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Abstract. Deterministic models of vegetation often summarize, at a macroscopic scale, a multitude of intrin-
sically random events occurring at a microscopic scale. We bridge the gap between these scales by
demonstrating convergence to a mean-field limit for a general class of stochastic models representing
each individual ecological event in the limit of large system size. The proof relies on classical stochas-
tic coupling techniques that we generalize to cover spatially extended interactions. The mean-field
limit is a spatially extended non-Markovian process characterized by nonlocal integro-differential
equations describing the evolution of the probability for a patch of land to be in a given state (the
generalized Kolmogorov equations (GKEs) of the process). We thus provide an accessible general
framework for spatially extending many classical finite-state models from ecology and population
dynamics. We demonstrate the practical effectiveness of our approach through a detailed compar-
ison of our limiting spatial model and the finite-size version of a specific savanna-forest model, the
so-called Staver—Levin model. There is remarkable dynamic consistency between the GKEs and the
finite-size system in spite of almost sure forest extinction in the finite-size system. To resolve this
apparent paradox, we show that the extinction rate drops sharply when nontrivial equilibria emerge
in the GKEs, and that the finite-size system’s quasi-stationary distribution (stationary distribution
conditional on nonextinction) closely matches the bifurcation diagram of the GKEs. Furthermore,
the limit process can support periodic oscillations of the probability distribution and thus provides
an elementary example of a jump process that does not converge to a stationary distribution. In spa-
tially extended settings, environmental heterogeneity can lead to waves of invasion and front-pinning
phenomena.
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1. Introduction. Bridging the microscopic and macroscopic scales in theoretical ecol-
ogy is an important challenge. Detailed microscopic models describing single organisms are
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extremely useful for their realistic interpretations and quantitative match to data, but their
complexity often precludes a detailed mathematical analysis and obscures the key mechanisms
at play [2, 25]. Simple models, on the other hand, allow for an in-depth mathematical under-
standing but necessitate simplifications and hypotheses that limit their predictive ability [49].
Despite these limitations, simple systems based on ordinary differential equations (ODEs)
have proven extremely useful in ecology.

We propose bridging the gap between ecological models with macroscopic viewpoints and
microscopic descriptions of stochastic transitions. While the methods presented here are quite
general, for definiteness we apply them to a vegetation ecosystem and the Staver—Levin model
of tropical vegetation cover [47, 49, 56]. The Staver-Levin model is a system of nonlinear
differential equations describing the evolution of the fraction of landscape covered by grass,
savanna trees, or forest trees. The two tree species differ in their birth and death rates as
well as in the way they are affected by fires. Fires, carried by grass, kill (or burn) forest trees
but not savanna trees; adult savanna trees resist fires, while saplings, top-killed by fires (i.e.,
burned but with the ability to resprout later), have their maturation into adult trees delayed.
Each species also reproduces and dies with specific rates. This model displays complex dynam-
ical behaviors, including multistability, limit cycles, and homoclinic and heteroclinic orbits.
These complex dynamical structures are affected by the presence of noise, which possibly leads
to stochastic resonances for Brownian perturbations [56]. From the ecological viewpoint, the
Staver—Levin model summarizes, at a macroscopic scale, a variety of “microscopic” events
arising at different spatial locations: seed dispersal leading to the birth of a new tree, growth
of a new tree, occurrence of fires, death, etc. These events are intrinsically random and local-
ized and depend on local interactions (e.g., fire spread or seed dispersal). A model explicitly
accounting for these stochastic dynamics is essential to better understand how randomness
affects the behavior of these systems and how dynamical behaviors are impacted by spatial in-
teraction; these are two particularly important issues with regard to understanding ecosystem
persistence and the potential impact of climate change on tropical vegetation distributions.

There is an extensive literature regarding limits of interacting particle systems dating back
to the early works of Bernoulli [3] and Clausius [10] and to the celebrated work of Boltzmann [5]
on the kinetic theory of gases. These works, aimed at relating the movement of molecules
in a gas to macroscopic quantities, such as pressure, have seen remarkable development in
recent years and have been applied to a variety of models (see, e.g., [7, 12, 13, 21, 40, 50]).
The aforementioned mathematical framework has been widely used to derive and analyze
spatially extended models in neuroscience [37, 44, 53, 54] and, to a lesser extent, in ecology
[18]. The recent works of Durrett and Ma [20] and Durrett and Zhang [22] are important
contributions and are most closely related to the present work. These authors consider a two
state version of the Staver—Levin model on a toroidal lattice, and by taking an appropriately
scaled spatial limit, they show convergence in probability of their interacting particle system
to the solution of an integro-differential equation (IDE). They obtain a coexistence result by
analyzing the resulting IDE and provide bounds on the coexistence time in terms of the system
size. We adopt an alternative approach based on stochastic coupling methods [17, 38, 50, 53]
that allows us to directly demonstrate convergence of the spatial Markov jump process to a
McKean—Vlasov jump process (i.e., a process whose transition rates depend on the law of the
process itself). Our framework incorporates nonlocal interactions between a finite number of
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species and heterogeneity from random initial particle placement, and it can be applied to
many other models in ecology and population dynamics.

We suppose that the locations of the vegetation, which we refer to as sites, are randomly
distributed on the domain according to some probability measure ¢, and we consider a scaling
limit in which sites are successively added to the domain according to this measure. This
general model covers two cases relevant for applications: (i) mesoscale models which resolve the
fine spatial structures of the interactions while still taking into account collective effects (¢ is a
continuous distribution), and (ii) macroscale models which lose the fine spatial organization of
the interaction between sites in favor of collective stereotyped interactions between a number
of isolated vegetation populations (g is a finite combination of Dirac masses). In this way, the
macroscale framework is reminiscent of a metapopulation or network model.

Within a unified framework that encapsulates the Staver—Levin model and its variants,
we show convergence of a class of spatial particle systems to their mean-field limit, a non-
Markovian stochastic process. The mean-field limiting process will be characterized by IDEs
on the probability density of the process that will be referred to as generalized Kolmogorov
equations (GKEs). Similar to classical Kolmogorov equations for Markov processes, these
equations govern the evolution of the probability distribution of the process. However, in
contrast with classical Kolmogorov equations, the GKEs associated with the mean-field limit
are nonlinear and, in the mesoscale model, nonlocal. Our spatial extensions of the Staver—
Levin model permit analysis of qualitative properties of practical interest which are not easily
accessible via probabilistic methods. For instance, techniques developed for studying pattern
formation [6, 26, 28, 34], wave speeds, and invasion phenomena [32, 52] and responses to het-
erogeneous environments [27, 35] in spatially extended ecological models are readily applicable
to the GKEs. We demonstrate waves of invasion numerically in the mesoscale model (see Fig-
ure 5A1-A6), and this model can also naturally incorporate environmental heterogeneity via
the choice of the initial site distribution (see Figure 5B1-B3). In fact, in the mesoscale frame-
work, we show that both our particle system and the GKEs of the corresponding mean-field
limit can exhibit front pinning, a phenomenon of much practical interest that has previously
been found in PDE-based ecological models [27, 57].

From an ecological standpoint, further analysis of the models derived in this paper will
enable a more thorough understanding of the determinants of the savanna-forest bound-
ary, particularly in the presence of precipitation gradients, resource limitations, and climate
change [35, 59]. Beyond savanna models, the techniques developed here can further be applied
to various models. In biology, these techniques could naturally allow addressing stochastic
and nonlocal effects arising in other vegetation models (e.g., generic vegetation models [33]),
models of infectious diseases [8], and embryonic development [42] where differentiation of cells
depends on nonlocal signals and gradients. Other perspectives include applications to social
models and variations of voter models [11] with spatial dimension. In the domain of infectious
diseases, our framework could be used in a study of disease transmission that takes into ac-
count the role of spatial positions and nonlocal transmission in a spatially extended SIR-type
model [36]. In that regard, it would be of interest to extend our results to individuals moving
in space and determine the impact of motility on viral spread, which are two particularly
timely questions with implications for public health policies.

The paper is organized as follows. In section 2.1 we motivate and define a stochastic
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Staver—Levin model based on microscale events with nonlocal spatial interactions (referred to
as the finite-size stochastic Staver—Levin model hereafter). We then outline our main mathe-
matical result, Theorem 2.2.1, in section 2.2; this result shows convergence to a well-defined
mean-field limiting process for a general class of spatial particle systems and covers the finite-
size Staver—Levin model as a special case. In section 3 we compare the qualitative behavior
of the finite-size stochastic Staver—-Levin model with the GKEs of the corresponding mean-
field limits in a series of numerical experiments. We explain long-term transient behaviors via
quasi-stationary distributions (QSDs), demonstrate limit cycles in both spatial and nonspatial
versions of our models, and show waves of invasion and front pinning. The proof of Theorem
2.2.1 and supporting mathematical preliminaries are deferred to section 4. Further details of
numerical parameters and routines for reproducibility of all figures in the paper are given in
Appendix A.

2. Stochastic models of tropical vegetation dynamics.

2.1. Microscopic stochastic Staver—Levin model. The Staver—Levin model describes the
interaction between savanna trees, forest trees, and grass patches. In this model, grass rep-
resents an “open” patch in which new trees can grow, but it also carries fires that limit the
expansion of both savanna and forest trees in distinct manners. At the scale of individual
trees and patches of grass, the model relies on a few elementary assumptions (see Figure 1):

(i) Forest trees grow on “open” patches (currently occupied by grass, saplings, or adult

savanna trees) at a rate associated with the amount of seeds available on that open
patch and therefore related to the density of trees in its vicinity.

(ii) Similarly, savanna trees grow on grass-occupied patches at a rate that depends on the

local density of adult savanna trees.
(iii) Grass carries fires that kill forest trees and delay the maturation of savanna saplings
into adults.!

Later versions of the Staver-Levin model additionally allow adult savanna trees and saplings to be some-
what flammable; we omit this extension here for ease of exposition (cf. [56]), but our methods readily allow
the incorporation of this extra feature.
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(A)

Savanna _ .

seeds ;‘

Promotion Inhibition Transition
| —_—
Mesoscopic Model

Figure 1. (A) Schematic diagram showing the basic events modeled on a landscape T C R?: forest trees
F (here represented as pine trees for the sake of legibility, although rainforest trees are not coniferous) and
savanna trees T disperse seeds carried by the wind, therefore at a limited reach (green ellipses), growing new
forest trees or savanna saplings S; land occupied by no tree is by default covered by grass. Fires, essentially
carried by grass, ignite depending on the local density of grass (red ellipses), increase the mortality rate of
forest trees, and reduce the rate at which savanna saplings mature into adult trees. (B) Simplified interaction
diagram between states in the model (see text). (C) Sample model configurations in the macroscopic model with
six patches and eight sites per patch (left) or for the mesoscopic model with randomly located sites (right).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/21/20 to 128.112.70.33. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

SPATIAL MEAN-FIELD MODELS IN ECOLOGY 2687

While the original Staver—Levin model does not explicitly consider spatial effects, each
of these interactions depends on the density and locations of patches of grass or trees, and
extensive remote sensing data highlights the spatial organization at macroscopic scales of
savannas and forest lands [47, 48].

To account for spatial interactions, we consider a landscape I', which is a Borel set in
R2. On this landscape, multiple sites, thought of as small spatial areas of the typical size
of a single tree (microscopic scale), allow growth of new trees. We suppose that N sites are
distributed on the landscape I' at locations (Tz’)ie{l,..., N} € I'N. The locations are assumed
to be independent and identically distributed (i.i.d.) according to a probability measure g on
I". A uniform distribution on I' is the most natural choice for the r;’s if we are modeling a
homogeneous landscape, but certain heterogeneous environmental features may favor more or
less vegetative growth in certain parts of the domain (e.g., soil quality /texture), and this may
motivate other choices. If ¢ is a continuous probability measure supported on all of I', then
we obtain a mesoscale model in the limit as N — oo, the entire domain is populated with
sites, and interactions depend on the precise location of each site (Figure 1(C), right). Some
applications emphasizing the interaction between multiple regional covers or populations may
motivate choosing a discrete measure for ¢ with a finite number of locations, referred to as
patches in this context. In this case, we retain a discrete spatial structure with multiple
interacting populations located at each patch, but the number of sites in each patch will still
tend to infinity as N — oo (see Figure 1(C), left). This will be referred to as the macroscale
model.

Each site may switch state at random times with a stochastic intensity that depends on
the states of other sites. We denote by X?(t) the state of site i at time ¢, and label G the
grass state, S the savanna sapling state, T' the adult savanna tree state, and F' the forest tree
state. The transitions of a given site between states are parameterized as follows (see Figure
1(A-B)):

(i) A savanna sapling grows from a site i currently covered by grass with a rate depending

on the total amount of savanna tree seeds available at location r;. We thus introduce
a savanna seed dispersal kernel, denoted Jg(r,r’), corresponding to the rate at which
a savanna seed travels from 7’ to r, yielding a transition rate from grass to sapling at
site ¢ given by

N

1

N > Ts(ro i) Lixi =y,
j=1

where Tyyjp—ry is the indicator function, equal to 1 when X7(t) = T and to 0
otherwise. The transition rate is renormalized by the total number of sites to ensure
that it remains within fixed bounds as NV is varied—this scaling can also be considered
as a scaling of time.

(ii) Similarly, a forest tree grows from a site i currently covered by grass, sapling, or
savanna tree (owing to the assumption that forest trees are competitively dominant
to both grass and savanna trees alike) with a rate depending on the total amount of
seeds available. The number of forest tree seeds available at location r; depends on a
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(iv)
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forest seed dispersal kernel Jp(r,r’), yielding the transition rate

N
1
N > Tr(ri i) lxi=ry-
j=1

Forest trees die and are replaced by grassy patches due to either fires fueled by grass,
or background nonfire mortality. The rate at which site ¢ of forest type switches to
grass thus depends on the flammable cover available in the vicinity of site ¢ and its
capacity to transmit fires; this transition rate is given by

1 N
NZ (i 13) Lixi=cy

The forest mortality function ¢ is a smooth, sharply increasing sigmoidal function of
the flammable cover affecting a site at location r;. The map ¢ incorporates baseline
mortality of forest trees ¢(0) > 0. More detailed models of fire propagation in savannas
have modeled fire propagation using percolation, and previous studies have shown that
fire spread in these models has a sharp sigmoidal profile as a function of the flammable
cover [45]. Our approach regarding fire propagation thus remains phenomenological
and aims to capture the qualitative character of fire spread while retaining analytic
tractability.

Savanna saplings mature into adult savanna trees. The associated rate of transition is
affected by fires that, by top-killing saplings, delay their maturation, and the proba-
bility of being affected by a fire depends, again, on the local flammable cover and its
capacity to transmit fires. The maturation rate of a sapling into an adult savanna tree
is thus given by

N
1
N Z W(ri,rj)Lixiw=ay | -
j=1

where w is a sigmoid function (smooth, decreasing, and bounded) quantifying the
delayed maturation associated with top-killed saplings. Once more, the sigmoidal
form of w aims to capture the qualitative properties of fire spread without explicitly
modeling the underlying fire process.

Savanna saplings and trees die at constant rates, independent of the state of the
system, denoted by p and v, respectively.

The transitions for the finite-size stochastic Staver—Levin model outlined above are summa-
rized in Table 1 (along with the corresponding rates for the mean-field limiting process).

The study of the finite-size model defined above is particularly simple. Indeed, these
systems are continuous-time finite-state Markov processes (with 4" possible states for the
system) with bounded transition rates. Due to the large dimension of the process, the Kol-
mogorov equations are impractical to write and solve, but elementary considerations reveal
that the system will always tend to the all-grass state. The state where all sites are grass is
an absorbing state, since the transition rates from that state to saplings or trees are equal
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Table 1
Transition rates in the finite-size stochastic Staver—Levin model (second cglumn) and the corresponding
transition rates of the mean-field limiting process (third column). Py(t,r) = P[X(t,7) = z] denotes the proba-
bility that the mean-field process X is in state x € {G,S,T,F} at time t and location .

Transition Rate in finite-size system Rate in mean-field limit
N
G=5 N Z Is(ri, i) Lixi =y Jr Is(ri, ") Pr(t,r') dg(r')
j=1
1
G,S,T—F N Jr(risri)Lixi0)=F} Jr Tr(ri,v") Pr(t, ") dg(r')
j=1
N
1 / / /
F—G qﬁ(NZWm,r] 1 x4 (5= G}) ¢</ W (ri,r")Pa(t,r") dg(r )>
Jj=1 r
N
1 / / /
S—T w(NZW i, 75) L (1)= G}> w(/r W (ri,m")Pa(t,r") dq(r )>
j=1
S—G "
TG v v

to 0 when no forest or savanna trees are present in the system. Moreover, it is easy to see
that each state can reach the all-grass absorbing state in a finite number of steps, with a rate
bounded away from 0. A classical result of Markov processes thus ensures that, with prob-
ability 1, the Markov chain is absorbed in finite time by the all-grass state. Therefore, the
stationary dynamics of the finite-size system will always be trivial [14]. This trivial stationary
solution sharply contrasts with the complex dynamics of the Staver—Levin model [56]. Thus in
section 3.1 we will pay particular attention to the transient dynamics and their duration, two
elements of particular interest in ecological modeling that have garnered increasing research
interest in recent years [30].

2.2. A general convergence result. The finite-size stochastic Staver—Levin model is one
exemplar of a wide class of models arising in ecology and physics in which a large number N of
sites (agents, particles, etc.) with fixed spatial locations interact according to the state of their
neighbors. Mathematically, we will study a general class of Markovian models where each of
the N sites i € {1,..., N} can be in one of K states. Each site i € {1,..., N} is located at an
i.i.d. spatial position 7; drawn from a probability measure ¢ on T’ € B(R?) (where B(-) denotes
the Borel o-algebra on a given set). The state of each site at time ¢t € Ry is denoted X*(t),
and the set of possible states is denoted S and has K elements (in the Staver-Levin model,
these are the vegetation types {G,S,T, F'}). The initial state of each site is independent of
that of all other sites, and each site’s initial state has the same space-dependent law satisfying
the following regularity condition:

Hjc. The initial distribution for site 4 is given by &¥(r;) where the collection of processes
(¢9(r))jen are independent random variables indexed by space, with probabilities mea-
surable with respect to space. Rigorously, we assume that their distribution is given
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by a Markov kernel g : I' — Q with (€, F,P) the current probability space.’

Following a classical convention, we consider cadlag versions of our jump processes (i.e.,
right-continuous with left limits everywhere), and we denote by X?(t7) the left-limit of the
state of site ¢ at time ¢. The transition rate for site ¢ at location r; and between any two
states x and y # = depends on the local densities of some other species at a given time ¢. This
rate is thus time dependent in that it varies with the state of the system. Between the last
transition before time ¢ and time ¢, the transition rate below is therefore constant (since no
site has changed state) and is assumed to be given by nonlinear functions of a weighted sum
of other sites’ states:

N
(2.1) Ry (X(t7)) = Pay Z vy (Tis 13) Lxi =) =p (e} | >

where the kernels {W%y s (z,y) € 8K x SK } weight the nonlocal influence of other sites on
the transition rate from state x to state y at a given site. Here, ®,, : R_ +— R, are smooth
(nonlinear) functions, and the maps ¥(z,y) : S x SK s SK U {(} are the states that the
transition # — y depends on. For definiteness, state ) is a state not belonging to S, chosen
if the transition rate is independent of any other state, e.g., when the transition cannot occur.
For simplicity, we assume that transitions depend only on one other species, but it would
be straightforward to generalize to transitions depending on multiple species by making the
functions @, , multivariate. In the four-species Staver-Levin model, the functions ®, , and
are given by:

Dpy(u) | z=G S T F Y(xy) |2=G | S| T | F
y=G 0 v uo| P(u) y=G [ 010G
y=>5 u 0 0 0 y=2=5 T 0100
y=T 0 w(u) | 0 0 y=T 0 G|0O |0
y=F u u U 0 y=F F F|F|0

Further, we assume the following:
H1. ®,,: Ry — R4 is bounded on compacts and Lipschitz continuous for each (z,y).
H2. W, :T' xI'— R, is bounded and Borel-measurable for each (z,y).

Theorem 2.2.1. Consider the Markov process with rates given by (2.1), with initial con-
ditions satisfying assumption Hjc and rates given by (2.1) satisfying assumptions H1 and
H2.

I. Convergence. For any time T > 0 and any sitei € N, the process X* = {X*(t) : t € [0, 7]}
converges in law, as N — oo, to the process X (r;) = {X (t,r;) : t € [0, 7]} where X (t,r) is the
unique strong solution to the spatially extended McKean—Vlasov jump process with transitions

2 A Markov kernel (see, e.g., [43, Chap. 3, Def. 1.1]) with source (X, .A) and target (Q2, F), denoted s : X — €,
isamap k: X X Q+ [0,1] such that
(i) for every F € F, the map = — r(x, F) is A-measurable;
(ii) for every z € A, the map k(z,-) is a probability measure.
In other words, k associates to every point x a probability measure such that for every measurable set of the
probability space, the probability z +— x(B,x) is measurable.
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occurring at independent, exponentially distributed times with rates given by
(2‘2) r—y (I)x,y </1" W:(:,y (Ta T/) P [X(tiﬂﬁ/) = Q,Z)(ﬁ, y)} dQ(T/)>

for each pair of states (x,y) € SK x SK and initial conditi_on with law pg.
II. Characterization of the limit. Define Py(t,7) = P[X(t,r) = z] for each x € SE. The
probability distribution of the process X satisfies the system of GKEs,

(23) 8th(7“) = yz?;:q)y,x </F Wy,w (’I”, r ) Pw(y,x)(r )dq(r )) Py(r)

— Z D,y </ Wa y (7", r') Py(a,y) (r') dq(r’)) P.(r), =z¢€ SK.
y#£T r

where P,(r) is shorthand for Py(t~,r) for each y € SK and each (t,r) € Ry x T.
III. Propagation of chaos. Moreover, any fized finite subset of sites (X*,..., X") con-
verges towards independent variables; i.e., for any collection of p states (x1,...,%p),

lim PX"(t) = 21,...,X7(t) =z, = P[X(t,73,) = 21] x -+ x P[X(t,7;,) = 2]

N—o0

for each t € [0, 7].

Theorem 2.2.1 demonstrates that the Markov process given by (2.1) is well approximated
in the large N limit by the stochastic jump process X, which we refer to as the mean-field
limit. X is not a Markovian jump process: the rate of transition depends explicitly on the
law of the process X and not only on its current state. These types of processes are referred
to as McKean—Vlasov processes, and it is generally hard to characterize properties of their
solutions [58]. However, in this case, Theorem 2.2.1 provides a simple characterization of the
solution in the form of a system of either

e IDEs when ¢ is a continuous distribution (mesoscopic model), or

e nonlinear ODEs when ¢ is a finite combination of Dirac masses (macroscale model).
We refer to the system of equations given by (2.3) as the generalized Kolmogorov equations
(GKEs) for X because, similar to classical Kolmogorov equations for Markovian processes,
they describe the time evolution of the probability density of the continuous-time finite-state
jump process X. However, they are not standard Kolmogorov equations, since X is non-
Markovian—this is due to the dependence of X’s transition rates on the probability density
of the process itself. This dependence makes the GKEs nonlinear, contrasting with classical
Kolmogorov equations. The GKEs are also more analytically tractable than the finite-size
Markov process (2.1)—or even the linear Kolmogorov equations associated to the finite-size
system, since these equations are very high dimensional (associated with a K% system of
linear differential equations). Furthermore, the GKEs naturally satisfy a conservation law
that was included in the original Staver—Levin model [49], i.e.,

(2.4) Z P,(t,r)=1 foreachr el andte€|[0,7]

rzeSK
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The proof of convergence in Theorem 2.2.1 uses a coupling method consisting of two
steps. First, we prove strong existence and uniqueness of solutions to the associated mean-
field equation given by (2.2). Second, we construct a particular solution X? of the limiting
equation having the same initial condition and coupling the jump times with those of the
finite system, to which the process {X'(t),t € [0,7]} converges almost surely. The rate
of convergence is also quantified through this coupling argument, and it is shown that the
distance between the finite system and their limit decays as 1/ V'N.

The coupling methods we employ are classical and have traditionally been applied to
high dimensional Markov processes, often with multiple classes, but typically without spatial
structure [1, 16, 15, 24, 29]. It is only recently that we extended these methods to spatial
systems with uncountable state spaces (i.e., interacting particle systems driven by independent
Brownian motions) [53, 54]. Some recent works have addressed the question of mean-field
convergence with spatial structure but only for nearest neighbor interactions [51]. The Staver—
Levin model specifically motivates the extension of these methods to finite-state continuous-
time Markov processes with nonlocal interactions, due to the nonlocal and long-range nature
of seed dispersal [9, 52].

A direct application of Theorem 2.2.1 shows that the stochastic Staver—Levin model with
the rates given by Table 1 converges towards a non-Markovian spatially extended McKean—
Vlasov jump process with transition rates given by

G— S, Jo Is(r, ") Pr(t, ) dq(r'),

G,S,T — F, Jr Jr(r, r’)PF(t r')dg(r'),
(25) F— @G, ¢ (Jp W(r,r")Pa(t, ) dg(r")),

S =T, w (fp W(r,r")Pa(t, ) dg(r")),

S — G, 1,

T — G, V.

In this case, the GKEs of the mean-field limiting process with transition rates given by (2.5)
are

O Pq(r) = pPs(r)+vPp(r)+ ¢ (fo W(r,7")Pg(r')dq(r') ) Pr(r)
—Pe(r) Jp Js(r, ") Pr(r') dq(r') — Pa(r) [p Je(r,r")Pr(r’) dg(r'),

O¢Ps(r) = Pg(r fF JS T )PT( )d (r') — )fF Jp(r,r")Pr(r") dg(r')
_PS (fp ( )dq< )) - ILLPS(T)7
(2.6)
& Pr(r) =—vPs(r)— fr Jr(r, ") Pe(r') dg(r')

Pr(
+Ps(r)w (fF (r,r")Pg(r )dq(r’)),

OPr(r) = (1— Pp(r) fFJFMPF( ') da(r')
k 6 (Jp W (r, ) Pa(r') dq(r")) Pr(r).
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Theorem 2.2.1 thus provides a natural candidate for a deterministic spatially extended
Staver—Levin model, distinct from classical extensions generally done for ecological models
and relying on diffusion operators [39]. Our framework also allows consideration of situations
different from those covered by Durrett and collaborators [18, 20, 21], in particular regarding
arbitrary site distributions and arbitrary smooth kernels and spatial dependence, although our
approach is limited to smooth dependence on the states (Lipschitz assumptions H1 and H2).
Furthermore, owing to their relationship with a fine microscopic model, the IDEs (2.6) are
ecologically relevant: the spatial integral terms can be readily interpreted as nonlocal effects
of seed dispersal and fire propagation.

Ezample 2.2.2 (macroscale vegetation model and the Staver-Levin model as a metapopu-
lation or network model). Macroscale models correspond to cases where the landscape is de-
scribed as composed of a finite number M € N of patches j € {1,..., M}. This case is treated
under the consideration that each patch is labeled through a location variable in the space
Ay :={1,...,M}. Now suppose that ¢ = (¢j)j=1,...m is a probability measure on A, and
denote by P! the probability that the population in patch j is in state z € {G, S, T, F}. By
Theorem 2.2.1, these probabilities satisfy the following GKEs in the limit as N — oo:

(dP] j j ; ]
Wo = uPhvvPh+ o (% T aW (5. W) P
pi , P 4
_WG Z]szl qkjs(j, ]‘C)Pﬁ - WG Z]iw:l QkJF(]a k)P;?’a
G =5 Tl ands( k) PE — B ST qu (G k) PR
(27) —Pqu <ﬁ Z]kw:l QkW(.ja k)Pé> - MPA%’
dpi i P ; ' j
Do — _ypl — 22 M e (G, k) PE + Phw (ﬁ Saly W (j, k)P§> ;
dPl i\ M - M . j
G = (L= Pp) Y awJr (G, k) PR — ¢ (ﬁ 2k=1 %W, k)Pg) Pr

for each j € {1,...,M}. If M =1 and
W(lal):L JS(171) =B, JF(lal) =q,
the GKEs are exactly the classical Staver—-Levin ODE model [49],

G =puS+vT+¢(G)F—-BGT —aGF,
S =BGT—aGF—-Sw(G)—usS,

T =-—vS—aTF+w@)S§,

F =a(l-F)F-¢(Q)F,

(2.8)

where G, S, T, and F' denote the proportions of landscape covered by grass, saplings, savanna
trees, or forest trees in the original Staver—Levin model, while in our context they represent
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the probability for a given site to be in one of these states. In other words, the condition
imposed in the original Staver—Levin model ensuring that the variables are proportions, i.e.,

(2.9) G(t)+S(t) + T(t) + F(t) =1 forall t>0,

corresponds exactly to the probabilistic constraint (2.4) obeyed by solutions to the GKEs.
Because of the propagation of chaos property (Theorem 2.2.1 III), finite subsets of sites become
independent in the large N limit, and therefore the empirical proportion of landscape covered
by a given species on this subset is well approximated by the probability for any given site to
be in that state.

Ezample 2.2.3 (homogeneous isotropic grass-forest model). We consider an example of com-
petition between grass and forest (without savanna trees) on a landscape I', a Borel set
in R2. We assume that the landscape is homogeneous (i.e., ¢ is the uniform measure on
I'). Furthermore, as is typical in applications, we assume that W and Jp are radial, i.e.,
fr "y = f(jr —+'|) for f = Jr or W, and where | - | denotes the Euclidean norm on T.
Theorem 2.2.1 implies that the GKEs associated with the mean-field limit in this case are

OPa(r) = o (W« Po)(r) Pr(r) = Pa(r)(Jp + Pr)(r),

(2.10) ) .
OPr(r) = (1= Pr(n)(Jr + Pr)(r) = ¢ (W + Po)(r)) Pe(r)

for each r € T, with (f *g) (r) = [ f(Jr — r’|)g(r’)#”(}) with Leb(T") denoting the Lebesgue

measure of I'. The system of equations (2.10) is also subject to the constraint

Pg(t,r) + Pp(t,r)=1 foreachr €' andt€[0,7].

3. Spatially extended Staver—Levin model: Analysis of solutions. Our finite-size Staver—
Levin models are Markov processes with an absorbing (or trapping) state that can be reached
from any other state. Therefore, the unique stationary solution for these processes is the
all-grass state, and, with probability 1, this state is reached in finite time. However, this
absorption can arise after long transients; this transient behavior is particularly important
in ecology and other applications, where time scales are typically long [30]. In particular,
this finite-time absorption is in sharp contrast with the remarkable complexity of the original
Staver—Levin model, where the all-grass state may be unstable and other equilibria or periodic
orbits emerge [56]. Thus it is of evident interest to study the consistency between finite-
size tree extinction and nonextinction in the mean-field limit for both the macroscale and
mesoscale frameworks. All details related to numerics and coding for this section can be
found in Appendix A.

3.1. Macroscopic Markov model and generalized Staver—Levin model. We first inves-
tigate absorption properties and the consistency between the quasi-stationary distributions
(behavior of the finite-size system prior to extinction) and the GKEs of the mean-field limiting
process. We then demonstrate long-run transient periodic solutions to the particle system in
a parameter regime for which the limiting process has a periodic law.
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3.1.1. Mean-field behavior in a single patch. We analyze in detail the absorption prop-
erty of the macroscale model introduced in Example 2.2.2 with a single patch in the forest-grass
subsystem. In the notation of Example 2.2.2, suppose

W(,1) =1, Jp(1,1)=J>0.

Since we restrict our attention to the forest-grass subsystem, the finite-size system X is a clas-
sical two-state Markov process in dimension N with (for each site i € {1,..., N}) independent
exponentially distributed transitions with rates given by

(3.1) {G — F, jpfpv(t) (forest tree seed dispersal),

F — G, o) (1 - Plév(t)) (burning of forest trees),

where ]311?\/ =N} Z;V:1 1ixi@)=ry is the fraction of forest sites (or empirical probability of
the forest state across all sites) and J is the birth rate of forest trees. The mean-field limit X
is a two-state non-Markovian process with independent exponentially distributed transitions
that occur with rates

(52) {G%R JPp(t),

F—=aG, ¢ (1= Pp(t)),

where Pp(t) and Pg(t) are the probabilities that X is in the forest state or grass state.
respectively. These probabilities can be computed by solving the GKEs of the mean-field
limit,

d -
(3.3) s Fet) = (1= Fa(t) ¢ (Fa(t)) — J Fa(t) (1 - Pg(t))
with Pg(t) = 1 — Pp(t). If ¢(0) > 0 and J > 0, the all-grass state is the unique stationary
distribution for the finite-size particle system, and, from any initial distribution, absorption
occurs in finite time with probability 1. Consistent with this, Py = 1 is always a fixed point
of the GKEs for the corresponding mean-field limit. Moreover, this fixed point is attractive
for forest tree birth rate small enough but loses stability when the tree birth rate exceeds
tree death rate in the all-grass state (i.e., J < ¢(1)). Therefore, for larger birthrates, the
mean-field limit will not converge towards the all-grass state, the unique attractor of the finite
system.

The bifurcation diagram for the GKEs of the mean-field limit process with rates given
by (3.2) is computed as a function of the forest tree birth rate J (Figure 2, red); it features
two saddle-nodes and a transcritical bifurcation that split the parameter space into four main
regimes:

e For forest birth rate small enough, the only stable equilibrium is the all-grass state.

e A saddle-node bifurcation (arising at J = 0.55 for our choice of parameters) leads to
the emergence of a stable forest-dominated equilibrium as well as an unstable fixed
point. The all-grass equilibrium conserves its stability, but, depending on the initial
grass cover relative to the unstable equilibrium, the system converges to either the
all-grass solution or the stable forest-dominated equilibrium.
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e As the forest birthrate is further increased, the all-grass state loses stability (at
J = ¢(1)) in favor of a grass-dominated equilibrium through a transcritical bifur-
cation. In that case, whatever the initial condition, the limit system never reaches
the all-grass equilibrium. Moreover, as J is increased, the grass cover of the grass-
dominated equilibrium decreases progressively as the forest tree birthrate increases,
before disappearing through a second saddle-node bifurcation.

e Beyond this second saddle-node bifurcation, the only stable equilibrium persisting is
the forest-dominated equilibrium.

The blue stars in Figure 2 show the state of the finite-size system at time ¢ = 100 from
simulations of the one-patch two-state Markov chain with N = 3000 sites for various values of
the forest birthrate .J. We simulated the finite-size system for each value of .J for various initial
conditions with various initial grass cover proportions (20 initial conditions when the GKEs
are monostable, and 90 initial conditions regularly sampled between 0.1 and 0.9 in the bistable
case). There is remarkable agreement between the simulations of the Markov process and the
bifurcation diagram in Figure 2. Even after a reasonably long time (t = 100), the finite-size
system remained away from the all-grass state for many initial conditions when other stable
attractors existed in the GKEs of the mean-field limit. Moreover, matching the initial grass
cover with the final state, we observed that the “basin of attraction” of each quasi-attractor
for the transient states of the finite-size Markov process system shows excellent agreement
with the unstable fixed point from the GKEs. Past the transcritical bifurcation we continued
to observe absorption to the all-grass state, although this fixed point is unstable in the GKEs
for this parameter range.

3.1.2. Quasi-stationary distribution and absorption rate. The apparently paradoxical
persistence of transient behavior and striking agreement between the mean-field and finite-size
systems in Figure 2 can be better understood in terms of the quasi-stationary distribution
(QSD) of the finite-size system. Fix N € N, and consider the Markov process X which
tracks the proportion of grass sites in the finite-size system so that the state space of X
is S = {1, (N —-1)/N,...,1/N, 0}. The QSD is the stationary distribution of the system
conditional on not being absorbed by the all-grass state or, equivalently, it is the stationary
distribution of the new process X* on the restricted state space S* = {(N—1)/N, ..., 1/N, 0}.

Definition 3.1.1. A distribution = € RN is a QSD for the process X if for each t > 0,
P, [X(t):j‘T>t} =xj, j€ES,

where T = inf{t > 0: X(t) = 1}, and P,, denotes the probability measure associated with the
process X starting from the initial distribution xq.

The generator matrix of the process X has the form
0 of
a @)’

a={L¢(¥1),0,...,0}" eRY,

where 07 = {0,...,0} € RY,
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Figure 2. Blue starred markers: Grass proportion in the finite-size Staver—Levin model for time t = 100
with N = 3000 and M = 1 (macroscale model). End states from 20 different initial conditions are plotted for
each value of the forest recruitment rate J, and the attraction basin was computed using 90 different initial
conditions for more precision. Red curves: The bifurcation diagram of the GKEs for the corresponding mean-
field limit is overlaid with solid red lines indicating stable equilibria and dashed red lines indicating unstable
equilibria. Blue/green dots: Blue dots mark the lowest initial condition for the finite-size system that resulted
in a final state on the upper equilibrium branch, and green dots mark the largest average initial condition which
gave an end state on the lower equilibrium branch. Red dots: These markers indicate the bifurcation points in
the GKFEs of the mean-field limit (SN: saddle-node bifurcation, TC: transcritical bifurcation).

and @ is the NV x N matrix given by

_1 (Nfl)_lel J N-1 0 0
N N N N N N B -
~o (%) —% (o (A2) +T02)  H A2 0 0
Nolg(L) —Aot (gz)(i) 4 1) (N-1)J 1
N N N N N N N
0 0 0 (0) —(0)

Since ¢(0) > 0 and J > 0, X* is recurrent on S*, and hence the QSD exists and is unique [14,
41]. The QSD x associated with the process X is given by

tQ=—pzx, z1' =1,
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_Figure 3. Al: Quasi-stationary distribution of the interacting particle system for N = 2500 for each value
of J. A2: Absorption rate to the all-grass state as a function of J.

where p is the dominant eigenvalue of @ (i.e., eigenvalue with largest real part). In other
words, the QSD is the normalized eigenvector associated with the principal eigenvalue of Q).

The QSD for the two-state finite-size Staver—Levin system given by (3.1) is plotted in
panel Al of Figure 3 for each value of .J. The mass of the QSD is concentrated on the stable
states of the GKEs for the corresponding mean-field limit—partly explaining the persistent
transients observed in Figure 2. A more complete explanation of this persistence is obtained by
calculating the absorption rate for the Markov jump process X this is the speed at which we
expect the particle system to approach the all-grass state from an arbitrary initial distribution.
More precisely, the dominant eigenvalue of the substochastic restricted transition matrix Q,
denoted by p, gives the speed of approach to the all-grass state in the sense that for any initial
distribution =z,

lim By, [X(t+s) ] 1|T>t] — P, 5>0.
t—o0

Panel A2 of Figure 3 shows the absorption rate p as a function of J for multiple values of
the system size N. The absorption rate shows a decreasing profile, indicating (as expected) a
decay of the rate of absorption as the forest tree birth rate increases. More strikingly, the rates
decay with a sharpening profile as N increases, with a consistent switch from a rate around 0.1
to an almost zero rate at J =~ 0.55—coinciding exactly with the appearance of a saddle-node
bifurcation in the GKEs of the mean-field system (cf. Figure 2). Therefore, consistent with
Figure 2, we expect to observe persistent transient behavior matching the QSD for values of
J past the first saddle-node bifurcation.

3.1.3. Stochastic oscillations: Solutions with time periodic law. The original Staver—
Levin model given by the system of nonlinear ODEs (2.8) has regions of parameters where the
only stable attractor is a periodic orbit. In this regime, a simple consequence of Theorem 2.2.1
is that the mean-field limiting process will exhibit stable oscillations. This is a remarkable
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property and has previously been observed in continuous-time Markov processes described
by Brownian driven stochastic differential equations (SDEs) [46, 55]. To the best of our
knowledge, the mean-field process defined by (2.5) is the only example identified to date
of a McKean—Vlasov jump process which has a periodic law. Mathematical methods for
studying nonstationary solutions are still to be developed for jump processes, but in our case
the existence of a periodic law is based on the derivation of the GKEs and their bifurcation
analysis, avoiding the need for probabilistic arguments.

Panels Al and A2 of Figure 4 show the periodic solutions generated by the four-species
macroscale model introduced in Example 2.2.2 in a periodic regime with M = 1. We observe,
consistent with Theorem 2.2.1, that (for N sufficiently large) trajectories of the finite-size
Staver—Levin system remain close to the trajectories of the GKEs of the corresponding mean-
field limit, a result analogous to the effect observed in [19, Figure 4]. Periodic orbits in the
original Staver—Levin model were shown to grow and disappear at a heteroclinic orbit when
the forest tree birth rate increases [56]. We thus explored the dynamics of the finite-size
Staver-Levin model as a function of the forest tree birth rate J. The heteroclinic orbit in the
original Staver—Levin model connects three fixed points: the all-grass equilibrium, a savanna
equilibrium, and a mixed-saddle equilibrium where all species are present. We simulated
trajectories of the finite-size system for various values of J (see Figure 4(C2)) and found that
while transient trajectories show dynamics very similar to the GKEs of the mean-field limit,
oscillations became transient for parameters too close to the heteroclinic cycle; the system is
rapidly absorbed by the savanna subsystem (i.e., absence of forest trees) and reaches a fixed
point on this subsystem. Rigorously, this fixed point is unstable for the GKEs because of an
invasion of forest trees, and trajectories of the (deterministic) GKEs visit regions very close
to that fixed point. The finite-size system, following closely these trajectories, thus reaches
states with very low numbers of forest trees where extinction of forest becomes very likely.
Near heteroclinic cycles the finite-size system is thus vulnerable to fluctuations in the vicinity
of absorbing states. Interestingly, this effect of absorption near the heteroclinic cycle shows
dynamics significantly different from simulations of the GKEs with Brownian noise (which
lead to stochastic resonance phenomena) [56]. From an ecological viewpoint, this reveals an
interesting fragility of the ecosystems when trajectories approach absorbing subsystems.

3.2. Mesoscopic model and spatially extended Staver—Levin model. In our mesoscopic
framework, we derived a mean-field spatially extended jump process characterizing the dy-
namics of sites distributed in space. The distribution of this process is described by IDEs
which characterize the spatio-temporal dynamics of vegetation at this scale (the GKEs). The
rigorous derivation of this model from first principles provides us with a new model that incor-
porates heterogeneity in the sites’ density via the choice of the initial site distribution gq. The
study of this system can yield valuable information on the distribution of vegetation in space,
but we defer a full investigation of this model’s dynamics to future work. Here, we concentrate
solely on convergence properties and dynamical consistency between the mesoscopic finite-size
Staver—Levin model and the GKEs of the corresponding mean-field limit.

We focus on the simplest subsystem possible, the forest-grass subsystem, in order to
illustrate our convergence results. In this subsystem, the dynamics are fully described by the
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Figure 4. A1/A2: Comparison of the single patch macroscopic particle system model for N = 3000 (A2)
and the solution of the corresponding Kolmogorov equations in a periodic parameter regime. Bl: Simulation of
the macroscopic model for a large number of sites in a periodic regime. C1/C2: Comparison of trajectories of
the particle system and Kolmogorov equation solutions in the state space for various values of «.

fraction of forest trees at a given location r € I' and time t € R™, i.e., the quantity
Pp(t,r) =P [X(t,r) =F].

The GKEs of the mean-field process are thus given by the following nonlocal IDE:

(3.4) %Pp(t,r) = Pg(t,r) /FJ(T/,T) Pr(t,r") dq (r/)

— Pp(t,r) ¢ (/F W (r',r) Pg(t,r") dq (r')) , (t,r)eRy x T,

with Pg(r,t) = 1 — Pp(r,t). We study two ecologically relevant behaviors arising in these
systems, waves of invasion and emergence of fronts in heterogeneous landscapes, as well as
the consistency between solutions of the finite-size system and the IDE (3.4).

3.2.1. Waves of invasion. Consider a homogeneous one-dimensional landscape, assumed
for simplicity to be a ring (i.e., I' = S, the one-dimensional torus of length L, represented
by the interval [0, L] with the boundaries identified). Assuming a homogeneous landscape
amounts to considering a uniform site density ¢ on I' within our framework. Both seed
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dispersal and fire propagation kernels are Gaussian functions of the form

/ d ('r,r/)2
J(r,r) _ Clo) - A o) er?,
J oV 2

W(r,r') =

where dp(r,r") denotes the distance between the points r and 7’ on the ring I'. The nonstan-
dard normalization factor C(0) = L (2®(L/20) — 1) " is due to the fact that our Gaussian
kernels are compactly supported and integrated against the uniform measure on [0, L].*> In the
present setup, spatially homogeneous solutions of the IDE (3.4) solve the original Staver—Levin
ODEs (2.8) due to the translation invariance on the ring. Therefore, spatially homogeneous
stationary solutions are given by the bifurcation diagram of the ODE in Figure 2, but spatial
interactions may alter the stability of these steady states. Grassland is the unique spatially
homogeneous equilibrium when the forest tree birth rate .J is low enough. Forest is the unique
spatially homogeneous steady state for sufficiently large J, while multiple homogeneous steady
states coexist for intermediate values of J. We studied the competition between forest and
grass in the coexistence regime by choosing an initial state with a region of forest trees flanked
by grass on either side. In Figure 5 (panels A1, A2, A4, and A5) we observe that, depending
on the forest tree birth rate .J, grass may invade the patch of forest trees or trees may invade
the grassy regions (in both the finite-size system and the GKEs). There is excellent agreement
between solutions of the GKEs of the mean-field limit (i.e., the IDEs given by (3.4)) and those
of the finite-size Markov process.

3.2.2. Forest-grass fronts in heterogeneous landscapes. One advantage of our frame-
work is the ability to derive mesoscopic models which incorporate environmental heterogeneity
by choosing a nonuniform initial site distribution. For instance, ecologically, soils may have
substantial effects on tree establishment potential, which can be reflected in our model via
lower site density regions. Reduced site density induces two opposite effects: a lessened abil-
ity to carry fires and a lower opportunity for trees to grow. The results of simulations of the
finite-size model, as well as the GKEs of the corresponding mean-field model, with a variable
density of sites in the forest-grass subsystem are presented in Figure 5, panels B1-B3. For
these simulations, the site density was chosen to be a trapezoid on I' = [0, L], i.e.,

dq(z) = (a +bx) 1o )(z) dz, a,b>0.

This choice ensures an increasing density of sites along the interval I': regions near z = 0
have densities lower than those of regions near x = L. Space-time plots of the solutions to the
finite-size model and the GKEs (panels Bl and B2) illustrate that lower site density favors
forest, while higher densities favor grassland. At intermediate site densities, a sharp front
forms between forest and grassland as neither species is able to invade the other, akin to a
Maxwell point. This type of solution is also referred to as a “front-pinning phenomenon” as
the sharp front forms because the wave speed of the wave of invasion, which would typically
annihilate the less competitive species (in the corresponding homogeneous domain problem),
approaches zero at the Maxwell point [57, 59]. Panel B3 compares the bifurcation diagram
of the appropriate GKEs without spatial interaction (¢ — 07 in the kernels) with the final

3® denotes the cumulative distribution function of a standard normal random variable here.
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Figure 5. A1-A6: Comparison of solutions of the finite-size stochastic system and the corresponding GKFEs
for a grass-dominant regime (Al, A2, A4, and A5) and a regime in which forest invades grass (A3 and A6).

Parameters: I' = S5 the one-dimensional torus of length 5, N = 3000, J = 0.5 (Al, A4), J = 0.9 (A2, A5),
J = 1.25 (A3, A6), and o = 0.05. Initial conditions are the same for all simulations with a block of forest on
[1, 2.5] (marked in red). The colorbar for A4—A6 is shown on the right. Sites are either 1 (grass) or 0 (forest)
in A1-A3 and hence we use the same colorbar.

B1-B3: Simulated example of front-pinning/Mazwell point phenomenon for the mesoscale model. Panel
B1 shows a single realization of the finite-size model, with panel B2 showing the solution to the corresponding
GKEs. B3 shows the final solution profile of the GKEs (dashed black line), bifurcation diagram for the GKEs
without spatial interaction (stable equilibria in solid red, unstable equilibria in dashed red), and the time averaged

profile of the solution to the particle system (solid blue). Parameters: I' = [0, 1], N = 2000, J = 1.1, 0 = 0.02
reflecting boundary conditions.

solution profiles of the finite-size model and the GKEs. We observe that the solution of the
GKEs (in black) essentially interpolates between the two stable equilibria of the GKEs without
spatial interaction (solid red). The solution of the finite-size model approximately matches
that of the GKEs but naturally has some stochastic excursions since we are observing a single
realization of the process.
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4. Proofs of main results. In this section, we provide the details of the proof of The-
orem 2.2.1. To this end, we use a bijection between the original state space S and the
K vectors of the canonical basis in R¥ and reformulate the finite-size Markov process as a
stochastic differential equation. This allows a simpler analysis of all models in the class, to
prove existence and uniqueness of solutions of the mean-field limit, as well as convergence of
the finite system towards the limit system as the system size diverges.

4.1. Mathematical preliminaries. Throughout and in the proofs which follow, we work
on a complete probability space (€2, F,P) endowed with a countable family of i.i.d. Poisson
point processes N = {/\/';y(t) : (z,y) € SK x SK i € N, t > 0} on R? with compensators
(i.e., predictable part) given by the Lebesgue measure on R? with R := [0,00). Define the
filtration

(4.1) Fr=0 (N, (AxB): (z,y) € S x S¥ ieN, AeBRy), BeB(0,t])), t >0,

where B(H) denotes the space of Borel sets of H, and N}, (A x B) is the number of points of
the point process j\/'m”y in A x B. D(R4; E) denotes the Skorohod space of cadlag functions
with values in the space E (typically, considered here to be Ry or R? for some p € N),
i.e., functions that are right-continuous functions with left limits everywhere. We recall the
following useful lemma (see Graham and Robert [29]).

Lemma 4.1.1. Suppose that the processes Y = {Y(t) : t > 0} and Z = {Z(t) : t > 0} are
in D(R4;Ry) and are adapted to (Ft);>q- If N is a Poisson process on R2 with compensator
given by the Lebesque measure on Ra_, then the process I = {I(t) : t > 0} given by

I(t) = /0 Y(S_) /Ooo ﬂ{ogzgz(s—)} [N(dz,ds) —dz ds]

is a local Fy-martingale. Moreover, I1(t) is a piecewise constant process with jumps of time-
dependent size (i.e., Y (t) is the size of a jump at time t) occurring at the times of the jumps
of a nonhomogeneous Poisson process with instantaneous rate Z(t).

In particular, under the hypotheses and notation of Lemma 4.1.1, we have

E MY(S—) /OOO ﬂ{ogzgz(s—)}./\/'(dz,ds)} _E {/OtY(s_)Z(s_)ds} ,

a fact which is used frequently in the arguments which follow.

In order to prove that the mean-field equation introduced in Theorem 2.2.1 admits a well-
defined solution, we must consider spatially extended discrete-state continuous-time stochastic
processes. I' always denotes a Borel set in R?, and ¢ is a probability measure on (I', B(T')). To
analyze these processes, we work in the space Mt of stochastic processes Y = {Y(t,r) : r €
I',t € [0,T]} with state space S¥ which are measurable on the product space (Q x I') and,
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for each fixed r € T, Y (¢,7) is Fi-adapted.® Define the norm || - ||p, on My by

r
where ||-|| denotes the standard Euclidean norm on R¥. The norm ||-|| r, identifies processes

in Mp that are IP a.s.-g-a.e. equal. A classical argument shows that the space My is complete
under this norm (see, e.g., [4, Chapter 3]).

sup |[Y'(s,")]
0<s<T 0<s<

(4.2) Y [lpmr =€ [E

Sup 1Y (s, 7 )H] dq(r')

4.2. Stochastic differential equation formulation of the Markov process. Theorem 2.2.1
deals with an interacting Markov process model with finite state space SX containing K
elements (z1,...,2x). For convenience and definiteness, we assume (up to bijection) that the
elements of SX are given by the canonical basis of R¥:

T = %(1,0,...,0)T, Lo 1= %(0,1,0,...,0)T,..., rg = —==(0,...,0,1)T.
This choice (and scaling) is particularly convenient in that it allows using the usual Euclidean
norm on R as our norm on S%, and in that norm, all states are equidistant (one unit apart).

Using that representation, the state of site i is a process in D(R, SK ) whose evolution is
described by the Poisson-driven SDE,

(4.3) X'(t) = X*(0)

+ Z/ ) Z 11‘{Xi(s"):ﬂc}/o ]l{OSzSR;’Z(X(s*))}Nﬂl%y(dz’ds)

yeSK zeSK,
TFY

for each t > 0. The transition rate intensity Rlx];[ is given by (2.1), and we write Rlx];[ (X(s7))
to emphasize that the transition rate depends on the entire system state X (s~) = {X%(s7) :
i € {l,...,N}}. In (4.3), for each z,y € S¥ x SK and i € {1,...,N}, each j\/‘é’y is an
independent Poisson point process on Ri with compensator (or predictable part) given by
the Lebesgue measure on Ri (see section 4.1). Indeed, the processes

/0 Lio<z<s(t)y Nay(dz, ds)

are inhomogeneous Poisson processes with instantaneous rate f(¢), and therefore the system of
SDEs defined by equation ]\§4 .3) is a Markov process with independent exponentially distributed
transitions with rates Ry (X (s7)).

Under assumptions H1 and H2, we can define the following quantities:

(i) There exists L > 0 such that for all z,y € S¥ and all X,Y € R,

Dy (X) = @0y (V)] < L|X =Y.

4Rigorously, these processes and their measurability are defined through Markov kernels as done in the
statement of assumption H;c. Here, measurability is stated to make sure the norm is well defined; the
measurability and adaptedness will be obvious for the processes relevant to our proof, and therefore the norm
[|“ [|my is well defined.
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(ii) [[Paylloo = SUPyepo,|w]|u] [Pay(w)| < 00

(ii) |[Waylloo := sup,. ./ [Way(r, 1) < o0.

(i) W]y := supg yesx|[Waylloo < 00
Under assumptions H1, H2, and Hjc, strong existence and uniqueness of solutions for the
finite-size Markov jump process is classical (see, e.g., [31]).

4.3. The McKean—Vlasov process: Definition, existence, and uniqueness of solutions.
Theorem 2.2.1 states that the finite-size Markov process with transition rates given by (2.1)
converges in distribution towards a spatially extended process defined on the support of ¢ on
I'. The limit process, denoted by X and referred to as the mean-field limit, has interjump
times that are independent and exponentially distributed. The jump rates of X at time ¢
depend self-consistently on the law of the process itself and are given by

(44) z—>y D,y </F Wa,y (r, r') P [X(t_,r’) = Y(x, y)] dq(r')) =: Rx,y (X(t_),r)

for each pair of states (z,y) € S x SX and where X(t7) = {X(t7,7"): ' €T}. X is
non-Markovian because of the dependence of the rates on the law of the solution and not
on the state of the system. The mean-field limit described above is a so-called McKean—
Vlasov process [58]. Due to the nonstandard nature of these processes, classical existence and
uniqueness theory is not sufficient for establishing well-posedness. Although the constructions
are standard, we provide the necessary existence and uniqueness arguments to show that the
mean-field limit is well-posed in order to keep the presentation self-contained.

Definition 4.3.1. A strong solution of the mean-field process with initial condition &y(r)
with a regular distribution in space (in the sense of hypothesis Hic) is a process X € Mrp
such that for q-almost every r, X(0,7) is P-almost surely equal to &y(r), and, given the law of
the solution up to time t, the process jumps from state x to a state y at a rate Rx,y given by
(4.4).

Equivalently, given a family of Poisson processes N' = {Ny,(t) : (z,y) € SExSK ¢t >0},
a solution X € My is a process such that for q-almost every v, X (0,r) is P-almost surely
equal to &(r), and, for g-almost every r € T' and all t € [0,T], the following equation holds
P-almost surely:

(4.5) X(t,r) =&(r)

t _ 00
-+ Z A(y_X(S_;T>) Z 1{)((5’7")_:3}/0 H{OSZSRIJ/(X(S_),T)}Nx’y(d'z’ds)'

yeSK zeSK,
TFY

The equivalence between the process associated with transition rates (4.4) and the process
which solves the mean-field equation (4.5) follows from the same classical arguments as those
allowing us to write up the Poisson driven SDEs describing the evolution of the finite-size
system. Indeed, if the solution to (4.5) exists, and assuming that X (t~,r) = x, then a jump
of size (y — ) (therefore, moving the process from = to y = (y — ) + ) arises at a random,
exponentially distributed time with rate Ry, (X(¢7), r).
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Definition 4.3.2. The solution to (4.5) is unique if for any two strong solutions X and X
to (4.5), the event

{X(t,r) = X(t,r) for each t € [O,T]}

has probability 1 with respect to the product measure P ) q.

Theorem 4.3.3. Suppose H1 and H2 hold. Let &y(r) be a spatially measurable random
variable on S (in the sense of Hic) independent of the Poisson processes Ny foraz,y € SK.
The mean-field equation (4.5) with initial condition & (r) has a unique strong solution in Mr.

Proof. Define the mapping ¥ which acts on processes X = {X(¢t,r): re€I',t €[0,T]} in
M according to

W (X) (t,r) = &o(r)

t [ee
+ Z A(y_X(S_ar)) Z l{X(S_,T):x}A ]l{OSzng,y(X(s*),r)}szy(dz’d‘S)

yeSK zeSK,
7Y

for each (¢,r) e Ry x I

According to Definition 4.3.1, a solution to the mean-field equation (4.5) is a fixed point
of W. Therefore, proving the theorem amounts to showing (i) ¥ has a fixed point, and (ii) the
solution obtained as the fixed point of ¥ is unique according to Definition 4.3.2. Because of
the consistency between Definition 4.3.2 and the norm || ||, given by (4.2), uniqueness will
follow if all solutions are indistinguishable under || - ||s1,. We demonstrate both properties
using a classical argument based on Picard’s iterates. In order to be able to iterate the map
U, we must first establish that for any X € My, the process Y := ¥ (X)) also belongs to M.
For X € My, the integrals over I' in the jump intensity functionals

Rz,y (X(s_),r) =o,, </1“ Wa.y (r, r') P [X(s_,r') = w(:):,y)] dq(r')) . ye Sk,

are Fs-measurable, continuous with respect to r, and finite due to the (2 x I')-measurability
and boundedness of X, and to the regularity and boundedness of the W, ,’s and ®,,’s,
respectively (see H1 and H2). Therefore, each Y (¢,r) is Fi-adapted and measurable with
respect to (2 x I'). Since X (¢,7) € SK, Y (t,r) takes values in SX as well. Therefore, ¥ maps
Mo to itself. We can thus define the sequence of processes (X*(r))x>0 as follows:

X0 ={Xtr): X°(t,r) =&(r),r €T, t€0,T]},
with the S%-valued random variable &y(r) chosen to be (€ x I') -measurable and

Xk = {X’““(t, P X ) = o (Xk> (t,r), reTl, te [O,T]} , k>
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For k£ > 1, standard estimation of the quantity HX k41 _ X k| ’ Mo using Lemma 4.1.1 yields

o, e [e] s me,m x|

0<t<T
<> > { T)+ Bay(T) + éx,y(T)}a
yeSK zeSK,
TFY
where
Ay =€ [B[ [ Iy = 267 ]Rx,y(x’%s—),r)—Rm,y(xk—ws—),r)\dsn,
s[5t ]
and

[Rey (X525 )‘ds”.

Cay(T) =€ [E [/ )]]'{Xk(s =}~ Lxr1(s- =2}
Since ||y — X*(s7,7)[| < 1,
(4.6) Ag (T) < € [IE [/OT ‘Riﬁy (Xk(s—), r) — Ry, (Xk—l(s_% T) ‘ ds” .

Estimating the integrand in (4.6) using the Lipschitz continuity of ®, , and the boundedness
of Wy, yields

‘Rw,y (Xk(s_)v 7") - Rw,y (Xk_l(s_)a 7")‘
< LWyl /F PX5™0) = )| P (X5 s0) = v(ay)|| da(r)
For each fixed v’ and each fixed s > 0, we have

[P [x*(s7, 1) = (ay)]| = B [XF (57 = (e
<E [| Lixk(s— ry=pay)} — L{x—1(s— o) =g(a,p)} |
< [lxh(sm ) - X sl

since
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Thus
‘Rx,y (Xk(s_), 1") — Ry y (Xk_l(s_), r))
< LWyl [ BIXH607) = X517 0] datr)
< LWyl [|X* = X471]|

s

Returning to (4.6) and using the estimate above gives
R T
Auy(0) < LWyl [ |5 = x5
0 M
The estimation for Bm,y follows simply from using the boundedness of ®, , to obtain

B (1) < 12l | Ce [E[Ipt(sm,m - x| as.

Similarly, C,, can be bounded as follows:

T
vay(T) <& |:E |:/0 ‘]‘{X’V(s*,r):x} - ]'{kal(s*,'r)zx}
T
< H(I)l“yyHOO/O £ [E H]]‘{Xk(s*,r):a:} B ]l{kal(S*,T):ac}

<Pyl /OTé' [IE [HX’“(S_,T) = Xk_l(s_,r)H” ds

(Rw (X5 1(s7)7))| ds”

Hds

T
gy\@$,y\|m/ [t = x| s
0 Ms

Combining the estimates for fl%y, Bm,y, and C'gc,y yields

T
| x| sf(/ [x% = X1 ds for each k> 1,
M 0

S

where B
K= Z Z (L HWx,yHoo + 2H(I>a:7y|‘oo)‘
yeSK geskK,
Ay
Therefore (7 )k (7 )k
KT KT
k41 vk 1 0
|x XHMTS i X=Xy, < = k2L
Thus (X k)k>0 is a Cauchy sequence in the complete space M7 and converges to a limit in

M. The conclusion of the theorem is standard at this point (see, e.g., [43]) and yields the
existence of an Fi-adapted (QxF)-r_neasurable process X = {X(t, r):rel, telo, T]} € Mr
such that X = W (X). Therefore X is a strong solution to (4.5) on [0, T].
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The estimates above can be used to show that for any two solutions X and X to (4.5),
— ~ T — ~
HX—XH gK’/ HX—XH ds.
MT 0 M.s

Using Gronwall’s lemma and the fact that the two solutions have identical initial conditions
allows us to conclude that X = X in the norm [|-||r,., and hence solutions to (4.5) are unique
in the sense of Definition 4.3.2. |

4.4. Convergence towards the McKean—-Vlasov equation. We now undertake the proof
of the convergence result in Theorem 2.2.1.

Proof of Theorem 2.2.1.

I. Convergence. Fix N € N, i € {1,...,N}, a time 7 > 0, and a fixed configuration of
sites (r1,...,ry) drawn as i.i.d. random variables according to the probability measure ¢ on
I'. We proceed to demonstrate that the process X which solves (4.3) converges almost surely
with respect to P ® ¢ to a coupled process X, a particular solution of (4.5) with the same
initial condition and Poisson processes as site i:

X'(t,r) = &(r)
+ Z / 7‘)) Z ]l{X’(s ,T) —m}/ 1{0<Z<Rz (Xz )}N; (dZ,dS)
yesSK zeSK,
TFY
Estimate the distance between X and X' in the || - ||y, norm. Because initial conditions

are identical, they disappear in the norm, and because the Poisson processes are also identical,
the stochastic terms combine and we obtain

(4.7) E[Sup HXz'(t)—Xi(t,n)M Z Z Ay (1) + Byy(1) + Coy (1),
Ostsr yeSK zesK
TH£Y

where
Ay () =E U Iy — X(s)]] (1{)@»(3_)”} ~ L %i(s r)=a) |RLT (X (s7))] ds] ,

Buy(r) =B | [l =X (]| Py (X m)—RZfX(X(s‘))!ds]

Cry(t)=E [/OT || X (s, m) — X'(s7)|] ‘]l{)_(i(s r)=r)

We immediately obtain an upper bound on A, , since Hy - X ’(S)H <1 and R;JZ is bounded
due to the boundedness of each ®, ,. In particular,
ds} }

£ [Auy() <10yl £ [E [
< ||q>x,y||oo/075 [E[sup X )_(i(u_,ri)H” ds.

0<u<s

Roy ( n)}ds] .

Lixism)=ey = L{%i(s= ri) =2}
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Similarly, it is straightforward to derive the following estimate on C ,:

€y < onyll [ € [B | sup 1K) - xi0)]]] ds

The requisite estimation for B, , is nontrivial; we claim that

(4.8)  E[Byy(™)] < L|[Wayllso /075[15 [0212 || X (u, ;) —Xi(u)H”ds+7'L\/§

for some constant C' > 0 which is independent of X?, X? and Ay. To establish that (4.8)
holds, begin by estimating as follows:

(4.9) € [Bry(7)] < /0 e B [|Ruy (Xi(57),m) Ry (X(s7))[]] ds.

Next make the following estimate on the difference of the transition rate functions using the
Lipschitz continuity of ®, ,:

[y (X7(s7),mi) = Rigyy (X(s7))

N

1 .

NZWJ),y T’Lurj ]l{XJ(s )=v(z,y)} /ny i, T )P [X (8 7T/) ¢($ y)] dQ( /) :
7j=1

|y (X'i(S’)vn') — Ry (X(s7)]|

L
< 3 2 Wealrim) ‘H{Xj(s*):‘lf(w,y)} - ﬂ{ms—,m):w(w,y)}‘

+L N ZW 2y(Ti,75) Li%i(s )=z} /me Ti, T [ "(s7,r") = (a, y)] dq(r’)
j=1
=: Dy (s) + D7, (5).
The first term above is easily estimated using the boundedness of the kernels W ,,
€ [E [Dy,(5)]]
N
= L”Wﬂ” z; £ |E H Lixi (s)=p@w ~ WX ) =p(ew)} m
j=

N
< Wo dCER[|XI(s7) = X(s,m)|]]-
j=1
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For each j € {l,...,N} and each fixed s > 0, the random variables [|X7(s7)—
X?(s7,r;)|| are identically distributed given the configuration Ay. In other words, the quan-

tity
€ [B[[[X7(s7) = X' m)|]]
does not depend on j. Hence
£ [E[D},(9)]] < LIIWayllo € [E [||x"5(7) = Xi(s™,m)]|]]

for each k € {1,..., N}. It follows readily that

(4.10) /075 [ [DL,(s)]] ds < L[[Wylloe /OTg [E [ sup

0<u<s

XFu™) - Xi(u™, rk)H” ds
for each k € {1,...,N}.
In order to estimate D%y(s), note that the collection of random variables

(Wx,y(%‘, rj) l{X“s*,m):lﬂ(m,y)})je{l,m’N}

are conditionally i.i.d. given r;. Hence the expression
N
(4.11) 3 2 Wey (i) Lixi(em ry=pe)
j=1

is, conditionally on r;, the sum of i.i.d. random variables with finite mean and variance (since
the process X’ is a.s. bounded). It is then natural to define E;, the conditional expectation
operator on Q' x ) given r;. The mean of each summand in (4.11) with respect to E; is given
by

(412) By (Way(ri,rg) Lgigs )= ,y)} /ny ri, )P [ X' (s™,7") = ¢(x,y)] dg(r').
Let
N
1
F7y( NZ z,y 7’1,7"]) Il{Xl(s ri)=y(z,y)}

and

/ny i, T [Xz(s T) @D(Cﬂ,y)] dQ(T/)'

Thus, for each fixed s € [0, 7], Holder’s inequality yields

(4.13) B, [|F} 2] < (B | (R (s )—Ffvy(s))QDW
i ) 1/2
< N ZE [(Wx,y(ria 7) H{Xi(sﬂrj)=¢(l“,y)} _Fiy(s)) } ’

Jj=1
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where we have used that
Cov (Wx,y(n‘, 75) Lxi(s— r)=viay)}> Waw(Ti,Tk) ﬂ{X"(s*,rk)zw(w,y)ﬁ =0

for j # k, conditional on r;. By (4.12), the summands in (4.13) are variances of (conditionally)
ii.d. random variables. Thus

X 1 R 97\ 1/2
B 1720~ P £ g (B (Wealr ) L s 7200 |)

for any k& # i. Since X’ is a bounded process, we can uniformly bound its variance by a
deterministic constant C' > 0. Thus

I HF;y(S) - Fﬁy(S)H < \/g for some C > 0.

Therefore, by the tower property of expectation,

C
EE[FL6) - 2,60 <o
Finally, integrate over [0,7’] to obtain the desired estimate for D?c’y, i.e.,

[ eEnDz,@ ds <z [ e BIEL - Fy )]

/1 C
< —.
<7L N

This estimate establishes the claimed inequality for B, , from (4.8). Finally, return to (4.7)
and apply the estimates on A, ,, By, and C;, derived above to conclude that

€ [E [ sup Hxi(t)—xi(t,mm < K /075 [E [ sup fo(s)—xi(s,nm” ds

0<t<t 0<u<s
B
VN’
where
Ky = Z Z 2||Paylloo + L |[Waylloo
yeSK re sk
TFy
and

Ky =7VCOLK(K —1) > 0.

Gronwall’s inequality now shows that

SFFWHWW—WWWH

:|:| < KleTeKlT i KQT
0<t<r

VN VN’

and letting N — oo shows that X*(t) converges almost surely towards X°(t,r;), which in
particular implies the convergence in law stated in the theorem. |
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4.5. Generalized Kolmogorov equations. We now prove Theorem 2.2.1 II, the charac-
terization of the law of the mean-field limit through the so-called generalized Kolmogorov
equations (GKEs). Classical Kolmogorov equations are linear differential equations governing
the evolution in time of the probability to be at a given state for a continuous-time Markov
process. The mean-field limit is non-Markovian, as its transition rates depend on the distribu-
tion of the solution at all other locations. In section 4.3 we proved that there exists a unique
strong solution to the mean-field process. Therefore, the rates of transition between different
states given by (4.4) are well defined, since they depend only on that probability distribution,
which is in turn well defined. Let X (¢,7) be a solution of the mean-field process, recall that
P.(t,r) = P[X(t,7) = ], and define for each pair of distinct states z,y € S the functions

Apy(t) = @py (/F W,y (7‘, 7‘/) Pz, y) (t=,r") dq(r')) .

These functions are well defined, nonnegative, and bounded, and define univocally an auxiliary
time inhomogeneous Markov process Y (¢) with transition rate from state = to state y # x
at time t given by A, ,(t). Standard theory from Markov processes ensures that the law of
process Y (t), denoted by @, satisfies the usual Kolmogorov equations (KE). In detail, the
transition probabilities

Qay(t) = P[Y(t) = y| X(0) = z]

satisfy the differential equations

{fth,y(t) = Doty Quz(D)Azy(8) — Ay(H)Quy () (forward KEs),
FQuy(t) =22 10 Do o ()Qzy (1) — Ax()Quy(t)  (backward KEs),

with Ay (t) := >, Ay .(t) for each t > 0.

z2FT T,z
The probabili‘g; distribution of Y'(¢) is equal to that of the non-Markovian McKean—Vlasov
process (4.5) because the Markov process Y has (by definition) independent exponentially dis-
tributed transitions with rates A, ,(t), exactly as the McKean—Vlasov process X. Therefore,
the transition probabilities

Ppy(t,r) = P[X(t,r) =y| X(0,r) = 7]

are equal to QQ;,(t). The linear KEs for the transition probabilities of Y thus convert into
the following nonlinear equations for those of X:

NPy (t,r) =3, 2 Puz(t,m)Asy(t) — Ay(t) Pry(t,r)  (forward GKEs),
NPy (t,r) =3, 20 a2 () Poy(t,r) — Ag(t) Pry(t,r)  (backward GKEs).

Given that Py(t,r) = >, Pya(t,r)po(r,y) with po(r,y) = P[X(r,0) = y], we thus obtain

(4.14) OiPy(t,r) =Y Put,r)A.o(t) = Ap(t)Pult,r), x € SK,
z#T

using the forward GKEs above. The system of equations given by (4.14) is precisely the
self-consistent K-dimensional nonlinear system of IDEs stated in the theorem.
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4.6. Propagation of chaos. We complete the proof of Theorem 2.2.1 by proving the prop-
agation of chaos property. In section 4.4, we showed an almost sure convergence of X* towards
the coupled mean-field process X'(-,r;) introduced in the proof. For i # j, because the initial
conditions &(r) and ¢7(r) are independent (assumption H;¢), and because for any (x,z’,,%’)
elements of SX, the Poisson processes Nf;’y and N :g,’y/ are independent, the processes X*(-,7;)

and X7(-,r;) are independent. Similarly, for any sequence of p distinct indices (i1, ..., p),
the processes X (t,7y,),..., X (t, r3,) are mutually independent, and the collection of pro-
cesses (X™,..., X') converges almost surely towards (X" (-,r;,),...,X"(-,r;,)), completing
the proof.

Appendix A. Numerical methods and codes. In this appendix we describe in more
detail the theory and numerical methods behind the figures in the main text. All code needed
to reproduce the figures is available on github.com/Touboul-Lab and was run on MATLAB
version R2019B. In the figures where the bifurcation diagram of an ODE was overlaid on the
result of a simulation, the bifurcation diagram was computed in AUTO [23], and the axes
were aligned in Inkscape.

A.1. Numerical parameters. For all numerical calculations and simulations, we take the
following smooth functional forms for the fire threshold functions ¢ and w:

B w1 — W B $1 — Po
w(w) = wo + 1 4+ e—(@=01)/s1" ¢(z) = o + 1 + e—(z—02)/s2 for z € [0,1],
with parameter values as given in Table 2.
Table 2
Parameter v wo w1 t1 S1 b0 D1 to S2
Value 01 005 09 04 04 001 01 09 04 0.05

A.2. Figure 2. Figure 2 shows the results of simulations of the macroscale interacting
particle system model for different values of the seed dispersal intensity J across a range of
initial conditions. There is a single patch M =1 and N = 3000 sites in each simulation, and
we used the Gillespie algorithm to simulate transition times. For each value of .J shown, we ran
20 simulations with the initial grass/forest proportions randomly assigned with a weighting
which we varied from 0 to 1 to observe a full range of initial conditions. Each blue starred
point is the proportion of grass in the particle system at time ¢ = 100. The red curves are the
bifurcation diagram in J of the ODE, i.e., the GKEs of the mean-field limit,

2 Po(t) = (1 — Pa(t)) 6 (Pa(t)) — T Pa(t) (1~ Pa(t)
with Pg(t) the probability of any given site in the patch to be covered by grass at time ¢.
Solid red lines are stable equilibrium curves, dashed red lines denote unstable equilibria, and
solid red dots mark the bifurcation points.

When multiple distinct states were observed in the particle system at time ¢ = 100,
we recorded the proportions of grass in the initial conditions and plotted with a solid blue
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dot the lowest proportion whose corresponding simulation ended up on the upper branch of
the bifurcation diagram. Similarly, the highest initial proportion which resulted in a time
t = 100 state on the lower branch is recorded with a solid green dot. Tracking which initial
conditions result in which end states gives an idea of the “basin of attraction” for the transient
states of the particle system—we see a close correspondence between this informal “stochastic
attraction basin” and the basin of attraction of the stable states of the GKEs.

A.3. Figure 3. Panels Al and A2 are obtained by directly computing the principal eigen-
value and corresponding normalized eigenvector of the transition intensity matrix ) of the
irreducible part of the Markov chain (i.e., the finite-size model).

A.4. Figure 4. Figure 4 shows a comparison between the macroscale particle system
model with M = 1 patch and N = 3000 sites, and the corresponding GKEs of the mean-field
limit, i.e.,

G =uS +vT + ¢(G)F — JGF — BGT,
S =—uS—w(@)S—JSF+BGT,
T=—vT+w(G)S — JTF,
F=J(G+S+T)F — ¢(G)F,
1=G+S+T+F.

In panel A1, we show the solution to the GKEs versus time—the GKEs are a system of ODEs
and are solved using an explicit Euler method with step size 0.01; parameters are as in Table
2 with J = 0.25 and 8 = 0.4. Panel C1 also shows solutions of the GKEs solved via the
Euler method, but now 8 = 0.4 is fixed while J is varied to show solutions approaching a
heteroclinic cycle in the phase space.

Panels A2, B1, and C2 show the results of direct simulations of the four-species macroscale
particle system using the Gillespie algorithm to simulate transition times. We have a single
patch M =1 and N = 3000 sites with J and /3 as in panel Al. Panel A2 shows the evolution
of the proportions of sites in each state, while panel B1 shows the full solution with the state of
each site at each time recorded—the sites are essentially in a synchronized oscillation. Panel
C2 shows multiple simulations of the macroscale particle system with the value of J varying
between simulations and 8 = 0.4 fixed.

A.5. Figure 5. Figure 5 presents simulations of the mesoscale finite-size model and the
corresponding GKEs on the periodic spatial domain I' = S5 (represented by the interval [0, 5]
with the endpoints identified).

For panels A1, A2, and A3 we directly simulated the finite-size system using the Gillespie
algorithm. Panels A4, A5, and A6 are solutions of the GKEs of the mean-field limit. In
particular, we solve the nonlinear integro-differential equation

(1) Zatn) = -6 o [ Wit a)
- G(t,r) (1 - /FJ(r’,r) G(t,r") dr’) , (t,r) €eRy xT,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 12/21/20 to 128.112.70.33. Redistribution subject to STAM license or copyright; see https://epubs.siam.org/page/terms

2716 PATTERSON, LEVIN, STAVER, AND TOUBOUL

with periodic boundary conditions and kernels as described in section 3.2.1. We solve equation
(A.1) by discretizing time with an explicit Euler scheme to obtain

(A.2) Gln+1,r) =G, +h {(1 —G(n,r)) ¢ </F w(r',r)G(n,r") dr’)

~G(n,r) <1 - /FJ(T/,’I“) G(n,r") dﬂ) } (n,r) € ZT x T.

We then discretize the integrals using the 1D trapezoidal rule and approximate the solution
on the evenly spaced grid {0,A,2A,...,5} for some A > 0. In practice, we found that a
step size h < 0.1 and 200 spatial grid points was sufficient to ensure numerical stability of
the scheme, and the scheme remained stable as we decreased the time step and increased the
number of grid points.

In panels B1-B3 of Figure 5 we compare the results of simulations of the mesoscale particle
system and the corresponding generalized Kolmogorov equations with a nonuniform initial
site distribution. Panel Bl is a space-time plot of the result from a direct simulation of the
mesoscale particle system with N = 2000 sites whose initial positions are drawn according to
the distribution

(A.3) dq(z) = (a+bx) 1 y(2)de, a,b>0, xc][0,1],

with a = 0.4 and b = 1.2 for this particular example. The spatial domain I' is now the interval
[0, 1], and the dispersal kernels are standard Gaussians and of convolution type, i.e.,
J(r,r’ 1 —e=)?
W(r,r') = (_ ) _ e 222, rr'eR.

J _U\/ﬂ

We take J = 1.1 in these simulations. In contrast to panel A, which has periodic boundary
conditions, the boundary conditions for this simulation are “reflecting” in the following sense:
consider a function u defined on [0, L]. First, extend u from a function on [0, L] to [-L, L] by

reflection:
L
(. t) = u(x,t), x € [0, L],
u(—=z,t), x¢€[-L,0].

Now let @ be the standard 2L periodic extension of ug (as defined above) so that u is defined
on all of R. When the system has a heterogeneous spatial structure as in this example, since
sites are less densely packed close to zero and more densely packed situated closer to L, a
periodic extension introduces unrealistic boundary effects. In particular, periodic boundaries
put dense regions adjacent to sparse site regions, while the reflecting boundary makes sure that
sparse regions are neighbors of sparse regions at the boundaries. When dispersal kernels are
sufficiently local, this avoids unintuitive and physically unrealistic solutions with significant
boundary effects. For the simulation of the particle system, we once more use the Gillespie
algorithm to simulate transition times.
=

Panel B2 of Figure 5 is a space-time plot of the solution of the GKEs for the mean-
field mesoscale system with initial site distribution given by (A.3). The integro-differential
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equations to be solved are given by

(A4) %G(t, )= (1—G(tr) é </F(a b)Y W(r — ) Gt ) dr’)
- G(t,r) (1 - /F(a +br") J(r—1r")G(t,r") dr’) , (t,r) e Ry x T,

with reflecting boundary conditions as outlined above. We solved (A.4) numerically using
the same Euler time discretization and trapezoidal rule spatial discretization as before with
similar discretization parameters giving good numerical stability of the scheme.

Panel B3 has three components overlaid on the same axes: the time ¢ = 500 state of the
particle system from B1 (solid blue), the time ¢t = 500 state of the GKE solution from B2
(dashed black line), and the codimension-1 bifurcation diagram in r of the ODE

(A5) %G(t) — (1-G(t) (a+br)G(t) — G(t) (1 — (a+br) TC(1)) .

The ODE given by (A.5) is obtained from the GKE (A.4) by formally letting ¢ — 07 in both
the fire and dispersal kernels in order to study the case of no spatial interaction between sites.
Hence (A.5) can be considered as the natural zero dispersal limit of the system with Gaussian
kernels. The bifurcation diagram for (A.5) is overlaid with solid red lines for stable equilibria,
and unstable equilibria are denoted by dashed red lines.
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