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Abstract: Unmanned aerial vehicle (UAV) imagery has recently emerged as a promising alternative for operational condition inspection and
postdisaster damage assessment of civil structures (e.g., bridges and buildings). However, the use of such sensing techniques for quantitatively
tracking the subtle (centimeter-level) variations of the responses of structures has been limited. This is largely due to the difficulties related to
obtaining accurate locationmeasurements of the cameras aboard small UAVplatforms. To address this research gap, we propose a video analysis
methodology for tracking the displacement response of buildings subject to dynamic loads using camera-equipped UAV platforms. The move-
ment of the image sensor on-board the UAV platform is corrected to allow image-by-image natural feature detection and tracking. In this meth-
odology, the image processing procedure does not rely on the camera position and orientation. As such, the approach first corrects for image
distortion introduced by UAV drift and subsequently extracts the dynamic displacements of the building by tracking its natural features at the
pixel level. Motion-tracking errors are investigated by analyzing the building displacements using pre- and postevent videos. The proposed
methodology is validated by monitoring the dynamic response of a full-scale building during a shake table test program. Uniquely, global
positioning system (GPS) displacement measurements are independently utilized to validate the proposed UAV video-based method and assess
its effectiveness for capturing the dynamic responses of full-scale structureswith a level of precision that is sufficient for engineering applications
(less than 2 cm root-mean-square errors). DOI: 10.1061/(ASCE)CP.1943-5487.0000928. © 2020 American Society of Civil Engineers.

Author keywords: Feature detection; Motion tracking; Photogrammetry; Shake table tests; Unmanned aerial vehicles; Vision-based
sensing.

Introduction

Vision-based monitoring systems have attracted significant re-
search attention among civil engineers for the past few decades as
a cost-effective and nonintrusive sensing technique. Imagery data
collected using such sensing systems have been applied to detect
structural surface damage and defects (e.g., Abdel-Qader et al.
2003; Hutchinson and Chen 2006; Koch et al. 2012; Torok et al.
2013; Yeum and Dyke 2015; Gao and Mosalam 2018) and to

track structural responses under dynamic loading environments
(e.g., Wahbeh et al. 2003; Hutchinson and Kuester 2004; Lee and
Shinozuka 2006; Fukuda et al. 2010; Yoon et al. 2016). The recent
availability of commercial unmanned aerial vehicle (UAV) plat-
forms with on-board cameras offers even more flexibility and
mobility for image data collection. These camera-equipped air-
borne platforms are particularly useful when access to camera views
is difficult or even impossible for ground-based image sensors
(e.g., building roofs or the underside of bridge decks). Recent
applications of UAV imagery involve operational condition inspec-
tion of civil structures (e.g., Morgenthal and Hallermann 2014;
Ellenberg et al. 2016; Yoon et al. 2017; Reagan et al. 2018) as well
as postdisaster assessment of structural damage and geohazards
(e.g., Meyer et al. 2015; Franke et al. 2016; Dominici et al. 2017;
Wood et al. 2017).

Despite the extensive research efforts on UAV vision-based
monitoring of civil structures, the application of such sensing tech-
niques for quantitatively tracking the subtle (centimeter-level) var-
iations of dynamic structural responses has been limited. Unlike
ground-based cameras that remain essentially stationary, UAV-
mounted cameras are subjected to the ego-motion (colloquially
referred to as drift) of the UAVs during flight operations. Although
advanced positioning techniques (e.g., real-time kinematic and
postprocessing kinematic) may provide high-precision (centimeter-
level) flight position data, these techniques are not implemented by
the majority of small commercial UAV platforms. As a result, a lack
of precise position information for the UAVs and the movement
of the on-board cameras during navigation and hold, which are
often mounted on gimbals, pose major challenges to obtaining ac-
curate structural responses from aerial imagery. In a recent study,
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Yoon et al. (2018) proposed a UAV-based structural displacement
monitoring method and validated their results using small-scale
prototype structure experiments. In their method, the on-board
camera motion was resolved with the placement of background
reference objects (in this case checkerboards). However, the con-
ditions used for recovering the camera motion (e.g., controlled in-
door laboratory environment, close camera-to-scene distance, and
the presence of reference objects) may not be feasible for structural
monitoring applications in the field. Therefore, there is a strong
need to develop methodologies for UAV-based motion tracking
specific to capturing dynamic structural responses without the need
to recover the camera (or UAV) motion information and to evaluate
the benefits and limitations of such motion-tracking methodologies.

To this end, a UAV-based video analysis methodology is pro-
posed. Its reliability is assessed using data collected from a full-scale
building tested in a controlled setting atop an outdoor shake table.
The test building was subjected to a sequence of earthquake input
motions using the Large High Performance Outdoor Shake Table
(LHPOST) experimental facility at the University of California,
San Diego (UCSD) (Wang et al. 2016, 2018). During the simulated
earthquake tests, the building responses were monitored using con-
ventional attached analog sensors, including accelerometers and dis-
placement transducers as well as global positioning systems (GPS) at
the roof level. In addition, point cloud data of the test site and the test
building was collected using a light and ranging detection (LiDAR)
scanner prior to the test phase in an effort to provide reliable and
accurate geometric information of the test site and the test building
in its baseline condition.

Facilitated by an outdoor test environment, multiple UAVs were
employed to record aerial and elevation-view videos of the building
during theseearthquaketests.While thisplatformhasabuilt-ingimbal
to stabilize video recordings, three primary issues preclude accurate
displacement measurement from individual video frames: (1) image
distortion due to the camera lens (e.g., straight lines appear curved
due to the lens curvature), (2)UAVdrift-induced imagemisalignment
with respect to the ground over the duration of an individual earth-
quake test, and (3) nonorthogonal camera orientation that introduces
perspective distortion to individual video frames (e.g., parallel lines
appear to converge). Analog sensor and GPS measurements from
these tests provide a unique dataset for comparison with UAV-
collected video to assess the proposed tracking methodology.

In the proposed UAV-based video analysis methodology, the im-
age distortion caused by the camera lens and drift of the UAVs is first
corrected on a frame-by-frame basis; subsequently, the undistorted
images are used for motion tracking of the building using natural fea-
tures at the pixel level. The methodology is evaluated by investigat-
ing the characteristics of motion-tracking errors. Motion-tracking
errors are assessed by analyzing the building displacements extracted
from pre- or postevent videos in an effort to further correct the video
analysis results during the earthquake shaking. Comparison of the
video-based results with GPSmeasurements demonstrates the effec-
tiveness of the proposed UAV-based methodology for successfully
quantifying the dynamic responses of full-scale buildings. Uniquely,
without relying on the position of UAVon-board cameras, the video
analysis results achieve a high level of precision (<2 cm), which is
considered acceptable for many structural engineering applications.

Full-Scale Building Shake Table Test Program Used
for Methodology Validation

Successful implementation of the proposed video analysis meth-
odology is based on UAV videos and other datasets (e.g., GPS
measurements, LiDAR point cloud) collected during a full-scale

building shake table test program. As such, this section provides
first an overview of the test building and its test protocol. In addi-
tion, the UAV video monitoring plan utilized during the earthquake
tests and the auxiliary datasets used for video analysis are de-
scribed. Information presented in this section facilitates the under-
standing of the proposed UAV-based video analysis methodology
discussed later.

Overview of Test Program

Constructed with a structural system entirely using cold-formed steel
(CFS), the six-story test building was designed to emulate a midrise
residential dwelling with structural shear walls and floor diaphragms
framed of CFS members (e.g., studs and joists) and sheathed by steel
sheet material. The exterior of the building was clad in fire-resistant
gypsum board with window openings as might be utilized in conven-
tional multifamily architecture. The building was assumed to be lo-
cated in a high seismic region near downtown Los Angeles, with its
design basis complying with current code provisions (AISI 2007,
2012; ASCE 2010). As shown in Fig. 1, the test building had a uni-
form plan dimension of 10.4 × 7.3 m, occupying almost the entire
12.2 × 7.6-m shake table footprint. The floor-to-floor height of the
building was 3.05 m for all six stories, resulting in a total height of
18.3 m of the roof above the ground level. The total weight of the
building was ∼1,160 kN, resulting in a fundamental period of
approximately 0.3 s in the longitudinal (shaking) direction under
its initial (undamaged) condition (Wang and Hutchinson 2020).
Additional details regarding the building design and expected seis-
mic performance may be found in Wang et al. (2016, 2018).

The test protocol imposed on this building consisted of a se-
quence of earthquake and live fire tests in three sequential phases.
During the first (prefire) earthquake test phase, the building was
subjected to seven earthquake motions of increasing intensity: serv-
iceability, design, and maximum considered earthquake (MCE) tar-
get scaled (refer to Table 1 for details). Subsequently, a total of six
live fire tests were conducted on the earthquake-damaged building
at Levels 2 and 6. The test program concluded with two postfire
earthquake tests (serviceability followed by MCE). It is noted that
all earthquake input motions were applied in the east-west direction
using the single-axis shake table coinciding with the longitudinal
axis of the building (Fig. 1). Consequently, the building displace-
ment responses in the transverse direction (short axis of the
building) were significantly smaller than their counterparts in
the longitudinal (shaking) direction.

UAV Video Monitoring Plan and Auxiliary Datasets for
Video Analysis

During the shake table tests, two small UAVs (Phantom 3 Pro, DJI,
Los Angeles) were employed to video-record the building dynamic
displacement responses during a sequential series of seven earth-
quake tests at different motion intensities (EQ4–EQ9, see Table 1).
The test videos were all recorded using the on-board cameras
with a rate of 30 frames per second and a resolution of 3,840×
1,920 pixels. Two strategic viewpoints were consistently employed
for the video recordings, namely, top views monitoring the building
roof and the ground level [Fig. 2(a)], as well as elevation views
monitoring the building facades. Importantly, these UAV platforms
are mounted with very low-resolution positioning sensors suit-
able only for navigation; therefore, the accurate location and ori-
entation of the vehicles and the on-board cameras during the video
recording is best estimated using photogrammetric techniques,
such as the Perspective-n-Point (PnP) method (e.g., Gao et al. 2003;
Lepetit et al. 2009) or the structure-from-motion (SfM) method
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(e.g., Westoby et al. 2012; Schonberger and Frahm 2016). These
methods estimate the relative location and orientation of a camera
(referred to as camera pose) using corresponding points in the world
coordinates and their projections in the pixel coordinates. However,
the camera pose recovered using these techniques may involve large
uncertainties due to the following two practical limitations: (1) insuf-
ficient ground-level feature points (<5 points) with precisely known
positions in theworld coordinates, and (2) large distances between the
camera and ground level (40–60m) during the video recording. These

physical constraints create challenges for maintaining high levels of
accuracy and robustness with regard to the use of the estimated cam-
era pose to precisely reproject the image features in the video analysis.
In this regard, our motivation is to develop a video analysis method-
ology that overcomes these limitations and maintains an accuracy
level sufficient for structural dynamic response monitoring.

To validate the UAV-based motion-tracking results, three
geodetic-quality Topcon NET G3-A GPS stations were installed
on the roof of the building [Figs. 2(a and c)]. Displacements during

(a) (b)

Fig. 1. Test building: (a) isometric view (arrows denote earthquake shaking direction); and (b) building plan layout (typical of floors 2–6; hatched
boxed areas denote mass plates).

Table 1. Summary of the peak and residual roof displacements associated with individual earthquake tests and the corresponding camera views of the UAV
test videos

Earthquake test date Test name Performance levela
Roof longitudinal displacement

Camera viewdPeakb (cm) Residualc (cm)

Day 1(June 13, 2016) EQ1:RIO-25 SLE (25% design) 2.5 0.0 No videos recorded
EQ2:CNP-25 4.8 0.0
EQ3:CUR-25 3.3 0.0

Day 2 (June 15, 2016) EQ4:CNP-25 5.2 0.0 North, south
EQ5:CNP-50 50% design 10.0 0.0 North, top
EQ6:CNP-100 Design 21.2 0.0 North

Day 3 (June 17, 2016) EQ7:CNP-150 MCE (150% design) 41.3 1.4 (0.1%) North, top

Fire test sequence (June 27–29, 2016)

Day 4 (July 1, 2016) EQ8:RIO-25 SLE 2.8 0.0 North, top
EQ9:RRS-150 MCE 79.5 22.0 (1.2%) Isometric, top

aSLE = service level earthquake; and MCE = maximum considered earthquake.
bResidual displacement represents the averaged displacement (5-s window) at the completion of the earthquake shaking, percentage value in the parentheses
represents the roof drift ratio (normalized by building height).
cPeak displacement represents the absolute maximum displacement during the earthquake shaking.
dNorth and south refer to an elevation view of either the north or south building facade; Top refers to a looking-down plan view of the building roof and the
ground; Isometric refers to an oblique elevation view isometrically looking at the northwest corner of the building. Note that bold Top refers to test videos used
in the validation studies herein.
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the earthquake tests were recorded using these stations at a high
rate (10 Hz) with respect to a fourth station installed at a fixed refer-
ence station at ground level off of the shake table platen (∼50 m to
the west). In the context of the present application, the GPS sam-
pling rate of 10 Hz is considered to be sufficient for validation
because (1) the natural frequency of the fundamental mode of
the building was <4 Hz under its initial condition and decreased
gradually as a result of accumulated structural damage during
the test sequence, and (2) the midrise test building response was
dominated by its fundamental mode during the earthquake tests
(Wang and Hutchinson 2020). The coordinates of the reference sta-
tion were estimated in a global reference frame maintained by the
International Global Navigation Satellite Systems Service prior to
the building experiments. The positions of the roof stations were
estimated in north, east, and vertical directions in the same refer-
ence frame with an accuracy of several millimeters. It is noted that
the longitudinal (shaking) direction of the building coincides with
the east-west direction of the GPS global reference frame. In this
study, the roof displacements measured by the center GPS station
were used for results validation due to the following two consid-
erations: (1) the center station was located at the approximate geo-
metric center of the roof footprint, and (2) the roof displacements
measured at three different locations varied only slightly (<0.5 cm).
In addition, high-resolution point cloud data of the test site and
building were collected prior to the test phase using a terrestrial
LiDAR scanner (Focus3D S120, FARO Technologies, Lake Mary,
Florida). These point cloud data provided reliable and high-
accuracy (subcentimeter-level precision) geometry measurements
of the test site and the building in its baseline condition [Fig. 2(b)].

Table 1 summarizes the peak and residual roof longitudinal dis-
placements of the test building measured by GPS (center station)
and the camera views of the test videos associated with individual
earthquake tests. To validate the proposed methodology, the dy-
namic roof displacements as measured via GPS are compared with
the displacements calculated using the top-view test videos re-
corded during three earthquake tests: EQ5 (50% design event),
EQ7 (MCE event or 150% design event), and EQ9 (MCE level or
150% design event). The top-view video taken during test EQ8 is
not analyzed in this study due to the very low amplitude of the roof
displacements (<3 cm in the direction of shaking). The residual
roof displacement remained small during all earthquake tests
(including EQ5 and EQ7) except the final test (EQ9). The building
underwent excessively large roof residual drift demands (∼22 cm,
or a drift ratio of ∼1.2%) following the final earthquake test (EQ9),
resulting in a soft-story mechanism at Level 2 and a near-collapse
condition of the test building at the end of the test program
(Hutchinson et al. 2018).

Problem Statement and Proposed Methodology

The objective of UAV-based motion-tracking methodology as
proposed herein is to extract with reasonable accuracy the dy-
namic roof displacements of buildings using top-down-view videos
taken during earthquake shaking. Two assumptions are adopted to
simplify the motion-tracking problem: (1) the in-plane movement
of the roof is rigid (i.e., no differential displacements between
different locations on the roof), and (2) vertical displacements

(a)

(b) (c)

Fig. 2. (a) Sample UAV top-view image frame (taken during Test EQ7, double-side arrow denotes the direction of shaking); (b) orthoimage
generated using LiDAR point cloud data; and (c) roof GPS antenna and its support (center station).

© ASCE 04020045-4 J. Comput. Civ. Eng.
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are negligible (i.e., no overturning rotation). These assumptions
are justified in the dataset used for validation by assessing the
GPS measurements, where it is noted that both the vertical roof
displacements and the differential displacements in the horizontal
directions measured at the different locations remained sufficiently
small (<0.5 cm). Consequently, the problem reduces to an in-plane
tracking problem with three unknowns of the roof motion: the dis-
placements in the two translational directions and one in-plane
rotation. In addition, the LiDAR data confirm that the elevation
of the ground-level background region [regions padded with con-
crete, see Fig. 2(a)] varies only slightly across the large footprint at
the ground surface (<10 cm). Because the elevation variation of the
ground level was much smaller than the camera-to-ground distance
(30–60 m from the camera to the ground level) during all video
recordings, this region is considered as a two-dimensional planar
region in the video analysis. Because no artificial targets were used
during the tests to support the UAV-based video monitoring, the
proposed motion-tracking algorithm relies entirely on the natural
image features of the ground level and the building roof. Such a
condition would emulate field practice as well, thus this scenario
represents a realistic challenge when applying the proposed meth-
odology outside of a controlled laboratory setting.

Proposed Methodology

Fig. 3 provides a flowchart of the proposed UAV-based video
analysis methodology for tracking the dynamic displacements of
the building during the earthquake shaking. The first and second
steps aim to address the two primary sources of image distortion
related to the recorded UAV videos, namely: (1) lens distortion, and

(2) UAV drift-induced frame misalignment and perspective distor-
tion. Following these steps, the recorded video frames represent a
sequence of orthorectified images stabilized at the ground level.
The stabilized image sequence allows for detecting pixel-based
building features, namely, the roof in this validation case, and sub-
sequently extracting the roof displacements by analyzing the frame-
to-frame correspondences of the identified image features. For
this exercise, the motion-tracking procedures are implemented
in MATLAB (version 2017b) using built-in functions in the Com-
puter Vision Toolbox. Details related to each of the three analysis
steps are discussed in the following sections.

The three-step motion-tracking procedures produce a sequence
of image frames stabilized at the ground level. However, they
may not be sufficient to completely correct for UAV drift-induced
distortion at the roof level. Although the stationary ground level
during earthquake shaking allows frame-by-frame alignment via
matching of the ground-level features, this same strategy is not
applicable for correcting the drift-induced misalignment at the roof
level, because the roof footprint was displaced during the earth-
quake tests. In addition, insufficient accuracy for the location and
orientation of the on-board camera estimated using vision-based
methods precludes the use of image reprojection to correct for
UAV drift-induced distortion at the roof level.

To address this challenge, an alternative method is proposed,
namely, by investigating the displacements extracted from the
pre- or postevent videos (20–30 s before or after an earthquake
test). Because the test building was stationary during the pre- and
postevent stages, the roof displacements were considered negli-
gibly small. In addition, the UAV was operated in hover mode
during the video recording, and therefore it is reasonable to assume

Fig. 3. Flowchart depicting the proposed UAV-based video analysis methodology.
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that the effect of UAV drift-induced distortion on the video analysis
results during the pre- or postevent are consistent with those during
the earthquake. Consequently, the pre- or postevent video analysis
results provide guidance on the selection of a high-pass corner fre-
quency for correcting the effect of UAV drift-induced distortion
at the roof level. The filtering strategy determined using the pre-
or postevent video analysis is then applied to obtain the final roof
dynamic displacements during the earthquake shaking. In what
follows, each of the aforementioned steps is discussed in greater
detail.

Camera Lens Distortion Correction

Step 1 of the proposed methodology aims to remove the effects of
lens distortion, particularly in the form of barrel distortion in which
straight lines appear as if they are curved around a barrel. In this
step, each video frame is undistorted, yielding a rectilinear projec-
tion using lens distortion parameters estimated through a checker-
board calibration procedure applied to the UAVon-board cameras.
The calibration procedures utilized to determine the lens distortion
parameters are well documented in Bouguet (2015), and therefore
details regarding the implementation of lens distortion correction
are not discussed herein.

UAV Drift and Perspective Correction

The purpose of Step 2 is to stabilize the recorded UAV video frames
at the ground level by correcting the perspective distortion intro-
duced by the UAV’s drift and the frame-to-frame misalignment.
To facilitate the discussion on the analysis procedures, the first
video frame is defined herein as the reference frame, whereas all
remaining video frames are defined as the subsequent frames. The
reference frame was selected to represent the test building in a
stationary condition (a few seconds before the onset of an earth-
quake test). The drift-induced perspective distortion and frame-to-
frame misalignment are corrected via the following two sequential
substeps: (1) orthorectifying the reference video frame using the
LiDAR orthoimage, and (2) aligning all subsequent frames to the
orthorectified reference frame. Because no artificial targets were
installed at the test site or on the test building, the image corre-
lation relies on either the manual selection of point features or
the automatic detection of blob features of the background scene
(i.e., ground level).

At the beginning of this the step, the LiDAR point cloud data are
used to generate an orthorectified reference image (or orthoimage)
[Fig. 4(a)]. While the point cloud data are geometrically accurate,
the point color texture is much less reliable and the point density
varies substantially over the scene. Because the LiDAR orthoimage
does not appear photorealistic, this prevents automatic feature
detection and correspondence with the video frames. To this end,
point correspondences are established manually in the LiDAR
point cloud and the reference frame (Fig. 4). These manually se-
lected point correspondences allow for estimation of a homography
matrix (Hartley and Zisserman 2003), which maps the pixel coor-
dinates in the undistorted reference frame to the geometrically
accurate points in the LiDAR orthoimage. While a minimum of
four-point correspondences are needed to estimate the homogra-
phy, approximately 20 spatially distributed points at the ground
level were used to reduce errors associated with the manual corre-
spondence selection. The homography matrix (projective transfor-
mation) estimated using these point correspondences is then
applied to the reference frame to remove the ground-level perspec-
tive distortion (warping). However, it is noted that the perspective
correction at the ground level does not completely remove the dis-
tortion at the roof level, because the effects of perspective distortion
vary for different depths of field.

Following the manual correction of the reference frame using
the georeferenced LiDAR orthoimage, region-based pixel features
are identified at the ground level in the reference and all subsequent
frames using the speed-up robust features (SURF) algorithm (Bay
et al. 2008). Because the variation of camera views and color fea-
tures among different frames within an individual test video are
much smaller than those between a video frame and the LiDAR
orthoimage, the feature correspondences between the video frames
can be identified automatically without the need for manual feature
selection. During this automatic feature detection step, the region of
the frames containing the building is excluded due to its movement.
Once SURF features are identified in all video frames, the features
in the subsequent frames are compared to those in the reference
frame in order to find correspondences. For every feature in each
subsequent frame, the feature matching algorithm calculates the
sum of squared differences between the feature vectors in the refer-
ence frame and the subsequent frame. It is noted that approximately
3,000–7,000 features were typically identified in the video frames,
and approximately 300–500 correspondences were ultimately iden-
tified between each subsequent frame and the reference frame.
The resulting correspondences between the subsequent frames

Fig. 4. Matched ground-level feature points between (a) LiDAR orthoimage; and (b) video reference frame.
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and the reference frame allow for the estimation of a homography
matrix (or projective transformation) that maps the pixels of the
subsequent frames to the orthorectified reference video frame.
At the conclusion of this step, all the video frames are stabilized
with respect to the ground, allowing only the motion of the building
roof to be extracted in the remaining procedures.

Roof Feature Detection and Displacement Extraction

Correction of the video frames by removing the perspective dis-
tortion and UAV drift effects produces a sequence of orthorecti-
fied images stabilized at the ground level. To obtain the building
displacements at the roof level, Step 3 analyzes the orthoimage
sequence using a two-step method: (1) edge-based detection of
roof features, and (2) displacement extraction via established
frame-to-frame correspondence of the detected feature points.
Given the lack of textured features and the rectangular tiling pat-
tern at the roof level, the roof displacements are estimated by
tracking the location and orientation of the linear (line) features
as detected via the Canny edge detection algorithm (Canny 1986).
Selection of the proper features may depend on the perceived tex-
ture characteristics of the image frames (e.g., building surface ma-
terials, geometry, and illumination conditions). Highly textured
building surfaces with sufficient feature density, for instance,
may warrant alternative feature tracking and matching algorithms
such as the Lucas-Kanade optical flow method (Lucas and Kanade
1981). Nonetheless, herein, the target features of the building roof
are selected as two straight lines in the longitudinal direction (L1
and L2) and one in the transverse direction (T1), which are sub-
sequently used to determine the two intersections (P1 and P2)
[Fig. 5(a)]. In this analysis procedure, the linear features are suc-
cessively detected using three predefined rectangular regions of
interest (ROIs) located in the vicinity of individual target features.
In each ROI, the Canny edge detection algorithm identifies
the discrete two-sided edge point pairs [dots shown in Fig. 5(b)]
to allow for linear regression of the target line [line shown in
Fig. 5(b)] within the pixel coordinates. The regressed lines are then
used to solve for the pixel coordinates of the two intersections.
Although the edge points detected from different video frames
may differ due to the variations of illumination condition and
camera pose [Fig. 5(b)], the number of detected edge points is

sufficiently large (typically 600–1,000 points) to ensure the robust-
ness and accuracy of the linear regression.

Tracking the roof displacements at different time instances relies
on the variations of intersection points P1 and P2 in the subsequent
frames relative to those in the reference frame. As shown in Fig. 6,
displacement tracking requires that the following two types of geo-
metric transformations be estimated: (1) world coordinate system
versus pixel coordinate system, and (2) reference frame versus sub-
sequent frame (in world coordinate system). The transformation
between the two coordinate systems represents a similarity trans-
formation that involves the effects of scale, rotation, and transla-
tion. It is estimated by correlating the pixel coordinates of the
tracked features (i.e., P1 and P2) in the reference orthoimage with
their world coordinates. For instance, Fig. 6(a) shows the known
dimensions of the square region (marked with the dashed lines)
with an equal edge length of 122 cm (determined using LiDAR
data) allowed the world coordinates of the intersections be deter-
mined. The estimated transformation between the two coordinate
systems is then used to transform the intersections in all video
frames from the pixel coordinates into the world coordinates.
Importantly, this transformation defines a scale factor between
the world coordinate system and pixel coordinate system. Because
the distance between the two intersections had a real length of
122 cm in world coordinates and about 160 pixels in pixel coor-
dinates, the scale factor is determined as 0.76 cm=pixel [Fig. 6(a)].
This scale factor is useful for comparing the relative resolution of
the video frames taken during different earthquake tests.

With the assumption that the roof moves rigidly in-plane during
the earthquake tests, a rigid transformation is estimated using
correspondences of the world coordinates of the tracked features
[Fig. 6(b)]. In the final step of the roof feature tracking, the roof
displacements (i.e., two translations and one rotation) are extracted
by decomposing the rigid transformation matrix between the refer-
ence and subsequent frames.

Filtering of Video-Based Results

As discussed in the earlier section, the perspective correction used
to stabilize the ground level does not effectively remove the UAV
drift-induced distortion of the roof level because it corresponds to a

(a)

(b)

Fig. 5. Roof feature detection and line regression adopted in the validation study: (a) target linear features and intersection points; and (b) detected
edge points from three different video frames.
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scene depth different from that of the ground level. To demonstrate
the effect of UAV drift-induced roof distortion, Fig. 7 shows the
video-based displacement results of the roof intersection point
P1 [Fig. 5(a)] extracted from the preevent of Test EQ7 (a 30-s seg-
ment prior to the onset of earthquake shaking) and the associated
Fourier amplitude spectra. Because the building was essentially sta-
tionary during the preevent stage, the unfiltered (raw) roof displace-
ments extracted from the video analysis represent the error metrics
of the UAV drift-induced roof-distortion effect. These preevent
video analysis results indicate that the UAV drift-induced roof dis-
tortion produces a peak displacement error of ∼10 cm in both the
east-west and north-south directions In addition, the Fourier ampli-
tude spectra reveal that these drift-induced roof displacements in
both horizontal directions are characterized by frequency contents
primarily in the low-frequency range (0–0.5 Hz).

In this regard, the pre- or postevent displacement tracking re-
sults are investigated to provide guidance on the implementation
of a high-pass filtering strategy for correcting the effect of UAV
drift-induced distortion at the roof level. The filter adopted in this
exercise is a tenth-order Butterworth high-pass filter, although
other filter types may also be considered for the same purpose. The
high-pass corner frequency is determined such that the filtered pre-
or postevent displacement tracking results are acceptably small

(e.g., <1 cm). Fig. 8 presents the variation of the root-mean-square
(RMS) roof displacements (intersection point P1) during the pre-
event of Test EQ7 with respect to the corner frequency (within the
0.05–0.5 Hz interval). This sensitivity study indicates that the dis-
placement errors (in both horizontal directions) drop substantially
with the increase of corner frequency until it reaches approximately
0.25 Hz. Although further increase of the corner frequency contin-
ues to reduce the displacement errors, these errors are much less
sensitive to the corner frequency change. Because the preevent
roof-displacement errors filtered using the high-pass corner fre-
quency of 0.25 Hz are sufficiently small (∼0.5 cm), this value is
selected for correcting the roof-displacement responses during
the earthquake shaking of Test EQ7. It is also noted that because
the fundamental natural frequency of the building ranged between 2
and 4 Hz (depending on the severity of structural damage) during
the earthquake test program (Wang and Hutchinson 2020), a high-
pass corner frequency of 0.25 Hz is sufficiently low for preserving
the real building responses.

To demonstrate the effect of high-pass corner frequency on the
roof-displacement tracking results, Fig. 9 compares the absolute
roof longitudinal (east-west) displacement responses during Test
EQ7. The roof-displacement responses obtained from the motion-
tracking method, including both the preevent results and those

(a)

(b)

2

Fig. 6. Geometric transformation of roof feature points for representative ROI: (a) world coordinates versus pixel coordinates associated with a single
frame; and (b) reference frame and subsequent frame (in world coordinate system).

Fig. 7. Roof displacements of intersection point P1 extracted from the preevent of Test EQ7 and the associated Fourier amplitude spectra (horizontal
gray lines in time histories indicate the zero-displacement baseline).
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during the earthquake shaking, are filtered using three strategically
selected high-pass corner frequencies: 0.1, 0.25, and 0.5 Hz.
Whereas 0.1 and 0.5 Hz may represent the lower and upper bound
values of the corner frequency range according to the frequency
characteristics obtained from the preevent results analysis (Fig. 7),
0.25 Hz is an optimized value as determined from the preevent re-
sult analysis. Fig. 9(a) reveals that the preevent displacement re-
sponse of the intersection point P1 is reasonably small when
filtered by the two larger corner frequencies (0.25 and 0.5 Hz),
whereas the lower bound corner frequency (0.1 Hz) does not appear
effective for correcting the UAV drift-induced roof distortion
as manifest by the presence of substantial displacement response

during the preevent stage. This is attributed to the fact that the
UAV drift-induced displacements at the roof level encompass fre-
quency contents substantially larger than 0.1 Hz (Fig. 7). As shown
in Fig. 9(b), the baseline drift as evident in the unfiltered roof-
displacement response at the beginning of the earthquake shaking
remains apparent when the displacement is filtered using the lower
bound corner frequency (0.1 Hz). It is also important to note that
although the upper bound corner frequency of 0.5 Hz appears
effective for correcting the preevent roof displacements, the use
of this corner frequency on the earthquake shaking response leads
to significant reduction of the roof displacement compared to the
GPS measurements, whereas the same response filtered with the
optimized corner frequency (0.25 Hz) correlates well with the GPS
measurements. This is due to the fact that using the frequency of
0.5 Hz may modify the roof-displacement response contributed by
the input earthquake motion, because the absolute roof displace-
ment consists of the contribution of the input earthquake motion
(shake table movement) and the roof displacement relative to
the shake table (which is dominated by the natural vibration fre-
quency of the building).

As such, selecting an appropriate high-pass corner frequency for
UAV drift-induced roof-distortion correction needs to address the
following two considerations: (1) the preevent roof displacement
filtered using the selected corner frequency needs to be sufficiently
small (e.g., RMS response <1 cm), and (2) the selected corner
frequency needs to remain sufficiently small to prevent modifying
the real building responses, particularly those contributed by the
earthquake input motion. It is noted, however, that this high-pass
filtering strategy may not be effective for capturing any residual
(permanent) roof displacements achieved at the end of the earth-
quake tests.

Fig. 8. Sensitivity of the RMS roof displacements with respect to the
corner frequency during the preevent of Test EQ7.

(a)

(b)

Fig. 9. Effect of high-pass corner frequency on the roof-displacement results during test EQ7: (a) preevent response; and (b) response during the
earthquake shaking.
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Results and Discussion

Validation of Motion-Tracking Results

To evaluate the effectiveness of the proposed UAV-based video
methodology, the roof displacements of the test building are ana-
lyzed using the top-view test videos collected during three earth-
quake tests with different motion intensities, namely, EQ5 (50%
scale design event), EQ7 (150% scale design event), and EQ9
(150% scale design event). Although the test videos were intended
to monitor the structural response from a consistent viewpoint, the
position of the on-board camera varied during individual tests. For
instance, the estimated camera location was 40–45 m above the
ground during Tests EQ5 and EQ7 but exceeded 60 m during
Test EQ9. Fig. 10 shows the uncorrected (original) and the orthor-
ectified reference frames for the three test videos. The uncorrected
reference frames clearly indicate that the dimension and orientation
of the ground level shown in the reference frame differ among
the three test videos as a result of the variation of the camera view-
points. In contrast, the ground level as shown in the different
orthorectified frames is well aligned following the perspective cor-
rection using the LiDAR orthoimage as the reference. Despite the
consistency of the ground level among different test videos, the roof
projection in the orthorectified frame of test video EQ9 is substan-
tially smaller than its size in the other two frames (EQ5 and EQ7).
This difference is due to the larger camera-to-roof distance and the
ground-level projective transformation applied over the entire im-
age frames.

Fig. 11 compares the absolute roof longitudinal (east-west)
displacement histories obtained from the video analysis overlaid
with the GPS measurements during the three select earthquake tests
(EQ5, EQ7, and EQ9) and the associated error responses (i.e., the
discrepancies between the video analysis results and the GPS mea-
surements). The transverse (north-south) displacements of the roof
are not presented in the figure due to the small amplitude (<2 cm)
of these responses. The high-pass filtering strategy previously pre-
sented is adopted to correct the video-based roof displacements
extracted from Tests EQ5 and EQ7. Based on the pre- or postevent
displacements analysis and the selection criteria as mentioned in
the previous section, the high-pass corner frequency is chosen
as 0.3 Hz for Test EQ5 and 0.25 Hz for Test EQ7. It is noted that

the roof displacement extracted from Test EQ9 does not involve
high-pass filtering, because such a strategy would remove the
residual roof displacement achieved at the end of the earthquake
test and consequently modify the baseline of the dynamic displace-
ment response. These comparisons indicate that the roof displace-
ments from the UAV-based video analysis are in good agreement
with the GPS measurements. The RMS error (the discrepancy
between the video-based results and GPS measurements) ranges
between 1 and 2 cm for Tests EQ5 and EQ7 and is only slightly
larger (2.5 cm) for Test EQ9, because high-pass filtering is not em-
ployed to correct the video analysis results in consideration of pre-
serving the residual displacement at the end of Test EQ9.

Table 2 compares the peak and residual roof displacements
obtained from the video analysis with the GPS measurements. With
the application of a high-pass filter to the video-based results, the
absolute errors of the peak displacements remain reasonably small
(only 2 cm as the maximum value) for both Tests EQ5 and EQ7.
Due to the small amplitude of the peak roof displacements during
Test EQ5 (∼10 cm), the relative error, which is taken as the per-
centage of the absolute error divided by the absolute peak response,
is approximately 15% for Test EQ5, which is notably larger than
those of Test EQ7 (∼5%). The absolute errors reach as much as
6 cm for Test EQ9, because the results involve the UAV drift-
induced distortion at the roof level in the absence of high-pass fil-
tering. In addition, the video analysis results during Test EQ9 (final
earthquake test) allow for evaluation of the static residual displace-
ment of the building roof at the end of the test program, which is
determined by averaging the video-based displacement response
at the end of the earthquake test using a 2-s window (between 23
and 25 s). The video analysis results provide a reasonable estimate
of this static residual displacement (differing from GPS results by
only ∼1 cm). Comparison of the video analysis results against the
GPS measurements demonstrates that the proposed UAV-based
video analysis provides an effective means for tracking the dynamic
roof-displacement responses and the static residuals during these
earthquake tests.

Limitations of the Proposed Methodology

Validation of the motion-tracking results using the full-scale build-
ing shake table experiments demonstrates the potential for using

Fig. 10. Uncorrected and orthorectified reference image frames for the three test videos (note that the detected roof features are overlaid with the
orthorectified reference images).
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commercial UAV platforms to monitor dynamic structural re-
sponses. The proposed methodology is particularly useful when
accurate estimation of camera pose is difficult, for example, due
to the constraints discussed earlier. However, important limitations
exist with regard to the implemented UAV motion-tracking proce-
dures in practice. Among them, perhaps the most prominent in-
clude the following: (1) the camera frame rate (30 Hz) may be
insufficient for capturing the response of structures with dominant
high-frequency modes (15 Hz or larger), (2) the use of a high-
pass filtering strategy for correcting UAV drift-induced distortion
effects may pose challenges for monitoring flexible structures, in
particular those with their dominant frequencies smaller than or
comparable to the high-pass corner frequency (e.g., tall buildings

and long-span bridges), and (3) very low-amplitude structural
responses (e.g., subcentimeter-level displacements) cannot be iden-
tified given the level of accuracy as demonstrated in the validation
studies. Whereas the capability for capturing high-frequency re-
sponses can be enhanced by using cameras with higher frame rates,
extending the effectiveness of the proposed methodology for mon-
itoring low-frequency and low-amplitude structural responses re-
quires significant accuracy in the estimation of the camera pose.
Improvement of the camera pose estimation may be achieved with
the support of auxiliary data collected by on-board navigation sens-
ing systems (e.g., inertial sensors, range or depth sensors) and/or
the placement of georeferenced targets on the camera background
scene (e.g., Yoon et al. 2018).

Fig. 11. Comparison of the UAV video-based absolute roof longitudinal displacements with the GPS measurements and the associated response
errors during the three earthquake tests.

Table 2. Comparison of peak and residual roof displacements obtained from the video analysis with the GPS measurements

Test
name

Motion
intensity

Peak roof displacement (positive) Peak roof displacement (negative) Residual roof displacement

UAV
(cm)

GPS
(cm)

Error
(cm)

UAV
(cm)

GPS
(cm)

Error
(cm)

UAV
(cm)

GPS
(cm)

Error
(cm)

EQ5 50% design 8.1 9.5 1.4 (14.7%) 9.7 10.0 0.3 (3.1%) N/A N/A N/A
EQ7 150% design 34.4 36.5 2.1 (5.6%) 40.4 42.2 1.8 (4.4%) N/A N/A N/A
EQ9 150% design 73.7 79.5 5.8 (7.3%) 23.4 21.3 2.1 (10.0%) 20.9 22.0 1.1 (7.1%)

Note: GPS = global positioning system; UAV = unmanned aerial vehicle (video); number in the parentheses represents the relative error (= percentage of the
absolute error divided by the absolute peak response).
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It is also noted that the ground features (or reference objects) are
subjected to earthquake displacements rather than remaining sta-
tionary during a real earthquake. Under such a scenario, stabilizing
the video frames at the ground level would conceptually allow for
capturing the building roof-displacement responses relative to the
ground instead of the absolute displacement of the building. None-
theless, stabilizing the video frames with a set of moving ground
features has not been attempted and would require additional val-
idation studies to confirm the effectiveness of the proposed motion-
tracking method for its applications in real earthquakes.

Computational Performance

The proposed methodology is implemented as an off-line process,
because the analysis procedures involve the following two manual
steps: (1) orthorectifying the reference (first) video frame against
a LiDAR orthoimage by manual selection of the ground-level
features (Step 2a of Fig. 3), and (2) determining a high-pass corner
frequency using the pre- or postevent video analysis results for
correcting the UAV drift-induced distortion effects during the earth-
quake shaking. The remaining steps are all associated with auto-
matic frame-by-frame image processing: (1) identifying SURF
features at the ground level and establish the feature correspond-
ences (Step 2b of Fig. 3), and (2) extracting the linear edge features
at the building roof and line fitting (Step 3 of Fig. 3). The video
frames are all processed using a laptop computer with a 2.7-Hz
Intel Core i5 processor and 8 Gb memory. The average processing
time for each video frame is approximately 2,170 ms, namely,
350 ms for ground SURF feature matching and 1,820 ms for roof
edge feature detection and line fitting.

Conclusions

UAV imagery has recently emerged as an effective structural health
monitoring tool for operational condition inspection and post-
disaster damage assessment of civil structures (e.g., bridges and
buildings). However, the use of such sensing techniques for quan-
titatively tracking the subtle (centimeter-level) variations of struc-
tural dynamic responses has been limited, largely due to the
difficulties related to obtaining accurate location measurements for
the majority of small UAV platforms. To fill this research gap, a
UAV-based video analysis methodology is developed for tracking
the roof-displacement responses of a full-scale six-story CFS build-
ing using the top-view test videos collected during a series of shake
table tests at various earthquake intensities. The proposed method-
ology first corrects the UAV drift-induced image perspective dis-
tortion and misalignment and subsequently extracts the dynamic
displacements of the building by establishing frame-to-frame cor-
respondences of the identified image features. In addition, the
motion-tracking errors are investigated by analyzing the frequency
content of the displacement responses extracted from the pre- or
postevent videos. Investigating the error characteristics of video-
based results while the building remains stationary provides useful
guidance for further correction of the building responses during
dynamic earthquake shaking. Validation of the UAV-based video
analysis results against the GPS measurements demonstrates the
effectiveness of the proposed methodology for quantifying the dy-
namic displacement responses of full-scale buildings during low- to
high-intensity earthquake shaking. Without relying on the accurate
position of the UAV on-board cameras, the video analysis results
achieve a level of precision (less than 2 cm RMS errors when the
high-pass filtering strategy is used) that is considered acceptable for
engineering applications.

Because the UAV-based motion-tracking results are validated
using only a limited set of test videos taken from the top view, ad-
mittedly, additional studies are needed to confirm the robustness
and reliability of the proposed methodology, particularly consider-
ing alternative camera views (e.g., elevation views and oblique
views) or test structures of different scales. Moreover, improved
accuracy of the UAV-based motion-tracking results is needed to
extend its applicability of monitoring low-frequency and low-
amplitude structural responses. Future studies may attempt fusing
the UAV imagery data with auxiliary data collected by other on-
board sensing systems (e.g., inertial navigation sensors, depth or
range sensors) in an effort to continually improve camera pose
estimation and ultimately enhance the performance of tracking
dynamic structural responses.

Data Availability Statement
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study are available from the corresponding author upon request.
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