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Abstract: 
 
Over twenty years ago Galtier and Lobry published a manuscript entitled “Relationships 

between Genomic G+C Content, RNA Secondary Structure, and Optimal Growth Temperature” 

in the Journal of Molecular Evolution that showcased the lack of a relationship between genomic 

G+C content and optimal growth temperature (OGT) in a set of about 200 prokaryotes. Galtier 

and Lobry also assessed the relationship between RNA secondary structures (rRNA stems, 

tRNAs) and OGT and in this case a clear relationship emerged. Increasing structured RNA G+C 

content (particularly in regions that are double stranded) correlates with increased OGT. Both of 

these fundamental relationships have withstood test of many additional sequences and 

spawned a variety of different applications that include prediction of OGT from rRNA sequence 

and computational ncRNA identification approaches. In this work, I present the motivation 

behind Galtier and Lobry’s original paper and the larger questions addressed by the work, how 

these questions have evolved over the last two-decades, and the impact of Galtier and Lobry’s 

manuscript in fields beyond these questions.  
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Motivation of the original work 
DNA base composition is one of the most fundamental properties of a genome. 

Chargaff’s measurements of base composition in double-stranded DNA (Chargaff 1951) were 

important for the development and acceptance of Watson and Crick’s structural model of DNA 

(Watson and Crick 1953) long before one could count individual guanine and cytosine residues 

on a sequencing trace. Organismal genomic G+C content can vary widely from less than 20% to 

over 75%, yet there is typically less variation between different locations within a given species 

genome (Bohlin et al. 2010). Over fifty years after the discovery of DNA’s structure, 

understanding what drives variation in genomic G+C content is still very much an open 

question, despite DNA sequence data from a multitude of biological entities. It is still unclear 

whether G+C content variation may be generated by neutral processes such as mutational bias 

or biased gene conversion, or is primarily the result of natural selection. Furthermore, even if 

such variation is the result of natural selection, is selection acting on the genomic DNA itself, or 

rather on the molecules (e.g. RNAs and proteins) encoded by the DNA?  These questions were 

ultimately the subject of Galtier and Lobry’s paper published in J. Mol. Evol. in 1997 entitled 

‘Relationships between Genomic G+C content, RNA Secondary Structures, and Optimal Growth 

Temperature’ (Galtier and Lobry 1997). 
Despite the far-reaching nature of the questions outlined above, Galtier and Lobry 

sought to test a relatively specific hypothesis in their work. Chargaff is best known for describing 

the base-composition of double stranded DNA, in particular that the quantities of adenosine (A) 

and thymine (T) are equal, and the quantities of guanine (G) and cytosine (C) are equal 

(Chargaff’s first parity rule) (Chargaff 1951).  Somewhat surprisingly, this observation also 

appears to hold true for single stranded DNA in many cases (termed Chargaff’s parity rule 2 or 

PR2 (Sueoka 1995)), although this rule is not as exact and there are frequently local variations 

that do not comply. Attributes consistent with PR2 were first described in Bacillus subtilis 

(Rudner et al. 1968a; Karkas et al. 1968; Rudner et al. 1968b), but subsequently proved true in 

a wide variety of different genomic sequences (Mitchell and Bridge 2006).  Two hypotheses to 

explain PR2 during the late 1990’s were: 1) this phenomenon is due to mutational bias in the 

replicating polymerase (Sueoka 1962; Sueoka 1995); and 2) this property is due to natural 

selection favoring the formation of self-complementary oligonucleotides within the DNA that 

might form hairpin structures (Forsdyke 1995). Galtier and Lobry proposed that the second 

hypothesis would predict that genomic G+C content should increase as organismal optimal 

growth temperature (OGT or Topt) increases to ensure that DNA hairpin structures would remain 
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stable. Thus, the goal of their study was to determine whether this prediction was supported by 

a large set of prokaryotic genomes.  
Like many bioinformaticians, Galtier and Lobry largely compiled existing data for their 

study (Staley et al. 1984; Dalgaard and Garret 1993; Van de Peer et al. 1994; Sprinzl et al. 

1996), and the methods used to determine genomic G+C content (thermal melting curves or 

buoyant density centrifugation) would be considered quite crude compared to the precision that 

sequencing provides today. Using this data, Galtier and Lobry found that OGT and genomic 

G+C content do not display a clear relationship, thus casting doubt on the hypothesis that 

secondary structures in genomic DNA explain Chargaff’s PR2 (Galtier and Lobry 

1997).  Despite the specific nature of the hypothesis addressed, the two findings for which this 

paper is most frequently cited are quite general. The first is the lack of relationship between 

OGT and genomic G+C content. The second is that G+C content in the stems of the 16S and 

23S rRNAs, and generally in the 5S rRNA and tRNAs, does correlate with organismal OGT. 

Both of these trends had previously been established in the context of hyperthermophilic 

archaea (Dalgaard and Garret 1993).  However, the work of Dalgaard and Garret included a 

small number of organisms (about twenty vs. over one-hundred in Galtier and Lobry), which 

belonged to a limited phylogenetic distribution with narrow environmental diversity (thermophilic 

archaea with a few additional model species for comparison). Galtier and Lobry extended the 

findings of Dalgaard and Garrett across significantly more bacterial species, and in so doing 

extended the story beyond thermophilic archaea to a much more general phenomenon that 

attracted significantly more interest.   

In the years since the publication of Galtier and Lobry’s manuscript, work toward 

understanding forces at work in genome composition has continued.  The debate regarding the 

relationship between genome composition and thermostability was by no means settled by this 

work, and satisfying explanations for Chargaff’s PR2 and the diversity of G+C observed across 

diverse genomes remain elusive over twenty years later. The two major findings of Galtier and 

Lobry have spurred significant further work that encompasses a range of different applications 

that take advantage of the relationships between OGT, structured RNA G+C content, and 

genomic G+C content. These include: prediction of organism OGT based on 16S rRNA 

sequence, separation or enrichment of DNA extracted from microbial communities for a 

particular sub-populations based on G+C content, and computational methods for structured 

RNA identification. 
  
Resolving the relationship between genomic G+C content and thermoadaptation  
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 The work of Galtier and Lobry provided evidence against adaptation to growth at higher 

temperature directly impacting genomic G+C content. However, this premise was further 

assessed using several different subsets of genomes or better controlled sets of genomes by 

many additional studies from a range of authors over the years. Analysis of the three codon 

positions in coding sequences separately (under the assumption that the third codon position is 

less likely to be under selection for protein function), showed that GC content of the third codon 

closely mirrors that of the genome as a whole and does not correlate with OGT (Hurst and 

Merchant 2001). However, analysis of coding sequence dinucleotide frequencies indicated 

some OGT correlated changes, suggesting that thermoadaptation could directly impact genome 

dinucleotide frequencies (Nakashima et al. 2003). Several additional studies have assessed 

whether better phylogenetically informed sampling (comparing pairs of genomes from within the 

same class) enable better detection of a correlation between OGT and G+C content (Musto et 

al. 2004; Wang et al. 2006; Musto et al. 2006). However, findings from such works remain 

controversial and are not necessarily robust across many bacterial genera.  It is clear that many 

factors such as codon bias (Knight et al. 2001) and changes in protein composition associated 

with thermoadaptation (Singer and Hickey 2000), may impact genomic G+C content (Hickey 

and Singer 2004). However, none of these factors yield a clear relationship between genomic 

G+C content and OGT.  

 

Alternative explanations for Chargaff’s second parity rule 
 Although Galtier and Lobry concluded that ssDNA hairpins are not likely a significant 

contributor to Chargaff’s second parity rule (PR2), during the decades since its original 

formulation Chargaff’s PR2 has largely proven robust as additional sequence data is collected. 

It applies to most complete genomes (Mitchell and Bridge 2006), although genomes of 

organelles (Mitchell and Bridge 2006; Nikolaou and Almirantis 2006) and ssDNA viruses 

(Mitchell and Bridge 2006) are notably not compliant. Furthermore, although most complete 

genomes do follow PR2, there are significant local deviations. In bacterial genomes the direction 

of replication and ori position significantly impact genome composition (McLean et al. 1998; 

Nikolaou and Almirantis 2005), sequences that are actively transcribed also tend to display 

purine loading (Szybalski et al. 1966; Bell and Forsdyke 1999), and exons tend to conform to 

PR2 more than intronic sequence in eukaryotes (Touchon et al. 2004). Despite such local 

variations, the rule has been extended from symmetry of mononucleotide frequencies to include 

symmetry of oligonucleotide frequencies (Qi and Cuticchia 2001; Baisnée et al. 2002; Shporer 

et al. 2016). The most satisfying explanations for the maintenance of Chargaff’s second rule 
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invoke frequent duplication, inversion, and transposition events in the genome (Albrecht-Buehler 

2006; Okamura et al. 2007; Albrecht-Buehler 2007), but no single explanation is widely 

accepted.  

 

 

Causes for G+C content variability: neutral processes or natural selection? 
 The potential causes of diverse genomic G+C content essentially reduce to whether the 

observed variation is due to neutral processes (Sueoka 1962; Sueoka 1999) or natural 

selection. It is easy to imagine how neutral processes may contribute to nucleotide content and 

several studies have assessed the viability of this option across different species (Zhao et al. 

2007; Wu et al. 2012). However, most bacterial polymerases, even those from high G+C 

content organisms, display a bias toward conversion of G-C pairs into A-T pairs (Lind and 

Andersson 2008; Hershberg and Petrov 2010; Hildebrand et al. 2010; Wielgoss et al. 2011), 

although this may not be universally true (Dillon et al. 2015).  Increasingly it appears that G+C 

content in genomes may be the result of a combination of neutral and selection processes that 

are quite subtle (Reichenberger et al. 2015). In prokaryotes coding sequences tend to be more 

G+C rich than non-coding regions (Bohlin et al. 2008), coding regions part of the core genome 

are higher G+C than those of the periphery genome (Bohlin et al. 2017), but modelling studies 

of substitution rates in the core genome still suggest a universal G-C to A-T mutational bias 

(Bohlin, 2018).  Symbiotic bacteria whose genes are under less selective pressure, have both 

highly reduced and very A+T rich genomes (McCutcheon and Moran 2011) suggesting that lack 

of selection leads to A+T richness.  

An alternative neutral process that has been invoked to explain variation in G+C content 

is biased gene-conversion. In eukaryotes G-C alleles are more likely to be maintained than A-T 

alleles during gene conversion events (Mugal et al. 2015). Such events are also proposed to 

impact bacterial genomes, and a positive correlation is observed between G+C content and 

evidence of recombination for genes in the core genome (Lassalle et al. 2015). Furthermore, the 

presence of machinery necessary for non-homologous end joining (NHEJ) is also correlated 

with increased G-C content (Weissman 2019). The combination of these studies with the 

observation that increased genomic G+C content may correlate with environmental conditions 

such as aerobiosis (Naya 2002, Romero 2009), suggests that DNA damage may play a role in 

prokaryotic genomic G+C content.  Thus, the essential question, what causes the strikingly 

large range of G+C content over diverse prokaryotic genomes, likely has a quite nuanced 

answer, and remains open even as more, and greater diversity, genomes are available.  
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rRNA G+C content and optimal growth temperature 
The observation of Galtier and Lobry, that structured non-coding RNAs, and in particular 

their double-stranded regions, displayed a strong correlation between G+C content and OGT 

has been widely verified. Additional work shows that the G+C content in rRNAs occurs most 

noticeably in the regions expected to be base-paired, but also extends to loop regions (although 

with a small effect size) (Wang et al. 2006). The effect occurs among sequences chosen to 

control for differences in G+C content due to taxonomy (from the same genera), and cold-

adapted organisms (in contrast to just mesophiles and thermophiles) display similar trends in 

their rRNA (Wang et al. 2006) and tRNA (Dutta and Chaudhuri 2010). Furthermore, the same 

observation can also be made for other structured RNAs such as the signal recognition particle 

(SRP) RNA (Miralles 2010). Additionally it has been found that the expression of different copies 

of the rRNA with differing G+C composition in the same organism may be tuned to temperature, 

with higher G+C content rRNAs enabling increased fitness at higher temperatures (Sato et al. 

2017; Sato and Kimura 2019).  
The robustness of G+C composition correlation with OGT, has also spurred efforts to 

more broadly understand what other factors contribute to RNA thermostability. OGT also 

correlates with a decrease in the prevalence of uracil (U) specifically, although this does not 

seem to correspond with a replacement of G·U base-pairs with more G-C base-pairs, but rather 

a decrease in U prevalence across the molecule, including loop regions (Khachane et al. 2005). 

The structure of a thermophilic ribosome also appears to be more tightly packed than that of a 

mesophile (Mallik and Kundu 2013), and tRNAs in thermophiles may also display better folding 

characteristics than those in psychrophiles using in silico models of RNA folding (Dutta and 

Chaudhuri 2010).    

 

Using rRNA G+C to predict optimal growth temperature 
There are several applications of the observed correlation between OGT and G+C 

content in functional RNAs. One of these is enrichment of a sampled microbial community for 

organisms from a specific environment (Kimura et al. 2006).  A second application of this 

correlation is the estimation of OGT, typically based on rRNA sequence (or its composition 

determined from melt-curves) (Kimura et al. 2010). This approach may be applied to single 

organisms, or increasingly to confirm the native environment of sequences isolated from 

metagenomic sequencing (Ragon et al. 2013; Kimura et al. 2013). As the amount of sequence 

in derived from whole genome shotgun sequencing (WGS) compared with 16S rRNA has 
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shifted in such studies, methods have expanded to include additional features from genomic 

sequence such as ORF composition, but the composition of the tRNA and rRNA has a 

significant impact on accuracy even in the context of this addition data (Sauer and Wang 2019), 

although prediction based on proteomic data alone can also be effective (Li et al. 2019).   
Even prior to the development of quantitative regressions to predict OGT based on 

genomic features, the relationship between rRNA G+C content and OGT was used to speculate 

about the environment of the last universal common ancestor (LUCA).  In an early work Galtier 

et al. used a Markov model of sequence evolution coupled with maximum likelihood analysis to 

suggest that the ancestral rRNA contained sequence features consistent with a mesophilic 

origin (Galtier et al. 1999). However, this finding was rapidly disputed by others using alternative 

reconstruction techniques (e.g. maximum parsimony), as well as including additional molecules 

for analysis such as tRNA (Di Giulio 2000), or protein sequences (Di Giulio 2001; Di Giulio 

2003). More realistic models based on both protein and rRNA reconstructed sequences 

indicated the potential for a mesophilic origin followed by divergence and parallel adaptation to 

higher temperatures followed by subsequent adaptation to more temperature environments 

(Boussau et al. 2008; Groussin and Gouy 2011). While this question is increasingly tackled by 

approaches that utilize far more information than what was available 20 years ago to reconstruct 

entire ancestral gene sets, a clear consensus still has not been reached (Weiss et al. 2016; 

Akanuma 2017).   

 

Using G+C content to identify ncRNA 
Another application of the relationship between structured RNA G+C content and 

organismal OGT coupled with the lack of relationship between G+C content and OGT, is the 

computational discovery of novel structured RNAs. It is established that stable structures may 

be formed by many sequences that do not encode functional RNA structures (Rivas and Eddy 

2000). However, the premise that in a high A+T genome, structured RNAs should be encoded 

by regions with higher G+C content so that such molecules retain their stability, is valid. Several 

different methods for ncRNA identification across a range of different species use some 

variation of this premise. Deviation from genomic G+C content alone was used to identify 

ncRNAs within extreme hyperthermophiles Methanococcus jannaschii and Pyrococcus furiosus 

(which have modest genomic G+C contents of ~30% and ~40% respectively) (Klein et al. 2002), 

in combination with dinucleotide frequencies to find similar results in M. jannaschii (Schattner 

2002), or to screen intergenic regions in A+T rich prokaryotic genomes that are further 

processed by other ncRNA comparative genomic approaches (Meyer et al. 2009; Stav et al. 
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2019). Other approaches used genome composition as one of many features to identify putative 

ncRNAs in genomes of mesophiles with less of genome composition bias such as E. coli (Carter 

et al. 2001). Finally, several A+T rich eukaryotic genomes have also been screened in a similar 

manner including Plasmodium falciparum (Upadhyay et al. 2005) and Dictyostelium discoideum 

(Larsson et al. 2008). Thus, although any given mRNA may fold into a stable structure, when 

combined with other information G+C content has proven to be a good screening tool for ncRNA 

identification in specific situations where the G+C content due to structured RNA stability may 

rise above the genomic background.  

 

Conclusions 
The major findings of Galtier and Lobry have proven robust nearly 20 years and many 

additional genomes later. They were not the first to observe the relationship between G+C 

content of structured RNA and OGT and contrast it with that between genomic G+C and OGT, 

but they placed this observation into a much larger context than Dalgaard and Garrett (Dalgaard 

and Garret 1993), and in doing so made the finding accessible to a larger audience and 

ultimately seeded several other fruitful areas of research. The specific hypothesis that motivated 

this work has long since been superseded by other explanations, but the root questions remain 

largely unresolved. Thus, this work remains highly cited today, and will likely continue to be in 

the future.  
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