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Soils harbor complex biological processes intertwined with metabolic inputs from
microbes and plants. Measuring the soil metabolome can reveal active metabolic
pathways, providing insight into the presence of specific organisms and ecological
interactions. A subset of the metabolome is volatile; however, current soil studies
rarely consider volatile organic compounds (VOCs), contributing to biases in sample
processing and metabolomic analytical techniques. Therefore, we hypothesize that
overall, the volatility of detected compounds measured using current metabolomic
analytical techniques will be lower than undetected compounds, a reflection of missed
VOCs. To illustrate this, we examined a peatland metabolomic dataset collected
using three common metabolomic analytical techniques: nuclear magnetic resonance
(NMR), gas chromatography-mass spectroscopy (GC-MS), and fourier-transform ion
cyclotron resonance mass spectrometry (FT-ICR-MS). We mapped the compounds
to three metabolic pathways (monoterpenoid biosynthesis, diterpenoid biosynthesis,
and polycyclic aromatic hydrocarbon degradation), chosen for their activity in peatland
ecosystems and involvement of VOCs. We estimated the volatility of the compounds
by calculating relative volatility indices (RVIs), and as hypothesized, the average RVI of
undetected compounds within each of our focal pathways was higher than detected
compounds (p < 0.001). Moreover, higher RVI compounds were absent even in sub-
pathways where lower RVI compounds were observed. Our findings suggest that typical
soil metabolomic analytical techniques may overlook VOCs and leave missing links
in metabolic pathways. To more completely represent the volatile fraction of the soail
metabolome, we suggest that environmental scientists take into consideration these
biases when designing and interpreting their data and/or add direct online measurement
methods that capture the integral role of VOCs in soil systems.

Keywords: soil metabolome, volatilome, volatile organic compounds, soil microbial processes, GC-MS, FT-ICR-
MS, PTR-TOF-MS, metabolomics

Abbreviations: Mono Bio, monoterpenoid biosynthesis; Di Bio, diterpenoid biosynthesis; PAH Deg, polycyclic aromatic
hydrocarbon degradation; RV], relative volatility index; NMR, nuclear magnetic resonance; GC-CI-MS, gas chromatography
coupled to chemical ionization mass spectrometry; GC-EI-MS, gas chromatography electron-ionization mass spectrometry;
LC-EI-MS, liquid chromatography electron-ionization mass spectroscopy; FTICR-MS, fourier-transform ion cyclotron
resonance mass spectrometry; PTR-TOF-MS, proton-transfer-reaction time-of-flight mass spectrometry.
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INTRODUCTION

Asa complex and heterogeneous ecosystem, soil harbors a myriad
of biological processes that are challenging to uncover. Two
major contributors to biological soil processes are microbial
communities and plant roots. Soil microbial communities
are engines of chemical interconversion—microbes produce
and consume chemical substrates for metabolism, generating
metabolites as waste by-products. Tightly interwoven with
the soil microbial network, plant roots also emit metabolites
as exudates (Bertin et al., 2003; Vives-Peris et al., 2020).
These diverse metabolites form the metabolome, which can
be interrogated to provide insight into belowground biological
processes. Volatile metabolites, constituting the volatilome
(Amann et al, 2014), represent a part of the comprehensive
metabolome. Volatile organic compounds (VOCs) have high
vapor pressures causing them to enter the gaseous phase
depending on environmental conditions. While atmospheric
chemists routinely measure VOCs directly using specialized
techniques, VOCs are rarely considered in the burgeoning
collection of soil microbial metabolomic studies. Could removing
bias in sample processing and including more direct measurements
of VOCs help fill in a missing, important part of the soil
metabolome?

Challenges inherent to most approaches evaluating soil
organic matter composition and soil metabolomics make it
difficult to simultaneously detect VOC:s. First, soil metabolomic
field studies start with collecting soil samples to bring back
to the lab for sample processing and metabolic measurements.
These ex-situ methods overlook VOCs that escape to the
atmosphere either prior to sample collection or during disruptive
soil sampling (Hewitt, 1996). This artifact may even affect
VOC-resolving techniques, such as gas chromatography-mass
spectrometry (GC-MS), where VOC loss to the atmosphere
prior to sample analysis is a possibility (Eriksson et al., 2001).
Second, some metabolomics measurement techniques require
an initial liquid chromatography (LC) step, as is the case
with LC-mass spectrometry (LC-MS) to characterize compound
structure. This process immediately limits the detectable VOCs
to those dissolved in the liquid phase. The solvent used to
prepare samples in the lab for LC and other direct injection
methods can also bias the extracted metabolites from soil
samples; methanol preferentially extracts semipolar to nonpolar
molecules, whereas water extracts polar molecules (Hollywood
et al., 2006). Furthermore, soluble VOCs may partition between
the gas and liquid phases making quantification unreliable,
while insoluble VOCs will go undetected. Finally, inherent
biases, including target size of compounds and ionization mode
(positive vs negative), exist for each of the most widely used
metabolomic analysis techniques (Table 1). Some of these
challenges to measuring the soil volatilome may be addressed
by adapting online measurement methods from atmospheric
chemistry that directly measure VOCs in the gas phase such
as proton-transfer-reaction time of flight MS (PTR-TOF-MS).
Increasingly, the soil volatilome is being characterized in its own
right using these approaches, either by measuring gases at the
soil-atmosphere surface (e.g., using soil incubation chambers

[Asensio et al., 2007]), and recently with belowground diffusive
probes to measure VOC:s in situ (Gil-Loaiza et al., 2020).

VOCs also play important ecological roles in soil and influence
atmospheric chemistry. Unlike their non-volatile counterparts,
VOCs readily exchange between the soil and atmosphere. In
the atmosphere, VOCs are active in photochemical reactions
and secondary aerosol formation, and thereby affect air quality
(Chameides et al., 1988; Park et al.,, 2013; Ghirardo et al,
2020), climate (Miiller et al., 2017), and precipitation dynamics
(Zhao et al., 2016). In the soil, VOCs are important signaling
molecules that drive microbe-microbe, plant-microbe, and plant-
plant interactions (Penuelas et al., 2014). Specifically, like non-
volatile metabolites, microbial VOCs can promote plant growth
(Tahir et al., 2017; Tyagi et al, 2018) and plant-root VOCs
can either deter or attract microbes (Bitas et al., 2013). But
unlike non-volatile metabolites, VOCs diffuse through soil more
readily, extending their zone of influence. For example, while the
rhizosphere zone influenced by root exudates may be restricted to
millimeter-scales for non-volatile compounds, VOCs may diffuse
centimeters or farther from roots, thereby extending the reach
of the effective rhizosphere (de la Porte et al., 2020). These
examples emphasize some of the unique roles of VOCs in the
soil and signify that capturing VOCs within the complete soil
metabolome is important for resolving belowground processes
and aboveground interactions.

Despite the important roles of soil VOCs, we argue that
VOCs have often been overlooked in soil metabolomic studies.
These studies typically map metabolites to metabolic pathways
to guide expectations for specific biological processes. However,
metabolite volatility is rarely considered, even in cases where
standard metabolomic analytical techniques capture VOCs. In
fact, the volatility of many soil organic compounds is unknown,
confounding our current understanding of whether VOCs
are underrepresented. Despite a lack of measurements of the
volatility of organic compounds, tools that predict volatility from
molecular functional groups (Hilal et al., 2007; Nannoolal et al.,
2008; Pankow and Asher, 2008) have been widely adopted by the
atmospheric chemistry community.

Here, we integrate disciplinary approaches to predict
metabolite volatility in three VOC-containing metabolic
pathways. We show that compounds with high volatility are
disproportionately undetected in a peatland metabolomic dataset
derived from three techniques (GC-MS, Fourier-transform ion
cyclotron resonance MS [FTICR-MS] by direct injection, and
nuclear magnetic resonance [NMR]). The peatland ecosystem is
ideal for evaluating the representation of VOCs in metabolomics
because we expect high quantities of VOCs (Seewald et al., 2010)
as fermentation products of anaerobic metabolism in water-
logged, anoxic conditions. This approach establishes a baseline
understanding of the soil volatilome and the implications of its
underrepresentation in current soil metabolomics studies.

CONCEPT

To predict the volatility of metabolites along metabolic
pathways, we adapted tools used to estimate VOC partitioning
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TABLE 1 | Analytical capabilities and biases of common soil metabolomic analytical techniques.

Method Measurement and chemical Biases Recommendations for targeting
interpretation VOCs and other biases
In situ mea- Sample Chemical lonization? Limited to
surement? extraction? mass range database?
Sample - Water (polar compounds). - Folch extraction biased against
Extraction - Methanol (non-polar terpenes.
compounds). - Recommend using solvent that
- Folch sequential methanol, maximizes VOC extraction (Rowan,
chloroform, and water (non-polar 2011), or solvent-free method (e.g.,
and polar compounds in SPME).
bi-phasic layers.)* (Only the top
aqueous layer for this study).
NMR* - Measures interaction of nuclear no yes <100 Da no yes - Targets primary metabolites only,
spins under magnetic fields.* Including small VOCs.
- Extracted samples dried and - Low sensitivity.
reconstituted in water.*
- Obtain structural isomers/
chemical structures and
compound concentrations.*
GC-EI-MS* - Measures retention times and no yes 1-variable Da yes yes - Choose column/instrument
m/z. design that will maximize VOC
- Samples dried and GC detection.
derivatized.” - Can collect samples in absorptive
- Obtain retention time index, m/z cartridges to trap VOCs.
charge, and fragmentation
pattern.”
LC-El- MS - Measures retention times and no yes 1-variable Da yes yes - Not recommended for VOCs
m/z on liquid samples.
- Obtain retention time index, m/z
charge, and fragmentation
pattern.
FT-ICR-MS* - Measures m/z of liquid phase no yes 200-1,200 yes no
(ESI") and gas phase (APPI). Da - Affected by ionization efficiency
- Obtain exact m/z, then perform (i.e., carboxylic acid ionizes better
formula assignment.* than sugars).
- Mass may match multiple
isomers.
PTR-TOF-MS - Measures m/z of gas-phase yes no 19-500 Da yes no - Good for VOCs.
molecules. - Some fragmentation and low
- Obtain exact m/z with elemental transmission for low volatility
identification (e.g., CxHyOz) of analytes.
gas-phase molecules
GC-CI-MS Measures retention times and yes no 19-500 Da yes yes - Good for VOCs.
(e.g., GC-PTR-  m/z of gas-phase molecules. - Volatility range is dependent on
TOF-MS) - Direct injection the chromatography column.

- Obtain structural identification
(e.g., benzene) by combining
elemental identification with
retention.

*Methods used in peatland dataset presented in this paper. NMR: Varian Direct Drive 600 MHz spectrometer. GC-EI-MS: HP-5MS column and Aglent GC 7980A coupled
with single quadrupole MSD 5975C. FT-ICR-MS: 12 Tesla Bruker FTICR mass spectrometer.
NMR, nuclear magnetic resonance; GC-EI-MS, gas-chromatography electron-ionization mass spectrometry; SPME, solid phase microextraction; LC-EI-MS, liquid-
chromatography electron-ionization mass spectrometry; APPI, atmospheric pressure photo ionization; ESI, electron spray ionization; m/z, mass-to-charge ratio;
FTICR-MS, fourier-transform ion cyclotron resonance mass spectrometry; PTR-TOF-MS, proton-transfer-reaction time-of-fight mass spectrometry; GC-CI-MS,
Gas-chromatography coupled to chemical ionization mass spectrometry.

between the gaseous and condensed aerosol phases under
the assumption of standard conditions (i.e., temperature and
pressure) and dry sorbent material. Detailed discussions of
properties of and factors affecting volatility have been well

described elsewhere (Hilal et al., 2003; Nannoolal et al., 2008;
Compernolle et al., 2011; Tang et al, 2019). We calculated
metabolite vapor pressure (P; atm) using SIMPOL.1 (Pankow
and Asher, 2008), which accounts for the impact of functional
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groups. Specifically, we estimated vapor pressure using the
following equation:

log,o P =bo+ Z Vibg.
k

for functional groups k = 1, 2, 3..., where by is a constant, by
is the functional group contribution term for group k, and v is
the number of groups of type k in the compound. For example,
hydroxyl (—OH), carboxylic acid (—C[O]OH), ketone (O = O),
carbon double bond (C = C), and aromatic ring functional groups
each decrease P to a different degree. The method did not specify
the impact of phosphate groups, which are common in metabolic
pathways, so we used nitrate as a proxy with the assumption that
these functional groups have a similar relative contribution to P
(Nannoolal et al., 2008).

The volatility of VOCs in a given environment can be
expressed by the tendency to partition to the gas vs condensed
phase. In the atmosphere, VOC partitioning () to the
gas phase increases with vapor pressure (C*), which is by
convention converted using the ideal gas law to mass-based
saturation vapor concentration (g m~3) that accounts for
molecular mass (log1oC* = log1o(PM/RT), where M is molecular
mass, R the universal gas constant, and T temperature).
Under clean atmospheric conditions, thresholds for nonvolatile,
intermediate volatility, and volatile are on the order C* = 0.01
pg m=3 1 pg m~3 and 100 pg m~3, respectively, or
more conveniently on a log scale: log;oC* = —2, 0, and 2
(Donahue et al., 2006). VOC partitioning also depends on
the total availability of condensed-phase organic molecules
(e.g., total aerosol; Cryyy). The same VOC will appear less
‘volatile’ in a polluted atmosphere with greater partitioning on
high aerosol loadings [&; = 1/(1+C;*/Cryg)]. Soil contains
large quantities of organic matter, but theories linking soil
Crotal to thresholds for volatility in the subsurface have
not been established. Here, we therefore report a relative
volatility index (RVI) using log;oC* (RVI = log;oC*) as
the volatility scale, with the understanding that gas phase
partitioning will be dependent upon the environment in
soil pores (temperature, moisture, pressure) or at the soil-
atmosphere interface. While the RVI does not give an
absolute indication of whether a compound is volatile in
the soil, it can be used to compare compound volatilities
relative to one another.

To provide a reference framework for assessing the extent
of detected volatiles, we used metabolic pathway maps that
visualize metabolic reactions and their intermediates. Metabolic
pathway maps, such as those in the KEGG metabolic database
(Kanehisa and Goto, 2000), help soil scientists visualize active soil
processes. To illustrate our concept, we assessed a peatland soil
metabolomic dataset (generated using typical soil metabolomic
analytical techniques that first extracted metabolites from soil
(Folch et al., 1957) for analysis by FTICR-MS, 'H NMR, and
GC-MS (Wilson et al., 2021) (methods included in Table 1).
While FTICR-MS provides compound masses that can be used
to predict formulae, 'H NMR, and GC-MS provides m/z values
that must be matched to compounds in reference databases. For

all metabolite analysis, previously reported methods, standards
for peak picking, compound databases, and formula assignment
were used (e.g., Weljie et al., 2006; Hiller et al., 2009; Kind et al.,
2009; Tolici et al., 2017; Tfaily et al., 2018).

All metabolomic data were combined, matched to KEGG
compound IDs when possible, and mapped to pathways using
the KEGG Pathway Mapper (Kanehisa and Sato, 2020). We
note that some formulas matched to more than one isomer or
compound, and all matches were included in this analysis. We
selected three VOC-containing pathways that we expect to be
present in peatland ecosystems: (1) monoterpenoid biosynthesis
(Mono Bio), describing the formation of monoterpenes which
are highly volatile; (2) diterpenoid biosynthesis (Di Bio),
describing the formation of diterpenes which include many non-
volatile compounds with a few exceptions; and (3) polycyclic
aromatic hydrocarbon degradation (PAH Deg), describing the
breakdown of hydrocarbons and including many semi-volatile
compounds. Along these pathways, we calculated average RVIs
for detected and undetected compounds in the peatland dataset
and tested for significant differences using non-parametric Mann
Whitney U-test.

OVERALL PATTERNS

In all our focal pathways, most compounds were detected
using FTICR-MS, with only phthalate detected by GC-MS and
catechol by NMR (both from the PAH Deg pathway). All these
pathways contain mostly secondary metabolites, compounds that
tend to exceed the detectable target range of NMR (Table 1).
NMR is well suited to measure smaller molecules that are
in higher abundance, particularly primary metabolites, some
of which are VOCs (i.e., catechol, methanol, and acetone).
Indeed, the average RVI of NMR-detected compounds across
all three pathways was +2.1 £ 7.2. Therefore, NMR may
be a good option for detection of small, primary VOC
metabolites, however, the technique suffers from biases that
may preclude detection of many VOCs (Table 1). On the
other hand, based on the RVIs of the compounds in our focal
pathways, the GC-MS and FTICR-MS standard soil metabolomic
analysis techniques were better suited to detect compounds with
lower volatility.

Biosynthesis Pathways

Diterpenoid Biosynthesis

Diterpenoids are a class of molecular compounds containing
four joined isoprene (CsHg) units that include momilactones,
oryzalexins, gibberellins, and kaurenes. The capacity to
biosynthesize diterpenoids is present in plants, fungi, and
select bacteria (Gutiérrez-Manero et al., 2001; Zi et al,
2014; Tang et al,, 2015). The roles of diterpenoids in plants
are diverse and include pathogen defense, plant growth
effectors, signaling, and abiotic stress responses (Lu et al,
2018; Murphy and Zerbe, 2020). Fungi and bacteria also
produce diterpenoids as antimicrobial agents and plant
growth promoters (de Boer and de Vries-van Leeuwen, 2012;
Zhao et al., 2018).
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We elaborated on the Di Bio pathway because a high
proportion of metabolites were detected in the peatland dataset
(40.8%; Figure 1A), strongly suggesting that this metabolism was
active in the peatland. Previous studies in peatland ecosystems
examining VOC emissions in situ (PTR-TOF) also detected
diterpenes (Li et al., 2020), signifying the presence of volatile
diterpenes in peatlands. In our peatland dataset, the average RVI
of undetected compounds was significantly higher than those
detected (RVL,,,detected = —0.97 & 5.7 v§ RV gprocted = —4.6 £ 2.8,
p < 0.0001; Figure 1A). After removing five undetected outliers
with extremely low RVIs (—14, —16, —19, —21, and —26),
RV, detected = +0.04 = 3.4. This indicates a preference for
detection of compounds with lower volatilities by standard
metabolomic methods.

A closer examination of the gibberellin biosynthesis sub
pathway within the Di Bio pathway shows that almost all of
the gibberellins were detected in the peatland dataset; however,
there were a series of undetected intermediate compounds
on the pathway to their production (Figure 1B). Gibberellins
are plant hormones that promote growth and root elongation
(Tanimoto, 2005), and even some plant growth promoting
bacteria can also produce gibberellins (Gutiérrez-Maiiero et al.,
2001; Bottini et al., 2004). Within this sub pathway, five
compounds between ent-Copalyl-PP and GA12-aldehyde were
undetected (Figure 1B) and, furthermore, had higher average
RVIs than the detected compounds (RVI,,, gerected = +0.34 £ 2.2
vs RVIgerecteda = —54 £ 2.1, p < 0.0001). To support the
SIMPOL.1 prediction that these undetected kaurene compounds
had high volatility, previous research has found kaurene to be
volatile and emitted by plant flowers, stems, leaves, and roots
(Yanez-Serrano et al., 2018). The capacity to synthesize kaurene
compounds within this sub pathway is shared between plants,
fungi, and bacteria (Salazar-Cerezo et al, 2018). Therefore,
kaurene should be produced regardless of source, but may remain
undetected due to its higher volatility.

Monoterpenoid Biosynthesis
Monoterpenoids are molecules with two joined isoprene units
that include a-pinene, linalool, camphor, and iridoids. Plants are
the primary producers of monoterpenoids, and there are very few
reports of bacteria or fungi capable of this synthesis (Penuelas
et al.,, 2014). It is well established that plants emit monoterpenes
from flowers to attract pollinators (Barragin-Fonseca et al., 2020)
and from their roots to attract beneficial microbes and small
eukaryotes like nematodes (Ali et al., 2011). This release of
monoterpenes also deters pathogens using their antimicrobial
and anti-fungicidal attributes (Lee et al., 2016; Reis et al., 2016).
We focused on the Mono Bio pathway map because, unlike
diterpenes, most monoterpenes are volatile, and we therefore
expected fewer compounds from this pathway to be present
in our peatland dataset. Indeed, we detected only 20% of the
compounds in the Mono Bio pathway (Figure 1A). As expected,
the overall RVIs were higher in the Mono Bio than the Di Bio
pathway, signifying a higher overall volatility of the monoterpene
compounds (42.7 vs. —1.6, respectively). Similar to the Di Bio
pathway, the average volatility of the compounds detected were

significantly lower than those undetected (RV1,,;,4esected = 5.4 vs.
RVIgetected = —1.3, p < 0.001).

The sub pathway to iridoid compound biosynthesis contained
a majority of the detected compounds including loganin,
secologanin, and laganate (Figure 1C). These detected iridoids
had a lower volatility than the seven missing compound
intermediates stemming from Gereanyl-PP (RVL,,geected = +2.79
vs. RVIjerected = —8.94, p < 0.001; Figure 1C). This represents
another example of intermediate metabolites that should be
present in the soil but are absent from the dataset and have a
significantly higher volatility.

Degradation Pathway

Polycyclic Aromatic Hydrocarbon Degradation
Polycyclic aromatic hydrocarbons (PAHs), a class of chemicals
with two or more benzene rings fused together, occur naturally
in coal, oil, and gasoline or can be produced through the
incomplete combustion of these biomasses. PAHs in soils are
often from anthropogenic sources as fossil fuel combustion
creates atmospheric emissions that deposit on land (Malawska
et al., 2006), but natural PAHs can also form, for example,
from microbial decomposition of plant residues in aeration-
exposed peatlands that go through seasonal thaws (Gabov
et al., 2020). Soils, particularly peatlands, are the main reservoir
for PAHs in the environment (Wilcke and Amelung, 2000)
where PAHs are persistent and difficult to break-down due
to their hydrophobic properties causing them to strongly
bind to soil particles (Gabov et al, 2020). Some bacteria
(Déziel et al., 1996; Ghosal et al., 2016) and fungi (Hammel,
1995; Kadri et al., 2017) are capable of PAH degradation,
however, in peatlands, PAHs accumulate at fast rates due
to low degradation rates in the highly anaerobic conditions
with high organic content. Yet, some peatlands are capable
of higher degradation rates; for example, Ledum peatlands
can degrade PAHs at a greater rate than Sphagnum peatlands
(Wang et al., 2019).

We focused on the PAH Deg pathway because, as expected,
our peatland dataset contained a high number of compounds
this pathway (40%, Figure 1A). Furthermore, PAHs and
their degradation products are semi-volatile (Ghosal et al,
2016), therefore, have the potential to be missed using
standard metabolomic techniques. Consistent with our above
findings, the average volatility of the detected compounds
was significantly lower than those that were undetected
RV, detected = +0.88 £+ 2.4 vs RVIjppered = —2.2 + 2.1,
p < 0.001).

Compounds from sub-pathways within the PAH Deg pathway
were detected in the peatland dataset to different degrees.
From the benzo[a]pyrene degradation sub-pathway, almost all
compounds were detected, except for benzola]pyrene itself.
Benzo[a]pyrene is the largest PAH with six rings, and the
compounds from this sub pathway had the lowest volatilities
overall (average RVI = —3.5 £ 2.3). In contrast, compounds
from the other three sub-pathways for pyrene, anthracene,
phenanthrene, and fluorene have more patchy detection, but also
higher RVIs on average. For example, anthracene, a PAH with
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three rings, and its degradation products have on average RVI of
+0.20 £ 2.6 (for comparison of Benzo[a]pyrene and anthracene
degradation see Figure 1D).

CONCLUSION

Here, we provide compelling evidence that typical soil
metabolomic analytical techniques miss some soil VOCs and
therefore underestimate the role of the volatilome in the total soil
metabolome and make it difficult to conclude which pathways
are active. We showed that compounds undetected in a peatland
dataset had significantly higher estimated volatilities than those
detected within the context of three important VOC-containing
metabolic pathway. There are several reasons that a compound
could be undetected, including low steady state concentrations,
chemical instability, short lifetime, and fast metabolism. While
these other processes could be affecting compound detectability,
we argue that non-volatile compounds are just as susceptible as
volatile compounds, and, therefore, do not affect our conclusions.
Given the plethora of known and currently unknown metabolic
pathways in soil, these results only begin to unearth the
potential for a missing volatilome in current soil metabolomic
research projects.

Already, researchers often use more than one measurement
method because no single technique can capture all metabolites
in a sample. While existing techniques can be tuned to target
specific compounds, there is currently no global method that
can provide molecular identification of all chemicals in a
system at high time resolution. Each technique is specialized
to target different sizes and classes of compounds and comes
with its own biases depending on how samples were processed
and data analyzed (Table 1). Furthermore, biases inherent in
sample collection, extraction, and measurement can compound,
therefore, the methodology for each step should be carefully
considered. Adjustments in sample processing (i.e., collecting
samples in air-tight containers or capturing VOCs in adsorptive
cartridges) and selection of analysis methods could help gear
soil metabolomic measurement techniques to capture more
VOCGs. Additionally, in situ VOC measuring techniques, such
as PTR-TOF-MS or GC-CI-MS (Table 1), could be added
to the soil metabolomic repertoire to directly target volatile
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