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We report results on the total and elastic cross sections in proton-proton collisions at 
√
s = 200 GeV 

obtained with the Roman Pot setup of the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). 
The elastic differential cross section was measured in the squared four-momentum transfer range 0.045 ≤
−t ≤ 0.135 GeV2. The value of the exponential slope parameter B of the elastic differential cross section 
dσ/dt ∼ e−Bt in the measured −t range was found to be B = 14.32 ± 0.09(stat.)+0.13

−0.28(syst.) GeV−2. 
The total cross section σtot , obtained from extrapolation of the dσ/dt to the optical point at −t = 0, is 
σtot = 54.67 ± 0.21(stat.)+1.28

−1.38(syst.) mb. We also present the values of the elastic cross section σel =
10.85 ± 0.03(stat.)+0.49

−0.41(syst.) mb, the elastic cross section integrated within the STAR t-range σ det
el =

4.05 ± 0.01(stat.)+0.18
−0.17(syst.) mb, and the inelastic cross section σinel = 43.82 ± 0.21(stat.)+1.37

−1.44(syst.)
mb. The results are compared with the world data.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Elastic scattering plays an important role in proton-proton (pp) 
scattering at high energies, as evidenced by the fact that it con-
tributes about 20% of the total cross section at the highest Large 
Hadron Collider (LHC) energies [1]. The pp elastic and total cross 
sections have been measured at colliders with center of mass en-
ergies 2.76 ≤ √

s ≤ 13 TeV at the LHC [1] and at the Intersecting 
Storage Rings (ISR) at 

√
s = 62.4 GeV [2]. It is important, how-

ever, to have measurements in the energy gap between the ISR 
and the LHC to constrain the phenomenological models of the 
pp cross sections since one still expects a difference between pp
and proton-antiproton (pp̄) cross sections within the RHIC energy 
range. The latter were measured up to 

√
s = 1.8 TeV at the Teva-

tron [3–8]. Both the values of the cross sections and the difference 
between pp and pp̄ affect phenomenological models [9–14].

2. The experiment

The results presented here were obtained by the STAR experi-
ment [15] upgraded with the Roman Pot (RP) system used previ-
ously by the PP2PP experiment [16]. The current RP system was 
installed downstream of the STAR main detector at RHIC and was 
used to detect forward-scattered protons. A modification of the 
vacuum chamber was required and the RP system was fully inte-
grated with the STAR experiment. With the addition of the RP sys-
tem, the STAR physics program now includes pp elastic scattering 
and two other measurements that require the detection of forward 
protons: Central Exclusive Production [17] and particle production 
in both Single Diffraction Dissociation and Central Diffraction [18]. 
In these inelastic events, the components of the main part of the 
STAR detector are used to characterize the recoil system at central 
rapidity.

The location of the RPs, top and side view, and the four Si 
detectors and a trigger scintillation counter package in each of 
the RPs are shown schematically in Fig. 1. The four planes of Si 
strip detectors [16] with a pitch of 100 μm, two measuring the 
x-coordinate (X planes) and two measuring the y-coordinate (Y 
planes), were used to reconstruct the position of the proton at the 
RP. The scintillation counter in each RP was used for triggering on 
candidate events with forward protons. It was read by two photo-
multiplier tubes (PMTs) for redundancy and high trigger efficiency. 
The trigger required at least one valid signal in at least one out of 
eight possible PMTs on each side of the interaction point (IP).

The location between DX and D0 RHIC dipole magnets is such 
that no special accelerator conditions such as large β∗ (the value 
of the betatron function at the IP) and parallel-to-point focusing, 
were needed to operate the RPs together with the rest of the STAR 
experiment’s physics program.

The DX magnet and the detectors in the two RPs allow the 
measurement of the momentum vector of the scattered protons 
at the detection point. Using the known bending angle of the DX 
magnet, one can determine the scattering angle in the x, z plane, 
θx . Because of the symmetry of the RHIC rings, the field in the DX 
magnets on both sides of the IP are identical at the 10−3 level. 
Hence, the bending angles of the magnets are also the same. The 
scattering angle in the y, z plane, θy , is determined from the y-
coordinate measured in the RPs. Consequently, the local angles at 
the RPs θx , θy are the same as the scattering angles at the IP.

The data were acquired with normal β∗ = 0.85 m and were 
taken during the last four hours of an eight-hour store during the 
pp run in 2015. The last four hours were chosen to have beams 
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Fig. 1. The layout of the experiment. The four Roman Pot stations (E1, E2) on the 
East side of STAR and (W1, W2) on the West side of STAR are shown. In the upper 
panel, the view in the x, z plane is shown. In the lower panel, the y, z view is 
shown with the detector package, which includes four Si strip detector planes and 
the trigger scintillation counter. Two dipole magnets DX and D0, which bend the 
beams into and out of the IP, are also shown.

with reduced tails, thus with lower singles rates and background 
in the RP trigger counters. Three special luminosity measurements 
using Van der Meer scans [19] were performed to determine the 
luminosity and to reduce the systematic uncertainty on the lumi-
nosity measurement. The RPs were moved as close to the beam as 
possible, to about 8σy of the beam size in the y-coordinate, which 
was closer than during nominal data taking. The average instanta-
neous luminosity was ≈ 45 · 1030 cm−2s−1. For this luminosity, the 
number of interactions per bunch crossing was 0.225 on average. 
Hence, pileup is not a concern.

There were about 6.7 million triggered events collected for 
the integrated luminosity of 1.8 pb−1. The closest position of the 
first readout strip was about 30 mm or about 10σy of the beam, 
which corresponds to a minimum |t| of about 0.03 GeV2. The 
aperture of the DX magnet sets a maximum achievable limit of 
|t| ≈ 0.16 GeV2, corresponding to a scattering angle of θ ≈ 4 mrad.

3. Alignment and track reconstruction

Track reconstruction in the Si detectors was a three-step pro-
cess: clustering that is used to determine the position of the pro-
ton trajectory in the Si plane, alignment to obtain the position of 
the proton in the elastic scattering coordinate system (the coor-
dinate system in which two protons are collinear); and the re-
construction of a track, which leads to the reconstruction of the 
scattering angle needed to determine the t-value.

3.1. Clustering

To reconstruct track points in the RPs, we start with a clus-
tering procedure for each Si detector plane separately. In the first 
step, the noise cut that selects energies greater than 3σRMS above 
the pedestal is applied for each strip. Then the clustering proce-
dure searches for the channel with the maximum signal and a 
continuous series of channels adjacent to it. This cluster is then 
removed from the pool of hits in a given plane, and the procedure 
is repeated until there are no more hits in the plane. The posi-
tion of the cluster is calculated as an energy-weighted average of 
the strip positions and their energies. The energy distribution of 
reconstructed clusters is well described by the convolution of Lan-
dau and Gauss distributions.
To reconstruct the x-coordinate the positions of clusters found 
in both X planes were compared. Given the limit on the maximum 
scattering angle of 4 mrad (Sec. 2) and the distance �z = 14 mm 
between two X planes, a pair of clusters was accepted to calculate 
the x-coordinate if their position difference �x satisfied condi-
tion that �x ≤ 2 · dstrip ≈ 200 μm, where dstrip is the strip pitch. 
The x-coordinate of the track was calculated as an average of the 
matched cluster positions. The same procedure was done for y-
coordinate using Y planes. Positions of pairs of matched clusters 
found in the detector planes measuring the same coordinate de-
fine x, y coordinates of space points for a given RP. In about 95% 
of events, only one reconstructed space point in an RP was found.

3.2. Alignment

Before the reconstruction of the scattering angle, an alignment 
procedure was performed in two steps, each producing one set 
of offsets. In the first step, survey data were utilized. That sur-
vey was done by the survey group of the accelerator department 
after the installation of the detector packages in the RPs. This sur-
vey determined the x, y position of the first strip in each detector 
package with respect to the accelerator coordinate system. In the 
second step, corrections to the survey alignment were obtained us-
ing reconstructed elastic events with the constraint of collinearity 
of elastic scattering for tracks reconstructed on each side of the 
IP. To make sure that the sample consisted of the cleanest elas-
tic events, it was also required that these two point tracks were 
uniquely reconstructed (one and only one reconstructed point in 
each RP), providing two track points on each side of the IP.

For each event, a least squares line fit was done to the four 
reconstructed points. Then, the mean value of residuals for each 
detector plane, which was the average distance of reconstructed 
points from the fitted line, was calculated. Those mean residuals 
were used to correct the first strip position in each silicon de-
tector plane, and the alignment process was then repeated with 
those new strip positions until residual distributions were cen-
tered at zero, giving the optimal relative positions between RPs 
on opposite sides of each detector arm separately. Typically three 
iterations were needed to obtain the offsets. The result of the sec-
ond alignment step was a set of offsets in the coordinate system 
of the elastic scattering, where two outgoing protons are collinear. 
Those offsets were used to correct the positions of the Si strips 
from which the scattering angles θx, θy were reconstructed.

This alignment procedure was performed for each data run 
used in the analysis, and the mean value of run-by-run corrections 
was applied for each detector plane. By its construction, the align-
ment offsets were obtained in the system of coordinates where 
two protons are elastically scattered, hence collinear (elastic scat-
tering geometry). Hence, the procedure left one variable unknown: 
the trajectory of the unscattered beam in the above coordinate sys-
tem resulting from a beam-tilt angle in the collider, which affects 
the t-scale of the differential distribution dN/dt . The procedure 
to estimate the beam-tilt angle is described in section 5, where 
Monte Carlo (MC) corrections are described.

3.3. Scattering angle and t reconstruction

For small scattering angles θ , which are of the order of a few 
mrad, the positions of the track point xRP , yRP at a given RP sta-
tion are given by:

xRP = xI P + θx(zRP − zI P ) yRP = yI P + θy(zRP − zI P ) (1)

where xI P , yI P , zI P is the position of the primary vertex, zRP is the 
surveyed z-position of the RP station, and θx , θy are the scattering 
angles. Since the position of the primary vertex is not known on an 
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event-by-event basis, two reconstructed points are required to cal-
culate the scattering angle. A track was defined by the two points 
reconstructed in the two detector stations on the same side of the 
IP. The scattering angles θx and θy were determined by fitting a 
straight line using events with four track points, two on each side 
of the IP. Given the beam momentum p and small scattering an-
gles θx and θy , the t-value was calculated using:

−t = (pin − pout)
2 = p2θ2 = p2 · (θ2

x + θ2
y ). (2)

The resolution in t , �t , is dominated by the beam angular di-
vergence, as given by the machine emittance and by the beta value 
at the collision point (β∗), and to a much lesser extent by the 
detector resolution. Thus, �t/t can be approximated by the term 
due to the beam angular divergence. For p = 100 GeV and δθ = 
175 μrad and taking into account averaging over the two beams 
the �t/t is given by:

�t

t
= √

2pδθ/
√|t| = 2.47× 10−2 GeV/

√|t|. (3)

4. Data analysis

Because of the inclusive trigger condition, the collected data 
sample included the contributions from background, which con-
sisted mostly of non-elastic events, elastic protons scattered on the 
apertures and accidental coincidences of the beam halo. The basic 
feature of the elastic scattering is that the two outgoing protons 
are back to back. This is called a collinearity condition, which is 
used as a main selection criterion of elastic events. The following 
cuts were used to select clean elastic events from the collected 
data sample:

1. Elastic event topology (ET): Only events with a combination of 
reconstructed points in the RPs consistent with elastic scatter-
ing were accepted. Namely, the combinations with the lower 
East detector in coincidence with the upper West detector 
(EDWU), or the upper East detector in coincidence with the 
lower West detector (EUWD) have by definition the elastic 
event-hit pattern due to momentum conservation. In Fig. 2, 
we show the collinearity condition �θy vs �θx , where �θx =
θW
x − θ E

x and �θy = θW
y − θ E

y . Here, the θW
x , θ E

x , θW
y , θ E

y are 
scattering angles reconstructed on the East and West sides of 
the IP, using the coordinates measured at the RP and the aver-
age IP position. The contours of 2σθ and 3σθ are also shown. 
A clear peak of elastic events is seen.

2. 4-point track (4PT) data sample: Only events with two-point 
tracks on the East and two-point tracks on the West (one track 
point in each RP in elastic combination) were kept.

3. Collinear (COL) events: Since elastic events must satisfy a 
collinearity condition, collinearity in θW , θ E was required. 
Here, the θW , θ E are reconstructed scattering angles on the 
West and East sides of the IP. Since �θ = θW − θE = 0, 
collinearity within 2σθ was required, namely �θ < 2σθ , where 
σθ = 244 μrad is the Gaussian width of the collinearity dis-
tribution, consistent with the beam angular divergence. The 
collinearity condition required also the radial distance be-
tween the two projected tracks in x and y at z = 0 to be 
within 5σ radius of the Gaussian width of its radial distance. 
The 2σθ cut was chosen to minimize background as described 
in Sec. 5.

4. Fiducial volume GEO cut: After the elastic event candidates 
were chosen based on collinearity, one more set of cuts in a 
fiducial volume (φ, |t|), where φ is the azimuthal angle of the 
scattered proton, was needed to remove the remaining back-
ground. To stay away from the beam halo, the minimum |t|
Fig. 2. Collinearity of the data sample �θy vs �θx for ET accepted events is shown. 
It is defined as the differences �θx and �θy between scattering angles θx, θy re-
constructed on the East and West side of the IP. It is plotted with the contours of 
2σθ and 3σθ , where σθ = 244 μrad.

Fig. 3. Four-momentum transfer |t| vs φ distributions for data for four-point 
collinear (4PT COL) events. The two elastic combinations of tracks between East 
and West, EUWD and EDWU, are shown. Each distribution is normalized to 1.

corresponding to 12σ of the beam size was required; this was 
well outside of the beam envelope. Hence, the coincidence of 
the beam halo from the two beams is not expected.
To stay away from the apertures, additional cuts on maximum 
|t| and φ-range in (φ, |t|) space were also required. They are 
shown in Fig. 3, where the lines labeled “GEO limits” show 
the limits of the geometrical acceptance and the fit range in 
(φ, |t|) space accordingly. These cuts were chosen based on the 
simulation, which is described in Sec. 5. They were 78 < |φ| <
102 deg and 0.045 ≤ −t ≤ 0.135 GeV2.

We started with 6.607M events. After the ET cut there were 
3.974M events left, 1.648M after the 4PT cut and 1.306M after the 
collinearity COL cut. The final sample had 0.666M events after the 
fiducial GEO cut.

5. Simulation and correction factors

Response of the detector was studied using a Monte Carlo data 
sample (G4MC) obtained with a GEANT4-based [20] software pack-
age. The simulation had a detailed implementation of the beam 
line and RP detector position, and of the Si detector readout be-
havior, where the point-reconstruction efficiency in each RP was 
determined from the data. The physics generator used for the 
simulation produced only elastic pp scattering at 

√
s = 200 GeV, 

as described by Eq. (7), namely dN/dt ∝ exp (−B|t|) with B =
14 GeV−2 and uniform distribution in φ. The kinematic range was 
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Fig. 4. Collinearity, �θ = θW − θ E , for data is compared with prediction from the 
G4MC MC. Both samples were required to pass fiducial volume cuts (4PT, GEO). 
Estimated background (BCKG), and background remaining after the collinearity cut 
(green area), are also shown. The vertical axis is probability per event (PEV T ).

−π ≤ φ ≤ π and 0.01 ≤ −t ≤ 0.5 GeV2. The simulation was used 
to correct the measured dN/dt distributions from which the cross 
sections were obtained.

Using this simulation, the efficiency corrections were obtained 
as a function of t:

ε(treco) = (dN/dt)MC
gen

(dN/dt)MC
reco

(4)

where (dN/dt)MC
gen and (dN/dt)MC

reco are the true and reconstructed 
distributions, respectively, based on a MC event sample which 
passed reconstruction and selection steps identical to those applied 
to the experimental data. The treco is the t-value calculated at the 
end of the MC reconstruction chain, using the same procedure as 
in the data analysis. The geometrical acceptance of the detector 
was the main contribution to the efficiency corrections.

The differential distribution (dN/dt)DAT A obtained from data 
was corrected using a “bin-by-bin” method according to Eq. (5)
with correction factors from Eq. (4):(
dN

dt

)DAT A

corr
=

(
dN

dt

)DAT A

reco
× ε(treco). (5)

Based on the MC simulation, the (|t|, φ) region of the accep-
tance for the dσ/dt fit was chosen so that it had a slowly varying 
dependence on |t|, which is shown in Fig. 5. 

Additional corrections that needed to be considered were due 
to a possible non-zero initial colliding-beam angle (beam-tilt an-
gle) and to the x, y position of the beam at the IP in the coordinate 
system of reconstructed elastic events. Such a beam tilt affects the 
t-scale of the measurement. Note that the offset due to the x, y po-
sition of the beam at the IP, being a parallel shift, does not change 
the reconstructed scattering angles θx, θy , which are the result of 
fitting a straight line to the four-point events.

The beam-tilt angle causes offsets τx and τy of the recon-
structed θx and θy angles. This leads to an offset in the calculated 
t-values, which in lowest order is given by:

�t � 2· p2· (θx·τx + θy ·τy). (6)

Since the efficiency correction function was obtained from an 
MC simulation with a beam trajectory parallel to the detector local 
coordinate z-axis, this beam-tilt angle needed to be accounted for 
in the MC simulated efficiency correction function.
To determine τx and τy the dN/dt distribution from the 
data, Fig. 5 was used. The τx , τy angles were varied within 
[−0.2, 0.3] mrad and fitted to the data looking for the best fit 
probability. That best χ2 determined the beam crossing angles τx
and τy to be 0.15 mrad and 0.015 mrad, respectively. Note that 
the τy is negligible compared to typical scattering angles of a few 
mrad. The contribution to the systematic uncertainties from the 
tilt angle was evaluated as described in Sec. 6.

A GEANT4-based simulation was also used to study protons 
interacting with material in front of the RPs such as the beam 
pipe, magnet structure and RF shield inside the DX-D0 chamber, 
etc. In Fig. 4, we compare the collinearity distributions for recon-
structed data and reconstructed MC samples. We see a very good 
agreement between MC and the data. The vertical axis in Fig. 4 is 
the probability per event (PEV T ). An estimate of the background 
(bckg) contribution is also shown. It was obtained using unpaired 
protons in the whole elastic trigger data sample by flipping the 
sign of (x, y) coordinates of reconstructed points on one side of 
the IP. Then, the cuts of the analysis procedure were applied to 
all the events. This study is sensitive to the beam halo and to 
the inelastic events in our data sample. Consequently, it made it 
possible to estimate the total (see Fig. 4) and differential dN/dt 
background contribution. The latter was subtracted from the final 
dσ/dt , to estimate impact of the background on the fit results. We 
found small changes of B-slope and dσel/dt|t=0, 0.006 GeV−2 and 
-0.006 mb/GeV2 respectively. These values were added in quadra-
ture to the total systematic uncertainty. But given the number of 
significant digits, they did not change the result in Table 1.

Also, since the beam momentum uncertainty was at the 10−3

level, it was neglected. The RP point reconstruction efficiency im-
plemented in the MC simulation was obtained from the data. The 
trigger efficiency determined from the data was essentially 100%, 
so no corrections were made.

6. Results

Over the t-range of this measurement 0.045 ≤ −t ≤ 0.135 GeV2, 
the differential cross section dσ/dt is dominated by the hadronic 
term, whose t-dependance is well described by an exponential 
with one free slope parameter B and the normalization factor:

dσ had
el

dt
= dσ had

el

dt

∣∣∣∣∣
t=0

· e−B|t| (7)

Hence, a two-parameter exponential fit was performed to the 
measured differential cross-section dσ/dt to obtain the slope pa-
rameter B . We performed fitting using the bin center.

The total cross section was obtained using the optical theorem, 
given in Eq. (8), which relates the total cross section to the value 
of the hadronic elastic cross section at t = 0:

σ 2
tot =

(
16π (h̄c)2

1+ ρ2

)
dσ had

el

dt

∣∣∣∣∣
t=0

. (8)

The ρ parameter in Eq. (8) is the ratio of the real to the imag-
inary part of the hadronic scattering amplitude and it was not 
measured in this experiment. Its value was obtained from a fit 
to the world data using the COMPETE [11] model, which is based 
on Regge theory [12,13]. Because ρ = 0.12 and enters Eq. (8) in 
quadrature, the uncertainty on ρ does not contribute significantly 
to the obtained value of σtot . For the ρ-uncertainty we varied its 
value by ±0.05 and fitted Eq. (7) to get the estimate of the corre-
sponding systematic uncertainty.

The fit of the Eq. (7) with its results is shown in Fig. 5. The 
bin size in the fitted histogram is 0.0025 GeV2, which is smaller 
than the t-resolution. However, the fit was repeated with larger bin 
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Fig. 5. Top panel: pp elastic differential cross-section dσ/dt fitted with exponential 
A exp (Bt). The green triangles and the scale on the right-hand side of the plot show 
the MC simulated geometrical acceptance. Bottom panel: Residuals (Data - Fit)/Fit. 
Uncertainties are statistical only.

sizes by factor 2, 3 and 4 and also the MC based study of bin-to-
bin migration showed that actual bin size does have a significant 
impact on the fit parameter values except to increase statistical 
uncertainties with decreasing NDF of the fit.

The dependence of the MC correction factors on the value 
of the initial slope B was also investigated. The initial MC t-
distributions were reweighed with the slope from the recon-
structed data at detector level Bdet = 14.8 GeV−2, and the cor-
rection factors were recalculated. The fit results to B and to 
dσel/dt|t=0 changed by 0.01 GeV−2 and 0.01 mb/GeV2 respectively. 
Since they did not change the total systematic uncertainty within 
accuracy displayed in Table 1, they are not listed in there.

The evaluation of the uncertainties due to the beam angular 
divergence, the vertex positions and their spread, and incoming 
beam angles was based on MC simulations described in the previ-
ous section. We found that the largest single source of the system-
atic error of the t-scale of the experiment was due to the beam-tilt 
angle. This shift of the t-distribution scale was studied with the 
MC simulation using the upper limits on the beam-tilt angle ob-
tained from data. It resulted in an uncertainty on the fitted slope 
parameter of about 2%.

We observe a weak dependence of the fitted slope B and σtot

on the values of the beam-tilt angles, which were accounted for in 
a contribution to the systematic uncertainties.

For the cross section measurements, the largest systematic un-
certainty is due to luminosity determination, which was estimated 
to be 4%. This is the scale uncertainty on the vertical scale of the 
cross section plot. It introduces a corresponding systematic uncer-
tainty to the cross sections listed in Table 1.

As described in Sec. 5, the estimated background contribution 
due to the particle interactions with the material in front of the 
RPs and within the geometrical acceptance used for this analysis 
was negligible, hence such a correction was not required. 

Table 1 contains our final results and uncertainty estimates 
with the six observables listed in the left column. They are: the 
intercept of the differential cross section dσel/dt|t=0; the slope 
parameter B; the total cross section σtot obtained using optical 
theorem; the elastic cross section σel , which was obtained by sim-
ply integrating the fitted exponential over all t; the elastic cross 
section integrated within the STAR t-range σ det

el ; and the inelas-
tic cross section σinel , which was obtained by subtracting σel from 
σtot . As such, both σel and σinel are estimates. Nevertheless, we 
see good agreement with the world data. This is because most 
Fig. 6. Comparison of STAR result on B-slope with the world data with the t-range 
of this experiment. Below 1.8 TeV data are from [21], the Tevatron data are [3–5]
and the LHC data are [1,23,24,26–28]. The t-range for the world data was chosen to 
be compatible with the STAR t-range.

Fig. 7. Comparison of STAR results on σtot , σinel and σel with the world data for data 
below 1.8 TeV [22], the Tevatron [4–7] and the LHC experiments [1,23–25,27,28]. 
The COMPETE prediction for σtot is also shown. The dashed curves, represent STAR 
fits to σinel and σel using the same function as used by COMPETE. STAR data points 
were not used in the fit.

of the σel is in the purely exponential region measured in this 
experiment. The last column of Table 1 lists the total systematic 
uncertainty, which was obtained by adding the individual system-
atic uncertainties in quadrature. The ρ-parameter column in the 
table lists the systematic uncertainty due to the uncertainty in the 
ratio of the real to the imaginary part of the hadronic scattering 
amplitude.

The asymmetric systematic uncertainties on the cross sections 
are due to the luminosity uncertainty, which is the dominant un-
certainty of the measurement.

The comparison of our results with the world data on the nu-
clear slope parameter B is shown in Fig. 6, and on σtot , σinel , σel

are shown in Fig. 7, where the total uncertainty of the STAR data 
points was obtained by adding the statistical and systematic un-
certainties in quadrature. STAR results agree well with the world 
data and with the COMPETE model [11], which is a fit to the ex-
isting world data available prior to this measurement and which is 
now commonly used as a reference comparison with the data. 
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Table 1
Results summary with systematic uncertainties.
Quantity Statistical Systematic uncertainties

Name Units Value Uncertainty Beam tilt Luminosity ρ-parameter Total sys.

dσel/dt|t=0 [mb/GeV2] 155.38 ±1.19 +1.19
−0.91

+7.05
−6.47 − +7.15

−6.53

B [GeV−2] 14.32 ±0.09 +0.13
−0.28 − − +0.13

−0.28

σtot [mb] 54.67 ±0.21 +0.21
−0.64

+1.23
−1.15

+0.27
−0.41

+1.28
−1.38

σel [mb] 10.85 ±0.03 +0.07
−0.04

+0.49
−0.41 − +0.49

−0.41

σ det
el [mb] 4.05 ±0.01 +0.02

−0.01
+0.18
−0.17 − +0.18

−0.17

σinel [mb] 43.82 ±0.21 +0.22
−0.64

+1.32
−1.22

+0.27
−0.41

+1.37
−1.44
7. Summary

The STAR experiment measured the elastic differential cross-
section in pp scattering as a function of t in the range 0.045 ≤
−t ≤ 0.135 GeV2 at 

√
s = 200 GeV. This cross-section is

well described by e−B|t| with the slope B = 14.32 ±
0.09(stat.)+0.13

−0.28(syst.) GeV−2. The total pp cross-section was 
found to be σtot = 54.67 ± 0.21(stat.)+1.28

−1.38(syst.) mb. Extrapo-
lation of the measured differential elastic cross-section to the 
outside of the STAR t-acceptance permitted the determination of 
σel = 10.85 ± 0.03(stat.)+0.49

−0.41(syst.) mb. We also determined the 
elastic cross section integrated within the STAR t-range σ det

el =
4.05 ± 0.01(stat.)+0.18

−0.17(syst.) mb. By subtracting the calculated 
σel from σtot , we also obtained an inelastic cross section σinel =
43.82 ± 0.21(stat.)+1.37

−1.44(syst.) mb. We find that the obtained re-
sults are in good agreement with the world data. The σtot agrees 
with the COMPETE prediction at 

√
s = 200 GeV of 51.79 mb within 

about 2σ of the total uncertainty.
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