation in system (4.2) by ¢, integrating by parts the
result over €2 and using the second equation in system (4.2), we obtain

- fQ (D@)9,gx + D(1 — )¢ py)
+ /Q (@a—Np)¢'¢ — (D — D) fQ ((9x)> = ()%
/ A 2
+A(p,q)/ ¢¢+8—(p,q)/ p”=0.
Q q Q

Subtracting the above two equalities then yields

oA _
0 / o> = D - D) f (@) = (9)?). @3)
q Q Q

Since A(p, p) = 0, it follows from the normalization of ¢ that ¢|,_, = N, which
completes the proof. O

In view of Lemma 4.2, it is critical to understand the sign of function F. The
following result establishes Theorem 2.1.

Lemma 4.3 Forany 0 in [0, 1], one has F'(0) < O.
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Proof For simplicity of notation, we denote % by N, Integrating by parts, one gets

F'(0) = Z/Q((Ne)x(N(S)x — (Np)y(Ng)y)
= 2/ Ng((No)x, —(Np)y) - v — 2/ Ng((No)xx — (No)yy)-
il Q

Differentiating system in (2.3) for Ny with respect to 6, we obtain

D(O)(N))xx + D(1 — 0)(N))yy + (a — 2Ng)N;
+ (D — D)((Ng)xx — (Ng)yy) = 0in Q,
(D(O)(N))x + (D — D)(Ng)x. D(1 — 0)(Nj)y — (D — D)(Ng)y) - v =0 on d.

Multiplying the first of the above equations by N, and integrating the result over €,
we find that

(D — D) fQ N ((Ng)xx — (Np)yy)
_ /Q N} [DO)(N))sx + D(1 — ) (N})yy + (@ — 2Ng)N, ]
=- /3 . N)(DO)(N})x, D(1 — 6)(Nj)y) - v
+ fg [DO)(N))* + D1 —0)((Np)y)?* — (a — 2Ng)(N})*]
= (5—2)/ N ((Ng)x, —(Ng)y) - v
Q2
+ /Q [DO)((N§)x)* + D(1 — 0)((N§)y)* — (a — 2Ng)(Ny)*1,

where the last equality follows from the boundary condition satisfied by N,. We
therefore have

2
F') = —=—"— / [DO)((N)))* + D(1 — 0)((Nf)y)* — (a — 2Ng)(N))?1.
D—-DJg

Let A1 denote the smallest eigenvalue of the linear problem

4.4)

D(O0)pxx + D(1 — 0)pyy + (a — No)p + 2o = 01in L2,
(D(@)pyx, D(1 —0)py) - v =0o0n0L.

It is well-known that A; can be characterized by the variational formula (see, e.g.,
(Courant and Hilbert 1953)[Sect. 1, Chap. VI])

2 _ 2y 2
A = inf JolD©O)(@:)” + D1 —60)(py)* — (a Ne)(p].

’ (4.5)
peH'(Q), 90 Ja®
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Using system (2.3) for Ng, we see that 0 is an eigenvalue of (4.4) with eigenfunction
Ng. As X1 is the only eigenvalue of (4.4) such that its corresponding eigenfunction
does not change sign in €2, it follows that A; = 0 and that its corresponding principal
eigenfunction is a scalar multiple of Ny. In particular, by choosing the test function
¢ = Ny in (4.5), we have that

/Q [DO)((N))x)* + D(1 — 0)((N))y)* — (@ — Ng)(Nj)*1 > 0,

which yields
F'() < —_L/ No(Nj)* < 0.
D—-DJg

This gives F' < 0, with the equality if and only if N), = 0 in Q.
Finally, if Né = 0 for some 0, then Ny satisfies

(NG)xx - (Ne)yy =0in Q,
((Ng)x, —(Ng)y) -v=00n9%Q.

This, together with the boundary condition satisfied by Ny, implies that
(Ng)xvx = (N@)yvy =0on 0L2.

According to Lemma 8.1 in the Appendix, Ny is then a positive constant function, and
it follows from the first equation in (2.3) that the free growth rate a is also constant,
contradicting an assumption made on this function. Consequently, one has F’ < 0 in
[0, 11. O

Remark 1 If we allow Lipschitz domains with flat parts on the boundary, it is possible
to construct domains such that F = 0 (and thus F’ = 0) in [0, 1] (see Subsection 8.2
in the Appendix for further details).

4.2 Concavity of A(p, q)

The following result concerns the concavity of A(p, g) with respect to g. For nota-
. . 2 .
tional ease, we write % and % as Ay, Ayq, respectively.

Lemma 4.4 Forany p in [0, 1], the function g — A(p, q) is concave in [0, 1]. More-
over, if Ay (p*, q*) = 0 for some couple (p*, q*), then Aq4q(p*, q*) < 0.

Proof Let us fix p in [0, 1]. The concavity of ¢ — A(p, q) follows from a standard
argument based on the variational characterization of A(p, ¢g), see (Ni 2011). Nev-
ertheless, we include here a proof of this result in order to facilitate the proof of the
second statement of the Lemma.
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Consider the positive eigenfunction ¢ associated with A(p,g) normalised by
Jq9* = [o(Np)?*. Differentiating (4.3) with respect to ¢ yields

Aqq(p,q)/52¢2+2Aq(p,q)A¢’¢ =2(5—Q)/Q(¢;¢x — @9y),

. . doy .
with the notations ¢’ = g_Z’ S aa‘f; ,and ¢, = a%‘ Note that the second term in the

left-hand side vanishes due to the above normalisation condition on ¢, which implies
that [, ¢'¢ = 0.

Multiplying the first equation in system (4.2) by ¢’ and integrating by parts the
result over €2 then gives

@ - D) fQ @x0, — 036}

=- /Q [D@@)? + D1 =)@} = (@ = Ny = Ap. )¢’ ]

501

where we have used the second equation in system (4.2) and the fact that fQ ¢ =0,
the inequality following from the variational characterization of A(p, g),

. Jo[P@ @) + DU = @)())* = (@ = Np)¢?]
A(p,q) = inf 3 :
PeH! (Q), 90 Jaoo
It then holds that A4, (p, g) < 0, where the equality holds if and only if the function
¢’ is a scalar multiple of ¢. Since ¢ is positive in €2, this implies that ¢’ = 0 in Q.
Thus, if Ay(p,g) = Agq(p, g) = 0, system (4.2) reduces to
@xx — @yy = 0in Q and (¢r, —¢y) - v =0 on 9.

Due to the boundary condition for ¢ in system (4.1), we further have g, vy = @yvy, =0
on 9L2. As a consequence of Lemma 8.1, the function ¢ is constant, which implies,
using the first equation in system (4.1), that the function a — N, is also constant.
Integrating over €2 the main equation in system (2.3) with 6 = p, we then obtain

/ (a—Np)N, =0,
Q
which ensures thata — N, = 0 in €, so that system (2.3) for N, reduces to

D(P)(Np)xx + D(1 = p)(Np)yy = 0in 2,
(D(p)(Np)Xv D(l - p)(Np)y) V= OOIl 89.

Finally, it follows from the maximum principle that the function N, is constant. This
contradicts the assumption of the function a being non-constant. O
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Lemma4.5 IfA(p, q) = 0 forsome couple (p, ) suchthat p #4q, then Ay(p, ) #0.

Proof We argue by contradiction. Suppose that there exists a couple (p, ¢) such that
p # q for which A(p, g) = Ay(p,g) = 0. By Lemma 4.4, one has Ay, (p, g) <0,
which implies that the function ¢ — A(p, ¢) has a local maximum point at g = g.
This contradicts the fact that A(p, p) = 0 and the concavity of A(p, g) with respect
toq. O

A consequence of Lemma 4.5 is that the nodal set of A(p, g) within the region
{(p.q) : 0 < p,q < 1} can be parameterized by a function ¢ = g(p). However,
we caution the reader that the domain of this function can be either [0, 1] or a strict
subset of it.

5 Local stability for (p, g) in [0, 1]%: nodal set of invasion fitness

We have previously considered the stability of the semi-trivial steady state (N, 0)
for p and g close to each other. In this section, we study the local stability of (N, 0)
for general p and ¢ in [0, 1]. This is equivalent to giving a description of the nodal
set of A(p, ¢g) for p and ¢ in [0, 1], and as well the sets where A (p, g) is positive or
negative.

By Lemma 4.3, the function F is strictly decreasing in [0, 1], so it suffices to
consider three generic cases: F(0) > 0 forall 6 in [0, 1], F changes sign exactly once
in (0, 1), and F(#) < O for all 6 in [0, 1].

5.1 Stability when F(8) > 0

First, we consider the case for which the function F is positive in [0, 1).

Lemma 5.1 Suppose that F(0) > 0 for all 6 in [0, 1). If 0 < p < q < 1, then the
steady state (0, Ny) is unstable. Conversely, if 0 < g < p < 1, then the steady state
(Np, 0) is unstable.

Proof We first consider the situation 0 < p < g < 1. The stability of the steady state
(0, Ny) is determined by the sign of the smallest eigenvalue, denoted by A(q, p), of
the linear eigenproblem

D(p)gxx + D(1 — p)pyy + (@ — Ny)¢ + g = 01in L,
(D(P)Qﬁxs D(l - P)QDy) sV = Oon E)Q

By the variational characterization of A(g, p) we have

Ja[D@)62 + D01 = p)g? = (@ = Ne?

Alg,p)= _ inf ;
YeH! (), 970 Joe
_ JalPP)((Ng)? + D = p)((Ng)))* = (@ = Ng)(Ng)?]

- Ja(Ng)»?
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Multiplying the main equation in system (2.3) with 6 = g by N, and integrating
by parts the result over Q2 yields

2 2
[ [P@ (40? + 201 =) (W,)? - @ = Npv?] =0
Therefore, we have, using the assumptions that p < ¢ and F > 0 in [0, 1],

_[D(p) - D@ Jo((ND? + D1 = p) — DA — @)1 [o((Ng)y)?

A(q,
(g, p) fQ(Nq)2
_ Jo((NDD? = [o(N))?
=D -D)(p—
( _)(P Q) fQ(Nq)Z
_ F(gq)
( D)(p q)/é(A@)z <

If ¢ = 1, we note that, as A(p,q) < O0for0 < p < g < 1, A(p,1) < 0. Since
A(1,1) = 0, we see by Lemma 4.5 that A(p, 1) < 0 for all 0 < p < 1. Hence, the
steady state (0, N) is unstable for0 < g < p < L.

Similarly, we can show thatif 0 < ¢ < p < 1, then (,, 0) is unstable. O

The first main result of this section is the following.

Theorem 5.2 Suppose that the function F is positive in [0, 1]. Then, there exists some
positive, continuous function g = q*(p), defined in [0, 1], satisfying p < q*(p) < 1
forall pin [0, 1] and g*(p) = 1 for p close to 1, such that

(i) A(p,q) >0for0<p<gq<qg*(p),

(ii) A(p,q) <O when either g*(p) <q <1or0<qg < p <1 holds.
In particular, if ¢*(p) = 1, then A(p,q) > O0for p < g <1 and A(p,q) < O for
0<g<p.

Proof Since A(p, p) = Oforall pin[0, 1]and F is positive in [0, 1], there exists some
positive real number § such that A(p, g) > Ofor pand g in [0, 1Jwith0 < g —p < 4.

Given any p in [0, 1], if A(p, 1) < 0, by Lemma 4.4 and the positivity of A(p, q)
in the strip 0 < g — p < §, there exists a unique ¢* = ¢*(p) in (p, 1) such that
A(p,g*) =0, A(p,q) > Ofor p < ¢ < ¢* and A(p,q) < O for g > g*. If
A(p,1) > 0, we define g*(p) = 1. Again by Lemma 4.4, A(p, g) > 0 holds for
p < g < q* = 1. This establishes statements (i) and (ii).

To show that ¢ = g™ (p) is a continuous curve, suppose that A(p, g) = 0 for some
P < g < 1. By Lemma 4.5, there exists a smooth curve ¢ = ¢**(p) passing through
(p, ¢) and such that A(p, ¢**(p)) = 0, which can be extended to the left and to right
until it reaches either p = 0 or ¢ = 1, as, by the choice of §, ¢ = ¢**(p) and its
extension can never enter the strip 0 < g — p < §. For each p, there exists at most
one g > p such that A(p, q) = 0.

Hence, ¢** = g* as long as these functions are strictly less than 1. Therefore, ¢*
defines a continuous curve on [0, 1]. By the choice of §, we see that ¢*(p) = 1 for p
close to 1. O
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Similarly to Theorem 5.2, the local stability of the semi-trivial steady state (0, N,)
can be determined as follows.

Theorem 5.3 Suppose that the function F is positive in [0, 1]. Then, there exists some
positive, continuous function p = p*(q), defined in [0, 1], satisfying g < p*(q) <1
forqin|0, 1]and p*(q) = 1forq closeto 1, suchthat A(q, p) > Oforq < p < p*(q)
and A(q, p) < 0 when either p*(q) < p < 1 orq < p holds.

The proof being the same as that for Theorem 5.2, we omit it.

5.2 Stability when F(8) < 0

Next, we consider the case for which the function F is negative in [0, 1]. This case is
similar to the previous one, so that we may state the following results without proof.

Theorem 5.4 Suppose that the function F is negative in [0, 1]. Then, there exists a
positive continuous function ¢ = q*(p), defined in [0, 1], satisfying 0 < ¢*(p) < p
for p in [0, 1] and g*(p) = 0 for p close to 0 such that

(i) A(p,q) >0forq*(p) <qg <p=<1,
(ii) A(p,q) < 0 for when either 0 < q < q*(p) or0 < p < g < 1 holds.

In particular, if ¢*(p) = 0, then A(p, q) > 0forq < p and A(p,q) < 0forq > p.

Theorem 5.5 Suppose that the function F is negative in [0, 1]. Then, there exists a
positive continuous function p = p*(q), defined in [0, 1], satisfying p*(q) < q for g
in [0, 1] and p*(q) = 0 for q close to 0, such that A(q, p) > 0 for p*(q) < p < q
and A(q, p) < 0 when either 0 < p < p*(q) or q < p holds.

5.3 Stability when F changes sign once

We finally consider the case for which the function F possesses a unique root in (0, 1),
denoted by 6*. This function being decreasing, this implies that it is positive in [0, 8*)
and negative in (6%, 1].

Theorem 5.6 Suppose that the function F has a unique root 6* in (0, 1). Then,
there exists a positive continuous function g = q*(p), defined in [0, 1], satisfying
p <q*(p) <1forpin|0,0%) and 0 < q*(p) < p for p in (0*, 1], such that

(i) A(p,q) > Ofor pin|0, 1] and min{g*(p), p} < q < max{g*(p), p},
(ii) A(p,q) < Ofor pin[0,1] and either max{g™(p), p} < g <1
or 0 < g < min{g*(p), p} holds.

Proof Since A(p, p) = Oforall pin [0, 1]and F changes sign exactly once at some 6*
in (0, 1), it follows from Lemma 4.4 and the implicit function theorem that there exist
both a smooth curve ¢ = ¢*(p), which passes through (6*, 6*), such that ¢*(p) > p
for p less than and close to 6*, and ¢*(p) < p for p greater than and close to 6*, and
a positive real number §, such that A(p, ¢g) = 0 in the stripe |¢ — p| < § if and only
if either ¢ = p or g = ¢*(p).
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Using Lemma 4.5, we can extend the curve g = ¢*(p) to the left until it reaches
either p = 0 or ¢ = 1. Note that we can choose § so small that this extension can
never re-enter the strip 0 < g — p < § once it leaves it. If it first reaches ¢ = 1 at some
p = p in (0, 6*), one can proceed as in the proof of Theorem 5.2 to define ¢*(p) for
p in [0, 6*) and show that ¢ = ¢*(p) is a continuous curve. If it never attains ¢ = 1,
note that it can only intersect the line ¢ = p at g = p = 6*, thus it can be defined at
p = 01in such a way that p < g*(p) < 1 for p in (0, 6*). From Lemma 4.5 and the
implicit function theorem, the curve ¢ = ¢*(p) is smooth in this scenario. Similarly,
one can extend ¢*(p) to [6*, 1] as a continuous curve.

These arguments also show that the nodal set of A(p, ¢g) is contained in the line
g = p and the curve g = g*(p), so that the conclusions in (i) and (ii) hold. O

Similarly to Theorem 5.6, the local stability of (0, N,) can be determined as follows.

Theorem 5.7 Suppose that the equation F = 0 has a unique root, denoted by 0%, in
(0, 1). Then, there exists some positive, continuous function p = p*(q), defined in
[0, 1], satisfying g < p*(q) < 1 for qin[0, 6*) and 0 < p*(q) < q for qin (6%, 1],
such that

(i) A(g, p) > Oforq inl0, 1] and min{p*(q), g} < p < max{p*(q), q},
(ii) A(g, p) < O for q in [0, 1], and either max{p*(q),q} < p <lor0 < p <
min{p*(q), q} holds.

The proof being the same as that for Theorem 5.6, we omit it.

5.4 Proofs of Theorem 2.2 and Corollary 2.3

We are now in a position to prove some of the main results of the paper. Theorem 2.2
follows from Theorems 5.2, 5.4, and 5.6.

Proof of Corollary 2.3 1f the function F is positive in [0, 1], statement (i) follows from
Theorem 5.2. If F > 0in [0, 1) with F(1) = 0, we can apply Lemma 5.1 to conclude
that p = 1 is an evolutionarily singular strategy but not an evolutionarily stable one,
and p = 0 is thus the only ESS. Statement (ii) can be proved similarly. Finally,
statement (iii) is a direct consequence of Theorem 5.6. O

Remark2 While the function F plays a critical role in the analysis provided in the
current section, it appears that it only captures some partial information on A(p, q)
and cannot possibly determine entirely the nodal set of A(p, q). For instance, even the
sign of A (0, 1) cannot be resolved using only the function F, as it depends on a, D and
D in delicate manners. As an example, assume that a(x, y) = LAA(x) + (1 — L) A(y),
where A belongs to [0, 1) and A attains a strict global maximum. Then, for large D,
choosing D sufficiently small, A (0, 1) < 0. However, for such choices of a, D and D,
the function F' changes from negative to sign-changing and to positive as A varies from
0to 1. Werefer the interested readers to the online supplement for further discussions.
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6 Full dynamics of the two-species model
6.1 Local stability of semi-trivial steady states

In this subsection, we investigate further the local stability of both semi-trivial steady
states (N, 0) and (0, N,), for general p and ¢ in [0, 1].
The next result shows that the states (N, 0) and (0, N,) cannot be simultaneously
stable, i.e. bistability cannot occur.
Lemma 6.1 The following assertions hold for any p and q in [0, 1].
(i) If A(p,q) > 0O, then A(q, p) <O.
(ii) If A(p, q) = 0, then either p = q or A(q, p) < O.

Proof 1t follows from the variational characterization of A(p, ¢) that

Jo [D@(@)* + D(1 — q)(py)* — (a — Np)¢?]

A(p,q) = inf 3
peH (). g£0 Joo
5 Jo[D@((N)? 4+ D(1 — q)((Ng)y)* — (a — Np)(Ng)?]

Ja V2
_ Jop = Np(Ny)?
Ja N,

where the last equality follows from the equation of Ny. If A(p, g) > 0, then

1/3 2/3
/ N,)? < / Ny(Ng) < ( / (Np)3> ( / (Nq)3> ,
Q Q Q Q

which implies that
[ < [ v
Q Q

If we assume that A(g, p) > 0, we have, by the same argument as above,

2/3 1/3
/ (N,)® < / (NN, < ( f (Np>3> ( / (Nq>3) ,
Q Q Q Q

from which we get
[ = [ @,
Q Q

which is a contradiction. Hence, statement (i) holds.
If A(p, g) = 0, following the same argument as above, we see that A(g, p) < 0.
If A(g, p) =0, the only possibility is that N, = N, thatis p = g, which proves (ii).
O

I
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To describe the global dynamics of the two-species model, we first introduce the
sets

Ty :={(p,q) €[0,1]°: A(p,q) = 0},
Ty :={(p,q) €l0,1]*: A(q, p) = 0}.

Clearly, I'y and I'; correspond respectively to the situations when (N, 0) and (0, N,)
are neutrally stable. Therefore, we have, by Theorems 5.2 to 5.7,

I ={(p.q) €l0,11*: g = porqg=q*(p),
T2 ={(p,q) €[0,11*: p=gqorp=p @)

Next, we define the sets

21 ={(p,q) €10, 117 : A(p,q) > 0 > A(q, p)},
Sy ={(p.q) €[0, 117 : A(p.q) <0 < A(q. )},
5 ={(p,q) €0, 11° : A(p,q) <0, Ag, p) <O}.

The sets X; (i = 1, 2, 3) are disjoint and
1UX, U3 =1[0,1] x [0, 1]/(T"; UT, UT3).
Theorem 6.2 The following characterizations hold:

1 ={(p,q) €[0,11x[0,11: (g —g*(p))(g — p) <0},
¥ ={(p,q) €[0,1]1 x[0,1]: (p — p*(g))(p —q) < 0},
23 ={(p,q) €[0,11 x[0,1]: (¢ — g™ (p))(p — p*(g)) < 0}.

Proof By Lemma 6.1, one has

X1 ={(p,q) €1[0,1] x [0, 1] : A(p,q) > 0}.

It then follows from Theorems 5.2, 5.3 and 5.4 that ¥; is determined by (¢ —
q*(p))(g — p) < 0. The proof for the characterization of X, is similar and thus
skipped. From the new characterizations for ¥ and X, it follows that (p, g) belongs
to X3 if and only if (¢ — ¢*)(¢ — p) > O and (p — p*)(p — g) > 0, which amounts
to (g —q*(p))(p — p*(g)) <O. m

6.2 Stability of positive steady states of system (2.5)
The following result shows that any positive steady state of system (2.5) is asymptot-

ically stable. It is essentially due to He and Ni (2016). For the sake of completeness,
we have included here a slightly different demonstration of this result.
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Lemma 6.3 Suppose that the free growth rate a is non-constant and that p is not equal
to q. Then, any positive steady state of system (2.5) is linearly stable and thus locally
asymptotically stable.

Proof Let (U, V) denote any positive steady state of system (2.5), i.e.

D(p)Usx + D = p)Uyy +(@a—U—-V)U =0 inQ,
D@Vix +D(1—q)Vyy+(a—U—-V)V=0 inQ,
(D(p)Uyx, D(1 = p)Uy) -v = (D(q)Vy, D(1 —q)Vy) - v =00n 9.

The linear stability of this state is determined by the sign of the principal eigenvalue
X1 of the linear problem

D(p)gxx + D(1 — p)pyy + (@ —2U — V)p — ¢V + 119 =0in Q,
D(@)Yxx + DA — Yy — U@+ (a—U =2V)¥ + 11y =0in Q,
(D(p)ex, D(1 — p)gpy) - v =00n9<,
(D(q@)¥x, D(1 —q)¢y) - v =00n0%Q.

It is known (Cantrell and Cosner 2003; Smith 1995) that we may choose ¢ > 0
andy <0in . Set W = ¢/U and Z = —y/V so that W and Z are both positive in
2 and satisfy

D(p)(U*Wy)x + D(1 — p)(U>Wy)y — UW + U*VZ + 1 U?W = 0in Q,
D(@)(V2Zy)x + DA —q)(VZy)y + UVZW = V3Z + 0 V?*Z =0in Q,
(D(p)Wx, DA — p)Wy) - v =(D(q)Zx, D(1 —q)Zy) - v =0o0n 9.

Multiplying the first line of this system by W? and integrating the result over €2 yields
f [D(p)UZW(Wx)Z +D(1 = pURWWy)2 + UW)? — UW)(VZ) — MUZWﬂ —0.
Q

Similarly, multiplying the second line of the system by Z2 and integrating the result
over €2, we find that

Jo[D@V?Z(ZHx + DA — @)V Zy(ZP)y + (VZ)} — UW)(VZ)* — M V2Z3] =0.

It suffices to show A; > 0. We argue by contradiction by assuming that A; < 0.
Then, one has

/(UW)3 5/(UW)2(VZ), 6.1)
Q Q
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and the equality in (6.1) holds if and only if A1 = 0, W is a positive constant, and U W
is a positive scalar multiple of V Z. Similarly, if A; < 0, one has

/(VZ)3 gf(UW)(VZ)z, 6.2)
Q Q

and the equality in (6.2) holds if and only if A} = 0, Z is a positive constant, and U W
is a positive scalar multiple of V Z. Finally, it follows from the Holder inequality that

2/3 1/3
f Wy < ( / (UW>3) ( / <VZ)3) 63)
Q Q Q

2/3 1/3
/ 2y < ( / (VZ>3) ( f <UW>3) , 64)
Q Q Q

from which we see that inequalities (6.1), (6.2), (6.3) and (6.4) must all be equalities.
As a consequence, A is zero, both W and Z are positive constants, and UW is a
positive scalar multiple of VZ, i.e. U = ¢V for some positive constant c. Therefore,
U satisfies

and

D(p)Usx + D(1 = p)Uyy + (@ — (c+ HDU)U =0 in L,
D(@)Usx + D(1 — )Uyy + (@ — (c + DU)U =0 inQ,
(D(p)Ux, D(1 = p)Uy) - v = (D(q)Ux, D(1 —q)Uy) - v = 0 on 9%2.

Hence, we find that U = N,/(c +1) and U = N,/(c + 1), which implies that
N, = N,. As the function a is non-constant, so is N,. Since p # ¢, by subtracting
the equations of the systems respectively satisfied by N, and N, we see that N, is
a solution to system (8.1) and is therefore a non-constant function, which contradicts
the assumption. O

6.3 Global dynamics of system (2.5)

As the two-species competition model (2.5) is strongly monotone, its global dynamics
can be fully determined by the local stability of its equilibria in some cases (see (Hess
1991, Chapter IV) for instance). Let us recall below some known facts.

(a) Ifthereis no positive steady state, then one of the semi-trivial equilibria is unstable
and the other is globally asymptotically stable among non-negative and non-
identically zero initial data.

(b) If there is a unique positive steady state and it is stable, then it is globally asymp-
totically stable.

(c) If all positive steady states are asymptotically stable, then there is at most one of
them. In particular, either (a) or (b) applies.

We are now ready to infer on the global stability of steady states.
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Theorem 6.4 Suppose that the function F is positive in [0, 1] and let p* and q* be the
functions introduced in Theorems 5.2 and 5.3, respectively. Then, one of the following
statements holds.

(i) If p < q < q*, then the steady state (N, 0) is globally asymptotically stable.
(ii) If g < p < p*, then the steady state (0, Ny) is globally asymptotically stable.
(iii) Ifeitherq* < q < lorp* < p < 1 holds, then system (2.5) has a unique positive
steady state, which is also globally asymptotically stable among non-negative
and not identically zero initial data.

Proof We first establish statement (i). By Theorem 6.2, we see that under assumption
that p belongsto[0, 1] and p < g < g*, A(p,q) > 0 > A(g, p). Hence, (N, 0) is
stable and (0, N,) is unstable. As system (2.5) is strongly monotone, by Lemma 6.3
and statements (a) and (c), (N, 0) is globally stable.

The proof of statement (ii) is similar to that of statement (i) and thus omitted.

For statement (iii), A(p,¢q) < 0 and A(g, p) < 0. Hence, both states (N, 0)
and (0, N,) are unstable. As system (2.5) is strongly monotone, by Lemma 6.3 and
statements (b) and (c) recalled above, there is a unique positive steady state which is
globally asymptotically stable. O

Note that p* = 1 if and only if ¢* = 1. For such a scenario, alternative (iii) in
Theorem 6.4 does not occur, the state (N, 0) is globally stable when ¢ > p and the
state (0, Ny) is globally stable when g < p.

Similar to Theorem 6.4, if F < 01in [0, 1], the global dynamics of system (2.5) can
be characterized as follows.

Theorem 6.5 Suppose that the function F is negative in [0, 1] and let p* and g* be the
functions introduced in Theorems 5.4 and 5.5, respectively. Then, one of the following
statements holds.

(i) If ¢* < q < p, then the steady state (N, 0) is globally asymptotically stable.
(ii) If p* < p < q, then the steady state (0, Ny) is globally asymptotically stable.
(iii) If either 0 < g < q*(p) or 0 < p < p*(q) holds, then system (2.5) has a
unique positive steady state, which is also globally asymptotically stable among
non-negative and not identically zero initial data.

If the function F changes sign in (0, 1), the global dynamics of system (2.5) is
given by the following result.

Theorem 6.6 Suppose that the function F changes sign in (0, 1) and let p = p*(q)
and q = q*(p) be the functions given in Theorems 5.6 and 5.7. Then, one of the
following alternatives holds.

(i) If (g — q¢*)(p — p*) < 0O, then system (2.5) has a unique positive steady state,
which is also globally asymptotically stable among non-negative and not iden-
tically zero initial data.

(ii) If (g —q*)(q — p) < O, then the steady state (N, 0) is globally asymptotically
stable.

(iii) If (9 — q*)(g — p) < O, then the steady state (0, Ny) is globally asymptotically
stable.
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The proof of Theorem 6.6 is the same as that of Theorem 6.4 and follows from
Theorem 6.2 and Lemma 6.3.

7 Discussion

In this paper, we considered a reaction-diffusion model for two competing populations,
which disperse in a bounded two dimensional habitat by moving horizontally and
vertically with different probabilities but are otherwise identical. We regard these
probabilities as dispersal strategies and ask what strategies are evolutionarily stable.

Our main finding is that the only evolutionarily stable dispersal strategies are
to move in one direction. In particular, when the resources are distributed inho-
mogeneously only in one direction, e.g., horizontally, our result implies that the
evolutionarily stable strategy could simply be to move in the vertical direction, in
which the resources are homogeneously distributed.

We introduced a function F' of the dispersal probability, which measures the dif-
ference between the spatial variations of the population equilibrium distributions in
horizontal and vertical directions: when it is positive, the species has more variations
in the horizontal direction; when it is negative, it has more variations in the vertical
direction. We show that function F is monotone decreasing and that the evolutionarily
stable dispersal strategies are to maximize the function F when it is positive and to
minimize it when it is negative. As the population distribution at equilibrium is often
positively correlated with the resource distribution, function F also indirectly measures
the difference between the resource variations in horizontal and vertical directions.
Therefore, our results seem to predict that it is more favorable for the species to choose
the direction with smaller spatial variations in resource distributions.

This finding seems to be in agreement with the classical results of Hastings (1983)
and Dockery et al. (1998) for the evolution of slow dispersal, i.e., random diffusion is
selected against in spatially heterogeneous and temporally constant environments.

We further investigated the local and global dynamics of the two-species system
and determined the dynamics of system (2.5) for three different cases of the selection
gradient. We used numerical simulations to illustrate how the shapes of function F, the
local stability of the semi-trivial steady states and the global dynamics of the system
sequentially change with respect to a certain parameter which measures the difference
between the resource variations in the horizontal and vertical directions. Our numerical
results suggest that if the spatial variations of resource distributions in vertical and
horizontal directions become more comparable, the chances for coexistence of two
competing populations could be greater.

While our findings support that smaller diffusion rate is favoured in spatially vary-
ing but temporally constant environment, our study also reveals that, in the context
of anisotropic diffusion, random diffusion, which is often adopted in the older studies
and assumes that the transition probabilities in all directions are equal, is not an ESS.
Instead, the ESS are to move either vertically or horizontally in two dimensional habi-
tats. Biologically, our results seem to suggest that if organisms are forced to move,
anisotropic diffusion could provide more options than random diffusion for the popu-
lations to better match the available resources and coexistence is also more likely. To
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be more specific, when the resource variations in the horizontal and vertical directions
are quite different, then the preferred strategy is to solely move in the direction with
less variation in resource distribution. In contrast, if the resource variations in both
directions are comparable, anisotropic diffusion provides an interesting mechanism
for the coexistence of two competing populations, with one population moving in the
horizontal direction and the other in the vertical direction.

There has been little use of anisotropic diffusion in mathematical models in ecology.
A well studied natural system with anisotropic diffusion is the movement of wolves in
areas of Canada where seismic lines are found (Dickie et al. 2017; Hillen and Painter
2013; McKenzie et al. 2012). However, there, the wolves benefit from using the seismic
lines to diffuse faster than they could otherwise, allowing them to search larger areas
to find prey. The observed behaviour is thus in a sense opposite to the conclusions
of the present paper. This is not entirely surprising because search for mobile prey is
different from exploitation of static resources, which is the setting we considered in
this paper. It will be of interest and importance to incorporate the resource dynamics
and reexamine the evolution of anisotropic diffusion in such more biologically realistic
settings.

Some of our future works are to extend the mathematical modelling and analysis to
any dimensional habitats, to continuous trait models, and to the following reaction-
diffusion equation in divergence form:

N, =V.-(DVN)+(a—N)NinQ, ¢t >0,
v-(DVN)=00nd<, t > 0,
N(©,-,) =Ny = 0inQ,

where ID is a symmetric tensor.

Another future work will be to include a temporal variation of the environment and
ask how it affects the evolution of horizontal and vertical movement. For example, if
we choose a(t, x,y) = AA(x) + (1 — A)B(t, y), a natural question is when vertical
movement will be selected as in (Hutson et al. 2001).

Acknowledgements We thank Professor Yoshikazu Giga for the helpful discussions which motivated the
study of anisotropic diffusion. We sincerely thank the referees for their suggestions which helped to improve
the manuscript. We are also very grateful to Maxime Chupin for his assistance with the post-processing of
the numerical simulations.

8 Appendix
8.1 Some remarks on solutions to a wave equation
In the proofs of Lemmas 4.3 and 4.4, the following result, which seems to be of self

interest, plays an important role in eliminating the degeneracy of the function F and
in establishing the strict concavity of the function A(p, g) with respect to g.
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Lemma 8.1 Let W in C%(2) N C'(Q) be a solution to the system

Wy — Wy = 0in Q, .
Wyvy = Wyvy =0 0n 3Q. '

Then, the function W is constant.

Proof By the strict convexity assumption on the domain, the components v, and v, of
the outward normal vector v are non-zero on the boundary 92, except possibly over a
set of measure zero. Hence, W, and W), both vanish almost everywhere on d€2. Since
W belongs to C! (), the gradient VW vanishes on 9.

Setn=x+y,. =x—yand Z(n, ¢) := W(x, y). The function Z then satisfies

Zy=0inQ" and (Z,,Z;)=(0,0)0ndQ,

where Q’ is the image of Q2 under the map (x, y) +> (1, ¢). It follows from the first
relation that Z(n, ¢) = f(n) + g(¢) for some functions f and g, and the second one
then implies that both f and g have to be constant functions. As a consequence, Z is
a constant function, and so is W. O

It is possible to construct domains such that problem (8.1) admits non-constant
solutions, if we allow Lipschitz domains with flat parts on their boundaries.

Example 1 Consider 2 = (0, 1) x (0, 1) and let f be an even and 2-periodic function
inR. Set W(x, y) = f(x+y)+ f(x —y), which then clearly satisfies problem (8.1),
and is a positive non-constant function if f is taken positive and non-constant.

On the other hand, the type of domain given in the above example seems to be
non-generic, as illustrated by the following result.

Lemma 8.2 Suppose that 2 = (0, L1) x (0, L) for some positive numbers Ly and
L. If L1/ L7 is not a rational number, then problem (8.1) has only constant solutions.

Proof For any W satisfying problem (8.1), we have W(x, y) = f(x +y) + f(x —y)
for some scalar function f and then Wy, = f'(x+y)+ f'(x —y). Since W, (0, y) = 0,
we have f'(y) = —f/(—y),i.e. f"is an odd function. Since W, (L, y) = 0, we have
FO+LD)=—f(Li—y) = f'(y = L), ie. f is 2Ly-periodic.

Similarly, one has Wy = f’(x +y) — f'(x — y). Note that Wy (x, 0) = 0 automat-
ically holds. By Wy (x, Ly) = 0, we have f'(x + L) = f'(x — L»), thatis f” is also
2L;-periodic. Hence, if L1/L; is not rational, then f’ must be a constant function.
Since f is an odd function, then f/ = 0, that is W is a constant function. O

8.2 A remark about a possible degeneracy induced by the domain Q
Throughout the paper, we have assumed that €2 is a strictly convex domain. We now

comment on this point, showing with a very basic example that a domain with flat
parts on its boundary may lead to a degeneracy of the function F.
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Consider 2 = (0, 1) x (0, 1) and let f and D be given as in Example 1. Setting

Wxx
+ Wa
w

a:=—(D + D)

it is easy to check that, for each 6 in [0, 1], W also solves (2.3), that is Ng = W for
each 6 in [0, 1]. Since the function W is non-constant, the free growth rate a is also
non-constant. Furthermore, for each value of p and ¢ in [0, 1], problem (2.5) has a
continuum of positive steady states of the form (U, V) = (sW, (1 — s)W), with s
in (0, 1). Moreover, in this case, F = 0 in [0, 1], even though the function a is not
constant. Indeed, since f is even, we have W(x, y) = W(y, x), which implies that
F=0in][0,1].
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