

# Management implications of long transients in ecological systems

## Short Title: Managing Long Transients

## Authors

5 Tessa B. Francis<sup>1\*</sup>, Karen C. Abbott<sup>2</sup>, Kim Cuddington<sup>3</sup>, Gabriel Gellner<sup>4</sup>, Alan Hastings<sup>5</sup>, Ying-Cheng  
6 Lai<sup>6</sup>, Andrew Morozov<sup>7</sup>, Sergei Petrovskii<sup>7</sup>, Mary Lou Zeeman<sup>8</sup>

<sup>7</sup> \*corresponding author: [tessa@uw.edu](mailto:tessa@uw.edu), 426 East D Street, Tacoma, WA, 98421; 206-427-7124

<sup>8</sup> <sup>1</sup>Puget Sound Institute, University of Washington, Tacoma, WA

9 <sup>2</sup>Department of Biology, Case Western Reserve University, Cleveland, OH

10 <sup>3</sup>Department of Biology, University of Waterloo, Waterloo, ON

11 <sup>4</sup>Department of Integrative Biology, University of Guelph, Guelph, ON

12     <sup>5</sup>Department of Environmental Science and Policy, University of California, Davis, CA and Santa Fe  
13     Institute, Santa Fe, NM

<sup>14</sup> <sup>6</sup>School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ

15 <sup>7</sup>Department of Mathematics, University of Leicester, Leicester, UK

16 <sup>8</sup>Department of Mathematics, Bowdoin College, Brunswick, ME

17 Abstract

18 The underlying biological processes that govern many ecological systems can create very long periods  
19 of transient dynamics. It is often difficult or impossible to distinguish this transient behaviour from similar  
20 dynamics that would persist indefinitely. In some cases, a shift from the transient to the long-term, stable  
21 dynamics may occur in the absence of any exogenous forces. Recognizing the possibility that the state of  
22 an ecosystem may be less stable than it appears is crucial to the long-term success of management strategies  
23 in systems with long transient periods. Here we demonstrate the importance of considering the potential of  
24 transient system behavior for management actions across a range of ecosystem organizational scales and  
25 natural system types. Developing mechanistic models that capture essential system dynamics will be crucial  
26 for promoting system resilience and avoiding system collapses.

27      **1. Introduction**

28      A major challenge facing the management of ecosystems worldwide is the fluctuation and variability in the  
29      production of ecosystem services and benefits upon which humans rely. Invading species<sup>1</sup>, shifting species  
30      distributions<sup>2</sup>, and environmental changes that alter both community composition<sup>3,4</sup> and functional traits<sup>5</sup>  
31      are expected to be increasingly important in ecosystems globally<sup>6</sup>. An additional challenge in the  
32      management of ecological systems is that the current dynamics may not be the asymptotic (long term) state,  
33      even though observations appear to show a steady pattern that resembles noise around an equilibrium or  
34      regular oscillations. Many systems are in long transient states, exhibiting apparently stable dynamics, often  
35      over dozens to hundreds of generations, but will ultimately experience a shift into a new, stable state<sup>7-11</sup>.  
36      Importantly, some state shifts within long transients may occur in the absence of influence by exogenous  
37      factors, such as underlying environmental change.

38            Such long transients are surprisingly common across a range of species and systems, and the  
39      importance of the long view for understanding ecological processes has long been recognized<sup>12</sup>. Transient  
40      dynamics over a long period of time are common and their appreciation is evidenced in part by the extended  
41      network of Long Term Ecological Research (LTER) sites. Systems with slow variables or interactions  
42      between slow (e.g. soil development, erosion) and fast (e.g. plant-herbivore interactions) variables<sup>13</sup> that  
43      often lead to system behavior such as tipping points<sup>14</sup> can undergo long transients. High dimensional  
44      systems are also more likely to experience transient behavior, such as systems with large spatial complexity  
45      (e.g., metapopulations), or high food web dimensionality<sup>7</sup>. Quite often, the existence of transient behavior  
46      is not apparent in observations of the system until after a shift in behavior has occurred. While this is similar  
47      to the challenge posed by tipping points, an important observation is that shifts caused by transients can  
48      occur in the absence of any underlying change in environmental conditions, such as nutrient loads or  
49      temperature. Therefore, approaches to predicting regime shifts or tipping points developed around  
50      identifying critical thresholds in environmental drivers will not apply to long transients, leaving a gap in  
51      our ability to manage ecosystems that may be in a transient period. Recent classification of the underlying

52 causes of long transients<sup>15,16</sup> creates an opportunity to look more closely at the implications of these  
53 phenomena for managing ecosystems, and to expand our understanding of the impacts of management  
54 interventions vis-à-vis transient behavior.

55 Adaptive management inherently acknowledges uncertainties and nonstationarity in the responses  
56 of complex systems to human intervention<sup>17–20</sup>. This often includes an understanding that ecosystem  
57 responses to management actions can be slow. Underappreciated is the fact that long transients can occur  
58 even in the absence of human intervention or changes in exogenous drivers, and that observations of  
59 transient behavior in one system may appear as identical to asymptotic behavior in another system. If we  
60 cannot distinguish between transient and asymptotic states, how can we manage for the future? What are  
61 the consequences of failing to recognize a long transient? What are the relative costs when typical  
62 management interventions interact with transient (versus asymptotic) dynamics? Here, we offer formal  
63 explorations of the intersection between transient dynamics and ecosystem management, with the aim of  
64 supporting adaptive management approaches and programs, and recommend that the adaptive management  
65 framework incorporate assumptions about long transients (see Fig. 1).

66 Models that capture underlying system dynamics can be helpful in elucidating implications of long  
67 transients for managing ecosystems. Closing the gap between theoretical studies and management  
68 applications is an ongoing challenge, as summarized for the control of invasive species by Funk et al.<sup>21</sup>. As  
69 they note, and as is backed up by a survey on incorporating climate change into management<sup>22</sup>, managers  
70 are often eager to be able to incorporate results from ecological theory, but there are substantial barriers.  
71 Here we use several models to illustrate some of the consequences of management actions for different  
72 ecological systems with transient dynamics. Finally, we offer some general rules of thumb for managing  
73 ecosystems, revealed by the case studies, that accommodate the ubiquity of transient behavior in ecological  
74 systems.

75        2. Exploring management with long transients

76        We explore the consequences for management of long transients in ecological systems, using simulated  
77        examples of long transients under potential management strategies. We use these models as a way to  
78        develop a general understanding of how to manage in the face of transients. This both provides a guide to  
79        cases where not enough is known to justify a detailed model and highlights how to develop approaches  
80        when more detailed modeling efforts are justified<sup>23</sup>. For each example, we associate an underlying  
81        mechanistic model with the case, use the model to replicate the long transient, identify key features of the  
82        dynamical landscape (e.g., saddles and ghost attractors) that have implications for management, and  
83        evaluate management strategies under assumptions of transient versus asymptotic behavior.

84        *2.1 Marine Protected Areas: Managing transient responses in long-generation species*

85        Fisheries related to marine protected areas (MPAs) illustrate the importance of considering  
86        transients, which may be long from a management standpoint, even if not in number of generations. From  
87        a single species perspective, establishment of a marine protected area should change both the equilibrium  
88        population level and the equilibrium age distribution of harvested fish species with relatively sedentary  
89        adults by removing an age-specific mortality source, namely harvesting. A potential challenge in the  
90        evaluation of the effectiveness of the marine protected area arises from not considering the transient nature  
91        of the response and instead comparing the state of populations after too short a time to a new expected  
92        equilibrium distribution. The arguments can be made more precise, but intuitively starting from the idea  
93        that multiple generations would be required to approach a new equilibrium means that fish with a high age-  
94        to-maturity, which implies long generation times, will take many decades reach a new stable state. More  
95        details describing the general theory are given in several analyses of single population models with age  
96        structure<sup>24</sup>.

97        From a management standpoint, these issues become important in evaluating MPAs that have been  
98        recently established, such as those created under the auspices of the California Marine Life Protection Act.

99 Here, a first challenge is that management evaluations regarding success or failure of MPAs to increase  
100 previously-fished populations may be made on a relatively short time frame. Understanding the time frame  
101 of the response, i.e., the length of the transient, is key<sup>25</sup>. So even an examination of the simple conservation  
102 implications of protection depends on an understanding of transients.

103 The goals of MPA establishment are much broader than increasing biomass inside the protected  
104 area. After implementation of a marine protected area, one goal is to increase and stabilize yield from a  
105 fishery that will be now be restricted to the part of the habitat where fishing is allowed. Such a scenario has  
106 been analyzed using a two-patch metapopulation model with one fished area and one reserve area<sup>26</sup>.  
107 Understanding the transient response in yield is key to understanding how long-term goals for yield can be  
108 met, even though yield may be reduced over the short term. If the results are extended beyond the linear  
109 effects of age structure to include density dependence and interactions between species, as in the following  
110 examples, the importance of transients for understanding the response of the system to management actions  
111 becomes even more evident.

112

### 113 *2.2 Invasion dynamics: Managing to stay on a low impact transient*

114 Suppose a non-native species arrives where a native competitor population is growing. If this low-  
115 invader state is a transient due to a saddle crawl-by, versus a stable equilibrium (see Box 1 for definitions  
116 and Fig. S1 for an illustration), preserving the system near this state may require perpetual, repeated  
117 manipulations to move populations toward the stable manifold of the saddle. Manipulations that get closer  
118 to the stable manifold will be most effective because the subsequent crawl-by is expected to be slower. If  
119 we mistake the low-invader state for an equilibrium, our decision for how to manage could have disastrous  
120 outcomes.

121 To illustrate this, we use a stochastic Lotka-Volterra competition model, which has an equilibrium  
122 at  $(N_1, N_2) = (K_1, 0)$  ( $N_1$  is the density of the native with carrying capacity  $K_1$ , and  $N_2$  is invader density).

123 Our stochastic term allows immigration to re-establish populations after local extinction (Supplementary  
124 Information), reflecting the fact that complete eradication is often unrealistic. Because invaders are initially  
125 rare,  $(K_1, 0)$  appears to be an attractor early on (Fig. 2A). However, if  $(K_1, 0)$  is a saddle as in this  
126 simulation, the dynamics will eventually crawl by this state as the invader establishes (Fig. 2B). In this  
127 simulation, active management that promotes repeated crawl-bys of the saddle at  $(K_1, 0)$  are required to  
128 avoid establishment of the invader. Examples of such actions include invader removal (orange arrow, Fig.  
129 2C), removal of both species i.e., to maximize the chance of reducing the invader to 0 (light blue), and  
130 invader removal with native addition (red), because each of these moves the populations toward the stable  
131 manifold of  $(K_1, 0)$ . Native addition alone (dark blue arrow) will not promote crawl-bys and is therefore  
132 not predicted to be effective for managing this invasion. To confirm, we simulated the same model applying  
133 one of these actions whenever the invasive population crossed a threshold value ( $N_2 > 0.02$ ), provided the  
134 last management action was at least a year ago (Fig. 2D). Indeed, native addition alone (dark blue trajectory)  
135 requires much more frequent management and is much worse at controlling invader density than the other  
136 strategies (Figs. 2D, S2-S3). Removal of both species (because we assume this makes it possible to get the  
137 invader density closer to 0) is the most effective (Figs. S2-S3).

138 If we did not know  $(K_1, 0)$  to be a saddle, we might reasonably conclude from data such as  
139 simulated in Fig. 2A that it is actually a stable node. To understand the implications of this mistake, we fit  
140 the Lotka-Volterra equations to simulated time series, assuming that  $(K_1, 0)$  is a stable node. Evaluating  
141 management options using this model would lead us to conclude that all strategies perform comparably  
142 (Fig. 2E). If  $N_1$  addition were the least labor-intensive (e.g. seed addition or stocking), it would likely be  
143 chosen – a costly mistake (Fig. 2D). If we instead fit the Lotka-Volterra equations with  $(K_1, 0)$  as a saddle,  
144 we regain the insight that native addition is an inferior strategy, although due to parameter uncertainty, we  
145 may underestimate how much so (Figs. 2F, S2-S3). At a more basic level, if a monitoring program was  
146 directed solely at detecting the invasive species, i.e., the primary system component of interest, and not also  
147 its competitor, i.e., a secondary system component, management strategies would be inadequate. We also

148 found that standard statistical time series approaches misspecify the dynamical landscape in this case  
149 (Supplementary Information), making it easy, for example, to mistake a saddle for a stable equilibrium.  
150 This illustrates that management interventions based on time series analyses that do not account for transient  
151 dynamics can be at high risk of failure. An understanding of ecological dynamics can provide the basis for  
152 invasive species management<sup>27</sup>, as demonstrated for forest insect pests, and these lessons provide a  
153 framework for other management problems.

154

### 155 *2.3 Grassland restoration: Managing to escape an undesirable persistent transient*

156 In long-term ecological research experiments at the Cedar Creek Ecosystem Science Reserve in  
157 Minnesota, the competition between a biodiverse collection of native grasses and a duo of exotic European  
158 species was studied before, during, and after several years of nitrogen deposition (representing increases in  
159 atmospheric and/or agricultural nitrogen). The native grasses are only able to resist invasion by exotics in  
160 a low nitrogen environment; therefore, during the years of nitrogen deposition, the system flips from a  
161 native-dominated state to a less biodiverse, exotic-dominated state. More surprisingly, following cessation  
162 of nitrogen deposition, the exotic-dominated state persists for decades, even after soil nitrogen levels have  
163 returned to their original low state<sup>28</sup>. In a case where biodiversity is a management objective, and the  
164 identified major stressor is nutrient inputs, the lack of system response to manipulating the stressor is a  
165 management challenge.

166 The observations suggest that in a low nitrogen environment the native-dominated state is stable,  
167 and in a high nitrogen environment the exotic-dominated state is stable. Two possible hypotheses exist for  
168 the persistence of the exotics after cessation of the nitrogen deposition: Hypothesis 1, where both the exotic-  
169 dominated state and native-dominated state are stable in a low nitrogen environment (in other words, the  
170 system is bistable), so cessation of nitrogen deposition does not return the system to the native-dominated  
171 state; and Hypothesis 2, where in a low nitrogen environment the exotic-dominated state is a saddle point,  
172 and because the system was brought close to the saddle by the years of nitrogen deposition, after cessation

173 of that deposition it exhibits a long transient, slowly crawling by the saddle before eventually recovering to  
174 the biodiverse native state.

175 From a management point of view, if the goal is to restore biodiversity, Hypothesis 1 suggests that  
176 management is definitely needed to escape the basin of attraction of the exotic-dominated state. Hypothesis  
177 2 is more encouraging; the biodiverse state is expected to eventually recover on its own. But a delay of  
178 decades before this recovery occurs may be undesirable, so management may be needed to speed the  
179 recovery. One mechanism that has been proposed for what holds the system close to the exotic-dominated  
180 state, causing stability (Hypothesis 1) or a long transient (Hypothesis 2), relates to the differing rate of  
181 accumulation of leaf litters of the exotics versus native plants<sup>29</sup>. In similar Park Grass experiments in  
182 England, where the experimental plots were hayed twice yearly (mowed and leaf litter removed<sup>30</sup>), the  
183 biodiverse state recovered quickly.

184 In Brettin et al.<sup>31</sup> and Meyer et al. (in prep.), a model of the Cedar Creek system is developed,  
185 tracking the amount of nitrogen in the soil and in live and decaying plant tissue as the native and exotic  
186 plants compete. Inspired by the Park Grass experiments, the model system can be hayed regularly using a  
187 “flow-kick” approach, where the system is “kicked” by removing organic matter sources, then “flows” to  
188 a new state on the dynamical landscape<sup>32</sup>. Biodiversity in the model system can be recovered by haying in  
189 both low and high nitrogen environments, with differing levels of haying effort needed depending on model  
190 hypotheses and parameters. This model approach could be used to explore trade-offs in management  
191 regimes that combine some balance of nitrogen reduction vs haying in grassland maintenance and  
192 restoration. Management intervention can speed the system towards recovery of the biodiverse state in both  
193 the transient and asymptotic systems, but an additional option of low or no investment exists only if the  
194 system is in a long transient.

195

196 *2.4 Lake eutrophication: Managing to escape a ghost attractor*

197 Reduction of phosphorus loading to freshwater lakes is a widely-used best-practice strategy to  
198 reduce eutrophication<sup>33,22</sup>. Simple heuristic models of a bistable regime can be used to illustrate that if  
199 phosphorus reduction has been too limited, a lake may remain in a eutrophic stable state or in a bistable  
200 regime (Fig. 3A, B). An alternative framing can be used to show that it is also possible for the system to  
201 linger near a former attracting eutrophic state (Fig. 3C, i.e., ghost attractor, see Box 1 for definition) for  
202 very long periods in a long transient.

203 This can be further illustrated using a general mathematical model of a system with alternative  
204 stable states, applied to the case of eutrophication. Turbidity caused by high phosphorus loads consumed  
205 by phytoplankton can be modeled<sup>35</sup> (Supplementary Information) to reveal the effects of the external  
206 phosphorus input rate,  $a$ . A single attracting oligotrophic (clear water) equilibrium exists until  $a$  crosses a  
207 threshold value, above which there are two stable states: one oligotrophic and one eutrophic, separated by  
208 an unstable equilibrium (Fig. 3B). Further increases in  $a$  result in a single stable eutrophic state.

209 If there is a long transient, managers may impose a management action, monitor for decades and  
210 see no change, then conclude the intervention has been unsuccessful. Instead, an adaptive management  
211 strategy could be adopted, where the lake state is assessed periodically and further actions are taken to shift  
212 the system to the desired oligotrophic state. We simulate these alternative management strategies and  
213 assume a monitoring program returns lake state data every five years. If the lake is not in the desired state  
214 after a 5-year observation period, phosphorus loading is further reduced (the parameter  $a$  is decreased by  
215 either 0.01 or 0.1 (Fig. 4A, B). The model predicts that larger reductions in phosphorus inputs result in  
216 shorter transients, while long transients are not uncommon for smaller reductions.

217 These simulations illustrate the tradeoffs between the magnitude and number of the management  
218 actions and the time to reach the desired system state (Fig. 4C). For larger phosphorus loads below the  
219 bifurcation threshold, the sequential application of more stringent nutrient reductions can speed the  
220 attainment of an oligotrophic state when the system is in a long transient (Fig. 4B). An alternative approach

221 is to manage a state variable such as the internal phosphorus pool, for example by adding alum to lock  
222 phosphorus in the sediments of deep lakes, and in that way reduce probable transient length (Fig. 4C). The  
223 challenge facing managers is that restricting assessment to the period immediately following intervention  
224 can have either catastrophic<sup>36</sup> or cost-prohibitive<sup>37</sup> effects. Management could take a longer view and weigh  
225 the costs and benefits of additional intervention, novel intervention (i.e., changing state variable versus  
226 parameter), and waiting. In a review of eight European and US lakes, Fastner et al.<sup>38</sup> noted that in all cases  
227 phosphorus reduction was highly successful, although the response times varied from 5 to 30 years. When  
228 there is a failure of phytoplankton to respond to management in a given timespan, other explanatory  
229 mechanisms such as low water exchange rate, internal phosphorus release from sediments, or changes in  
230 community structure<sup>39-41</sup> are sought, but long transients is another possibility, and one which could alter  
231 our management response.

232

233 *2.5 Social-Ecological System: Managing to avoid a transient induced by slow and fast  
234 time scales*

235 Here, as an illustration of management of a system with long transients owing to the interaction of  
236 slow and fast variables<sup>15</sup>, we consider a model of a simple social-ecological system, based on a typical  
237 midwestern United States lake with a sport fishery and lake residential development<sup>42</sup> (Fig. 5). In this  
238 system, there are two primary management objectives: a resilient fish population, and a human population  
239 of visiting anglers and lake residents. The “fast” dynamics are trophic interactions among harvested (target),  
240 predatory, and juvenile fish<sup>43</sup>. Survival of the juvenile fish is governed by lake habitat, in the form of woody  
241 debris (dead and downed trees)<sup>44,45</sup>. Local and visiting anglers harvest adults of the target fish species.  
242 Management occurs via harvest rules governing the per-angler catch in the sport fishery. Stock status and  
243 harvest rules feed back to human angling effort and lakeshore development. Increased residential  
244 development on the lake reduces woody debris, via removal of logs (to clear beaches for swimming, for  
245 example) and deforestation of riparian trees, the source of woody debris<sup>46,47</sup>. Reduced residential

246 development allows forest regeneration and woody debris accumulation, the “slow” variable that occurs at  
247 the pace of tree growth and senescence, which can take decades. In this model, there are two equilibria in  
248 the trophic dynamics, where harvest and fish recruitment rates balance: one is stable, and one is unstable.  
249 Movements of the system away from the unstable equilibrium, for example in the case of lower recruitment,  
250 can lead to depensatory dynamics and collapse of the target fish population. Changes in habitat can increase  
251 or decrease the basin of the stable state.

252 Harvest rules can either be fixed, with a constant harvest rate, or adaptive, with harvest rate adjusted  
253 based on information about the target fish stock status. Because of the feedbacks between habitat, fish  
254 populations, harvest, and residential development, and the combination of slow (coarse woody debris  
255 recruitment) and fast (harvest and trophic dynamics) variables in the system, long transient periods between  
256 collapse and rebuilding can occur under fixed management rules (Fig. 6 A,C). Knowledge of the impact of  
257 the slow variable, coarse woody debris supply, informs an adaptive management approach. During these  
258 long transients, the model predicts both human participation and fish are lost from the system. Under no  
259 harvest of the target fish, human participation is lost from the system (Fig. 6C). However, under adaptive  
260 management rules, where harvest rates are adjusted in response to stock assessments of fish while  
261 accounting for both slow and fast variables in the system, i.e., primary and secondary system components,  
262 the system can remain in the desirable state, avoiding the long transient recovery phase after a collapse and  
263 meeting both the social and ecological objectives (Fig. 6 B,D).

264

## 265 *2.6 Three species food chain: Managing to maintain chaotic transient persistence*

266 Transient dynamics can also have special implications for species extinction. In particular, model  
267 explorations show that when population dynamics exhibit transient chaos<sup>48–50</sup>, population densities change  
268 chaotically for a finite period of time before suddenly converging to a stable equilibrium that may represent  
269 asymptotic extinction of some species. Therefore the population dynamics of some species can appear to  
270 be chaotic and apparently sustainable for a long time, and then move to extinction in a relatively short

271 period of time<sup>10,51</sup>. This is associated with a chaotic ghost or a chaotic saddle<sup>16</sup>. If species extinction is  
272 caused by the end of transient chaos, how can we intervene to prevent extinction<sup>52–55</sup>?

273 A potential management strategy that maintains this transient chaos, and avoids extinction, can be  
274 illustrated with a three-species food chain model<sup>51</sup> (Supplementary Information). The resource and  
275 consumer alone (without the top predator) can exhibit consumer-resource cycles, and so can the consumer  
276 and predator, if the resource level is fixed. When the three species are together, the interaction of these  
277 coupled nonlinear oscillators in the food chain can give rise to transient chaos.

278 For particular parameter settings (see Supplementary Information), the species can undergo chaotic  
279 oscillations for a long, but finite, amount of time before converging on a consumer-resource limit cycle at  
280 which the top predator is extinct. Predator extinction can be prevented by continually pushing the system  
281 toward the chaotic saddle – in which all three species persist – indefinitely via small feedback control<sup>56–58</sup>.  
282 In general, the perturbations need to be applied only rarely, although they will be required in perpetuity  
283 because the desired state is a transient. Because of the presence of a long chaotic transient, the magnitude  
284 of the applied management perturbation can be made arbitrarily small<sup>59</sup>. This suggests that the natural  
285 dynamics of the populations need hardly be affected and yet predator extinction can be prevented over long  
286 time scales.

287

288

### 289 3. General guidelines for management

290 Understanding the potential mechanisms that cause transient behavior leads to several subtle  
291 enhancements of adaptive management frameworks to better account for transients (Fig. 1). Understanding  
292 ecosystems as dynamical, transient, adaptive systems immediately shifts expectations about management  
293 strategies and their impacts. While the resilience approach to managing ecosystems is increasingly well  
294 known<sup>60</sup>, and while expectations of nonstationary responses to management action underpin adaptive

295 management approaches<sup>61</sup>, the potential for long transients in the absence of changing environmental  
296 conditions or management intervention is underappreciated in resource management. This tension is  
297 reflected in, for example, the existence of two paradigms of rangeland vegetation dynamics: one that  
298 assumes continuous and reversible vegetation dynamics versus one that encompasses nonlinear and  
299 transient dynamics<sup>62</sup>. Fisheries management systems are often exceptions to this; for example, the Pacific  
300 sardine fishery in the Gulf of California has experienced long transient behavior, and managers are now  
301 grappling with how to manage the ecosystem under assumptions of transience<sup>63</sup>.

302 We recognize that our work here is a small step towards producing the kind of information that  
303 would be directly useful to practitioners, and that application of the ideas we develop here will require  
304 further steps. Our contribution here is to indicate important issues that need to be taken into account when  
305 developing plans for specific systems. Our work does emphasize the need to consider transients when  
306 managing in the face of climate change and does provide the kinds of general principles that are important.  
307 Here, we offer some general rules of thumb for accommodating the potential of transient behavior in natural  
308 ecosystems.

### 309 *3.1 Plan*

310 The planning of management strategies should account for potentially lengthy transient dynamics  
311 by evaluating the feasibility of management goals, the associated level of intervention required, and the  
312 costs and benefits of maintaining a system in a transient state via intervention. This can be achieved in part  
313 by confronting inherent assumptions about the system, such as whether the observed behavior is asymptotic  
314 or transient. The development of alternative management actions is then informed by framing management  
315 objectives according to whether the aim is to remain in the current state or leave it.

316 In general, the models upon which management actions are based should be subjected to a form of  
317 “sensitivity analysis” that accounts for the risk of getting the dynamical regime of the system wrong  
318 (equilibrium vs. transient). Mechanistic mathematical models that are constructed from first principles, fitted  
319 to empirical data, and explored within realistic parameter ranges can help identify whether an ecosystem is

320 currently experiencing transient dynamics. For example, this was done to predict the long transients in the  
321 extinction debt of butterflies in the UK<sup>64</sup>. In addition, correctly identifying the likely transient mechanism,  
322 where possible, can inform adaptive management strategies, such as the magnitude, direction, or target of  
323 intervention. For example, the grasslands example suggests a flow-kick strategy for crawl-by transients;  
324 while the lake eutrophication example suggests the best strategy for a ghost attractor may be a combination  
325 of interventions targeting both system parameters and state variables. In some cases, exploitation of  
326 transient dynamics, such as episodic booms in growth and reproduction, could be beneficial to management,  
327 if properly identified<sup>65</sup>.

328

### 329 *3.2 Implement Actions*

330 In addition to adjustments in management perspective, the implementation of management plans  
331 may require revision to accommodate dynamical regime behavior. For example, in the Puget Sound estuary  
332 of Washington State, USA, many recovery targets for a suite of ecosystem health indicators are based on  
333 historical baselines, or ecological models that assume asymptotic behavior  
334 (<https://www.psp.wa.gov/vitalsigns/>). In contrast, other management efforts are aimed at maintaining the  
335 system in a transient state. For example, fishery harvesting targets may be aimed at maintaining a population  
336 at its most productive density rather than the carrying capacity. Vaccination plans may not be able to  
337 eliminate a disease (i.e., an asymptotic target), but aim to maintain the incidence rates at a very low, non-  
338 equilibrium value and limit the size of any transient outbreaks. Plans that account for possible long transient  
339 behavior will inherently be more resilient to unexpected system change.

340 Mathematical properties of transients may also translate into management rules of thumb. For  
341 example, analogous to supporting management strategies that increase resilience by deepening or  
342 broadening desirable basins of attraction (e.g., <sup>66</sup>), management strategies that aim to regularly place the  
343 system along the stable manifold associated with a desirable saddle equilibrium can avoid settling at  
344 unwanted attractors, as in the invasive species example given here. Modeling approaches that highlight the

345 most important state variables and parameters may be useful here, including the use of multiple models<sup>67</sup>  
346 and constructing models of intermediate complexity<sup>68,69</sup>.

347

### 348 *3.3 Monitor*

349 Incorporating considerations of transient system behavior into management requires shifting  
350 perspectives about the relevant timescales<sup>8</sup>. Observational data are often of insufficient duration to be  
351 inclusive of the true asymptotic behavior of the system (but see <sup>70</sup>). If a change is observed, the inclination  
352 is to wait longer (longer experimental runs, more system monitoring) for the system to revert to a stable  
353 state; but this approach is ineffective if the system is in a long transient. Predicting how long a transient  
354 may last is a particular challenge, as noted in the above lake eutrophication example, and a nominal amount  
355 of stochasticity can increase greatly the time a system spends away from stable equilibrium. Furthermore,  
356 high dimensionality in any domain – temporal, spatial, biological – can increase the potential for transient  
357 behavior and the likelihood of its lingering. Programs that invest resources into monitoring at temporal and  
358 spatial scales sufficient to encompass system dynamics, including fast and slow variables and feedbacks,  
359 will most effectively accommodate transient behavior. Likewise, expanding monitoring programs to  
360 include responses of primary and secondary components of ecosystems to management actions increases  
361 the likelihood of appropriately capturing system dynamics.

362

### 363 *3.4 Learn*

364 The most effective way to learn about a system is to conduct an experiment, and indeed large-scale  
365 experiments have resulted in some of the most powerful ecological lessons. While mathematical models of  
366 the type presented here offer insights into the potential behaviors of natural systems, direct observation  
367 following controlled manipulation is invaluable. The long-term grassland experiments at Cedar Creek  
368 Ecosystem Science Reserve<sup>31</sup> and the Park Grass Experiment<sup>71</sup> allowed for observations about system  
369 dynamics that inspired insights into long transient system behaviors. Large-scale and long-term

370 manipulations of lakes are another example where learning through manipulation reveals unexpected  
371 system behaviors<sup>72</sup>. Marine protected areas or predator control programs are additional forms of  
372 experimentation, albeit one with looser control over experimental boundaries. The network of Long Term  
373 Ecological Research (LTER) sites, of which Cedar Creek is one member, have provided a wealth of insights  
374 into system behaviors that play out over longer time scales, including tipping points, bistability, and long  
375 transients<sup>73-77</sup>.

376 Governance systems that are flexible to timescale mismatches and multiple types of learning will  
377 be most successful in managing transient behavior<sup>78,79</sup>. Characterizing uncertainty, as a target of “learning  
378 by doing,” is an important component of adaptive management<sup>80</sup>. Whether observed dynamics are  
379 asymptotic or transient is yet another relevant uncertainty for management. Evaluation of the effectiveness  
380 of management actions related to managing regime shifts can be confounded by long transients. For  
381 example, removal of planktivorous fish from Lake Christina in Minnesota to reduce eutrophication resulted  
382 in persistent clear water states that lasted as long as 10 years after manipulation, but always degraded to a  
383 turbid state over time. Long-term data suggest that the clear water state is now a transient and the turbid  
384 state the sole stable state in this system due to changes in nutrient loading and the water regime<sup>37</sup>; the clear  
385 water state is only maintained through continual management action. Identifying the appropriate adaptation  
386 of the management program in this case depends upon conceptualizing the transient system behavior.

387

#### 388 4. Conclusion

389 Adapting to environmental change is one of the greatest challenges facing natural resource  
390 management. Adaptive management practices are increasingly favored, enhancing opportunities for  
391 learning about system dynamics and successful approaches. Here, we argue that subtle enhancements to  
392 adaptive management frameworks and thinking are needed to account for long transients in ecological  
393 systems, given their ubiquity and the risks associated with ignoring their potential effects. Understanding

394 that observed dynamics may not be the final dynamics, and considering possible mechanisms driving  
395 current patterns, can reduce such risks substantially, leading to better outcomes.

396 **References**

- 397 1. Sardain, A., Sardain, E. & Leung, B. Global forecasts of shipping traffic and biological invasions  
398 to 2050. *Nat. Sustain.* **2**, 274–282 (2019).
- 399 2. Pecl, G. T. *et al.* Biodiversity redistribution under climate change: Impacts on ecosystems and  
400 human well-being. *Science (80-.)* **355**, eaai9214 (2017).
- 401 3. Pöysä, H. *et al.* Changes in species richness and composition of boreal waterbird communities: a  
402 comparison between two time periods 25 years apart. *Sci. Rep.* **9**, 1725 (2019).
- 403 4. Underwood, G. J. C. *et al.* Organic matter from Arctic sea-ice loss alters bacterial community  
404 structure and function. *Nat. Clim. Chang.* **9**, 170–176 (2019).
- 405 5. Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. Climate change drives trait-shifts in  
406 coral reef communities. *Sci. Rep.* **9**, 3721 (2019).
- 407 6. Poloczanska, E. S. *et al.* Global imprint of climate change on marine life. *Nat. Clim. Chang.* **3**,  
408 919–925 (2013).
- 409 7. Hastings, A. Timescales, dynamics, and ecological understanding. *Ecology* **91**, 3471–3480 (2010).
- 410 8. Hastings, A. Timescales and the management of ecological systems. *Proc. Natl. Acad. Sci.* **113**,  
411 14568–14573 (2016).
- 412 9. Hastings, A. Transients: the key to long-term ecological understanding? *Trends Ecol. Evol.* **19**,  
413 39–45 (2004).
- 414 10. Hastings, A. & Higgins, K. Persistence of Transients in Spatially Structured Ecological Models.  
415 *Science (80-.)* **263**, 1133–1136 (1994).
- 416 11. Hastings, A. Transient dynamics and persistence of ecological systems. *Ecol. Lett.* **4**, 215–220  
417 (2001).
- 418 12. Likens, G. E. (ed). *Long-Term Studies in Ecology: Approaches and Alternatives*. (Springer-Verlag,  
419 1989).
- 420 13. Franklin, J. F., Bledsoe, C. S. & Callahan, J. T. Contributions of the Long-term Ecological  
421 Research program - An expanded network of scientists, sites, and programs can provide crucial  
422 comparative analyses. *Bioscience* **40**, 509–523 (1990).
- 423 14. Ratajczak, Z. *et al.* The interactive effects of press/pulse intensity and duration on regime shifts at  
424 multiple scales. *Ecol. Monogr.* **87**, 198–218 (2017).
- 425 15. Hastings, A. *et al.* Transient phenomena in ecology. *Science (80-.)* **361**, (2018).
- 426 16. Morozov, A. *et al.* Long transients in ecology: Theory and applications. *Phys. Life Rev.* (2019)  
427 doi:<https://doi.org/10.1016/j.plrev.2019.09.004>.
- 428 17. Holling, C. S. *Adaptive Environmental Assessment and Management*. (International Institute for  
429 Applied Systems Analysis, 1978).
- 430 18. Walters, C. *Adaptive Management of Renewable Resources*. (Macmillan, 1986).
- 431 19. Lee, K. N. Appraising Adaptive Management. *Conserv. Ecol.* **3**, (1999).
- 432 20. Gunderson, L. & Light, S. S. Adaptive management and adaptive governance in the Everglades

433 ecosystem. *POLICY Sci.* **39**, 323–334 (2006).

434 21. Funk, J. L. *et al.* Keys to enhancing the value of invasion ecology research for management. *Biol.*  
435 *Invasions* doi:10.1007/s10530-020-02267-9.

436 22. Beaury, E. M. *et al.* Incorporating climate change into invasive species management: insights from  
437 managers (10.1007/s10530-019-02087-6, 2019). *Biol. Invasions* **22**, 253 (2020).

438 23. Cuddington, K. *et al.* Process-based models are required to manage ecological systems in a  
439 changing world. *ECOSPHERE* **4**, (2013).

440 24. White, J. W., Botsford, L. W., Hastings, A., Baskett, M. L. & Kaplan, D. M. Transient responses  
441 of fished populations to marine reserve establishment Appendix : Supplementary Information 1 .  
442 Analysis of deviation from linear approximation. **4**, 1–17 (2002).

443 25. Kaplan, K. A. *et al.* Setting expected timelines of fished population recovery for the adaptive  
444 management of a marine protected area network. *Ecol. Appl.* (2019) doi:10.1002/eap.1949.

445 26. Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Marine reserves stabilize fish  
446 populations and fisheries yields in disturbed coral reef systems. *Ecol. Appl.* **29**, e01905 (2019).

447 27. Liebhold, A. M. *et al.* Eradication of Invading Insect Populations: From Concepts to Applications.  
448 in *ANNUAL REVIEW OF ENTOMOLOGY, VOL 61* (ed. Berenbaum, MR) vol. 61 335–352  
449 (ANNUAL REVIEWS, 2016).

450 28. Isbell, F. *et al.* Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem  
451 productivity. *Proc. Natl. Acad. Sci.* **110**, 11911–11916 (2013).

452 29. Clark, C. M. & Tilman, D. Recovery of plant diversity following N cessation: effects of  
453 recruitment, litter, and elevated N cycling. *Ecology* **91**, 3620–3630 (2010).

454 30. Storkey, J. *et al.* Grassland biodiversity bounces back from long-term nitrogen addition. *Nature*  
455 **528**, 401 (2015).

456 31. Brettin, A. Ecological Management Practices Informed by Flow-kick Dynamics. (University of  
457 Minnesota, 2019).

458 32. Meyer, K. *et al.* Quantifying resilience to recurrent ecosystem disturbances using flow-kick  
459 dynamics. *Nat. Sustain.* **1**, 671–678 (2018).

460 33. W., S. D. The dilemma of controlling cultural eutrophication of lakes. *Proc. R. Soc. B Biol. Sci.*  
461 **279**, 4322–4333 (2012).

462 34. Schindler, D. W., Carpenter, S. R., Chapra, S. C., Hecky, R. E. & Orihel, D. M. Reducing  
463 Phosphorus to Curb Lake Eutrophication is a Success. *Environ. Sci. Technol.* **50**, 8923–8929  
464 (2016).

465 35. Scheffer, M., Carpenter, S. R., Foley, J. E., Folke, C. & Walker, B. Catastrophic shifts in  
466 ecosystems. *Nature* **413**, 591–596 (2001).

467 36. Hopf, J. K., Jones, G. P., Williamson, D. H. & Connolly, S. R. Fishery consequences of marine  
468 reserves: short-term pain for longer-term gain. *Ecol. Appl.* **26**, 818–829 (2016).

469 37. Hobbs, W. O. *et al.* A 200-year perspective on alternative stable state theory and lake management  
470 from a biomanipulated shallow lake. *Ecol. Appl.* **22**, 1483–1496 (2012).

471 38. Fastner, J. *et al.* Combating cyanobacterial proliferation by avoiding or treating inflows with high

472 P load-experiences from eight case studies. *Aquat. Ecol.* **50**, 367–383 (2016).

473 39. Vollenweider, R. A. Input-output models with special reference to the phosphorus loading concept  
474 in limnology. *Schweizerische Zeitschrift für Hydrol.* **37**, 53–84 (1975).

475 40. Cullen, P. & Forsberg, C. Experiences with reducing point sources of phosphorus to lakes.  
476 *Hydrobiologia* **170**, 321–336 (1988).

477 41. Jeppesen, E. *et al.* Lake responses to reduced nutrient loading - an analysis of contemporary long-  
478 term data from 35 case studies. *Freshw. Biol.* **50**, 1747–1771 (2005).

479 42. Carpenter, S. R. & Brock, W. A. Spatial complexity, resilience, and policy diversity: Fishing on  
480 lake-rich landscapes. *Ecol. Soc.* **9**, 8 (online) (2004).

481 43. Walters, C. & Kitchell, J. F. Cultivation/depensation effects on juvenile survival and recruitment:  
482 implications for the theory of fishing. *Can. J. Fish. Aquat. Sci.* **58**, 39–50 (2001).

483 44. Carpenter, S. R. Ecological Futures : Building an Ecology of the Long Now. *Ecology* **83**, 2069–  
484 2083 (2002).

485 45. Carpenter, S. R. *Regime shifts in lake ecosystems: pattern and variation.* (Ecology Institute, 2003).

486 46. Francis, T. B. & Schindler, D. E. Degradation of littoral habitats by residential development:  
487 Woody debris in lakes of the Pacific Northwest and Midwest, United States. *Ambio* **35**, (2006).

488 47. Christensen, D. L., Herwig, B. R., Schindler, D. E. & Carpenter, S. R. Impacts of lakeshore  
489 residential development on coarse woody debris in North Temperate lakes. *Ecol. Appl.* **6**, 1143–  
490 1149 (1996).

491 48. Grebogi, C., Ott, E. & Yorke, J. A. Crises, sudden changes in chaotic attractors and chaotic  
492 transients. *Phys. D* **7**, 181–200 (1983).

493 49. Tél, T. Transient chaos. in *Directions in Chaos (3): Experimental Study and Characterization of*  
494 *Chaos* (ed. Hao, B.-L.) 149–211 (World Scientific Publishing Co., 1990).

495 50. Lai, Y.-C. & Tél, T. *Transient Chaos: Complex Dynamics on Finite-Time Scales.* (Springer,  
496 2011).

497 51. McCann, K. S. & Yodzis, P. Nonlinear Dynamics and Population Disappearances. *Am. Nat.* **144**,  
498 873 (1994).

499 52. Schiff, S. J. *et al.* Controlling chaos in the brain. *Nature* **370**, 615–620 (1994).

500 53. Dhamala, M. & Lai, Y.-C. Controlling transient chaos in deterministic flows with applications to  
501 electrical power systems and ecology. *Phys. Rev. E* **59**, 1646–1655 (1999).

502 54. Hilker, F. M. & Westerhoff, F. H. Preventing Extinction and Outbreaks in Chaotic Populations.  
503 *Am. Nat.* **170**, 232–241 (2007).

504 55. Park, M.-G., Park, S.-A., Cho, K. & Jang, B. Controlling extinction of species in food chain.  
505 (2019).

506 56. Tel, T. Controlling transient chaos. *J. Phys. A - Math. Gen* **24**, L1359–L1368 (1991).

507 57. Lai, Y.-C. & Grebogi, C. Converting transient chaos into sustained chaos by feedback control.  
508 *Phys. Rev. E* **49**, 1094–1098 (1994).

509 58. Schwartz, I. B. & Triandaf, I. Sustaining Chaos by Using Basin Boundary Saddles. *Phys. Rev.*

510 Lett. **77**, 4740–4743 (1996).

511 59. Ott, E., Grebogi, C. & Yorke, J. A. Controlling chaos. *Phys. Rev. Lett.* **64**, 1196–1199 (1990).

512 60. Folke, C. *et al.* Resilience Thinking: Integrating Resilience, Adaptability and Transformability. *Ecol. Soc.* **15**, (2010).

513

514 61. Walters, C. J. & Holling, C. S. Large-scale management experiments and learning by doing. *Ecology* **71**, 2060–2068 (1990).

515

516 62. Briske, D. D., Fuhlendorf, S. D. & Smeins, F. E. Vegetation dynamics on rangelands: a critique of  
517 the current paradigms. *J. Appl. Ecol.* **40**, 601–614 (2003).

518 63. Bakun, A., Babcock, E. A., Lluch-Cota, S. E., Santora, C. & Salvadeo, C. J. Issues of ecosystem-  
519 based management of forage fisheries in “open” non-stationary ecosystems: the example of the  
520 sardine fishery in the Gulf of California. *Rev. Fish Biol. Fish.* **20**, 9–29 (2010).

521 64. Bulman, C. R. *et al.* MINIMUM VIABLE METAPOPULATION SIZE, EXTINCTION DEBT,  
522 AND THE CONSERVATION OF A DECLINING SPECIES. *Ecol. Appl.* **17**, 1460–1473 (2007).

523 65. McDonald, J. L., Stott, I., Townley, S. & Hodgson, D. J. Transients drive the demographic  
524 dynamics of plant populations in variable environments. *J. Ecol.* **104**, 306–314 (2016).

525 66. Carpenter, S. R. & Gunderson, L. H. Coping with collapse: Ecological and social dynamics in  
526 ecosystem management. *Bioscience* **51**, 451–457 (2001).

527 67. Fulton, E. A. *et al.* A multi-model approach to engaging stakeholder and modellers in complex  
528 environmental problems. *Environ. Sci. Policy* **48**, 44–56 (2015).

529 68. Plagányi, É. E. *et al.* Multispecies fisheries management and conservation: tactical applications  
530 using models of intermediate complexity. *Fish Fish.* **15**, 1–22 (2014).

531 69. Collie, J. S. *et al.* Ecosystem models for fisheries management: finding the sweet spot. *Fish Fish.*  
532 **17**, 101–125 (2016).

533 70. Rowland, J. A. *et al.* Selecting and applying indicators of ecosystem collapse for risk assessments.  
534 *Conserv. Biol.* **32**, 1233–1245 (2018).

535 71. Silvertown, J. *et al.* The Park Grass Experiment 1856–2006: Its contribution to ecology. *J. Ecol.*  
536 **94**, 801–814 (2006).

537 72. Pace, M. L., Carpenter, S. R. & Wilkinson, G. M. Long-term studies and reproducibility: Lessons  
538 from whole-lake experiments. *Limnol. Oceanogr.* **64**, S22–S33 (2019).

539 73. McGlathery, K. J. *et al.* Nonlinear Dynamics and Alternative Stable States in Shallow Coastal  
540 Systems. *OCEANOGRAPHY* **26**, 220–231 (2013).

541 74. Van Cleve, K. & Martin, S. *Long-term ecological research in the United States: A network of*  
542 *research sites.* (1991).

543 75. Bestelmeyer, B. T. *et al.* Analysis of abrupt transitions in ecological systems. *ECOSPHERE* **2**,  
544 (2011).

545 76. Reed-Andersen, T., Carpenter, S. R. & Lathrop, R. C. Phosphorus flow in a watershed-lake  
546 ecosystem. *ECOSYSTEMS* **3**, 561–573 (2000).

547 77. Bell, D. M. *et al.* Long-Term Ecological Research and Evolving Frameworks of Disturbance  
548 Ecology. *BioScience*. vol. 70 141–156 (2020).

549 78. Pahl-Wostl, C. A conceptual framework for analysing adaptive capacity and multi-level learning  
550 processes in resource governance regimes. *Glob. Environ. Chang.* **19**, 354–365 (2009).

551 79. White, J. W. *et al.* Transient responses of fished populations to marine reserve establishment.  
552 *Conserv. Lett.* **6**, 180–191 (2013).

553 80. Chadès, I. *et al.* Optimization methods to solve adaptive management problems. *Theor. Ecol.* **10**,  
554 1–20 (2017).

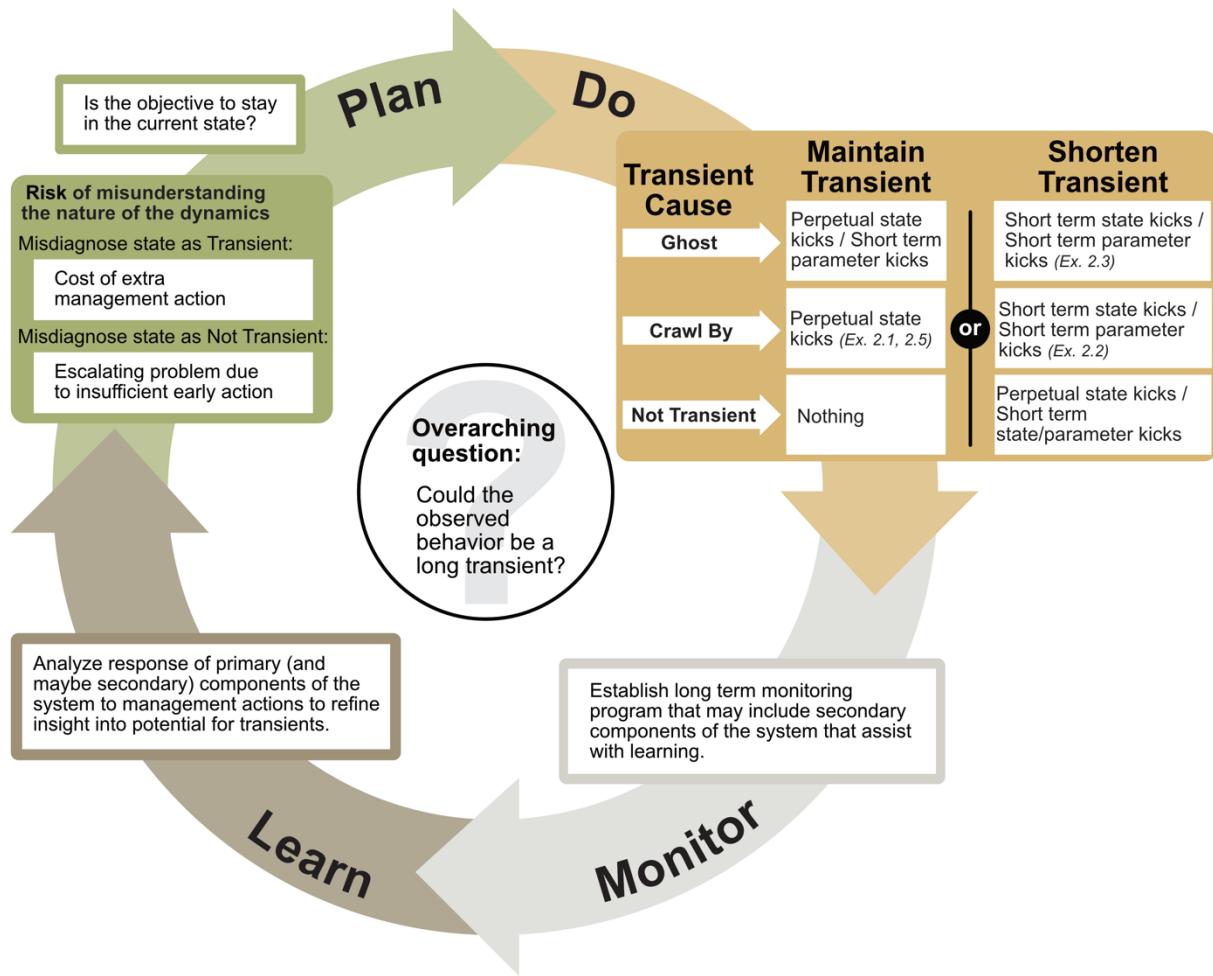
555 81. Kot, M. & Kot, M. *Elements of Mathematical Ecology*. (2001).

556 82. Strogatz, S. H. (Steven H. *Nonlinear dynamics and Chaos : with applications to physics, biology,*  
557 *chemistry, and engineering*. (Addison-Wesley Pub, 1994).

558

559

560

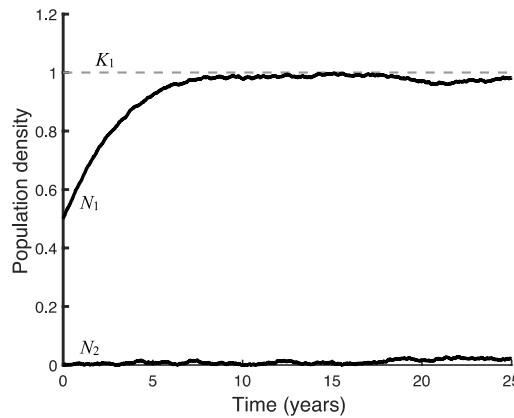

561 **Figures**

562 Box 1: Dynamical Systems Terminology (see Fig. S1 and <sup>15,81,82</sup> for further explanation)

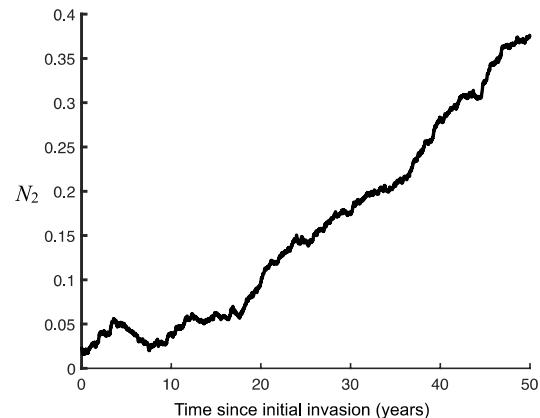
|                            |                                                                                                                                                                                                                                      |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Asymptotic dynamics</b> | The behavior that a system will eventually exhibit and then retain indefinitely, if unperturbed; i.e. dynamics that are not transient.                                                                                               |
| <b>Attractor</b>           | An invariant set that a dynamical system will naturally approach, unless perturbed away; an asymptotic state of the system.                                                                                                          |
| <b>Bifurcation</b>         | A qualitative change in a system's asymptotic dynamics, caused by gain, loss, or change in stability of an invariant set. Some examples that play a role in this review are crises, Hopf bifurcations, and saddle-node bifurcations. |
| <b>Crawl-by</b>            | Dynamics that approach and then move away from a saddle slowly, causing the system to remain near the saddle for a significant time frame; amplified when the saddle is surrounded by a flat spot.                                   |
| <b>Flat spot</b>           | A region of the potential or quasi-potential surface that has very little curvature, so that the dynamics in this region (like the hypothetical ball rolling on this surface) are slow.                                              |
| <b>Ghost</b>               | A state or set of states that is not an invariant set under the current conditions, but was (or would be) an attractor under similar conditions, such as nearby parameter values.                                                    |
| <b>Invariant set</b>       | Ecosystem states (like stable or unstable point equilibria or cyclic or chaotic sets) such that, if the ecosystem is precisely in one of these states, it will remain there in perpetuity unless perturbed.                          |
| <b>Long transient</b>      | Non-asymptotic dynamics that persist over ecologically-relevant time scales of, roughly, dozens of generations or longer.                                                                                                            |
| <b>Node</b>                | A point equilibrium that is approached (if attracting) or departed from (if repelling) without oscillations.                                                                                                                         |
| <b>Repellor</b>            | An invariant set that a dynamical system will naturally diverge away from, unless perturbed toward it.                                                                                                                               |
| <b>Saddle</b>              | An invariant set that is attracting from some states and repelling from others; the dynamics may approach a saddle before ultimately moving away.                                                                                    |
| <b>Slow-fast systems</b>   | Systems that incorporate processes that act on drastically different timescales, such as interacting species with very different generation times.                                                                                   |

563

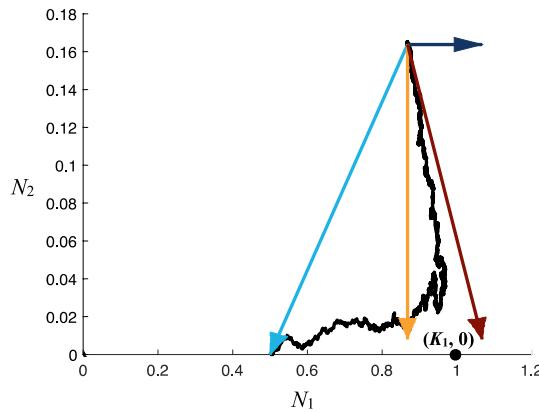
# Adaptive Management with Transients



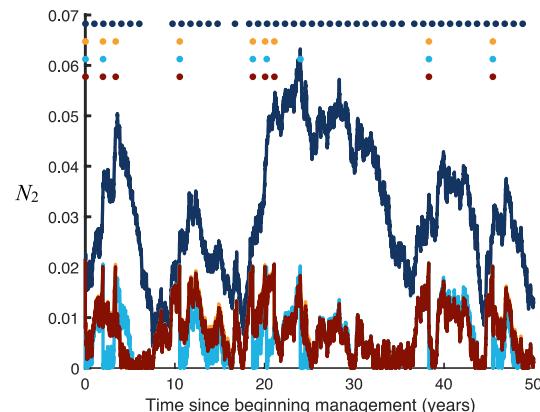

564


565 Figure 1: A modified adaptive management cycle that includes consideration of potential long  
 566 transient system behavior. In general, the question of whether the observed behavior system  
 567 could be a long transient should inform management. During the planning phase ("Plan:"),  
 568 managers should consider the potential risks associated with mis-specifying the system  
 569 dynamics, and categorize management objectives in terms of whether the goal is to remain on or  
 570 leave the current state. Management actions, or interventions ("Do"), are thus informed by this  
 571 objective, with implications for the type, duration, and cost of interventions that vary by transient  
 572 type. Monitoring programs ("Monitor") should be designed as long-term programs to capture  
 573 multiple life cycles of the primary ecosystem components, and of important secondary  
 574 ecosystem components whose interactions have strong influence on primary components.  
 575 Finally, learning from the system responses to management actions ("Learn") should include  
 576 evaluation of potential transient behavior, and analysis of the secondary components of the  
 577 ecosystem to refine insight into system dynamics.

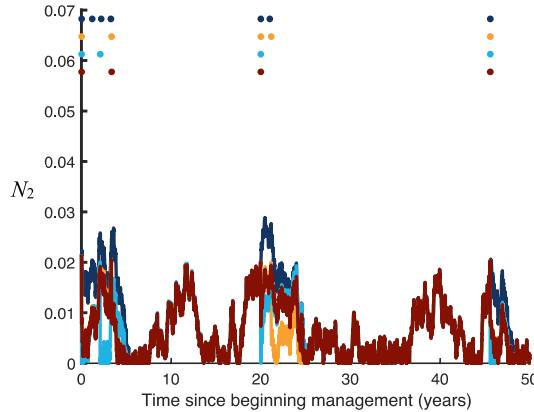
578


(A) Initial invasion (pre-management)

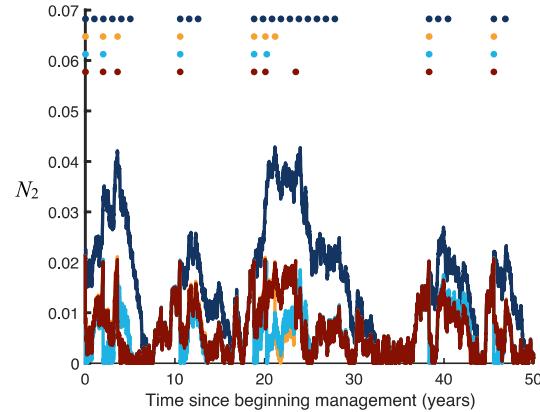



(B) Subsequent invader dynamics without management




(C) Illustration of management actions



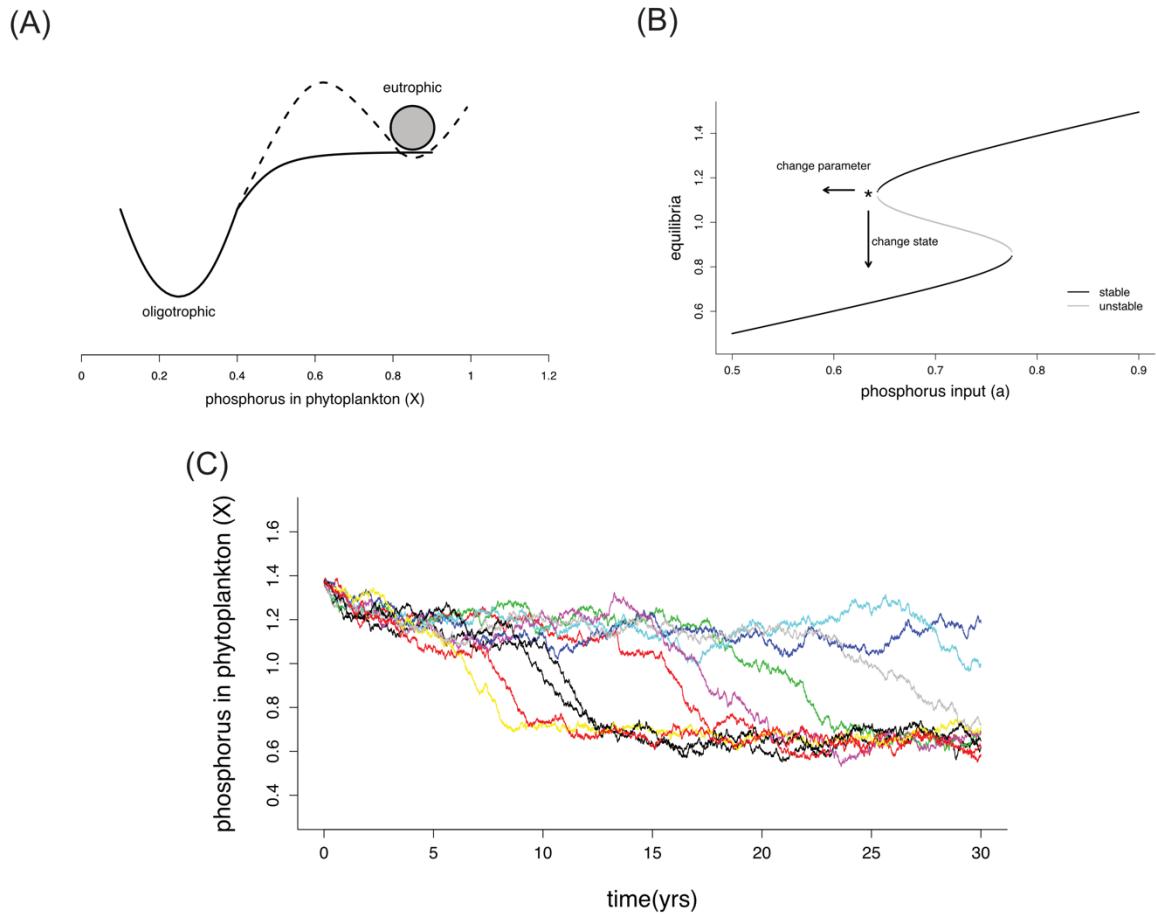

(D) Management applied to true model (saddle at  $(K_1, 0)$ )



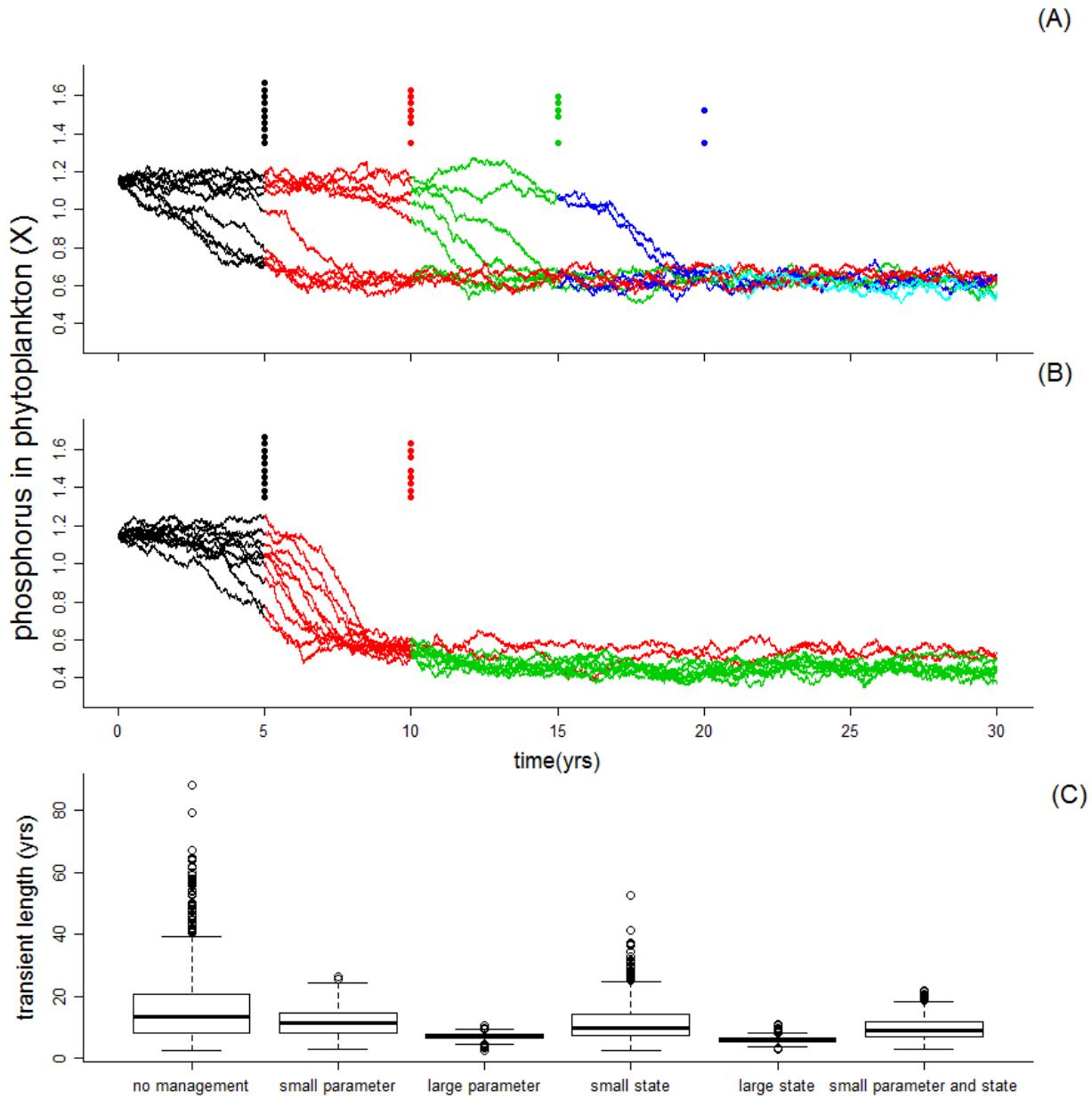
(E) Management applied to fitted model with node at  $(K_1, 0)$



(F) Management applied to fitted model with saddle at  $(K_1, 0)$

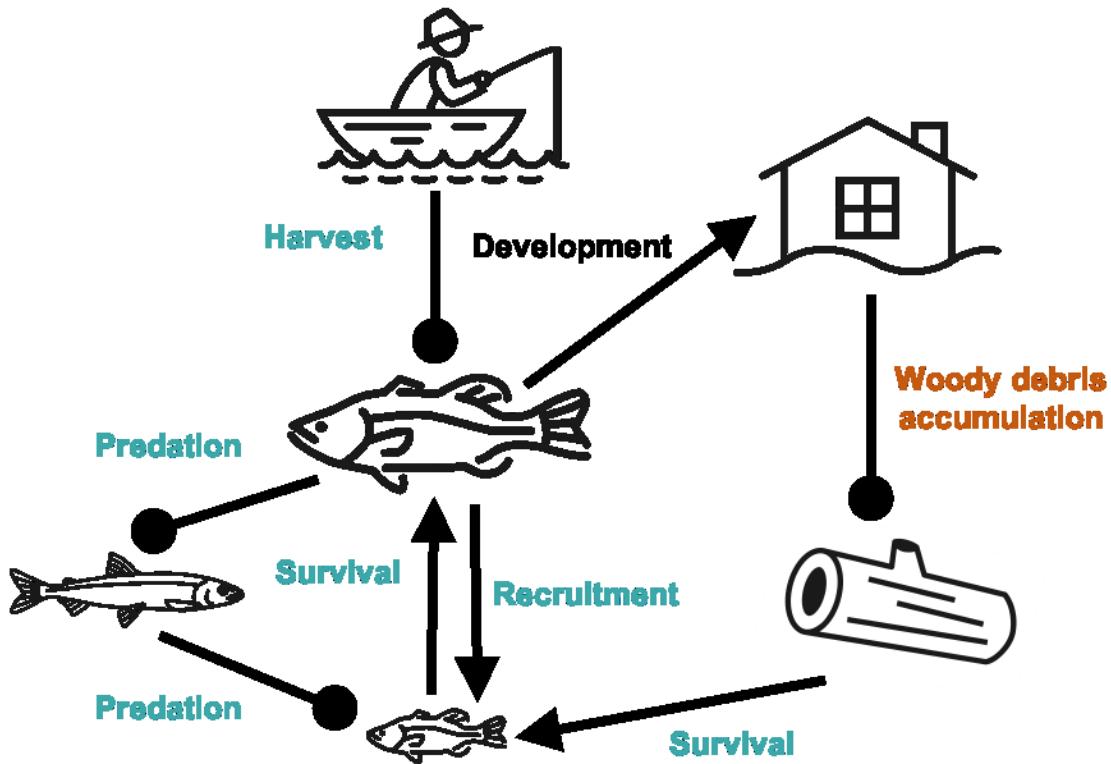



579


580 Figure 2: From Example 2.2. (A) Example times series from a realization of the stochastic  
581 Lotka-Volterra competition model (see Supplementary Information), where  $N_1$  is the population  
582 density of the native species (with carrying capacity  $K_1$ ) and  $N_2$  is the density of the invader. (B)  
583 A simulation of the unmanaged invader population under the same conditions as (D-F), as a  
584 baseline. (C) Illustration of relevant features of the state space. The black trajectory shows the

585 combination of ( $N_1, N_2$ ) population densities through time, proceeding counterclockwise. Arrows  
586 show the effect of each management action (light blue: removal of both species; orange:  $N_2$   
587 removal only; red:  $N_1$  addition with  $N_2$  removal; dark blue:  $N_1$  addition only). The x-axis is the  
588 stable manifold of the saddle at ( $K_1, 0$ ); this is the direction along which the saddle is attracting.  
589 Management actions that move the system closer to the stable manifold promote additional  
590 crawl-bys and sustain the transient ( $K_1, 0$ ) state for longer. (D-F) Time series of abundance under  
591 simulated management actions, with colors matching the management strategies illustrated in  
592 (C). All four lines (as well as the trajectory in (B)) experienced the same sequence of stochastic  
593 perturbations, so differences between the colored lines within a panel are due only to differences  
594 in the management strategy. (Differences between panels are also due to differences in the  
595 interspecific competition coefficients used in simulation.) Colored dots along the top of the graph  
596 mark the times that a management action was triggered (i.e. times at which  $N_2$  exceed 0.02 that  
597 were at least 1 year past the previous management action) under each strategy.

598

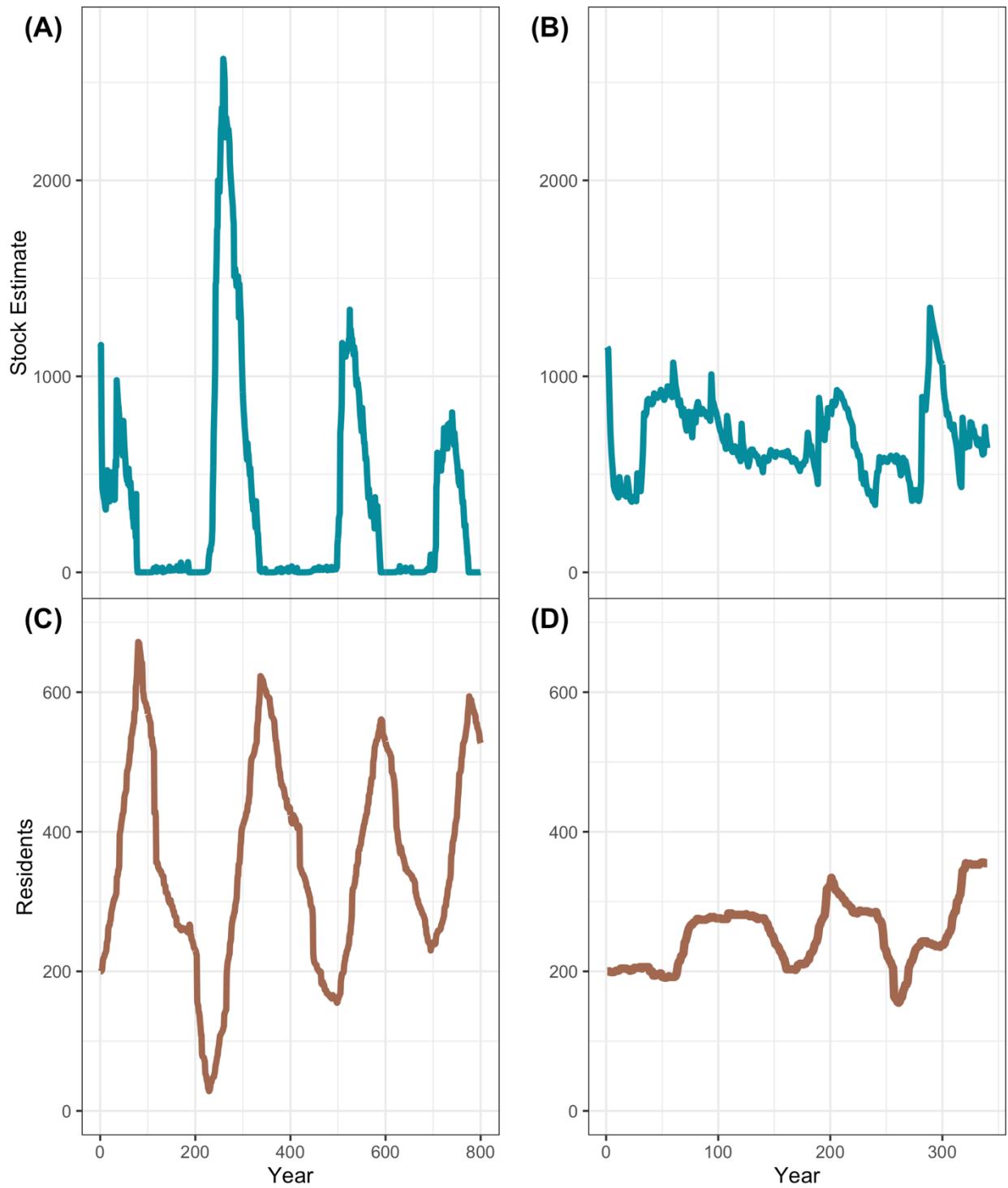



601 Figure 3: From example 2.4. (A) In this ball in cup representation of the lake system,  
 602 management actions erode the stability of the eutrophic state (former stability given by the  
 603 dashed lines), which shifts the landscape to the solid curve. However, the system (ball) remains  
 604 close to the eutrophic ghost attractor for a long time. (B) Bifurcation diagram showing the  
 605 current state of the system (\*) and the value of the stable and unstable equilibria. (C) Example  
 606 times series from realizations of the model (see Supplementary Information).



608

609 Figure 4: From example 2.4. A-B: Trajectories of lake turbidity moving from eutrophic  
 610 conditions in the vicinity of a former attractor to a stable oligotrophic state. The lake is managed  
 611 by re-evaluating every 5 years and, if not within 20% of desired state, the phosphorus loading (a)  
 612 is reduced by 0.01 (A) or 0.1 (B) for each management event. The colour of the trajectory  
 613 changes when a management action is taken, and dots above indicate the year of those actions.  
 614 (C) Boxplots of time to reach the stable oligotrophic state for 1,000 replicate simulations for a  
 615 close to the bifurcation boundary. The system is managed by evaluating lake state every 5 years  
 616 and either reducing phosphorus loading, a, by 0.01 (small parameter) or 0.1 (large parameter);  
 617 adjusting the system state down by 0.05 (small state), or 0.25 (large state); or adjusting both a  
 618 and the system state by 0.01 and 0.05, respectively.




619

620 Figure 5. Schematic of a social-ecological system with slow and fast variables that produces long  
 621 transients under fixed management schemes. Dots are negative effects; arrows are positive  
 622 effects. Fast variables are in blue; slow variables are in red. See text for additional description.  
 623 Model adapted from Carpenter and Brock 2004.

624

625



626

627 Figure 6: From example 2.5 Results of a fixed (A, C) versus adaptive (B, D) management  
 628 strategy for a simulated social-ecological system showing target fish stock assessment (A, B) and  
 629 human use of the lake (C, D). Note different x-axis scales; the longer time scales for the fixed  
 630 management strategy shows the long-period cycles in the system.