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The great promise of quantum computers comes with the dual challenges of building them and
finding their useful applications. We argue that these two challenges should be considered together,
by co-designing full-stack quantum computer systems along with their applications in order to hasten
their development and potential for scientific discovery. In this context, we identify scientific and
community needs, opportunities, a sampling of a few use case studies, and significant challenges for
the development of quantum computers for science over the next 2–10 years.
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searchers in the field of Quantum Information Science and Technology, and is based on a summary
from a U.S. National Science Foundation workshop on Quantum Computing held on October 21–22,
2019 in Alexandria, VA.
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Executive Summary
The quantum computer promises enormous informa-

tion storage and processing capacity that can eclipse
any possible conventional computer [1]. This stems from
quantum entangled superpositions of individual quantum
systems, usually expressed as a collection of quantum
bits or qubits, whose full description requires exponen-
tially many parameters. However, there are two critical
challenges in bringing quantum computers to fruition:

Challenge 1: The vast amount of information con-
tained in massively entangled quantum systems is itself
not directly accessible, due to the reduction of quantum
superpositions upon measurement. Instead, useful quan-
tum computer algorithms guide a quantum state to a
much simpler form to produce some type of global prop-
erty of the information that can be directly measured.
However, the full scope of applications that can exploit
entangled superpositions in this way and how exactly
quantum computers will be used in the future remains
unclear.

Challenge 2: Quantum computers are notoriously
difficult to build, requiring extreme isolation of a large
number of individual qubits, while also allowing exquisite
control of their quantum states and high-accuracy mea-
surements. Quantum computer technology is nothing like
classical computer hardware and involves unconventional
information carriers in exotic environments like high vac-
uum or very low temperature. Ultimately, large-scale
quantum computers will utilize error-correction tech-
niques that are much more complex than their classical
counterparts.

This article combines these two challenges by promot-
ing the idea of co-designing quantum computers with
their scientific applications in a vertically-integrated ap-
proach that addresses scientific opportunities at all levels
of the quantum computer stack.

Since the birth of quantum computing in the 1990s,
there has been enormous progress in the isolation and
control of good qubit platforms [2]. Some of these quan-
tum technologies, based on individual atoms controlled
by laser beams [3, 4] or superconducting circuitry cou-
pled with microwave fields [5], are now being built into
small systems. This has led to a new era of quantum
computing, paralleling the transition from transistors to
integrated circuits many decades ago, which is expected
to lead to significant scientific opportunities. In this po-
sition paper, we, therefore, do not focus on the physics
or development of qubit technologies at the component
level. We also do not speculate on new qubit technologies
that may emerge in the coming years. These are impor-
tant and foundational research activities, but they are
also typically divorced from systems-level considerations
of operating quantum computers.

Here we concentrate on the near-term prospects and
scientific opportunities generated by an integrated con-
sideration of the complete quantum computer stack us-

ing existing quantum system technologies. At the bot-
tom of the stack, device-specific qubit control consider-
ations will impact the engineering of native interactions
or gate sets, connectivity, and thus net performance on
high-level quantum computer applications. In the middle
of the stack, compilation of native gates into standard
gate sets and higher-level quantum subroutines can be
compressed and compiled further using techniques from
quantum computer science. Quantum error-correction
encoding of qubits, a relatively new field in its own right,
will become ever more important as the systems grow in
the number of qubits and their circuit depth. At the top
of the stack, the execution of quantum circuits can simu-
late difficult quantum problems, from molecular proper-
ties, chemistry, and materials science [6] to nuclear and
particle physics models beyond the reach of conventional
computers [7]. They may also find use as general op-
timizers of generic models [8] that could be applied to
logistics, economics, and climate science.

We advocate for the continual development and oper-
ation of multiple generations of quantum computer sys-
tems using current technology specifically designed with
the above types of opportunities in mind. We propose
iterating between building and using the devices, with a
full-stack scientific mission that can be fulfilled by a uni-
fied effort at universities, at national laboratories, and in
industry. As future qubit technologies are developed, we
expect they will be integrated into the stack. While there
is growing industrial interest in building quantum com-
puters, we note that these efforts may not be focused on
co-designing quantum computers that will have sufficient
flexibility to address scientific opportunities at the vari-
ous levels of the quantum computer stack. Over the next
2–10 years, the research and development approach we
propose here is expected to generate new science, stim-
ulate the transition of academic and national laboratory
programs in quantum computing to industry, and also
train future quantum engineers. The overriding high-
level aim of this proposed path is to hasten the develop-
ment of a wide range of concrete scientific applications
for quantum computers, with parallel efforts in quantum
simulation [9] and quantum communication [10].

Introduction

Quantum computers represent a fundamental depar-
ture from the way we process information. At its core,
a quantum computer consists of quantum bits (qubits)
or equivalent quantum information carriers, that allow
the storage and processing of quantum superpositions of
data. A single qubit |xi〉 is a quantum two-level system
that can store a superposition of both xi = 0 and xi = 1.
A collection of n qubits can be represented by a quantum
state |Ψ〉 that stores an arbitrary entangled superposition
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of all n-bit binary numbers,

|Ψ〉 =
2n−1∑
k=0

αk |k〉 (1)

=
∑

xi∈{0,1}

αxn−1xn−2...x0
|xn−1〉 |xn−2〉 . . . |x0〉 , (2)

where the 2n weights or amplitudes of each basis state
|k〉 are given by complex numbers αk, whose index k can
also be expressed as a string of bit values xn−1xn−2...x0.
The superposition amplitudes αk evolve according to the
unitary (time-reversible) Schrödinger wave equation that
dictates how the amplitudes of the various basis states
can be controlled, governed by an underlying Hamilto-
nian or energy functional. When the qubits are mea-
sured, they assume definite values with probabilities
P (k) = |αk|2 given by the corresponding amplitudes of
the underlying quantum state. The entanglement of the
above general quantum superposition represents a com-
plex web of natural links between qubits, giving rise to
a network of correlations while maintaining the charac-
ter of superposition within individual qubits. Quantum
entanglement allows an efficient “wiring” of qubit states
without any real wires or physical connections between
the qubits, and it has no classical analog.

There are several known quantum algorithms that of-
fer various advantages or speedups over classical comput-
ing approaches, some even reducing the complexity class
of the problem. These algorithms generally proceed by
controlling the quantum interference between the compo-
nents of the underlying entangled superpositions in such
a way that only one or relatively few quantum states have
a significant amplitude in the end. A subsequent mea-
surement can, therefore, provide global information on a
massive superposition state with significant probability.

The coherent manipulation of quantum states that de-
fines a quantum algorithm can be expressed through dif-
ferent quantum computational modes with varying de-
grees of tunability and control. The most expressive
quantum computing mode presently known is the univer-
sal gate model, similar to universal gate models of clas-
sical computation. Here, a quantum algorithm is broken
down to a sequence of modular quantum operations or
gates between individual qubits. There are many univer-
sal quantum gate families operating on single and pair-
wise qubits [11], akin to the NAND gate family in clas-
sical computing. One popular universal quantum gate
family is the grouping of two-qubit cnot gates on every
pair of qubits along with rotation gates on every single
qubit [1], as displayed in Fig. 1. With universal gates,
an arbitrary entangled state and thus any quantum al-
gorithm can be expressed. Alternative modes such as
measurement-based or cluster-state quantum computing
[12] can be shown to be formally equivalent to the uni-
versal gate model. Another interesting quantum model
worth mentioning is quantum walks” model [13], which

is a natural mathematical framework to construct quan-
tum gates in qubit systems controlled via pulses. Like the
NAND gate in classical CMOS technology, the particu-
lar choice of universal gate set or even mode of quantum
computing is best determined by the quantum hardware
itself and its native interactions and available controls.
The structure of the algorithm itself may also impact the
optimal choice of gate set or quantum computing mode.

|0〉 −→ cos
θ

2
|0〉 − ie+iφ sin

θ

2
|1〉

|1〉 −→ cos
θ

2
|1〉 − ie−iφ sin

θ

2
|0〉

|x〉 R(θ, φ) |x̃〉

(a)

|0〉 |0〉 −→ |0〉 |0〉
|0〉 |1〉 −→ |0〉 |1〉
|1〉 |0〉 −→ |1〉 |1〉
|1〉 |1〉 −→ |1〉 |0〉

|xC〉 • |x̃C〉

|xT 〉 |x̃T 〉
(b)

FIG. 1. The rotation and controlled-NOT (cnot) gates are an
example of a universal quantum gate family when available
on all qubits, with explicit evolution (above) and quantum
circuit block schematics (below). (a) The single-qubit rota-
tion gate R(θ, φ), with two continuous parameters θ and φ,
evolves input qubit state |x〉 to output state |x̃〉. (b) The cnot
(or reversible XOR) gate on two qubits evolves two (control
and target) input qubit states |xC〉 and |xT 〉 to output states
|x̃C = xC〉 and |x̃T = xC ⊕ xT 〉, where ⊕ is addition modulo
2, or equivalently the XOR operation.

There are other modes of quantum computation that
are not universal, involving subsets of universal gate op-
erations, or certain global gate operations with less con-
trol over the entire space of quantum states. These can
be useful for specific routines or quantum simulations
that may not demand full universality. Although global
adiabatic Hamiltonian quantum computing [14] can be
made universal in certain cases [15], it is often better im-
plemented as non-universal subroutines for specific state
preparation. Quantum annealing models [16, 17] do not
appear to be universal, and there is a current debate
over the advantage such models can have over classical
computation [18]. Gates that explicitly include error, or
decoherence processes [19], used to model quantum com-
puter systems interacting with an environment via quan-
tum simulation [9], we consider outside the scope of this
discussion.

Given the continuous amplitudes that define their
quantum states (Eq. 1), quantum computers have char-
acteristics akin to classical analog computers, where er-
rors can accumulate over time and lead to computational
instability. It is thus critical that quantum computers
exploit the technique of quantum error correction (QEC)
[20, 21], or at least have sufficiently small native errors
that allow the system to complete the algorithm [22].
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QEC is an extension of classical error correction, where
ancilla qubits are added to the system and encoded in
certain ways to stabilize a computation through the mea-
surement of a subset of qubits that is fed back to the
remaining computational qubits. There are many forms
of QEC, but the most remarkable result is the existence
of fault-tolerant QEC [23, 24], allowing arbitrarily long
quantum computations with sub-exponential overhead in
the number of required additional qubits and gate oper-
ations. Qubit systems typically have native noise prop-
erties that are neither symmetric nor static, so matching
QEC methods to specific qubit hardware noise profiles
will play a crucial role in the successful deployment of
quantum computers.

The general requirements for quantum computer hard-
ware [25] are that the physical qubits (or equivalent
quantum information carriers) must support (i) coherent
Hamiltonian control with sufficient gate expression and
fidelity for the application at hand, and (ii) highly ef-
ficient initialization and measurement. These seemingly
conflicting requirements limit the available physical hard-
ware candidates to just a few at this time. Below we
describe those platforms that are currently being built
into multi-qubit quantum computer systems and are ex-
pected to have the largest impact in the next decade. As
we will see below in a definition of levels of the quan-
tum computer stack and a sampling of vertical imple-
mentations and applications, the near-term advances in
quantum computer science and technology will rely on
algorithm designers understanding the intricacies of the
quantum hardware, and quantum computer builders un-
derstanding the natural structure of algorithms and ap-
plications.

The Quantum Computer Stack
Computer architectures are often defined in terms of

their various levels of abstraction or “stack,” from the
user interface and compiler down to the low-level gate
operations on the physical hardware itself. The quantum
computer stack can be defined similarly, as depicted in
Fig. 2. However, the various levels of the quantum com-
puter stack (especially the qubits themselves) are not yet
cheap and commoditized like classical computer technol-
ogy. So it is critical that quantum computers be de-
signed and operated with the entire stack in mind, with
a vertical approach of co-designing quantum computer
applications to their specific hardware and all levels in
between for maximum efficiency. Indeed, early quantum
computer system development may parallel current clas-
sical application-specific integrated circuits (ASICs) used
for specific and intensive computations such as molecular
structure or machine learning.

In this section, we list the levels of the quantum com-
puter stack and point to various approaches at each level.
The key to co-designing quantum computers is to ac-
knowledge the great opportunities at the interfaces be-

Algorithms
Identify problem
Map to qubits and gates

Quantum Software
Express in native gates/connectivity
Compile & compress circuits
Deploy error correction strategy

Control Engineering
Implement Hamiltonian 
control with E/M fields

Qubit Technology
Interface control fields 
with qubit system

𝑖ℏ
𝜕 ۧ|𝛹

𝜕𝑡
= 𝐻(𝑡) ۧ|𝛹

Quantum Computer Stack

FIG. 2. Advances in all levels of the quantum computer stack,
from algorithms and quantum software down to control engi-
neering and qubit technology, will be required to bring quan-
tum computers to fruition. We expect scientific opportunities
at every level and at the interfaces between levels. At the
highest levels, quantum computer algorithms are expected to
advance many fields of science and technology. At he mid-
dle levels (software stack), the compilation and translation
of quantum gates will allow for algorithmic compression to
accelerate performance, while error-correction techniques will
mitigate quantum computing errors. At the lowest levels, new
ways to control interactions between qubit technologies may
lead to better performance. Future capable qubit technolo-
gies will require tight integration with the other layers of the
stack to realize their potential.

tween different levels of the stack, which requires a high
level of interdisciplinarity between the physical sciences,
engineering, and computer science. In the next section,
we illustrate how various levels of the quantum computer
stack will be exploited for several use cases.
Quantum Algorithms

Practical interest in quantum computing arose from
the discovery that there are certain computational prob-
lems that can be solved more efficiently on a quantum
computer than on a classical computer, notably num-
ber factoring (Shors algorithm [26]) and searching un-
structured data (Grovers algorithm [27]). Quantum algo-
rithms typically start at a very high level of description,
often as a pseudo code. These algorithms are usually
distinguished at this level of abstraction by very coarse
scaling of resources such as time and number of qubits,
as well as success metrics, such as success probabilities
or the distance between a solution and the optimal value.
Quantum algorithms can be broadly divided into those
with provable success guarantees and those that have no
such proofs and must be run with heuristic characteriza-
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tions of success.
Once a quantum algorithm has been conceptualized

with the promise of outperforming a classical algorithm,
it is common to consider whether the algorithm can be
run on near-term devices or for future architectures that
rely on quantum error correction. A central challenge
for the entire field is to determine whether algorithms
on current, relatively small quantum processors can out-
perform classical computers, a goal called quantum ad-
vantage. For fault-tolerant quantum algorithms, on the
other hand, there is a larger focus on improving the
asymptotic performance of the algorithm in the limit of
large numbers qubits and gates.

Shor’s factoring [26] and Grover’s unstructured search
algorithms [27] are examples of “textbook” quantum al-
gorithms with provable performance guarantees. These
guarantees include a provable quadratic speedup for
Grover and a superpolynomial speedup for Shor over
known classical algorithms. A handy guide to known
quantum algorithms is the quantum algorithm zoo,
https://quantumalgorithmzoo.org/. Another impor-
tant example is the HHL algorithm [28] which is a prim-
itive for solving systems of linear equations. Factoring,
unstructured search, and HHL are generally thought to
be relevant only for larger fault-tolerant quantum com-
puters.

Another class of quantum algorithms are quantum sim-
ulations [9, 29, 30], which use a quantum computer to
simulate models of a candidate physical system of inter-
est, such as molecules, materials, or quantum field theo-
ries whose models are intractable using classical comput-
ers. Quantum simulators often determine the physical
properties of a system such as energy levels, phase di-
agrams, or thermalization times, and can explore both
static and dynamic behavior. There is a continuum of
quantum simulator types, sorted generally by their de-
gree of system control. Fully universal simulators have
arbitrary tunability of the interaction graph and may
even be fault-tolerant, allowing the scaling to various
versions of the same class of problems. Some quantum
simulations do not require the full universal programma-
bility of a quantum computer and are thus easier to
realize. Such quantum simulators will likely have the
most significant impact on society in the short run. Ex-
ample simulator algorithms range from molecular struc-
ture calculations applied to drug design and delivery or
energy-efficient production of fertilizers [31], to new types
of models of materials for improving batteries or solar
cells well beyond what is accessible with classical com-
puters [32].

Variational quantum algorithms such as the variational
quantum eigensolver (VQE) [6, 33, 34] and the quantum
approximate optimization algorithm (QAOA) [8] are re-
cent developments. Here, the quantum computer pro-
duces a complex entangled quantum state representing
the answer to some problem, for example, the ground

state of a Hamiltonian model of a molecule. The pro-
cedure for generating the quantum state is characterized
by a set of classical control parameters that are varied
in order to optimize an objective function, such as min-
imizing the energy of the state. One particular area of
active exploration is the use of VQE or QAOA for tasks
in machine learning [35] or combinatorial optimization
[36, 37], as discussed below. Variational quantum solvers
are a workhorse in near-term quantum hardware, partly
because they can be relatively insensitive to systematic
gate errors. However, these algorithms are usually heuris-
tic: one cannot generally prove that they converge. In-
stead, they must be tested on real quantum hardware to
study and validate their performance and compare to the
best classical approaches.

Quantum algorithms are typically expressed at a high
level with the need to estimate actual resources for im-
plementation. This often starts with a resource esti-
mate for fault-tolerant error-corrected quantum comput-
ers [38], where the quantum information is encoded into
highly entangled states with additional qubits in order
to protect the system from noise. Fault-tolerant quan-
tum computing is a method for reliably processing this
encoded information even when physical gates and qubit
measurements are imperfect. The catch is that quan-
tum error correction has a high overhead cost in the
number of required additional qubits and gates. How
high a cost depends on both the quality of the hard-
ware and the algorithm under study. A recent estimate
is that running Shors algorithm to factor a 2048-bit num-
ber using gates with a 10−3 error rate could be achieved
with currently known methods using 20 million physical
qubits [39]. As the hardware improves, the overhead cost
of fault-tolerant processing will drop significantly; never-
theless, fully fault-tolerant scalable quantum computing
is presently a distant goal. When estimating resources for
fault-tolerant implementations of quantum algorithms, a
discrete set of available quantum gates is assumed, which
derive from the details of the particular error-correcting
code used. There are many different techniques for trad-
ing off space (qubit number) for time (circuit depth), re-
sembling conventional computer architecture challenges.
It is expected that optimal error correction encoding will
depend critically upon specific attributes of the underly-
ing quantum computing architecture, such as qubit co-
herence, quantum gate fidelity, and qubit connectivity
and parallelism.

Estimating resources for quantum algorithms using re-
alistic quantum computing architectures is an important
near-term challenge. Here, the focus is generally on re-
ducing the gate count and quantum circuit depth to avoid
errors from qubit decoherence or slow drifts in the qubit
control system. Different types of quantum hardware
support different gate sets and connectivity, and native
operations are often more flexible than fault-tolerant gate
sets for certain algorithms. This optimizing of specific

https://quantumalgorithmzoo.org/
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algorithms to specific hardware is the highest and most
important level of quantum computer co-design.
Quantum Software

A quantum computer will consist of hardware and soft-
ware. Key components of the software stack include com-
pilers, simulators, verifiers, and benchmarking protocols,
as well as the operating system. Compilers — interpreted
to include synthesizers, optimizers, transpilers, and the
placement and scheduling of operations — play an im-
portant role in mapping abstract quantum algorithms
onto efficient pulse sequences via a series of progressive
decompositions from higher to lower levels of abstrac-
tion. The problem of optimal compilation is provably in-
tractable [40], suggesting a need for continuous improve-
ment via sustained research and development. Since opti-
mal synthesis cannot be guaranteed, heuristic approaches
to quantum resource optimization (such as gate counts
and depth of the quantum circuit) frequently become the
only feasible option. Classical compilers cannot be eas-
ily applied in the quantum computing domain, so quan-
tum compilers must generally be developed from scratch.
Classical simulators are a very important component of
the quantum computer stack. There is a range of ap-
proaches, from simulating partial or entire state vector
evolution during the computation to full unitary simula-
tion (including by the subgroups of the group of all uni-
taries), with or without noise. Simulators are needed to
verify quantum computations, model noise, develop and
test quantum algorithms, prototype experiments, and es-
tablish computational evidence of a possible advantage
of the given quantum computation. Classical simulators
generally require exponential resources (otherwise, the
need for a quantum computer is obviated) and thus are
only useful for simulating small quantum processors with
less than 100 qubits, even using high-performance super-
computers. Simulators used to verify the equivalence of
quantum circuits or test output samples of a given im-
plementation of a quantum algorithm can be thought of
as verifiers.

Benchmarking protocols are needed to test components
as well as entire quantum computer systems. Quan-
tum algorithm design, resource trade-offs (space vs. gate
count vs. depth vs. connectivity vs. fidelity, etc.) [41],
hardware/software co-design, efficient architectures, and
circuit complexity are examples of important areas of
study that directly advance the power of software.

The quantum operating system (QOS) is the core soft-
ware that manages the critical resources for the quantum
computer system. Similar to the OS for classical com-
puters, the QOS will consist of a kernel that manages all
hardware resources to ensure that the quantum computer
hardware runs without critical errors, a task manager
that prioritizes and executes user-provided programs us-
ing the hardware resources, and the peripheral manager
that handles peripheral resources such as user/cloud and
network interfaces. Given the nature of qubit control in

near-term devices which requires careful calibration of
the qubit properties and controller outputs, the kernel
will consist of automated calibration procedures to en-
sure high fidelity logic gate operation is possible in the
qubit system of choice.
Control Engineering

Advancing the control functions of most quantum com-
puting implementations is largely considered an engi-
neering and economic problem. Current implementa-
tions comprise racks of test equipment to drive the qubit
gate operations, calibrate the qubit transitions and re-
lated control, and calibrate the measurement equipment.
While appropriate for the early stages of R&D labora-
tory development, this configuration will limit scalability,
systems integration, and applicability for fielded applica-
tions and mobile platforms, and affordability and attrac-
tiveness for future applications.

The quantum gate operations for most qubit technolo-
gies require precise synthesis of analog control pulses that
implement the gates. These take the form of modu-
lated electromagnetic waves at relevant carrier frequen-
cies, which are typically in the microwave or optical do-
main. Depending on the architecture of the quantum
computer, a very large number of such control channels
might be necessary for a given system. While the ad-
vances in communication technologies can be leveraged,
these have to be adapted for quantum applications. A
significant level of flexibility and programmability to gen-
erate the required pulses with adequate fidelity must be
designed into the control system for quantum computers.

The advancement of controls in quantum comput-
ing will ultimately require high-speed and application-
specific optimized controls and processing. This situa-
tion mirrors the explosive advancement of the telecom-
munications industry in its implementation of 100 to
400+ Gb/s coherent digital optics formats and integrated
RF and microwave signal processing for mobile applica-
tions. In the short run, however, the challenge we face
is defining the control functions and features relevant for
the target qubit applications and deriving the required
performance specifications. This work is necessary be-
fore a dedicated, integrated, and scalable implementa-
tion, such as ASIC development, becomes viable. Near-
term applications in quantum computing and full system
design activities are critical in identifying and defining
these needs. There are strong opportunities to engage
engineering communities—in academia, national labora-
tories, and industry—with expertise ranging from com-
puter architecture to chip design to make substantial ad-
vances on this front. To foster such efforts, it will be nec-
essary to encourage co-design approaches and to identify
common engineering needs and standards.

Generating the types of signals needed can benefit sig-
nificantly from digital RF techniques that have seen dra-
matic advances in the last decade. We envision com-
mercially available chipsets based on field-programmable
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gate arrays (FPGAs) and ASICs that incorporate “Sys-
tem On a Chip” (SoC) technology, where processing
power is integrated with programmable digital circuits
and analog input and output functions.

Besides the signal generation necessary for implement-
ing the gates, other control needs include passive and
active (servo) stability, maintenance of system operation
environment (vacuum, temperature, etc.), and manag-
ing the start-up, calibration, and operational sequences.
Calibration and drift control [42] are important to both
atomic and superconducting systems, though in some-
what different ways. In fixed-frequency superconducting
systems, maintaining fidelities above 99% requires pe-
riodic calibration of RF pulse amplitudes; for tunable
transmons, low frequency tuning of magnetic flux is re-
quired to maintain operation at qubit sweet spots. For
atomic qubits, calibrating local trapping potentials and
slow drifts in laser intensities delivered to the qubits is
necessary. These calibration procedures, which can be
optimized, automated, and built into the operating mode
of the quantum computer system with the help of soft-
ware controls, are candidates for implementation in SoC
technologies. The development of optimal operating pro-
cedures for drift control and calibration processes will re-
quire innovation at a higher level of the stack. For exam-
ple, dynamically understanding how control parameter
drifts can be tracked and compensated, and when recal-
ibration is needed (if not done on a fixed schedule) will
require high-level integration.

Specific performance requirements will help drive
progress, by co-design of engineering capabilities and
quantum control needs. For example, there is a need for
electronic control systems encompassing: (i) analog out-
puts with faster than 1 Gsamples/s; (ii) synchronized and
coherent output with over 100 channels and extensible
to above 1000 channels; (iii) outputs switchable among
multiple pre-determined states; and (iv) proportional-
integrative-derivative (PID) feedback control on each
channel with at least kHz bandwidth. Common needs
for optical control systems include (i) phase and/or am-
plitude modulation with a bandwidth of ≈ 100 MHz; (ii)
over 100 channels and extensibility to above 1000 chan-
nels; (iii) precision better than 12 bits (phase or ampli-
tude); and (iv) operating wavelengths to match qubit
splittings.

An essential consideration of the control engineering
for high-performance quantum computers is noise. The
noise in a quantum system has two distinct sources: one
is the intrinsic noise in the qubits arising from their cou-
pling to the environment, known as decoherence, and
the other is the control errors. Control errors can be
either systematic in nature, such as drift or cross-talk, or
stochastic, such as thermal and shot noise on the control
sources. The key is to design the controller in a way such
that the impact of stochastic noise on the qubits is less
than the intrinsic noise of the qubits, and the system-

atic noise is fully characterized and mitigated. Possible
mitigation approaches include better hardware design,
control loops, and quantum control techniques.

A key element in optimizing control is the character-
ization of the quantum system. For small systems, full
characterization is possible, but as the system size grows,
this becomes impractical. For single and two-qubit gates
methods like randomized benchmarking [43–45] and gate-
set tomography [46, 47] can be used to determine the
quality of gates with a tradeoff between information and
speed of the benchmark. For larger systems, system level
benchmarks have been developed based on random cir-
cuits [41, 48]. It is not clear what the best approach for
characterizing quantum systems whose scale prevents di-
rect simulation. Research into characterization of quan-
tum systems is an important component for being able
to optimize system level control.

Qubit Technology Platforms

We view the various quantum computer technology
platforms in terms of their ability to be integrated into
a multi-qubit system architecture. To date, only a few
qubit technologies have been assembled and engineered
in this way, including superconducting circuits [48, 49],
trapped atomic ions [50–52], and neutral atoms [53, 54].
While there are many other promising qubit technolo-
gies, such as spins in silicon, quantum dots, or topological
quantum systems, none of these technologies have been
developed beyond the component level. The research and
development of new qubit technologies should continue
aggressively in materials/fabrication laboratories and fa-
cilities. However, their maturity as good qubits may not
be hastened by integrating them with the modular full-
stack quantum systems development proposed here, so
we do not focus this roadmap on new qubit development.
In any case, once alternative qubit technologies reach ma-
turity, we expect their integration will benefit from the
full-stack quantum computer approach considered here.

It is generally believed that fully fault-tolerant qubits
will not likely be available soon. Therefore, specific
qubit technologies and their native decoherence and noise
mechanisms will play a crucial role in the development
of near-term quantum computer systems. There are sev-
eral systems-level attributes that arise when considering
multi-qubit systems as opposed to single- or dual-qubit
systems. Each of these critical attributes should be opti-
mized and improved in future system generations:

• Native quantum gate expression. Not only
must the available physical interactions allow uni-
versal control, but high levels of gate expression
will be critical to the efficient compilation and com-
pression of algorithms so that the algorithm can
be completed before noise and decoherence take
hold. This includes developing overcomplete gate
libraries, as well as enabling single instruction, mul-
tiple data (SIMD) instructions such as those given
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by global entangling and multi-qubit control gates
[55].

• Quantum gate speed. Faster gates are always
desired and may even be necessary for algorithms
that require extreme repetition, such as variational
optimizers [6, 8, 34] or sampling circuits [56]. How-
ever, faster gates may also degrade their fidelity and
crosstalk, and in these cases, the speed to complete
the higher level algorithmic solution should take
precedence.

• Specific qubit noise and crosstalk properties.
Qubit noise properties should be detailed and con-
stantly monitored, for there are many error mitiga-
tion techniques for specific or biased error processes
that can improve algorithmic success in the soft-
ware layer. Quantum gate crosstalk is usually un-
avoidable in a large collection of qubits, and apart
from passive isolation of gate operations based on
better engineering and control, there are software
solutions that exploit the coherent nature of such
crosstalk and allow for its cancellation by design.

• Qubit connectivity. The ability to implement
quantum gate operations across the qubit collection
is critical to algorithmic success. While full con-
nectivity is obviously optimal, this may not only
lead to higher levels of crosstalk, but ultimately
resolving the many available connection channels
may significantly decrease the gate and algorith-
mic speed. Such a trade-off will depend on details
of the algorithm, and a good software layer will op-
timize this trade-off. A connection graph that is
software-reconfigurable will also be useful.

• High level qubit modularity. For very large-
scale qubit systems, a modular architecture may
be necessary [3, 5, 57]. Just as for multi-core clas-
sical CPU systems, the ability to operate sepa-
rated groups of qubits with quantum communica-
tion channels between the modules will allow the
continual scaling of quantum computers. Modu-
larity necessarily limits the connectivity between
qubits, but importantly allows a hierarchy of quan-
tum gate technologies to allow indefinite scaling, in
principle.

Increasing the number of qubits from hundreds to
thousands will be challenging because current systems
cannot easily be increased in size via brute force. Instead,
a new way of thinking on how to reduce the number of
external controls of the system will be needed to achieve a
large number of qubits. This could be approached by fur-
ther integrating control into the core parts of the system
or by multiplexing a smaller number of external control
signals to a larger number of qubits. In addition, mod-
ularizing subsystems to be produced at scale and inte-

grating these into a networked quantum computer may
well turn out to be the optimal way to achieve the neces-
sary system size [10, 57]. Many challenges and possible
solutions will only become visible once we start to design
and engineer systems of such a size, which will, in turn,
be motivated by scientific applications.

Quantum Computer Case Studies
Below we briefly illustrate the use of the quantum com-

puter full stack in several case studies, from optimiza-
tion problems and programmable simulations of quantum
problems to quantum error-correcting codes and “text-
book algorithms. These examples are not meant to be
exhaustive, but may indicate how any future quantum
application might be realized and co-designed. Map-
ping these problems onto particular quantum comput-
ing modes and specific hardware platforms illustrates
the critical translation from cost functions or hard prob-
lems to native interactions between qubit systems. A full
stack systems approach to any quantum computation is
also expected to inform other scientific applications, even
those not yet discovered. In the below use cases, we high-
light particular computing modes and qubit technologies
that are available now, are expected to scale up signifi-
cantly in the next 2-10 years, and appear well-matched
to the application.
I. Gate-Based Quantum Simulation

The brute-force classical simulation of n interacting
qubits requires a solution to 2n complex differential equa-
tions, limiting classical computers to simulate arbitrary
dynamics on no more than about 50 qubits. One of the
most promising near-term applications of quantum com-
puters is thus the simulation of difficult quantum Hamil-
tonian models [29] such as frustrated magnetism, su-
perconductivity, and topological dynamics in condensed
matter physics or quantum field theories in nuclear and
high energy physics. There are many specialized ap-
proaches to quantum simulation [9] that may have lim-
ited tunability but may be easier to implement because
of symmetries or natural interactions in the experimental
system. However, the flexibility of universal gate-based
quantum simulators may allow the full power of quan-
tum computers to solve entire classes of models without
necessarily specializing in particular cases.

General Hamiltonian simulation evolves an initial state
according to the given Hamiltonian model of the sys-
tem under study. The goal is to minimize the gate
count as a function of system size, evolution time, de-
sired precision, and other parameters. There is a wide
range of polynomial-time quantum algorithms that solve
this problem. They roughly fall into two types: prod-
uct formulas [30, 58–61], and linear combinations of uni-
taries [62, 63]. Apart from theoretical studies aiming to
discover new efficient quantum algorithms and improve
asymptotic upper bounds, there are also resource count
and empirical performance studies [61, 64, 65] as well as
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approaches that take advantage of the spatial locality of
the Hamiltonian to reduce the gate count [66, 67].

Recent results have provided strong theoretical evi-
dence that sampling from the distribution obtained by
evolving some initial state with a Hamiltonian and then
measuring cannot be solved by any polynomial time clas-
sical algorithm [68]. This suggests that the simulation of
quantum dynamics is a problem well-suited for a solu-
tion by a quantum computer. The major open problem
is to understand how robust this exponential speedup is
to experimentally relevant noise.

Here we consider universal gate-based approaches to
quantum simulation, in its original spirit of attacking a
general class of quantum problems [29]. We assume that
a model quantum Hamiltonian is expressed in terms of
controllable interactions or gates on a collection of qubits,
allowing the simulation of arbitrary quantum processes
[30]. Such universal quantum simulations can be used to
find equilibrium properties of arbitrary Hamiltonians but
also allow the more difficult problem of evolving them in
time for simulations of quantum dynamics and nonequi-
librium processes in physical systems. Below we consider
two gate-based quantum simulation applications: varia-
tional simulations of Hamiltonian ground states and the
simulation of quantum field theories.
(a) Variational Estimation of Ground States

For many problems in quantum chemistry and ma-
terials science, it is of great interest to understand the
structure of the system electronic ground state or ther-
mal state under a given Hamiltonian. While preparing
the ground state of a general Hamiltonian (even if it is
spatially local) is believed to be hard even on a quan-
tum computer [69, 70], there are algorithms for preparing
ground states in special cases [71, 72]. Quantum Approx-
imate Optimization Algorithms (QAOA) [8], discussed
further in the next section, may also be used to heuristi-
cally approach Hamiltonian ground states [73].

Here we concentrate on the implementation of the
VQE algorithm [6] of an electronic Hamiltonian using
a gate-based approach. The general procedure of VQE
involves two steps: The first (preparation) step maps the
problem Hamiltonian to a collection of qubits. In cases
such as electronic structure in molecules or materials, this
step typically involves a transformation from the native
fermionic electron operators to spin or qubit operators
through the Jordan-Wigner or Bravyi-Kitaev transfor-
mation [74]. The binary occupancy of a fermionic lattice
site is replaced by an effective qubit through this substi-
tution. This transformation results in nonlocal “string”
operators between the effective qubits [6, 74], which typ-
ically represent the most expensive part of the quan-
tum circuit and are best expressed with highly connected
qubit graphs [75]. The second (operational) step directly
evaluates the Hamiltonian expectation with respect to an
initial quantum state parameterized in terms of variables
that are classically optimized to minimize the Hamilto-

nian function, as depicted in Fig. 3.

FIG. 3. Schematic of the measurement and feedback op-
timization in the variational quantum eigensolver algorithm
(from Ref. [34]).

(b) Simulating Dynamics in Quantum Field The-
ories

An important class of gate-based quantum simulation
is the modeling of classically intractable dynamics of
quantum field theories (QFTs) at the heart of many phe-
nomena in condensed matter, high-energy, and nuclear
physics. Quantum simulations of QFT dynamics could
shed light on many important scientific problems, includ-
ing phase transitions in the early universe, the response of
new exotic materials, explosive astrophysical events and
the inner structure of neutron stars, studies of topological
features in quantum systems, and high-energy collisions
used to search for new fundamental physics.

For scalar quantum field theories, such as those used
to describe electron densities in materials or spontaneous
symmetry breaking responsible for generating the masses
of subatomic particles, the resource estimates for map-
ping the problem onto qubit registers and the entan-
gling gates have been performed [76–78]. Early esti-
mates for a one-dimensional (1D) lattice scalar field the-
ory shows that some small-scale problems can be mapped
onto quantum computers that might become available
within the next decade. Non-Abelian gauge field theories
require even more control, although the first SU(2) calcu-
lations has been performed on IBM’s QExperience [79].
Resource estimates for qubits and entangling gates are
currently being determined for both SU(2) and SU(3)
models. The resource requirement estimates are com-
plicated by the need to explicitly enforce Gauss’s law.
Quantum chromodynamic (QCD) theory with six flavors
of quarks — each with four Dirac degrees of freedom and
three colors — requires a much larger number of qubits
per site. Low-dimensional quantum field theories that
share features of the Standard Model are beginning to
be explored with available quantum hardware [80–85].

Gate-based universal quantum simulators may be
preferable over analog simulation methods for QFT cal-
culations in the longer term, given the need for quanti-
fying uncertainties. However, there is significant value in
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performing simulations on near-term devices until error-
corrected quantum computers become available for sim-
ulation. Computations performed on present-day super-
conducting devices are limited by the qubit coherence
time, and the time-dependent behavior of the commu-
nication fabric. Measurement errors can be mitigated
for modest-sized Hilbert spaces, but this may become
challenging at larger scales due to the required classical
computing resources.

Given the current status of the hardware capabilities
and the resource requirements for QFT methods, co-
design is expected to play a key role in closing the gap.
Starting in the 1980s, co-design played an essential role
in developing high performance computing (HPC) capa-
bilities for high-energy physics theories, such as calculat-
ing lattice QCD models. An example is the co-design
team of Columbia–Brookhaven–IBM that led the design
and development of customized computational engines
for QCD. In their approach, RAM was integrated onto
the floating point unit, with a four-dimensional toroidal
communication fabric. This effort led to IBMs Blue-
Gene/L,P,Q series of supercomputers. We anticipate
that similar co-design efforts will be required for the de-
velopment of quantum devices for lattice QFT, e.g., for
an efficient evaluation of the sequence of Trotter steps
required in time evolution.

This task requires a close collaboration among a num-
ber of experts in a range of areas. First, particle, nu-
clear, and condensed matter theorists with expertise in
QFT and phenomenology are required to prioritize tar-
get observables. These problems must be mapped onto
target hardware, initial states prepared and evolved for-
ward in time, which requires efforts from quantum com-
puter scientists, developers, and engineers with detailed
knowledge and hands-on access to the devices. Circuit
optimization will be key in the near term to accomplish
the goals of the project.

Over the course of the next decade, we expect new
quantum algorithms to be developed to tackle prob-
lems including real-time dynamics, scattering and in-
elastic processes in low-dimensional gauge theories, such
as the 1D Schwinger model and Z2 models, interacting
scalar field theories and SU(N) gauge theories, and sub-
sequently extended to higher dimensions. Early imple-
mentations on advanced quantum systems are expected
to lead to new physical insights in reliable calculations
of dynamic SU(2) and QCD processes, including at fi-
nite density, into new and exotic materials, and into the
design of quantum memories for quantum devices.
(c) Physical Platform

For the above gate-based quantum simulations, we fo-
cus on the trapped ion quantum computer architecture
[75, 86] owing to its high gate fidelities, long-range con-
nectivity and flexible gate expression. Other architec-
tures such as neutral atoms [87]), and superconduct-
ing qubits [88–90] can also be considered as potential

leading candidates. The noise in trapped ion experi-
ments appears to scale sublinearly [91], indicating that
the dominant source of error may be due to a coher-
ent source, which can be suppressed through calibration
procedures and pulse-shaping techniques. This allows for
larger quantum circuit depths and permits an extension
of the practical lifespan of computational experiments,
compared to physical platforms where the error is domi-
nated by native qubit decoherence.

More flexible and expressive gate sets allow a given uni-
tary operation to be compiled down to a shorter depth
quantum circuit, thus increasing performance. Trapped
ion quantum computing allows parallel non-overlapping
gates [92], native long-range interactions (all-to-all con-
nectivity that obviates swap operations), small-angle
two-qubit rotations, and global gates that act on mul-
tiple qubits [93]. The above features are instrumental
in pushing the ability to implement deep algorithms for
gate-based quantum simulations and other applications
in practice.

A good example of this reduction in circuit complex-
ity is a key subroutine in a variational quantum algo-
rithm that takes small steps through the Hilbert space,
as shown in Fig. 4. Here, rotation operations with a small
angle dθ sandwiched by the cnot gates can be replaced
by full rotation operations and entangling Ising XX gates
evolving with a small angle. Because the single-qubit ro-
tations are generally much higher quality than the entan-
gling gates in ion traps, translating the small evolution
time from the rotation gates to the entangling gates leads
to significantly lower errors [65, 75].

• •

Rz(dθ)
=

Ry(−π/2)
XX(dθ/2)

Ry(π/2)

Ry(−π/2) Ry(π/2)

FIG. 4. In the variational quantum eigensolver algorithm
commonly applied to chemistry simulations, small changes
in the quantum state induced by controlled rotation involve
cnot gates between qubits (left). However, with the Ising or
XX gate native to ion trap quantum computers [91], these
small controlled rotations can be expressed as a small-angle
Ising gate accompanied by single-qubit rotation operations as
written. This expression greatly reduces noise [75]. The ro-
tation operations are Rx(θ) = R(θ, φ = 0), Ry(θ) = R(θ, φ =
π/2) and Rz(θ) = Rx(π/2)Ry(θ)Rx(−π/2).

Many gate-based quantum simulations have been per-
formed with ion trap quantum computers. These include
the simulation of many-body spin dynamics [94], real-
time dynamics of a lattice gauge theory (the Schwinger
model) [80], and simulations of Fermi-Hubbard ground
states [95]. To make efficient use of quantum resources,
these demonstrations map the original problem to a spin
model by exploiting the native long-range interactions,
which can be directly and efficiently implemented on an
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ion trap architecture. The second class of gate-based
simulations based on the VQE algorithm has been per-
formed with trapped ion quantum computers to calculate
the ground state of molecules, from H2 and LiH [86] to
H2O [75]. Related experiments calculated the binding
energy of the deuteron (bound proton and neutron) in
both superconducting [96] and ion trap systems [97].
II. Combinatorial Optimization with QAOA

Combinatorial optimization describes a broad class of
problems aimed at minimizing a cost function over a com-
binatorially large set of possible solutions. Examples in-
clude problems such as route finding (e.g., the traveling
salesman and other graph optimization problems), cost
minimization, and portfolio optimization. Optimization
applications may ultimately become the most general use
case for quantum computers, as they appear in nearly all
areas of the natural sciences, engineering, and social sci-
ences.

Here we concentrate on the use of QAOA [8] to solve
a particular graph optimization problem. While QAOA
can be implemented on a universal gate-based quantum
computer, the simple form of its dynamics suggests that
QAOA could be implemented on near-term quantum in-
formation processors using simpler and more direct tech-
niques than are required for building universal systems.
In what follows, we discuss the implementation of the
QAOA on the platform of optically-addressed Rydberg
atoms. This platform offers different forms of interac-
tions and controls and so is suitable for various classes of
geometries for the graph of interactions in the problem
Hamiltonian. This point is crucial: even though any NP-
complete problem can be encoded in the ground state
of a programmable Ising model, and even with nearest-
neighbor interactions on a two-dimensional lattice, the
extra overhead required to map any given problem onto
such an architecture can be large, which can strongly
limit the class of problems that can be encoded with a
given pattern of interactions. The long-range and non-
local interactions available in the Rydberg atom system
can greatly expand the range of problems that can be
addressed using a device that implements quantum ap-
proximate optimization. Identifying optimal embeddings
of the problem to be solved into particular architectures
of connections is a widely studied problem in quantum
software.
(a) Maximum Independent Set Problem

To illustrate these considerations, we focus on a spe-
cific graph optimization problem known as the Maximum
Independent Set (MIS), a well known problem involving
the search for the maximum set of vertices in a graph that
share no connection [98]. Finding the MIS is a canonical
optimization problem in the NP-hard complexity class.
The most advanced classical algorithms designed to solve
such problems exactly often display exponential scaling
for vertex sizes above 100. In particular, there are known
instances of graphs with N above 300 for which classical

supercomputers cannot find the MIS. The MIS problem
has practical applications in areas such as signal routing
in ad-hoc wireless networks such as 5G mobile networks,
finance, social network analysis, and machine learning.

The MIS problem can be encoded into the Hamiltonian

HMIS = −∆
∑
v∈V

nv + U
∑

(v,w)∈E

nvnw, (3)

where each vertex in the set of all vertices V is repre-
sented by a qubit, nv = |1〉v〈1|, E denotes the edges
connecting vertices, and U is the energy cost to excite
connected vertices. When U � 0, the ground state of
the Hamiltonian encodes the solution to the MIS prob-
lem specified by the vertices and edges V,E.

FIG. 5. Maximum Independent Set (MIS) problem on a ran-
dom Unit Disk Graph, which is natively represented in an ar-
ray of atoms with a Rydberg blockade interaction. The MIS
of this instance is labeled in red. With variable weights on
each vertex, the problem can be generalized to the maximum-
weight independent set problem. The legend shows the en-
coding of qubits in the ground and excited Rydberg state of
a neutral atom. The detuning ∆i of a driving field with reso-
nant Rabi frequency Ω controls the Rydberg blockade radius,
which is denoted by the green dashed circles surrounding each
atom and is assumed uniform (∆i = ∆).

(b) Physical Platform
The QAOA for the MIS problems can be efficiently en-

coded in the Rydberg atom platform. For example, on a
subset of graphs, the Unit Disk Graphs (UDGs), the MIS
problem can be natively represented with neutral trapped
atoms interacting via Rydberg states, without encoding
overhead. As shown in Fig. 5, every vertex maps di-
rectly onto one atom [99], and the edge cost U comes
from the Rydberg blockade constraint. Here, the strong
Rydberg–Rydberg interaction impresses a large energy
penalty for having two atoms both in excited Rydberg
states, represented by the last term of Eq. 3.
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Crucially, the specific MIS problem can be directly
encoded in the positions of the atoms (see Fig. 5),
which can be arbitrarily specified in two or three dimen-
sions using reconfigurable optical tweezer arrays based
on existing control hardware such as liquid crystal spa-
tial light modulators or digital micromirror devices [100–
102]. The driving laser pulses that execute the QAOA
algorithm can then be global, significantly reducing the
control complexity. More general MIS problems can be
approached with more sophisticated control and local
addressing capabilities. For example, local light-shifts
can be used to realize variable weights ∆i on each ver-
tex by addressing each atom with a unique driving field
frequency and thereby generalizing this situation to the
maximum-weight independent set (MWIS) problem [98].
Locally programmed interactions using site-resolved ex-
citations to Rydberg states can add additional edges be-
yond the unit disk graphs, allowing more general in-
stances of MIS problem to be efficiently encoded.

Current demonstrations of optical tweezer arrays for
neutral atoms have realized coherent evolution in 51-
atom chains [53], and scaling to larger arrays of 100–
1000 atoms is within the reach of current technology.
This opens the door to testing for quantum advan-
tage enabled by QAOA for practically relevant problems.
Trapped ion systems [103] and coherent superconduct-
ing circuits [90] also represent natural platforms for per-
forming QAOA. Existing superconducting systems sup-
port programmable Ising models with local connectivity
over 50 superconducting qubits [48], while programmable
spin models featuring long-range interactions have been
implemented in systems exceeding 50 trapped ion qubits
[104]. Such systems can also be employed for realizing
and testing QAOA on problems of increasing complex-
ity.

Beyond realizing large-scale combinatorial optimiza-
tion experimentally, there are several open challenges and
opportunities in this area. One is to identify how subsets
of NP-complete problems such as MIS can be mapped
onto other problem classes with near-term devices. For
example, how generally applicable would a fast sampling
algorithm for the unit-disk MIS problem be? Another
is to understand the optimal parameters and Hamilto-
nian H0 for implementing QAOA for a particular type of
problem. A final opportunity is to extend QAOA beyond
solving optimization problems, to the rapid preparation
of entangled states for other applications [73].
III. Quantum Error Correction and Architectures

Current quantum algorithms are limited by the num-
ber of qubits and the quality of gate operations. The
physical nature of current qubit technologies and their
lack of modularization can limit high level systems en-
gineering and computer architecture approaches to scal-
ing. In this use case, we present a vision for an inter-
disciplinary architectural goal of the “virtualization” of
qubits, or their abstract representation, through quan-

tum error corrected memories [38]. This activity requires
computer architects to design the virtualization strat-
egy, systems engineers to define and design key modules,
hardware engineers to improve the classical control and
reliability of the system, classical and quantum informa-
tion theorists to optimize error correction protocols for
the platform, and physicists to design new qubits and
gate protocols. The team requires academics to explore
the design space, industrial partners to develop equip-
ment and scale promising ideas, and national laborato-
ries to aid in the characterization of materials and testing
of devices.
(a) Qubit Virtualization

The architecture we envision separates more volatile
qubits involved in operations from highly stable qubits
stored in memory. This availability of high-quality mem-
ory can simplify device design at the cost of requiring
more serial operations. We can study the performance of
algorithms implemented on this architecture as the ratio
of active and memory qubits changes, and estimate the
required fidelity of operations and memory for achieving
key scientific goals such as simulation of molecules, mate-
rials, and high-energy physics. Furthermore, virtualiza-
tion provides an abstraction to enable computer sciences
to use different devices without the need to understand
the physical layers.

In the near term, virtualization can be performed us-
ing a heterogenous quantum architecture where certain
qubits are designed for fast operations, and other qubits
are designed for long lifetimes. The cost and benefits of
transferring quantum information to and from memory
can already be tested and optimized at this stage. In the
long term, we envision that the two qubits could corre-
spond to two quantum error correction codes: for exam-
ple, a color code for efficient operation [105] and a finite-
rate code for efficient data storage [106]. The first step in
this direction is implementing a fault-tolerant quantum
memory with a quantum error correction code.

For universal quantum computing, a broader control
space is needed, but the control problem becomes sim-
pler if our goal is to implement a fault-tolerant quantum
memory. By optimizing the use of these simple controls,
we should be able to study how the performance of the
memory improves as it scales up under realistic condi-
tions.

As the memory is built, we can employ engineering
principles to improve the lifetime of the quantum states.
A natural strategy is to develop models that track the
most likely errors at regular time intervals. Adopting
the language of wireless communications, we might refer
to this time interval as the channel coherence time and
to this process as the channel estimation phase. To opti-
mize for the next time interval, we might develop strate-
gies to efficiently synthesize a quantum error correction
code that possesses logical operators that are resilient to
those errors identified by the previous channel estimation
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phase, thereby relaxing full fault-tolerance. Note that the
few well-known quantum error correction codes will al-
ways be feasible solutions, and our strategy can only do
better.
(b) Virtualization at the Hardware Level

In this use case, we lay out a vertically integrated
project to develop virtualized qubits based on physi-
cal superconducting qubits combined into fault-tolerant
qubits. We emphasize that both the specific choices of
the top architecture and the physical platform are only
examples for concreteness.

Superconducting qubits occupy a large design space
with potential tradeoffs among gate speed, coherence
time, and readout fidelity [107]. Recent work has ex-
amined transferring quantum information from transmon
qubits that can be controlled and processed to cavity
qubits with long memory times [108]. This design space
allows us to test the ideas of modularization and virtual-
ization with devices that can be built immediately.

Consider, for example, a system of two coupled trans-
mons and two multi-mode cavities. The cavities can store
N qubits of information that can be readily swapped to
each transmon, and two-qubit quantum gates can act on
the pair of transmons. Computer scientists can study ex-
tended models of the system to examine tradeoffs (with
approximately fixed physics parameters) as the number
of qubits and cavities increases. Meanwhile, physicists
can continue to develop better methods for transferring
information between cavities and transmons [109]. This
approach could be combined with bosonic codes that can
further extend the memory times of cavity qubits [110].

A heterogeneous design for superconducting quantum
circuits, combining a variety of qubits and devices, could
be more powerful than any single-qubit approach. One
could consider a system that combines transmons, cavity-
encoded qubits [110], “0− π” qubits [111], and other de-
signs [107], each with its own role in the system. We en-
vision that this heterogeneous design incorporating noise
suppression at the device level will be fed into a quan-
tum error-correcting code arrayed on a two-dimensional
lattice, which provides further protection at the software
level. For error correction via quantum coding to work
effectively, improvements will be needed in both the un-
derlying physics and the engineering of the control sys-
tems.

Separate from the challenge of memory and more diffi-
cult is the implementation of universal fault-tolerant op-
erations. We expect that this is a place where hardware
dependent solutions can yield a significant advantage.
For superconductors, a promising area of research is to
develop fault-tolerant gates in the context of the bosonic
codes. An alternate approach is to design a circuit that
implements the light-weight universal gate sets on small
block codes. Realizing two universal fault-tolerant qubits
is a grand challenge that will stretch our ability to make
large and reliable systems.

Architectural requirements for abstract quantum sys-
tems place constraints and design requirements on engi-
neered quantum systems. The construction of systems
that achieve these goals requires tight collaboration be-
tween computer scientists, engineers, and physicists.
IV. Standard Quantum Algorithms

Historically, Shor’s [26] and Grover’s [27] algorithms,
which are sometimes referred to as “textbook algo-
rithms,” were the first algorithms of practical relevance
where a quantum computer offered a dramatic speedup
over the best known classical approaches. Here we con-
sider co-design problems and full-stack development op-
portunities that arise from mapping these textbook algo-
rithms to quantum computing platforms.

At the top of the stack, challenges that both algorithms
face include implementing classical oracles with quantum
gates. In Grover’s algorithm, the oracle can be imple-
mented using Bennett’s pebbling game [112]. However,
it is a non-trivial task to find an efficient reversible cir-
cuit, since the most efficient implementation on a quan-
tum computer may not follow the structure suggested
by a given classical algorithmic description, even when
the latter is efficient. There are also intriguing questions
in terms of how we can use classical resources to aid in
quantum algorithms. For example, in Shor’s algorithm
we can leverage classical optimizations such as windowed
arithmetic [113], or trade off quantum circuit complexity
with classical post-processing complexity [39, 114].

One of the key challenges in implementing textbook
algorithms in physical systems is to optimize these algo-
rithms for a given qubit connectivity and native gate set.
While these technology-dependent factors will not affect
asymptotic scaling, they could greatly influence whether
these algorithms can be implemented on near-term de-
vices. For instance, high connectivity between qubits can
provide significant advantages in algorithm implementa-
tion [91]. Also, in this vein, work has been done to imple-
ment Shor’s algorithm with a constrained geometry (1D
nearest neighbor [115, 116]), but there are many open
questions that involve collaborations across the stack.

Developing implementations of Shor’s algorithm and
Grover’s algorithm will provide exciting avenues for im-
proved error correction, detection, and mitigation. While
error correction codes are often designed to correct spe-
cific types of errors for particular physical systems, con-
sidering error correction for textbook algorithms provides
a basis for designing error correction for both application
and hardware. Because the output of these textbook al-
gorithms is easily verifiable, they are good testbeds for er-
ror mitigation and characterization. For example, simple
error correction/mitigation circuits, including random-
ized compiling [117, 118], could be implemented in the
context of small implementations of Grovers algorithm
and Shors algorithm to better understand the challenges
in integrating these protocols into more complex ones.
While this approach has been used in the quantum an-
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nealing community [119], it could be fruitful to explore
in more detail for textbook gate-based algorithms.

Grovers algorithm seems to break down in the presence
of a particular type of error [120, 121] that appears to
be unrealistic in actual physical systems. For other algo-
rithms, realistic errors do not appear to be as detrimental
[122]. Testing textbook algorithms on different architec-
tures with and without error mitigation would provide
us with a way to explore the space of errors relative to
a specific algorithm, and give insight into which realistic
errors are critical. This would inform error mitigation
(not necessarily correction) techniques at both the code
and hardware level, tailored to specific algorithms. This
way of viewing error correction calls for a full integra-
tion of experts at the hardware, software, and algorithm
design levels.

We also expect that the work on these textbook al-
gorithms will lead to improved modularity in the quan-
tum computing stack. In software design, modularity
refers to the idea of decomposing a large program into
smaller functional units that are independent and whose
implementations can be interchanged. Modular design
is a scalable technique that allows the development of
complex algorithms while focusing on small modules,
each containing a specific and well isolated functionality.
These modules can exist both at the software level as well
as at the hardware level. As an example in classical com-
puting, the increased use of machine learning algorithms
and cryptocurrency mining has led to a repurposing of
GPUs.

In the design of full implementations of quantum algo-
rithms such as Shors and Grovers, modular design can be
applied by using library functions that encapsulate cir-
cuits for which an optimized implementation was derived
earlier. Examples include quantum Fourier transforms
[1, 123, 124], multiple-control gates [125, 126], libraries
for integer arithmetic and finite fields, and many domain-
specific applications such as chemistry, optimization, and
finance [127–129]. All major quantum computing pro-
gramming languages are open source, including Googles
Cirq, IBMs QisKit, Microsofts Quantum Development
Kit, and Rigettis Quil, which facilitates the development
and contribution of such libraries. Highly optimized li-
braries that are adapted to specific target architectures,
as well as compilers that can leverage such libraries and
further optimize code, are great opportunities for large-
scale collaborative efforts between academia, industry,
and national labs.

Like libraries, programming patterns provide opportu-
nities for modularity. Programming patterns capture a
recurring quantum circuit design solution that is appli-
cable in a broad range of situations. Typically, a pattern
consists of a skeleton circuit with subroutines that can
be instantiated independently. Examples of patterns are
various forms of Quantum Phase Estimation (QPE) [130–
133], amplitude amplification [27], period finding [134],

hidden subgroup problems [135], hidden shift problems
[136], and quantum walks [137].

Finally, we expect that implementing textbook algo-
rithms will become important benchmarks for the quan-
tum computing stack as a whole and also at the level of
individual components. The need for such benchmarks is
evident in the recent proliferation of a variety of bench-
marks that test various aspects and components of quan-
tum systems and entire systems, such as quantum vol-
ume [138], two-qubit fidelity, cross-entropy [95, 139, 140],
probability of success, reversible computing [141], and
the active IEEE working group project [142]. It is not
likely that any single benchmark will characterize all rel-
evant aspects of a quantum computer system. However,
implementing textbook algorithms provides an easy-to-
verify test of the full quantum system from hardware to
software, as all aspects of the system must work in con-
cert to produce the desired output.

Outlook and Paths Forward
The field of quantum computing is now in an era of

quantum systems development, where full stack consid-
eration is poised to accelerate progress in building, us-
ing, and optimizing quantum computers. The birth and
development of quantum computers have taken place in
a scientific atmosphere, and we believe that the largest
opportunities in quantum computing applications in the
coming decade will continue in the realm of scientific
discovery. This stems from the physics of good qubit
systems, and the electrical and systems engineering of
controlling them to computer science approaches in op-
timizing the expression of algorithms, finally to be used
for nearly all areas of science that will reap the benefits
of a new type of computing tool.
Community building and engagement

Quantum computing pulls the rug out from under-
neath the principles of conventional computing, and its
progress will be accelerated by the active engagement
of a broad society of users. One mechanism is to under-
write various forms of challenge competitions, which have
been successful in stimulating interest and engagement in
conventional computing platforms while reaching a large
group of coders (e.g., Google Jams, Facebook, and Top-
coder competitions). In the quantum computing world,
such challenges have already been successfully held, such
as the IBM layout and computation challenges, the Mi-
crosoft Q# coding challenges, and the meQuanics quan-
tum circuit minimization challenge. Supporting more
challenges like these might help to engage a future quan-
tum workforce around concrete and small scale problems
as well as stimulate a cultural shift toward quantum com-
putational thinking. These events can also exploit the
growing quantum cloud presence by running routines on
real hardware and their virtual simulators.

Universities and national laboratories across the coun-
try are setting up quantum information science and tech-
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nology centers to grow their faculty, unify with their re-
searchers and students, and engage with an increasingly
fascinated and enthusiastic general public. These centers,
often regional in nature, might play an important role in
the future, growing to become large research hubs and
advancing state-of-the-art quantum information science.
However, they currently play a limited role in consolidat-
ing resources, coordinating efforts, and developing collab-
orative research programs between industry, academia,
and national laboratories. All efforts discussed in this
roadmap to accelerate the progress in quantum comput-
ing should coordinate with these centers of excellence,
stimulating the exchange of people and ideas, and grow-
ing their potential.
Quantum Computing Laboratory User Facilities

The grand challenges of quantum computing, from
finding useful quantum applications to building the ma-
chines themselves, are well-motivated by the vast po-
tential scientific and technological opportunities that lie
ahead. It is the consensus of the quantum computing
community as represented by our workshop that scien-
tific quantum computing user facilities (QCLabs), bring-
ing all of the science, computer science, and engineering
of the quantum computer stack together in one place,
may best address these challenges and opportunities.

Each QCLab could have its own type of qubit sys-
tem, scaling architecture plans, or use-case family, for
instance. But the QCLabs would also provide the ca-
pabilities to realize these complex systems and enable
collaboration to feature quantum computer co-design up
and down the quantum stack, continually iterating on de-
vice design, software optimization, and use cases. These
facilities would feature a deep bench of scientists and en-
gineers permanently on site (faculty, staff engineers, etc.),
but would also support visitors from all levels: from theo-
rists and algorithmic designers, computer scientists, elec-
trical and computer engineers, to physicists, chemists,
and materials scientists. Each level would be expected
to contribute to not just the use of the devices, but also
in the continual building of next generations of quantum
computers at the QCLab.

QCLabs are expected to be highly leveraged by indus-
trial efforts in quantum computing. There are many in-
dustrial teams now building ever more powerful quantum
computing systems, with many of these efforts providing
cloud access to their systems. We expect the availabil-
ity of various types of industrial quantum computers to
grow rapidly in the coming years. These services will
have varying characteristics such as qubit platform, qubit
number, gate depth, and level of connectivity and expres-
sion, that can be exploited by the scientific community.
However, these cloud services will not likely allow users
to dig deep into the stack to potentially optimize the low
level control of qubits in order to achieve a particular
scientific application, and such systems will not likely be
built for scientific research goals having no obvious com-

mercial use. Moreover, commercial quantum computer
cloud providers may not want much flexibility in their
system design, as this could degrade high level perfor-
mance for a widely available and reliable cloud service.
We envision that the QCLabs would leverage industrial
cloud quantum computers in order to assist and bench-
mark aspects of the QCLab activity itself. The industry
should be very interested in this interaction, as QCLabs
may help find quantum killer applications of the future.
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