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Abstract Hydrologists and engineers routinely use flood frequency analyses to compute flood 
probabilities for mitigation, infrastructure planning, and emergency management. Conventional flood 
frequency analyses—in which annual discharge maxima from a stream gage are fit to a statistical 
probability distribution—often encounter large uncertainties when estimating extreme flood levels. 
Most gage records span relatively short periods of time (<100 years), and thus the most extreme and 
infrequently occurring flood events tend to be poorly represented in instrumental data sets. Here, we 
demonstrate how a new generation of paleoflood records derived from floodplain sediments can be used 
to improve the accuracy and precision of extreme flood probability estimates along alluvial rivers. We 
use a series of simulation experiments to show that incorporating large numbers of paleoflood events in 
flood frequency analyses can significantly reduce the uncertainty of extreme flood estimates when the 
paleoflood data are sufficiently accurate and precise. Our results illustrate that robust paleoflood records 
can improve the shape parameter of flood frequency distributions, which determine the thickness of 
distribution tails, when as many as 50 paleoflood events are incorporated. We conclude by demonstrating 
how an alluvial paleoflood data set reduces uncertainty in a flood frequency analysis for a gage on 
the lower Mississippi River. Finally, we provide recommendations for how to incorporate paleoflood 
information into flood frequency analysis to improve the accuracy of extreme flood probabilities. 

Plain Language Summary Water resource managers and engineers rely on estimates of 
extreme flood probabilities for flood mitigation, infrastructure planning, and emergency management. 
However, computing accurate estimates of extreme flood probabilities can be challenging due to the 
brevity and irregularity of instrumental river discharge measurements. Here, we evaluate how paleoflood 
data—information about floods that occurred prior to instrumental measurements derived from 
geological archives—can improve the accuracy of extreme flood probability estimates on low-gradient 
rivers. Our results show that paleoflood events can help to improve the accuracy of extreme flood 
probabilities and we provide a series of recommendations for how this data can be integrated into current 
flood probability estimation methods. 

 

1. Introduction 
Severe flooding ranks among the costliest and most frequently occurring natural disasters and affects com- 
munities across the United States (Mallakpour & Villarini, 2015; NOAA, 2020; A. B. Smith, 2020). Flood 
mitigation and emergency management depend on estimates of extreme flood probabilities [e.g., the 100- 
year flood (Q100); a flood with a 1% chance of occurrence each year] to prepare for large floods effectively. 
Traditionally, the probability of extreme floods are estimated using a flood frequency analysis, where annual 
hydrologic maxima from a stream gage are fit to a probability distribution to compute the likelihood of a giv- 
en flood level at the gage site (Kidson & Richards, 2005). These conventional flood frequency analyses, how- 
ever, face a major drawback related to the brevity of instrumental records. Instrumental discharge records 
are often short—especially for periods in which rivers were minimally influenced by human activities—and 
may not include large and infrequent events (Benito, Brázdil, et al., 2015; Cohn & Stedinger, 1987). As such, 
flood frequency analyses performed with short instrumental records may underestimate or overestimate the 
probabilities of extreme flooding (Hosking & Wallis, 1986a; Merz & Bloschl, 2008a). 

Improving probability estimates of hydrologic extremes can be accomplished by including information into 
flood frequency analyses based on hydrological reasoning that builds on conventional statistical methods 
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(Klemeš, 1993). Described as “flood frequency hydrology,” this approach encompasses the addition of in- 
formation in three categories: temporal, spatial, and causal (Merz & Bloschl, 2008a). Temporal information 
includes data related to flood history before the instrumental collection of streamflow data, while spatial in- 
formation includes data derived from neighboring regions or watersheds, and causal information describes 
knowledge of the processes that generate flooding (Merz & Bloschl, 2008a). For example, paleoflood data 
derived from slackwater sediments in bedrock canyons represent temporal information that have been inte- 
grated into and improved flood frequency analyses (Baker, 1987, 2008; Benito, Brázdil, et al., 2015; Frances 
et al., 1994; Macdonald et al., 2014). In recent years, the use of paleoflood data has been expanded to include 
other archive types and geographic settings, including lake sediments, tree-rings, speleothems, and histori- 
cal archives (Wilhelm et al., 2020). 

Despite the potential of paleoflood data to improve estimates of extreme flood probabilities (Madsen 
et al., 2013) and the diversity of methods that describe how to incorporate them into flood frequency analy- 
sis—including the “Bulletin 17C” guidelines for the United States (England, Cohn, et al., 2019)—paleoflood 
archives are not consistently incorporated into flood hazard estimates in many countries outside the US, 
particularly for large alluvial rivers (Castellarin et al., 2012; Madsen et al., 2013). Advances in paleoflood 
hydrology now allow for the reconstruction of past floods on alluvial rivers by using coarse-grained flood 
deposits that accumulate in floodplain depressions, including oxbow lakes (Fuller et al., 2018; Jones, 2012; 
Leigh, 2018; Munoz et al., 2015, 2018; Toonen, 2012; Toonen et al., 2015, 2020). Oxbow lakes, which form 
when a meandering river cuts itself off, are common in floodplains and provide a source for hydrologic tem- 
poral information for alluvial rivers around the world, including places that do not have long systematic re- 
cords (Toonen, Munoz, et al., 2020). However, these alluvial paleoflood records differ from most paleo stage 
indicators (PSI), like slack water deposits, in terms of the number of paleoflood events recorded, the paleo- 
flood record length, and the uncertainty of discharge estimates. It is thus difficult to determine their addi- 
tional value to flood frequency analysis, as many common practices in paleoflood hydrology flood frequency 
analyses may not apply or have not yet been assessed in this context (Harden, O’Connor, et al., 2011). 

Here, we aim to advance the use of hydrological reasoning using temporal information in the form of paleo- 
flood data to improve the biases of flood frequency analyses resulting from short instrumental records for 
alluvial rivers. We evaluate the ability of oxbow lake derived paleoflood records to improve extreme flood 
estimates under a range of scenarios. We run a series of numerical experiments in which flood frequency 
analyses are performed on simulated instrumental discharge and paleoflood data with different character- 
istics including record length, number of events, and uncertainty structure. Our results show that including 
large numbers of paleoflood events can increase the accuracy of frequency analysis estimates, but that 
uncertainties over the paleoflood magnitude can in some cases reduce the effectiveness of flood frequency 
analyses. We illustrate our recommendations by incorporating paleoflood data into a flood frequency anal- 
ysis for the lower Mississippi River at Vicksburg (USGS gage 07289000). We conclude with recommenda- 
tions describing best practices for how to incorporate oxbow lake derived temporal information into flood 
frequency analysis. 

 
2. Background 
2.1. Paleoflood Data in Flood Frequency Analysis 

Adding paleoflood and historical flood data to systematic annual maxima data is a technique which reduces 
sample bias of short instrumental streamflow records (Benito, Lang, et al., 2004; Hosking & Wallis, 1986b; 
MacDonald et al., 2014). Incorporating paleoflood data into frequency analysis requires an extended version 
of the standard distribution fitting algorithms applied in analyses with only systematic instrumental data 
(Frances et al., 1994; Stedinger & Cohn, 1986). For example, Bulletin 17C recommends the Expected Mo- 
ment Algorithm (EMA), which is an adjusted version of a Method of Moment procedure which computes 
distribution parameters from a sample’s moments (Blainey et al., 2002; England et al., 2003, 2019). Other 
scholars attempted to estimate distribution parameters from the L-moments of a sample via the Partial 
Probability Weighted Moments (PPWM) algorithm, an extended systematic Probability Weighted Moments 
(PWM) method (Greenwood, 1979; Q. J. Wang, 1990). We settled for a Maximum Likelihood Estimator 
(MLE) algorithm which performs consistently well with the incorporation of paleoflood data, different 
lengths of instrumental data, and multiple extreme value distribution models (Blainey et al., 2002; Frances 
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et al., 1994; Payrastre et al., 2011; Stedinger & Cohn, 1986; Strupczewski et al., 2017). An MLE computes the 
likelihood that a sample is generated from a given set of distribution parameters via the a priori determined 
distribution probability density function (Stedinger & Cohn, 1986). 

Aside from the Frequentist methods described above, a number of Bayesian flood frequency methods have 
been available to further reduce the uncertainty of return level estimates. Combined with Markov Chain 
Monte Carlo (MCMC) algorithms, Bayesian methods have successfully been applied to instrumental dis- 
charge records around the world in both a parametric (Lam et al., 2017; Reis & Stedinger, 2005), and non- 
parametric setting (O’Connell, 2005). In addition, existing Bayesian algorithms offer the advantages of al- 
lowing for the incorporation of multiple types of paleo-data, such as paleohydrologic bounds and 2D model 
output (Kuczera, 1999; O’Connell et al., 2002). Both parametric and nonparametric Bayesian algorithms 
reduce the biases of traditional flood frequency analysis, however, conventional flood frequency procedures 
continue to be primarily based on Frequentist statistics (Castellarin et al., 2012; Madsen et al., 2013). There- 
fore, we decided to focus our study on reducing biases in flood frequency analysis using Frequentist, instead 
of Bayesian, means. 

The increased availability of paleoflood data has prompted interest in quantifying their added value to flood 
frequency analyses. Factors that determine the value of paleoflood data include the number of paleofloods, 
the paleoflood record length, the length of the systematic record, the shape of the flood frequency distribu- 
tion, and the flood quantile of interest (Blainey et al., 2002). In simulation experiments where paleofloods 
are selected because they exceed a given threshold, the magnitude of that threshold also affects the informa- 
tion value of paleoflood data (Blainey et al., 2002; Frances et al., 1994)—but this primarily reflects the num- 
ber of paleofloods in the record (Guo & Cunnane, 1991). Hosking and Wallis (1986a, 1986b) demonstrated 
that including only one paleoflood significantly improved the accuracy of Q100 estimates, specifically when 
instrumental gage records are short. Other authors reiterate this result and show that adding even more 
events can further improves Q100 estimates (England, Salas, & Jarrett, 2003; Guo & Cunnane, 1991; Strupcze- 
wski et al., 2014). However, this improvement is conditional on the length of the paleoflood record—such 
that short records with an increasing amount of paleoflood events can eventually degrade Q100 estimates 
(Guo & Cunnane, 1991)—and the type of distribution fitting algorithm (England, Salas, & Jarrett, 2003). 

Increasing the length of the paleoflood record can substantially improve the accuracy of Q100 estimates, yet 
this is dependent on other factors, such as the type of distribution fitting algorithm (Blainey et al., 2002; 
England, Salas, & Jarrett, 2003; Stedinger & Cohn, 1986) and systematic record length (Strupczewski 
et al., 2014). For example, the Historical Weighting Moments parameter estimation method, recommended 
in Bulletin 17B (an earlier version of Bulletin 17C), only marginal improves the Q100 estimates as record 
lengths increase (England, Salas, & Jarrett, 2003; Stedinger & Cohn, 1986), but in combination with EMA 
and MLE algorithms longer paleoflood records do improve Q100 estimates (Blainey et al., 2002; England, 
Salas, & Jarrett, 2003). When only systematic records are available, the more extreme the flood quantile of 
interest, the larger the error of the quantile estimate (Blainey et al., 2002; England, Salas, & Jarrett, 2003). 
This pattern is similar when paleofloods are included in the analysis, although dampened for more extreme 
quantiles (Blainey et al., 2002; England, Salas, & Jarrett, 2003). In addition, Frances et al. (1994) show that 
the statistical gain of paleoflood data to improve flood frequency analysis increases for values up to Q10, but 
then stagnates. This means that adding paleofloods does not provide a relative advantage for estimating, for 
example, a Q100 event over a Q1000 event. 

Uncertainty about the properties of the paleoflood archive can also lead to biased QT estimates. We can 
distinguish two important types of error inherent to paleoflood data: (1) uncertainty regarding the paleo- 
flood magnitude and (2) dating error of the paleoflood. Hosking and Wallis (1986b) demonstrate, using a 
simulation experiment, that errors larger than 25% over the paleoflood magnitude can reduce the effects 
of incorporating paleoflood data into flood frequency analyses. However, Blainey et al. (2002) show that 
paleoflood data with log-normally distributed 2σ errors of ±30% only marginally reduces the uncertainty 
of a flood frequency analysis; their analysis also included a ±40-year dating error, typical for the normally 
distributed uncertainty of radiocarbon dates (Blainey et al., 2002). Taken alone, this dating error only re- 
duced uncertainty of the Q100 estimates by 1.7% in combination with the best possible paleoflood scenario 
(Blainey et al., 2002). Strupczewski et al. (2014), however, demonstrate that uncertainty about the length 
of the paleoflood record, as a result of chronological uncertainty, can reduce the value of paleoflood data to 
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flood frequency analysis. Although there has been a large body of work addressing paleoflood archives role 
in flood frequency analysis through simulation experiments, our aim here is to explore aspects that have 
received less attention but are important when considering how best to incorporate paleoflood data into 
flood frequency analysis on alluvial rivers. 

 
2.2. Oxbow Lake Sediments as Paleoflood Record 

Recent advances in paleoflood hydrology have expanded the use of paleoflood archives beyond bedrock 
canyons to encompass a range of hydrologic settings, including alluvial rivers (Wilhelm et al., 2019). In 
alluvial settings, paleoflood records depend on the deposition of distinctive sediments during flood events 
in floodplain depressions, including oxbow lakes (Toonen, Munoz, et al., 2020); these alluvial paleoflood ar- 
chives have distinct characteristics from other archives that have traditionally been incorporated into flood 
frequency analysis (Ely & Baker, 1985; Levish et al., 2003; Thorndycraft et al., 2005). In alluvial river valleys, 
coarse-grained sediments deposited in oxbow lakes during overbank floods serve as flood magnitude proxy 
(Toonen, Munoz, et al., 2020), where high-magnitude flood events result in the mobilization and deposition 
of coarser-grained material (Fuller et al., 2019; Munoz, Giosan, Therrell, et al., 2018; Toonen, Winkels, 
et al., 2015). These alluvial paleoflood hydrology techniques can generate multi-centennial flood records 
with over 20 paleoflood events, but with event magnitude uncertainties of >10%. Moreover, these sediment 
records are relatively short, encompassing centuries to millennia, as oxbow lakes fill in with both river 
sediments and eroded floodplain material (Toonen, Kleinhans, & Cohen, 2012). Consequently, the ratio be- 
tween the record length and amount of paleofloods is much higher compared to other paleoflood archives. 

Unsystematic flood data—including both historic and paleoflood events—have been grouped into four 
classes: (1) floods with a known magnitude, (2) floods with an unknown magnitude but below some magni- 
tude threshold, (3) floods with an unknown magnitude but above some magnitude threshold, and (4) floods 
with a magnitude between some range (Blainey et al., 2002; England, Salas, & Jarrett, 2003). Prior work 
addressing the value of paleoflood data in flood frequency analyses primarily focuses on paleoflood records 
from slackwater deposits (Hosking & Wallis, 1986b; Stedinger & Cohn, 1986). Slackwater sediments—flood 
deposits preserved at tributary mouths and rock shelters along bedrock canyons—typically provide precise 
estimates of past flood and registration threshold stage through hydraulic models, as topography remains 
relatively stable over time (Baker, 2008; Kochel & Baker, 1982; O’Connor et al., 2014). In contrast to bedrock 
canyons, alluvial floodplains are geomorphically dynamic and the processes involved in sediment deposi- 
tion during overbank flow are complex and sensitive to subtle topographic variation, sediment provenance, 
and human modifications to the floodplain and channel (Asselman & Middelkoop, 1995; Munoz, Giosan, 
Blusztajn, et al., 2019), so reconstructing a paleoflood magnitude or proxy registration threshold in these 
settings is more difficult than in bedrock canyons. 

To estimate paleoflood magnitudes from oxbow lake sediments, a linear regression is used to relate sedi- 
ment texture of historic floods to the measured peak discharge of those floods at a nearby gage; this statisti- 
cal model is then used to estimate the magnitude of prehistoric floods (Fuller et al., 2019; Leigh, 2018; Too- 
nen, Winkels, et al., 2015). While this approach has been successful for several alluvial rivers (Leigh, 2018; 
Munoz, Giosan, Therrell, et al., 2018; Toonen, Winkels, et al., 2015), it cannot provide a proxy registration 
threshold, and results in discharge estimates with errors of 10%–30%. Here, we decided to focus our simula- 
tion experiments on floods with a known magnitude as this most closely reflects the characteristics of allu- 
vial paleoflood archives. Consequently, our MLE algorithm does not include binomial observations, ranges, 
or multiple proxy registration thresholds even though these techniques are widely used in flood frequency 
analysis for other paleoflood archives (England, Salas, & Jarrett, 2003; Frances et al., 1994). 

Previous work on the Rhine River showed that this type of integration of paleoflood records can significant- 
ly improve the precision of return levels by reducing confidence intervals of the return level plot, especially 
in combination with advanced statistical methods such as bootstrapping and MCMC algorithms (Bomers 
et al., 2019; Toonen, Winkels, et al., 2015). Here, we evaluate the ability paleoflood records to also improve 
the accuracy of extreme flood estimate using a series of simulation experiments that represent the charac- 
teristics of alluvial paleoflood records. Specifically, we evaluate the effect of the amount of paleofloods and 
the uncertainty of the paleoflood estimates on flood frequency analysis - two characteristics where alluvial 
paleoflood archives distinct from slack water deposits. We examine the effects of these characteristics on QT 
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Figure 1. Schematic overview of the simulation experiments implemented in this study to evaluate the efficacy of 
paleoflood records in flood frequency analysis. 

 
values, as well as the estimates of specific distribution parameters including location, scale, and shape. The 
structure of our simulation experiments is similar to those of Stedinger and Cohn (1986), Hosking and Wal- 
lis (1986b), and Strupczewski et al. (2017), where we fit a parametric distribution to synthetic (paleo)flood 
records drawn from a predefined distribution Our first set of experiments examines the effect of increasing 
the number of paleoflood events on distribution parameters, QT estimates, while a second set of experi- 
ments focuses on the effect of uncertainty structures (i.e., over- and under-estimation) over the magnitude 
of paleoflood discharges (Figure 1). 

 
3. Data and Methods 
3.1. Simulation Procedure 

Our approach for assessing the utility of paleoflood events in flood frequency analyses involves estimating 
the distribution parameters of a simulated record with both instrumental data (x1, x2, ..., xN), and paleoflood 
data (y1, y2,...,yF) from a (pre)historical period M (Figure 2). We chose to draw data from a three-parame- 
ter Log Normal (LN3) distribution (Equation 1), because it fits the average statistical properties of annual 
maxima records throughout the United States (Vogel & Fennessey, 1993; Vogel & Wilson, 1996) (Figure S1). 
The LN3 distribution has a location, scale, and shape parameter (Hosking & Wallis, 1997). The location pa- 
rameter (μ) sets the center of the distribution, the scale parameter (α) describes its variance, and the shape 
parameter (ξ) describes the asymmetry of the distribution and thus impacts tail thickness and extreme val- 
ues. The parent distribution has a location parameter of 100 and a scale parameter of 20. We picked these 
values based on the ratio between μ and α of the peak flow distribution of the Mississippi River at Vicksburg 
gauge station (USGS gage 07289000). We performed the analyses with a shape parameter of −0.2, similar to 
the Mississippi at Vicksburg, and an additional experiment with thicker tails for which the shape parameter 
is −0.6. 
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We construct records by generating N instrumental years and M historical years (y1, y2, ..., yM). Only the F 
largest flood magnitudes from y1:M are selected as the paleoflood record and, if part of the experiment, mul- 
tiplied by some Gaussian error term z. To estimate the location, scale, and shape parameters of the sample, 
an LN3 distribution is fit to the sample distribution with an MLE algorithm (Equation 2) similar to Frances 
et al. (1994) and Stedinger and Cohn (1986). In Equation 2, xt is the systematic record, yt the paleoflood 
events, h the length of the paleoflood record, k the number of paleoflood events, and X0 the perception 
threshold. We take the magnitude of the lowest paleoflood as X0 because it is difficult to establish a real per- 
ception threshold for these environments as established above. We ran 1,000 simulations for every scenario 
in which N, M, F, and the distribution from which z is drawn are fixed, but x1:N and y1:M vary. The Root Mean 
Square Error (RMSE) is computed from the 1000 simulations to statistically summarize the deviation from 
the true parameter values, Q10, Q50, Q100, Q500, Q1000, Q10000, and Q1000000 (Strupczewski et al., 2017). The RMSE 
is the square root of the average squared difference between the estimated and true parameters—we divide 
it by the average estimate of the 1,000 simulations to get the relative RMSE (rRMSE). 

 

L (  , , ) n f (x ) h 
F  ( X  )(h −k )  k f (y )  (2) 

t      t     t = ∏ x t k  x 0 ∏  x      t 
t =1   t =1 

Unlike previous simulation experiments with paleoflood data, our simulation set up only involves the selec- 
tion of the F largest floods, also known as type 2 censoring (Blainey et al., 2002). Type 1 censoring implies 
that the paleoflood record results from the selection of all floods above some fixed threshold, in simulation 
experiments often QT. It is important to distinguish between the two as they result in different behavior of 
the paleoflood record length to the paleoflood events amount ratio (M:F) as paleoflood records get longer - 
which will affect the accuracy of the flood frequency analysis. For type 1 censoring, this ratio remains stable 
because more paleofloods will be observed as events as more cross the threshold in a longer record. For type 
2 censoring, this ratio is not stable as the amount of paleoflood events remains the same (F) even though 
the record gets longer. Previous simulation experiments have shown that when the ratio is high (e.g., a short 
record with many events), it reduces the accuracy of the flood frequency analysis (Guo & Cunnane, 1991; 
O’Connor et al., 2014). As described above, oxbow lake paleoflood archives typically have high M:F ra- 
tios, which can be reconstructed flexibly with type 2 censoring (or type 1 censoring with a low threshold). 
Therefore, we decide to focus on type 2 censoring as it better resembles the characteristics of oxbow lake 
paleoflood archives. 

 
3.2. Experiments 

First, we run a set of experiments to evaluate the combined effects of the number of paleoflood events and 
instrumental record lengths. Initially, the number of paleoflood events is increased from 0 to 8 and from 10 
to 50, while the length of the (pre)historical period is fixed at 300 years. Next, the length of the (pre)histor- 
ical period varies from 0 to 1,000 years by increments of 200 years while the number of paleoflood events 
was fixed at 10. For every combination of paleoflood events and historical period length, described above, 
10 simulations are run with increasing instrumental years from 10 to 100. After every scenario the rRMSEs 
are computed for all QT values and the three distribution parameters. A second set of experiments evaluates 
the role of uncertainty in the paleoflood discharge data on the Q100 levels and distribution parameters. Three 
uncertainty structures of the paleoflood discharge magnitudes—nondirectional random error, structural 
underestimation, and structural overestimation—are simulated by multiplying the floods y1:F with an error 
term z drawn from a normal distribution D as N(μ,σ). For the nondirectional random error scenario, D has 
a mean 1 and an increasing standard deviation from 0.1 to 0.4. Meaning that the paleoflood discharge is as 
likely to be both lesser or greater in magnitude than the true paleoflood discharge, but with increasing de- 

 2 
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viation as σ gets larger. For under or overestimation, σ is fixed (0.1) but μ is respectively changing from 1 to 
0.8 or 1 to 1.2. Meaning that the paleoflood discharge can still be larger or smaller than the true paleoflood 
discharge but the odds of the paleoflood becoming larger increases as the mean (μ) moves up and vice versa. 
To summarize, this means that generated paleoflood discharge is multiplied by a factor around 1 and the er- 
ror becomes greater as μ moves away from 1, or σ becomes larger. We assume the range of these error values 
based on the estimate uncertainty of paleoflood data retrieved from the Mississippi River (Munoz, Giosan, 
Therrell, et al., 2018). Here we want to explicitly study the effect of error associated with paleoflood events, 
however, we recognize that systematic records also have error associated with them which is addressed by 
other authors (Blainey et al., 2002; Kuczera, 1996). 

We estimate the QT values and the three distribution parameters for each type of uncertainty and with in- 
creasing lengths of instrumental data, like the previous experiment. Finally, different uncertainty structures 
and the number of paleoflood events are combined to test the effect of more paleoflood events with error 
on the accuracy of Q100 estimates. To do this, we generate paleoflood data with z from a fixed distribution 
N(μ,σ), for each type of uncertainty, and increased the number of paleoflood events from 0 to 10 for every 
scenario. All simulation experiments are performed for both the parent distribution with a shape of −0.2 
and −0.6. 

 
4. Results 
4.1. Paleoflood Record Length 

Our simulation experiments show that the rRMSE of Q100, and all three distribution parameters reduces as 
more paleofloods are included, but the decrease of rRMSE diminishes as more paleoflood events are added 
and as instrumental record lengths are increased (Figure 2).The reduction of the Q100 rRMSE stagnates 
after the addition of 10 paleofloods (Figures 2a and 3b). Our simulations also show that the rRMSE of Q100 
becomes insensitive to the instrumental record length with the inclusion of more than six paleoflood events, 
as after that the Q100 rRMSE does not improve further (Figures 2a and 2b). These findings support that an 
analysis with more than six paleofloods is most beneficial when instrumental records are short, as the Q100 
rRMSE of analyses that exclude paleoflood data exponentially decreases as instrumental record length in- 
creases. For example, there is a 75% reduction in the Q100 rRMSE when six paleofloods are added to a short 
(20 years) instrumental record relative to an analysis with no paleofloods; the same analysis with a longer 
(40 years) instrumental record reduces the Q100 rRMSE by 60% (Figure 2a). Even in the case of relatively 
long instrumental records (100 years), the rRMSE is still reduced by 45% when six paleoflood events are 
included in the analysis, although the rRMSE reduction is moderate (0.024) when the instrumental record 
is this long. 

Our results also document a relatively increasing reduction of rRMSE for Q500 and larger return periods 
compared to Q100 rRMSE when paleoflood data are included in frequency analysis, reflecting the difficulty 
of estimating extreme flood levels using only instrumental data (Figure 3). We also find the opposite trends 
for return levels smaller than Q100, where improvements with the addition of paleoflood data are less pro- 
nounced (Figure 3). Adding more paleoflood events is least helpful to estimate smaller return periods, but 
for very large return levels (i.e., Q1000000) there is a substantial difference in rRMSE between using 10 or 
50 paleoflood events (Figure 3b). Increasing the length of time from which paleofloods are retrieved only 
reduces the Q100 rRMSE notably when multiple paleofloods are included (Figure S2). However, including 
many paleofloods from a relatively short period (e.g., 40 floods over 200 years) results in a larger Q100 rRMSE 
relative to an analysis that does not include paleoflood data (Figure S3). 

The improvements to flood frequency analyses with the inclusion of paleoflood data are primarily due to 
reduced rRMSE of the shape parameter, which describes the tail end of distribution (Figure 2). For example, 
when two paleoflood events are added to 20 years of instrumental data, the rRMSE of the shape parameter 
is reduced by 0.41 (33%) relative to an analysis without paleoflood data. The effect of more paleoflood flood 
on the rRMSE of the shape parameter is minimal, such that the rRMSE in the scenario described above 
(i.e., 20 years of instrumental data) is only marginally improved (0.47 rRMSE; 39%) if six paleoflood events 
are included instead of two (Figure 2b). Only when instrumental records are shorter than 40 years and 
more than 10 paleofloods are included will the shape parameter rRMSE further decrease with additional 
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Figure 2. The relative Root Means Square Error (rRMSE) of the estimated 100-years-flood (Q100) and the three 
parameters of the Log Normal 3 distribution (ξ = −0.2), from flood frequency analyses with different numbers of 
paleoflood events (over a 300-year period) as a function of the gaged instrumental record length. The striped black lines 
denote simulations with only instrumental data and the solid black line is their average. Panels (a–d) simulations with 
1–8 paleoflood events; panels (e–h): simulations with 10–50 paleoflood events. 

 
paleofloods (Figure 2f). In contrast to the shape parameter, the inclusion of paleoflood data exerts only 
a marginal influence on the rRMSE of the location parameter (Figure 2c). For example, with 40 years of 
instrumental data and two paleoflood events, the location rRMSE is reduced by only 3% relative to an anal- 
ysis that does not include paleofloods, though the relative reduction becomes larger when more than 10 
paleoflood events are included (e.g., 65% reduction in rRMSE [0.05] with 20 paleoflood events). We also note 
that when instrumental data sets are >40 years in length, the inclusion of >10 paleoflood events worsen 
estimates of the scale and location parameters relative to an analysis that includes only instrumental data 
(Figures 2g and 2h). 

We also evaluated the influence the parent distribution to find that a distribution with thicker tails (shape 
parameter of −0.06) reduces the accuracy of Q100 estimates in scenarios with <8 paleofloods included, but 
more paleoflood do not further improve the results (Figure 4). The inclusion of paleoflood data improves 
the accuracy of the shape parameter for a parent distribution with thicker tails compared to a distribution 
for thin tails. For example, an analysis with six paleofloods and 20 years of instrumental from a parent dis- 
tribution with a shape parameter of −0.6 results 64% lower rRMSE compared to the same analysis with a 
parent distribution with a shape parameter of −0.2. The location and shape parameter are less sensitive to 
changes in tail thickness (Figure 4c). Together, our results demonstrate that the inclusion of paleoflood data 
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Figure 3. The relative root means square error (rRMSE) of different flood quantiles, ranging from the 10-year flood 
(Q10) to the 1,000,000-year flood (Q1000000), from flood frequency analyses with different numbers of paleoflood events 
(over a 300-year period). The striped black lines denote simulations with only instrumental data and the solid black line 
is their average. Panel (a) simulations with 1–8 paleoflood events; panel (b) simulations with 10–50 paleoflood events. 

 
 

increases the accuracy of extreme flood estimates by improving the estimation of the shape parameter, but 
that the use of >10 paleoflood events can reduce the accuracy of the location and scale parameters. 

 
4.2. Paleoflood Record Uncertainty 

Our experiments examined three uncertainty structures in the paleoflood data—random, negative, and pos- 
itive biases—and generally found that paleoflood data with large errors of any type result in poorer or esti- 
mates as good as an analysis without paleoflood data (Figure 5). Normally distributed 1σ errors of > 0.2 (i.e., 
where the ratio between the mean and standard deviation is larger than 0.2) result in location (Figure 5b) 
and scale (Figure 5c) parameter estimates with higher rRMSE than when no paleoflood data are included. 
The shape parameter is most resilient to random error, as paleoflood estimates with 1σ errors < 0.3 perform 
better than analyses based only on instrumental data (Figure 5a). For the shape parameter, paleoflood data 
with 1σ errors < 0.4 improve the analysis when instrumental records are <60 years in length. We also found 
that structural underestimation and overestimation of paleoflood discharges has a similar impact on the 
rRMSE of location and scale parameters (Figure 5). In general, our results show that the addition of paleo- 
flood events with 1σ errors > 0.2 do not improve—and sometimes worsen—the estimates of Q100 flood levels 
in a frequency analysis when instrumental records are >20 years in length. 

 
Finally, our analyses show that the accuracy of extreme flood levels reduces as a large number of uncertain 
paleoflood events is included in a frequency analysis—even if the paleoflood errors are relatively small— 
due to compounding of individual errors (Figure 6). For example, the inclusion of two paleoflood events 
with random 1σ errors of 0.2 and 80 years of instrumental data results in larger rRMSE of Q100 than if only 
instrumental data are used and including eight paleoflood events with these errors doubles the rRMSE of 
Q100 (Figure 6a). We observe a similar effect for structural underestimation of paleoflood errors, though 
structural overestimation is less affected by the number of paleoflood events—especially when instrumen- 
tal records are short (Figure 6b). The inclusion of paleoflood events is most beneficial when instrumental 
records are <20 years in length, even when more than two paleoflood events with errors >20% are included. 
In short, we show that large errors in paleoflood magnitude estimates generally reduce the effectiveness of 
flood frequency analyses, and that the inclusion of a large number of paleoflood events compounds their 
uncertainty in a flood frequency analysis. 



Water Resources Research 10.1029/2020WR028631 

REINDERS AND MUÑOZ 10 of 18 

 

 

 
 

 
 

Figure 4. The relative root means square error (rRMSE) of the estimated 100-year-flood (Q100) and the three 
parameters of the Log Normal 3 distribution (ξ = −0.6) from flood frequency analyses with different numbers of 
paleoflood events (over a 300-year period) as a function of the gaged instrumental record length. The striped black lines 
denote simulations with only instrumental data and the solid black line is their average. Panels (a–d): simulations with 
1–8 paleoflood events; panels (e–h): simulations with 10–50 paleoflood events. 

 
4.3. Robustness Test 

To evaluate the robustness of our results, we run the same simulation experiments for a GEV distribution 
model. Different watersheds within the United States will have different underlying flood frequency distri- 
butions, as the country is hydrological diverse with several flood generating mechanisms (England, Salas, 
& Jarrett, 2003; Merz & Blöschl, 2003). In this context, a robust estimator can be defined as one which re- 
turns reliable results under a broad set of scenarios (England, Salas, & Jarrett, 2003; Stedinger et al., 1993). 
Here, we compare the LN3 simulation results to simulations from the GEV distribution, another common 
three-parameter distribution. For example, Salinas et al. (2014) identified the GEV distribution as a pan-Eu- 
ropean flood distribution, but the GEV distribution also characterizes the statistical properties of peak flow 
in rivers across the United States (Vogel & Wilson, 1996). 

Similar to the LN3 distribution, the GEV distribution has a location, scale, and shape parameter (Hosking 
& Wallis, 1997). The GEV distribution summarizes three different extreme value distributions: the Gumbel 
distribution (GEV-type I) which has a shape parameter of 0, the Fréchet distribution (GEV-type II) which 
has a positive shape parameter, and the Weibull distribution (GEV-type III) which has a negative shape pa- 
rameter. Here, larger shape parameters are associated with fatter tails. We assess the results for two sets of 
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Figure 5. The relative root mean square error (rRMSE) of the estimated 100-year-flood (Q100) and the three parameters of the Log Normal 3 (LN3) distribution 
(ξ = −0.2) from flood frequency analyses with one paleoflood event (over a 300-year period) as a function of the gaged instrumental record length. The 
striped black lines denote simulations with only instrumental data and the solid black line is their average. Panels (a–c): simulations with 1 paleoflood that is 
multiplied with z from a Normal distribution with mean of 1 and standard deviation denoted by the colored lines; panels (d–f): simulations with 1 paleoflood 
event that is multiplied with z from a Normal distribution with a standard deviation of 0.1 and a mean denoted by the colored lines; panels (g–i): simulations 
with one paleoflood event that is multiplied with z from a Normal distribution with a standard deviation of 0.1 and a mean denoted by the colored lines. 

 

parameters, one that represents gauge data from the Mississippi River at Vicksburg [location: 100; scale: 20; 
shape: −0.1] and a distribution with fatter tails [location: 100; scale: 20; shape: 0.3]. 

Generally, simulations with a GEV distribution result in higher absolute rRMSE’s compared to those with 
LN3 simulations, however the way rRMSE changes with different numbers of paleoflood events, different 
instrumental record lengths or differences in estimated flood quantiles remains similar (Figure 7). For ex- 
ample, the rRMSE values for no-error flood frequency analyses with LN3 and GEV distributions are alike, 
except for scenarios without paleoflood data, for which the GEV distributions shows larger rRMSE values 
(Figure 7). The same is true for other analyses performed in this study (Figures S9–S13). 

 
4.4. Application to Mississippi River at Vicksburg 

We applied the insights described above to perform an adjusted flood frequency analysis for the lower Mis- 
sissippi River at Vicksburg (USGS gage 07289000) using paleoflood records derived from nearby oxbow lake 
sediments developed by Munoz, Giosan, Therrell, et al. (2018) (Figure 8). The instrumental record for the 
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Figure 6. The relative root mean square error (rRMSE) of the estimated 100-year-flood (Q100) and the three parameters of the Log Normal 3 (LN3) distribution 
(ξ = −0.2) from flood frequency analyses with 2–10 paleoflood events (over a 300-year period) as a function of the gaged instrumental record length. Panel 
(a) simulations with paleofloods multiplied by a random error term from a Normal distribution with a mean of 1 and standard deviation of 0.2; panel (b) 
simulations with paleofloods multiplied by an overestimation error term from a Normal distribution with a mean of 1.1 and standard deviation of 0.1; panel (c) 
simulations with paleofloods multiplied by an underestimation error term from a Normal distribution with a mean of 0.9 and standard deviation of 0.1. 

 
Mississippi River at Vicksburg includes continuous annual peak discharge data spanning 128 years, from 
1887 to 2015. However, human activities within the Mississippi River basin—including efforts to improve 
navigation and mitigate flooding—have profoundly influenced the hydrology of the lower Mississippi Riv- 
er over the last century (Munoz, Giosan, Therrell, et al., 2018; Pinter et al., 2008; Remo et al., 2009; L. M. 
Smith & Winkley, 1996). Levees and other engineering structures have been constructed along the lower 
Mississippi River since the eighteenth century, but, but a severe flood in 1927 resulted in the failure of the 
existing levee system and triggered more comprehensive legislation that federalized and significantly ex- 
panded flood mitigation and navigation infrastructure across the lower Mississippi River through the Flood 
Control Act of 1928 (Camillo, 2012). These activities, together with other upstream changes to the Missis- 
sippi River and its basin (e.g., land use change, dams), have profoundly influenced river stages, discharge, 
sediment loads, and channel morphology (Meade & Moody, 2010; Mossa, 1996; Munoz, Giosan, Therrell, 
et al., 2018; Pinter et al., 2008; Remo et al., 2009; B. Wang & Xu, 2018). The influence of anthropogenic cli- 
mate change on the discharge of the lower Mississippi River remains unclear (Tao et al., 2014; van der Wiel 
et al., 2018), but may also contribute to nonstationarity of flood peaks beginning in the twentieth century. 
Together, geomorphic and hydroclimatic changes to the Mississippi River challenge the assumption of sta- 
tionarity throughout the entire instrumental period. Here, we use a cutoff of date of 1928 to designate the 
end of “unregulated” flows of the lower Mississippi River because these predates the major investments in 
infrastructure associated with the MR&T project. Under this assumption, the instrumental period of un- 
regulated peak flows for the Mississippi River at Vicksburg is reduced to 41 years that we supplement with 
existing paleoflood data. 

We supplemented the instrumental data with paleoflood records derived from oxbow lake sediments along 
the lower Mississippi described by Munoz, Giosan, Therrell, et al. (2018). This paleoflood data set is derived 
from sedimentary records collected from three oxbow lakes along the Lower Mississippi River using an ap- 
proach similar to other alluvial paleoflood records (Munoz, Gruley, et al., 2015; Toonen et al, 2015, 2020) and 
includes 45 paleoflood events with associated age and peak discharge estimates that span the last ∼500 years. 
Peak discharges of the paleofloods were estimated and calibrated via a linear regression to the Vicksburg gage 
using the approach of Toonen, Winkels, et al. (2015). The estimated peak discharges of paleofloods had a 1σ 
error of ∼0.1, so we included only the three largest paleoflood events, dated to ca. 1609 CE, 1620 and 1625, 
to avoid compounding errors and reducing the effectiveness of the paleoflood data (Figure 6). The historic 
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Figure 7. The relative root means square error (rRMSE) of the estimated 100-year-flood (Q100) and the three 
parameters of the GEV distribution (ξ = −0.1), from flood frequency analyses with different numbers of paleoflood 
events (over a 300-year period) as a function of the gaged instrumental record length. The striped black lines denote 
simulations with only instrumental data and the solid black line is their average. Panels (a–d): simulations with 1–8 
paleoflood events; panels (e–h): simulations with 10–50 paleoflood events. 

 

period was computed via the formula described in Schendel and Thongwichian (2017) based on an uniform 
distribution, which counters the bias of using a too short period in which we observe the flood events if we 
only took the length of the available data as our historic period. The lowest paleoflood discharge level was 
assumed as the proxy registration threshold. 

Our analysis shows that the inclusion of three paleofloods significantly reduces the confidence intervals 
of extreme flood levels (i.e., Q100 and Q500), while the mean estimate of these flood levels only marginally 
changes with the inclusion of paleofloods (Figure 8b). Confidence interval width for Q100 and Q500 reduce 
by 53.7% and 62.2%, respectively, with the inclusion of paleofloods data, while the mean Q100 and Q500 esti- 
mates decrease by 8.7% and 11.9%, respectively, with the inclusion of paleoflood data. The substantial im- 
provement in the precision of extreme flood levels with the inclusion of paleofloods results in Q100 and Q500 
estimates and confidence intervals that do not exceed the Project Design Flood—a hypothetical maximum 
discharge that existing MR&T infrastructure are designed to withstand (Camillo, 2012). 

Paleoflood event discharges are often more extreme than the values measured over the instrumental period 
(Baker, 2008), and thereby serve to increase the return levels of Q100 and Q500 when included in a frequency 
analysis. In the case of the lower Mississippi River, the most extreme paleoflood discharge is significantly 
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Figure 8. Application of alluvial paleoflood data to a flood frequency analysis for the Mississippi River at Vicksburg (USGS gage 07289000): (a) peak annual 
discharges for the Mississippi River at Vicksburg for the “unregulated” period (i.e., prior to 1928) from gage data (black; 1927 flood as triangle) and paleoflood 
data (gray = all paleofloods; red = three largest paleofloods selected for frequency analysis) from Munoz, Giosan, Therrell, et al. (2018); (b) flood levels 
associated with different flood return periods for a flood frequency analysis with a GEV distribution using only instrumental data (black line, shading is 95% 
confidence interval) and using 3 paleoflood events to supplement the instrumental record (red line, shading is 95% confidence interval). 

 

lower (25%; 12,854 m3/s) than the largest unregulated (pre-1928) instrumental datapoint (the 1927 flood) 
(Figure 8a). The MLE algorithm used to conduct the flood frequency analysis assumes a threshold such 
that all paleoflood events greater than the lowest paleoflood discharge are recorded. As a result, the shape 
parameter of our flood frequency analysis with paleofloods approaches the shape parameter of the analysis 
without paleofloods such that extreme return levels are similar between the two analyses. In other cases, 
where paleoflood magnitudes exceed those in the instrumental record, the inclusion of paleofloods may 
significantly alter the shape parameter and estimates of extreme flood level. It should be noted that there 
are multiple techniques that could make the flood frequency analysis more accurate, for instance including 
historical data with a different registration threshold. Here, however, our goal was strictly aimed at demon- 
strating the influence of including paleofloods in a flood frequency analysis. 

 
5. Discussion 
The main objective of this study is to develop approaches for including hydrological information into flood 
frequency analysis procedures for alluvial rivers. To achieve this, we examined how to include oxbow lake 
derived paleoflood data into flood distribution parameter estimations to improve the accuracy of extreme 
flood estimates. Our work provides insights into the use of these paleoflood archives from alluvial floodplain 
to aid return level estimates; specifically, the effect of the number of paleoflood events and their uncertainty. 

Our findings demonstrate that including oxbow lake paleoflood records with more than two events can 
improve the estimation of extreme flood probabilities (Figure 2a), although we also show the limits of 
these improvements when instrumental data records are >40 years in length. Prior work exploring the 
value of paleoflood evidence for flood frequency analysis by Stedinger and Cohn (1986) and Strupczewski 
et al. (2014, 2017) found a similar reduction of the Q100 rRMSE with the inclusion of one or two paleoflood 
events. We extend these analyses by examining the effect of up to 50 events in light of new paleoflood re- 
cords with high M:F ratios and show that incorporating 10 paleofloods can result in a Q100 rRMSE reduction 
of over 50%. Our results also add new insights by showing the influence of paleoflood data on the individual 
distribution parameter estimates. The reduction of the Q100 rRMSE resulting from the inclusion of paleo- 
flood data reflects the improved accuracy of shape parameter estimates (Figure 2b), whereas the inclusion 
of too many paleofloods can skew the location and scale parameter estimates (Figures 2g and 2h). The 
shape parameter is dependent on the extreme values in an annual peak flow record, and these extremes are 
often poorly represented in instrumental data sets but well represented in a paleoflood record. In contrast, 
the location and scale parameters reflect average conditions that are well represented in the instrumental 
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data, such that the addition of paleoflood events could bias the location parameter toward higher values 
(Figure 2g). 

Paleoflood events further reduce the rRMSE of the shape parameter estimates for flood frequency distri- 
butions with thick tails (e.g., ξ = −0.6), although the percentual decrease of rRSME with the inclusion of 
paleofloods remains comparable to thinner tailed distributions. These results show that oxbow lake paleo- 
flood archives can be particular useful for rivers where the distribution of hydrologic maxima has thick 
tails (i.e., where extreme floods are more common), especially if we have interest in the shape parameter 
of the distribution. This further develops the argument that the underlying flood frequency distribution 
determines the value of paleoflood data in flood frequency analysis (England, Salas, & Jarrett, 2003). In 
addition, our findings show that adding paleofloods to an analysis benefit in particularly more extreme 
flood levels (>Q100). This contributes to findings from Frances et al. (1994) who showed that a fixed number 
of paleofloods do not provide additional statistical gain to more extreme flood quantiles compared to, for 
example, Q100; however every additional paleoflood does reduce the rRMSE of extreme flood quantiles more 
than that of Q100. 

With our analyses, we also show that the utility of paleoflood data in flood frequency analyses is conditional 
on the level of uncertainty of the inferred paleoflood discharge (Figure 5). One paleoflood with 1σ error up 
to 0.2 improves the estimates of all the distribution parameters, but these errors compound if more floods 
are included. For example, when two paleofloods with a 1σ random error of 0.2 are included in a frequen- 
cy analysis alongside 80 years of instrumental data, the inclusion of paleofloods results in Q100 rRMSE 
estimates that are 30% larger than if no paleofloods are included (Figure 6a). We note, however, that our 
simulations show that the influence of paleoflood errors on the flood level estimates is highly sensitive to 
the number of instrumental years and the number of paleofloods included (Figure 6). We also found that 
systematic over and underestimation of the paleoflood discharges affect parameter estimates differently 
than nondirectional random error (Figures 5b and 5c). It should be noted, though, that in actual paleoflood 
estimates all these types of error naturally coexist, behave in multivariate ways, and are likely not normally 
distributed. Here, we advocate for adding the error of the paleoflood magnitude estimates as an important 
factor for determining the value of paleoflood data—particularly paleoflood magnitudes inferred from ox- 
bow lake sediments, as they can have discharge magnitude errors of 10%–30%. 

As opposed to previous studies, our simulation experiments explore the interaction between distribution 
parameters and paleoflood data, which paves the way for new approaches to flood frequency analyses, also 
outside of the alluvial setting. As noted above, the location and scale parameter are best estimated using 
only instrumental records, particularly when they are >40 years in length (Figures 2c and 2d). Yet, the 
shape parameter improves significantly with >20 paleoflood events, even though this does not improve, 
or even worsens, the estimation of the location and scale parameter (Figures 2b and 2f). Thus, using the 
location and scale parameter estimates from instrumental records only, but including paleoflood data to es- 
timate the shape parameter, will be more beneficial than estimating all parameters using only instrumental 
or paleoflood data alone. 

The application of our findings to the Mississippi River illustrate how the insights gained through our 
theoretical simulations experiments can both increase precision (i.e., reducing the width of confidence 
intervals) and accuracy (i.e., changing the shape of the return level plot) of a flood frequency analysis on a 
real river. In this example, we used paleoflood data to improve the accuracy and precision of unregulated 
extreme flood estimates. This provides one approach to address a common problem in water resources man- 
agement, where the period of instrumentation overlaps with significant human impacts to the river and 
basin that can generate nonstationarities in the annual maxima (Milly et al., 2008). Constraining a flood fre- 
quency analysis of unregulated flows with paleoflood data provides a baseline that is useful for comparison 
to recent and projected hydrologic changes, and in the calibration and validation of hydrologic models over 
a wider range of observations. An alternative solution is to use a nonstationary flood frequency model, in 
which distribution parameters are dependent on time (Katz et al., 2013) or temperature (Cheng et al., 2014). 
The application of nonstationary models in a paleoflood context holds promise as a means to integrate all 
available data, although the discontinuous nature of paleoflood data, together with uncertainties in their 
ages and magnitude estimates, are challenges that are yet to be overcome. 
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Finally, we note that paleoflood and historical flood data are useful beyond their application in flood fre- 
quency analysis—even in cases where the flood estimates are qualitative or are associated with large un- 
certainties. For example, changes in the frequency of paleoflood events provide a means to identify the role 
of climate variability in mediating flood hazard or place recent floods in a longer-term context (e.g., Fuller 
et al., 2019; Harden, O'Connor, & Driscoll, 2015; Toonen et al., 2017; Knox, 2000; Munoz, Giosan, Therrell, 
et al., 2018). Our study focuses on the use of paleoflood data to improve flood frequency analysis, and we 
build on prior work to describe a set of best practices around their application in this context. 

 
6. Conclusions and Recommendations 
Our analyses provide a set of recommendations for the use of hydrologic information to improve flood fre- 
quency analysis. These recommendations are as follows: 

1. The use of paleoflood data in flood frequency analysis in alluvial settings is most effective when instru- 
mental discharge records are short (<40 years in length); estimates of extreme floods do not meaning- 
fully improve when >10 paleoflood events are included in the frequency analysis. The inclusion of more 
than 10 paleoflood does help for estimating flood quantiles larger than Q500. 

2. It is not recommended to use multiple paleoflood data in alluvial settings if the instrumental records are 
>60 years in length, the (pre)historical period is short, and paleoflood records have discharge estimates 
errors >20%. If the paleoflood discharge error is <20%, it is recommended to not use more than two 
paleofloods. One can further reduce these errors by including other flood frequency techniques such as 
binomial observations, hydrologic bounds, or ranged magnitude discharges. 
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