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On the Improved Rates of Convergence for Mat\'ern-Type Kernel Ridge
Regression with Application to Calibration of Computer Models\ast 
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Abstract. Kernel ridge regression is an important nonparametric method for estimating smooth functions. We
introduce a new set of conditions under which the actual rates of convergence of the kernel ridge
regression estimator under both the L2 norm and the norm of the reproducing kernel Hilbert space
exceed the standard minimax rates. An application of this theory leads to a new understanding of
the Kennedy--O'Hagan approach [J. R. Stat. Soc. Ser. B. Stat. Methodol., 63 (2001), pp. 425--464]
for calibrating model parameters of computer simulation. We prove that, under certain conditions,
the Kennedy--O'Hagan calibration estimator with a known covariance function converges to the
minimizer of the norm of the residual function in the reproducing kernel Hilbert space.
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1. Introduction. A major challenge in computer simulation of complex systems is to
choose suitable model parameters. These parameters usually represent specific intrinsic at-
tributes of the system. The input values of the model parameters can significantly affect
the accuracy and usefulness of the computer output. When physical observations are avail-
able, one can adjust the computer model parameters so that the computer outputs match the
physical data. We call this activity the calibration of computer models.

The celebrated Bayesian calibration method by Kennedy and O'Hagan [13] is one of the
major and widely used approaches for the calibration of computer models. A remarkable
contribution of [13] is to incorporate a ``discrepancy function"" to model the difference between
the computer outputs and the physical process. This discrepancy does exist in most computer
simulation problems because we have to resort to simplifications and unrealistic assumptions
when building the computer models.

Without an informative prior, the Kennedy--O'Hagan (K-O) model is nonidentifiable be-
cause one cannot determine the model parameters and the discrepancy function simultane-
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ously. Kennedy and O'Hagan [13] used a Gaussian process as a prior for the discrepancy
function. Tuo and Wu [26] conducted a theoretical study on a simplified version of the K-O
method when the physical data are noiseless. Under this condition, the radial basis functions
approximation can be regarded as a frequentist version of Gaussian process regression. With
the help of related mathematical tools, Tuo and Wu [26] identified the limit value of the K-O
method as well as the rate of convergence.

A primary goal of this work is to establish an asymptotic theory for the K-O method
with noisy physical data. The frequentist version of the Gaussian process regression, in this
situation, is the kernel ridge regression [19]. With an improved rate of convergence for kernel
ridge regression, we prove that, under certain conditions, the K-O estimator tends to the
parameter value which minimizes the norm of the residual function in the reproducing kernel
Hilbert space. We also present the rate of convergence of the K-O estimator. As a consequence,
we relax a key and rather restrictive assumption in [26]. Tuo and Wu had to assume that the
physical experiments have no random errors, which is not realistic.

There is a vast literature on the theoretical properties of ridge kernel regression. It is known
that the rate of convergence of this method can be improved by imposing extra smoothness
conditions on the underlying function; see, e.g., [8]. We refer to [2, 5, 11, 15] and the ref-
erences therein for the recent advances in this area. In this work, we present some results
on the improved rates similar to the above works. Compared with the existing ones, our
model settings are closer to the practical applications in engineering and computer experi-
ments. First, the existing methods focus on kernels constructed by a set of eigenvalues and
orthonormal basis functions. This construction has, albeit mathematically general, not been
widely used in practice because the computational cost is high, and an orthonormal basis may
be difficult to obtain for a general input domain. In this work, we consider the widely used
Mat\'ern kernels. Second, the existing results focus on random designs, which are not usually
adopted in engineering. The present work considers fixed designs satisfying some space-filling
properties. Third, the existing results for the improved rates are not sufficient to develop an
asymptotic theory for the K-O method. We obtain a strengthened version of the improved
rates, which lead to the desired asymptotic theory for calibration. It is worth noting that the
mathematical treatments in this paper differ from those in the works mentioned above, and
our work provides some new insight on kernel ridge regression.

This article is organized as follows. In section 2, we introduce some background of this
work and present the improved rates of convergence for kernel ridge regression. In section
3, we establish an asymptotic theory for the K-O calibration estimators. In section 4, we
validate our theoretical assertions with two numerical studies. Concluding remarks are made
in section 5. Appendix A contains the long proofs in this article.

2. Improved rates for kernel ridge regression. In this section, we discuss the mathemat-
ical tool and our results on the improved rates of convergence for kernel ridge regression.

2.1. Overview. Consider a nonparametric regression model

yi = f(xi) + ei,(2.1)

where f is a smooth function whose domain of definition \Omega is a convex and compact subset ofD
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1524 RUI TUO, YAN WANG, AND C. F. JEFF WU

Rd and ei's are independent and identically distributed random sequence with mean zero and
finite variance. The problem of interest is to recover f from the data (xi, yi), i = 1, . . . , n. Ker-
nel ridge regression is one of the important methods to deal with this problem. This method
has been widely used in statistics and machine learning [19]. It also has close relationships
with classic kernel-based regression methods like smoothing splines or thin-plate splines [31].

Suppose f lies in the Sobolev space Hm(\Omega ) with m > d/2. By choosing a kernel function
with m degree of smoothness, the kernel ridge regression, as defined in (2.18), can reach the
standard rates of convergence

\| \^fn  - f\| L2(\Omega ) = Op(n
 - m

2m+d ),(2.2)

\| \^fn  - f\| Hm(\Omega ) = Op(1),(2.3)

where \| \cdot \| L2(\Omega ) and \| \cdot \| Hm(\Omega ) denote the corresponding L2 and Sobolev norm, respectively.
See, for example, [8, 29] for details. These rates are known to be the minimax rates in the
current context [23]. That is, these rates are in general not improvable.

From (2.2), we can see that the convergence rate depends on the smoothness of the un-
derlying function. If we assume a higher smoothness condition for f , we can achieve a better
rate by applying the kernel ridge regression with a kernel function as smooth as f . However,
the smoothness of most practical underlying functions is unknown. Therefore, usually we
cannot identify the optimal kernel functions. In practice, kernel functions with relatively low
smoothness are frequently used. For instance, in spatial statistics and computer experiments,
Mat\'ern kernels (see section 2.2 for the definition) with smoothness parameter 3/2 or 5/2 are
widely used [22, 18]. In this article, we show that if the underlying function f is smoother than
the kernel function, the rate of convergence of the kernel ridge regression may be improved.
Specifically, we identify a dense subset S \subset Hm(\Omega ) in such a way that if f \in S, we can reach
the improved rates of convergence

\| \^fn  - f\| L2(\Omega ) = Op(n
 - 2m

4m+d ),(2.4)

\| \^fn  - f\| Hm(\Omega ) = Op(n
 - m

4m+d ).(2.5)

Clearly, there is a substantial improvement from (2.3) to (2.5) because (2.3) does not
entail convergence. We also prove an improved rate of convergence under the norm of the
reproducing kernel Hilbert space generated by the kernel function, denoted by \scrN , as

\| \^fn  - f\| \scrN = Op(n
 - m

4m+d ).(2.6)

2.2. Reproducing kernel Hilbert spaces. Our study will employ the reproducing kernel
Hilbert spaces (also called the native spaces) as the mathematical tool.

We consider functions defined on \Omega \subset Rd and adopt Assumption 2.1 throughout this
article.

Assumption 2.1. The set \Omega \subset Rd satisfies the following conditions:
1. \Omega is compact.
2. The interior of \Omega , denoted as \Omega \circ , is nonempty and connected. Besides, \Omega is the closure

of \Omega \circ .D
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3. \Omega \circ is convex.1

Let \Omega be a subset of Rd.
Assume that K : \Omega \times \Omega \rightarrow R is a symmetric positive definite kernel. Define the linear

space

FK(\Omega ) =

\Biggl\{ 
n\sum 

i=1

\beta iK(\cdot , xi) : \beta i \in R, xi \in \Omega , n \in N

\Biggr\} 
,(2.7)

and equip this space with the bilinear form\Biggl\langle 
n\sum 

i=1

\beta iK(\cdot , xi),
m\sum 
j=1

\gamma jK(\cdot , x\prime j)

\Biggr\rangle 
K

:=

n\sum 
i=1

m\sum 
j=1

\beta i\gamma jK(xi, x
\prime 
j).(2.8)

Then the reproducing kernel Hilbert space \scrN K(\Omega ) generated by the kernel function K is defined
as the closure of FK(\Omega ) under the inner product \langle \cdot , \cdot \rangle K , and the norm of \scrN K(\Omega ) is \| f\| \scrN K(\Omega ) =\sqrt{} 
\langle f, f\rangle \scrN K(\Omega ), where \langle \cdot , \cdot \rangle \scrN K(\Omega ) is induced by \langle \cdot , \cdot \rangle K . More detail about reproducing kernel

Hilbert space can be found in [31, 32].
In this work, we suppose the kernel function K is stationary; i.e., K(x, y) depends only on

x  - y. We denote K(x, y) =: \Phi (x  - y) and also denote the reproducing kernel Hilbert space
\scrN K(\Omega ) by \scrN \Phi (\Omega ). Specifically, we focus on the Mat\'ern kernel function [18, 22] defined by

\Phi (x; \nu , \phi ) =
1

\Gamma (\nu )2\nu  - 1
(2
\surd 
\nu \phi | x| )\nu K\nu (2

\surd 
\nu \phi | x| ),(2.9)

where K\nu is the modified Bessel function of the second kind, \nu and \phi are fixed parameters,
and | \cdot | is Euclidean distance meaning that (2.9) is an isotropic kernel. In (2.9), \phi is a
scale parameter, and \nu is often called the smoothness parameter because it is related to the
smoothness of the Gaussian processes associated with this kernel (covariance) function.

The smoothness of the kernel \Phi is somehow inherited by the reproducing kernel Hilbert
space \scrN \Phi (\Omega ) [32, Theorem 10.45]. Specifically, if \Phi is a Mat\'ern kernel in (2.9), \scrN \Phi (\Omega ) is equal
to the (fractional) Sobolev space H\nu +d/2(\Omega ),2 with equivalent norms. See also Corollary 1 of
[26]. Here we see that the smoothness parameter \nu is also related to the smoothness of the
Sobolev space.

2.3. An improved rate in scattered data approximation. The current work is partially
inspired by a result (section 11.5 of [32]) in scattered data approximation, which gives an
improved rate of convergence for radial basis function interpolation. In this section, we briefly
review this result.

1Technically, this convexity assumption can be relaxed to that \Omega \circ has a Lipschitz boundary and satisfies a
uniform cone condition. We refer to [1] for the detailed description of the aforementioned concepts.

2As pointed out by a reviewer, Sobolev spaces are conventionally defined only on open subsets of Rd.
Here we regard the functions in H\nu +d/2(\Omega ) as the natural extensions of the functions in H\nu +d/2(\Omega \circ ), as these
functions are continuous according to the Sobolev embedding theorem [1].D
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1526 RUI TUO, YAN WANG, AND C. F. JEFF WU

Let f be an underlying deterministic function. Suppose we have observed the function val-
ues of f over some scattered points X = \{ x1, . . . , xn\} . Then an interpolant of f is constructed
by solving the optimization problem

(2.10)
min \| g\| \scrN \Phi (\Omega )

s.t. g(xi) = f(xi) for i = 1, . . . , n.

We denote this interpolant by sf,X , which is commonly known as the radial basis function
interpolant. Formula (2.10) is the limit case of the kernel ridge regression estimator introduced
later in (2.18), with \lambda n \downarrow 0.

The error estimate for radial basis function interpolant is well established in the literature.
See [32]. Suppose \scrN \Phi (\Omega ) is continuously embedded into a (fractional) Sobolev space Hm(\Omega )
and the design X is quasi-uniform (see section 2.4 for the formal definition). Then a standard
error bound is

\| f  - sf,X\| L2(\Omega ) \leq Cn - m/d\| f  - sf,X\| \scrN \Phi (\Omega )(2.11)

for some constant C independent of f , n and the choice of a quasi-uniform design. It is worth
noting that the finiteness of the right-hand side of (2.11) requires f \in \scrN \Phi (\Omega ). Radial basis
function interpolation satisfies the orthogonality condition

\langle f  - sf,X , sf,X\rangle \scrN \Phi (\Omega ) = 0.(2.12)

Thus, we have the Pythagorean identity

\| f  - sf,X\| 2\scrN \Phi (\Omega ) + \| sf,X\| 2\scrN \Phi (\Omega ) = \| f\| 2\scrN \Phi (\Omega ) = constant,

which implies \| f - sf,X\| \scrN \Phi (\Omega ) = O(1) as n tends to infinity. Therefore, \| f - sf,X\| L2(\Omega ) decays

at least with the order O(n - m/d) according to (2.11).
To pursue an improved rate of convergence, one may ask whether \| f  - sf,X\| \scrN \Phi (\Omega ) = o(1).

Although this does not hold generally [7, 17], we do have an improved rate if there exists
v \in L2(\Omega ), so that

f(x) =

\int 
\Omega 
\Phi (x - t)v(t)dt.(2.13)

Proposition 10.28 of [32] shows that functions with the form (2.13) are a dense subset of
\scrN \Phi (\Omega ). It shows that in this case, for any g \in \scrN \Phi (\Omega ),

\langle f, g\rangle \scrN \Phi (\Omega ) = \langle v, g\rangle L2(\Omega ).(2.14)

Combining (2.11), (2.12), and (2.14) and applying the Cauchy--Schwarz inequality yields

\| f  - sf,X\| 2L2(\Omega ) \leq C2n - 2m/d\| f  - sf,X\| 2\scrN \Phi (\Omega )(2.15)

= C2n - 2m/d\langle f  - sf,X , f\rangle \scrN \Phi (\Omega )

= C2n - 2m/d\langle f  - sf,X , v\rangle L2(\Omega )

\leq C2n - 2m/d\| f  - sf,X\| L2(\Omega )\| v\| L2(\Omega ).(2.16)D
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Canceling \| f  - sf,X\| L2(\Omega ) from both sides of (2.16) and comparing (2.15) and (2.16) yields
the improved error bounds

\| f  - sf,X\| L2(\Omega ) \leq C2n - 2m/d\| v\| L2(\Omega ),

\| f  - sf,X\| \scrN \Phi (\Omega ) \leq Cn - m/d\| v\| L2(\Omega ).

In section 2.4, we will use the same assumption (2.13) to derive improved rates of conver-
gence for kernel ridge regression.

If a Mat\'ern kernel (2.9) is used, (2.13) is equivalent to imposing a certain higher-order
smoothness condition. Before introducing the condition, we discuss the extension theorem of
reproducing kernel Hilbert spaces.

Proposition 2.2. Each h \in \scrN \Phi (\Omega ) has an extension he \in \scrN \Phi (Rd), which defines an isomet-
ric map from \scrN \Phi (\Omega ) to \scrN \Phi (Rd). In other words, he| \Omega = h, and \langle he, h\prime e\rangle \scrN \Phi (Rd) = \langle h, h\prime \rangle \scrN \Phi (\Omega )

for all h, h\prime \in \scrN \Phi (\Omega ), where he| \Omega denotes the restriction of he on the region \Omega .

The main steps in proving Proposition 2.2 are as follows. First, we consider the map from
F\Phi (\Omega ) defined in (2.7) to F\Phi (Rd) given by

n\sum 
i=1

\beta i\Phi (x - xi), x \in \Omega \mapsto \rightarrow 
n\sum 

i=1

\beta i\Phi (x - xi), x \in Rd,

which defines an extension for each function in F\Phi (\Omega ). Clearly, this map preserves the inner
product (2.8). Next, by using some functional analysis machinery such as taking Cauchy
sequences, we can extend the domain of definition of this map from F\Phi (\Omega ) to its closure, the
Hilbert space \scrN \Phi (\Omega ), and the extended map is also isometric. We refer the reader to Theorem
10.46 of [32] for details of the proof.

Theorem 2.3 gives an equivalent statement of the condition (2.13).

Theorem 2.3. Suppose \Phi is a Mat\'ern kernel (2.9) with smoothness parameter \nu = m - d/2
and f \in \scrN \Phi (\Omega ). Then the integral equation

f(x) =

\int 
\Omega 
\Phi (x - t)v(t)dt(2.17)

has a solution v \in L2(\Omega ) if and only if the extended function fe \in H2m(Rd).

To maintain flow of the paper, all the long proofs are given in Appendix A.

Remark 2.4. Obviously, fe \in H2m(Rd) implies f \in H2m(\Omega ). However, the converse is not
necessarily true. The stronger condition fe \in H2m(Rd) essentially requires the smoothness of
the function across the boundary of \Omega . To illustrate this point, we consider a simple example.
Suppose \Omega = [ - 1, 1], \nu = 1/2, \phi = 1. Then the Mat\'ern kernel becomes \Phi (x) = e - | x| . Let
f(x) = e1 - x, x \in [ - 1, 1]. Then f \in C\infty [ - 1, 1]. However, since f(x) = \Phi (x - 1) for x \in [ - 1, 1],
according to the discussion after Proposition 2.2, we have fe = \Phi (x  - 1) = e - | x - 1| , which is
not in H2(R).D
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2.4. Rates of convergence for kernel ridge regression. In this section, we return to
model (2.1). The goal is to estimate the underlying function f from the data \{ (xi, yi)\} ni=1.
As in section 2.2, we choose a positive definite kernel function \Phi . The kernel ridge regression
estimator of f is defined as

\^fn = argmin
g\in \scrN \Phi (\Omega )

1

n

n\sum 
i=1

(yi  - g(xi))
2 + \lambda n\| g\| 2\scrN \Phi (\Omega ),(2.18)

where \lambda n > 0 is a tuning parameter to balance the bias and the variance.
The optimization problem (2.18) can be solved analytically. With the help of the repre-

senter theorem [31, 21], we find that \^f has the form

\^fn(x) =

n\sum 
i=1

ci\Phi (x - xi),(2.19)

where ci's are undetermined coefficients. Substituting (2.19) into (2.18) and invoking (2.8),
the estimation becomes a ridge regression problem weighted by the kernel matrix, and this is
where the name ``kernel ridge regression"" comes from. After some calculations, we can find
that the vector c = (c1, . . . , cn)

T is given by

c = (\Phi + n\lambda nIn)
 - 1Y,(2.20)

where \Phi = (\Phi (xi, xj))ij , Y = (y1, . . . , yn)
T , and In is the identity matrix.

2.4.1. Standard rates of convergence. In this paper, we are interested in the conditions
that ensure a consistent estimation for f using the kernel ridge regression and the rate of
convergence. First, we review the existing results and the standard proof.

Throughout the paper, we assume that the reproducing kernel Hilbert space \scrN \Phi (\Omega ) is
equal to some (fractional) Sobolev space Hm(\Omega ) with equivalent norms for some m > d/2.
Recall that if \Phi is a Mat\'ern kernel in (2.9), \scrN \Phi (\Omega ) is H\nu +d/2(\Omega ). We also assume that the
random error ei's are sub-Gaussian in the sense that there exists universal constants K,\sigma 0 > 0
such that

P(| ei| > t) \leq Ke - t2/\sigma 2
0(2.21)

holds for all t > 0. This condition can be relaxed, but the technical details will become more
involved, and we do not pursue such a treatment here.

Define the empirical seminorm by

\| f\| 2n =
1

n

n\sum 
i=1

f2(xi),

and write a \vee b = max\{ a, b\} . The standard convergence results are stated in Proposition 2.5.

Proposition 2.5. Suppose f \in Hm(\Omega ) and \lambda  - 1
n = O(n

2m
2m+d ). Then the estimator \^fn given

by (2.18) satisfies

\| \^fn  - f\| n = Op(\lambda 
1/2
n \vee n - 1

2\lambda 
 - d

4m
n ),

\| \^fn\| \scrN \Phi (\Omega ) = Op(1 \vee n - 1
2\lambda 

 - 2m+d
4m

n ).
(2.22)

D
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Because the main idea of proving Proposition 2.5 is also useful in establishing the improved
rate of convergence, we give a sketch of proof for Proposition 2.5. A detailed version can be
found in Theorem 10.2 of [29].

Sketch of proof for Proposition 2.5. The optimization condition (2.18) implies the basic
inequality

1

n

n\sum 
i=1

(yi  - \^fn(xi))
2 + \lambda n\| \^fn\| 2\scrN \Phi (\Omega )

\leq 1

n

n\sum 
i=1

(yi  - f(xi))
2 + \lambda n\| f\| 2\scrN \Phi (\Omega ).

(2.23)

After some rearrangement, we can see that (2.23) is equivalent to

\| \^fn  - f\| 2n + \lambda n\| \^fn\| 2\scrN \Phi (\Omega ) \leq 2\langle e, \^fn  - f\rangle n + \lambda n\| f\| 2\scrN \Phi (\Omega ),(2.24)

where

\langle e, g\rangle n :=
1

n

n\sum 
i=1

eigi(xi).(2.25)

It follows from a standard result in empirical process theory that

\langle e, \^fn  - f\rangle n

\| \^fn  - f\| 1 - 
d

2m
n \| \^fn  - f\| 

d
2m

\scrN \Phi (\Omega )

= Op(n
 - 1/2);(2.26)

see Lemma A.1 in Appendix A for details. With some elementary algebraic calculations, also
seeing Lemma A.2 and the proof of Theorem 3.2 in Appendix A, it is not hard to find that
(2.24) and (2.26) yield the desired results.

The smoothing parameter \lambda n makes a trade-off between the bias and the variance of the

estimator. If \lambda n decays no faster than Op(n
 - 2m

2m+d ), the bias term dominates the variance

term, and the rate of convergence under the empirical seminorm is Op(\lambda 
1/2
n ). On the other

hand, if \lambda n decays faster than Op(n
 - 2m

2m+d ), the variance term dominates the bias term, and

the rate of convergence under the L2 norm is Op(n
 - 1

2\lambda 
 - d

4m
n ). In this case, \| \^fn  - f\| \scrN \Phi (\Omega ) may

go to infinity. Therefore, to reach the best rates of convergence, one needs to balance the bias

and the variance. By choosing \lambda n \sim n - 2m
2m+d , one can obtain the best rates

\| \^fn  - f\| n = Op(n
 - m

2m+d ),

\| \^fn  - f\| \scrN \Phi (\Omega ) = Op(1).

An important question is whether the convergence results in (2.22) imply a convergence
under a more commonly used norm, like the L2 norm. Such a result relies on whether the
design points \{ x1, . . . , xn\} are allocated in a space-filling manner. To address this point, we
introduce the concept of quasi-uniformity [3, 28].D
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Definition 2.6. For a set of design points \{ x1, . . . , xn\} \subset \Omega , define its fill distance as

hn = max
x\in \Omega 

min
i

\| x - xi\| 

and its separation distance as

qn = min
i\not =j

\| xj  - xi\| ,

where \| \cdot \| denotes the Euclidean distance. Call a design sequence x1, . . . , xn, . . . quasi-uniform
if there exists a universal constant B > 0 such that

hn/qn \leq B(2.27)

holds for all n > 1.

Remark 2.7. Most commonly used space-filling designs are quasi-uniform, like regular
lattices and Sobol sequences [18].

For any \{ x1, . . . , xn\} \subset \Omega , the balls centered at xi's with radius qn/2 are disjoint. By
comparing the volume of these balls and that of \Omega , we find that the inequality

nVd(qn/2)
d \leq 2V ol(\Omega )(2.28)

holds if qn = O(n - 1/d), where Vd denotes the volume of d-dimensional unit ball and V ol(\Omega )
denotes the volume of \Omega . If \{ x1, . . . , xn\} also satisfies (2.27), (2.28) yields

hn \leq 2B

\biggl( 
2V ol(\Omega )

Vd

\biggr) 1/d

n - 1/d =: B\prime n - 1/d.(2.29)

Under certain conditions, the empirical seminorm and the L2 norm are equivalent. The
following Proposition comes from Theorems 3.3 and 3.4 of [28].

Proposition 2.8. Suppose the design sequence is quasi-uniform. Then there exist constants
C1 and C2 (depending only on m, d, \Omega , and B) and h0 such that, for any g \in Hm(\Omega ) and
hn \leq h0, we have

\| g\| 2L2(\Omega ) \leq C1

\Bigl\{ 
\| g\| 2n + h2mn \| g\| 2Hm(\Omega )

\Bigr\} 
,

\| g\| 2n \leq C2

\Bigl\{ 
\| g\| 2L2(\Omega ) + h2mn \| g\| 2Hm(\Omega )

\Bigr\} 
.

(2.30)

Corollary 2.9 gives the standard results for the rates of convergence of ridge kernel regres-
sion, which is a direct consequence of Proposition 2.5, (2.29), and Proposition 2.8.

Corollary 2.9. Under the condition of Proposition 2.5, suppose the design sequence is quasi-
uniform. Then the estimator \^fn given by (2.18) satisfies

\| \^fn  - f\| L2(\Omega ) = Op(\lambda 
1/2
n \vee n - 1

2\lambda 
 - d

4m
n ),

\| \^fn\| \scrN \Phi (\Omega ) = Op(1 \vee n - 1
2\lambda 

 - 2m+d
4m

n ).
(2.31)
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2.4.2. Improved rates of convergence. We can regard the rates of convergence (2.31) as
a stochastic version of the error bound (2.11). They are both standard convergence results
under their respective settings. In view of the improved rate of convergence in interpolation
discussed in section 2.3, we also expect an improved rate of convergence for the regression
problem (2.1) by imposing the same assumption that there exists v \in L2(\Omega ) so that (2.13)
holds.

Now we give more details about the intuition of why improved rates of convergence can
be obtained. Note the identity

\| f\| 2\scrN \Phi (\Omega )  - \| \^fn\| 2\scrN \Phi (\Omega ) = 2\langle f, f  - \^fn\rangle \scrN \Phi (\Omega )  - \| f  - \^fn\| 2\scrN \Phi (\Omega ),(2.32)

which, together with the basic inequality (2.24), yields

\| \^fn  - f\| 2n + \lambda n\| \^fn  - f\| 2\scrN \Phi (\Omega )

\leq 2\langle e, \^fn  - f\rangle n + 2\lambda n\langle f, f  - \^fn\rangle \scrN \Phi (\Omega ).
(2.33)

Invoking identity (2.14) and the Cauchy--Schwarz inequality, we obtain

\langle f, f  - \^fn\rangle \scrN \Phi (\Omega ) = \langle v, f  - \^fn\rangle L2(\Omega ) \leq \| v\| L2(\Omega )\| \^fn  - f\| L2(\Omega ),

which, together with (2.33), implies

\| \^fn  - f\| 2n + \lambda n\| \^fn  - f\| 2\scrN \Phi (\Omega )

\leq 2\langle e, \^fn  - f\rangle n + 2\lambda n\| v\| L2(\Omega )\| \^fn  - f\| L2(\Omega ).
(2.34)

We call (2.34) the improved basic inequality because it gives a refined version of the basic
inequality (2.24). Compared to (2.24), the right-hand side of (2.34) is significantly deflated
because \| \^fn\| 2\scrN \Phi (\Omega ) in (2.24) has the order Op(1) according to Proposition 2.5, while in (2.34),

\| \^fn  - f\| L2(\Omega ) = op(1) if \lambda n = op(1). This explains why we can expect improved rates of
convergence for the two terms on the left-hand side of (2.34). These rates can be obtained by
employing additional algebraic calculations. We summarize our findings in Proposition 2.10.

Proposition 2.10. Suppose there exists v \in L2(\Omega ) such that

f(x) =

\int 
\Omega 
\Phi (x - t)v(t)dt.(2.35)

Moreover, suppose the sequence of design points is quasi-uniform and the random error ei's
are sub-Gaussian satisfying (2.21). Then

\| \^fn  - f\| n = Op

\biggl( 
\lambda n \vee n - 1

2\lambda 
 - d

4m
n

\biggr) 
,

\| \^fn  - f\| \scrN \Phi (\Omega ) = Op

\biggl( 
\lambda 1/2
n \vee n - 1

2\lambda 
 - 2m+d

4m
n

\biggr) 
.

(2.36)

Proof. This result is a special case of Corollary 3.3 in section 3.D
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Remark 2.11. The improved rates in Proposition 2.10 are known; see [2, 8, 5, 11, 15] and
the references therein. Despite these known rates, the conditions in Proposition 2.10 differ
from these works. These works focus on kernels represented by eigenvalues and eigenfunctions
and random designs. We consider Mat\'ern kernels and quasi-uniform designs, which are widely
used in engineering and computer experiment applications. Also, the mathematical tools used
here are different from those in the above works, and our analysis yields a stronger result,
given in Theorem 3.2, which leads to an asymptotic theory for the K-O calibration estimator.

Corollary 2.12. Under the conditions of Proposition 2.10, we can apply Proposition 2.8 to
derive

\| \^fn  - f\| L2(\Omega ) = Op

\biggl( 
\lambda n \vee n - 1

2\lambda 
 - d

4m
n

\biggr) 
.

3. Calibration of computer models. In this section, we use the improved convergence
theory established in section 2.4 to study the asymptotic theory for the K-O method for the
calibration of computer models.

In computer experiments, calibration is the activity of identifying the computer model
parameters by matching the computer and physical outputs. Consider a physical experiment,
with a vector of input variable denoted as x. To reduce the cost of the physical experiment,
researchers often conduct a computer simulation to mimic the physical system as well. Usually,
the computer code input consists of the physical input x and model parameters \theta . The model
parameters are not observed in the physical experiment; they commonly represent certain
intrinsic attributes of the system. Here we consider only deterministic computer experiments;
i.e., the computer output is a deterministic function of the inputs, denoted by ys(x, \theta ).

In the K-O approach, the physical experimental data are modeled as

yi = \xi (xi) + ei, i = 1, . . . , n,(3.1)

where \xi is an underlying function called the true process, xi's are fixed input points, and ei's
are independent and identically distributed random error with mean zero.

Because the computer models are built under inevitable simplification and approximation,
their outputs cannot coincide with the true process; [13] used the following model to link these
functions:

\xi (x) = ys(x, \theta 0) + \delta (x),(3.2)

where \theta 0 is the ``optimal choice"" of the model parameter and \delta denotes the discrepancy
function. The model (3.2) is clearly nonidentifiable because both \theta 0 and \delta are unknown.
We refer the reader to [16, 24, 25, 26, 27] for related theoretical discussions regarding the
identifiability. Kennedy and O'Hagan [13] proposed to impose a Gaussian process prior on \delta 
to facilitate the estimation of \theta 0.

Given the widespread use of the K-O method in computer experiments and related sci-
entific and engineering problems, understanding the asymptotic properties of this method is
of interest. In this work, we do not assume that \delta (or (\xi , ys)) is random; that is, we regard
the Gaussian process modeling technique in the K-O's approach only as a computational
method. This nonrandom model setting can be justified as follows. Because the computerD
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code is deterministic, ys should be nonrandom. Also, the true process \xi is usually presumed
as nonrandom in industrial statistics, for example, in the response surface methodology [33].
The main objective of this section is to study the asymptotic behavior of the K-O calibration
estimator under the above deterministic setting. Our findings in the section should not be
interpreted under the usual framework of Gaussian process regression, where the underlying
function is truly random.

3.1. A frequentist version of the K-O approach. We consider estimating \theta by maximizing
the following ``likelihood function"":

(3.3) L(\theta , \sigma 2, \tau 2) = det(\sigma 2\Phi + \tau 2I) - 1/2

\times exp

\biggl\{ 
 - 1

2
(Y  - ys(X; \theta ))T (\sigma 2\Phi + \tau 2I) - 1(Y  - ys(X; \theta ))

\biggr\} 
,

where \Phi = (\Phi (xi, xj))ij , Y = (y1, . . . , yn)
T , ys(X; \theta ) = (ys(x1; \theta ), . . . , y

s(xn; \theta ))
T , and I

denotes the identity matrix.
Under some extra conditions, (3.3) is indeed the likelihood function induced by the K-O

approach. First, we suppose that ei's in (3.1) follow the normal distribution N(0, \tau 2),3 and we
impose a Gaussian process prior on ys. Second, suppose this Gaussian process has mean zero
and covariance function \sigma 2\Phi (\cdot , \cdot ). Here we assume that \Phi is given. Then it is easily shown
that the likelihood function of (\theta , \sigma 2, \tau 2) is (3.3).

The maximum likelihood estimators (MLEs) of \sigma 2 and \tau 2 in (3.3) do not have explicit ex-
pressions. To ease the mathematical treatments, we denote \lambda = \tau 2/(n\sigma 2) in a non--data-driven
manner. We will show that, a deterministic choice of \lambda (depending on n) can sufficiently lead
to a desired asymptotic theory. Once \lambda is given, we have the following simplified expression
of \^\theta :

\^\theta = argmin
\theta \in \Theta 

(Y  - ys(X; \theta ))T (\Phi + n\lambda I) - 1(Y  - ys(X; \theta )).(3.4)

Our goal is to develop an asymptotic theory for \^\theta under the assumption that \xi and ys

are deterministic functions. We call \^\theta the frequentist estimator of the K-O approach. Of
course, we adopt a totally different model setting compared with [13]. Computationally, the
two methods are also different in the following aspects:

1. In [13], prior distributions are imposed on the parameters \theta , \sigma 2, \tau 2 and possibly the
hyperparameters associated with \Phi . In this work, we do not impose those distributions.
Also, we do not introduce extra hyperparameters on the kernel \Phi .

2. In [13], Bayesian analysis is conducted by calculating the posterior distribution. In
this work, we focus on the MLE.

3. In [13], both \sigma 2 and \tau 2 are estimated from the data. In this work, we choose \lambda =
\tau 2/(n\sigma 2) in a non--data-driven manner to facilitate our mathematical analysis.

4. In [13], the computer model can be expensive to run, so that a surrogate model is
introduced to reconstruct ys. In this work, we assume that ys is a known function.
This assumption is reasonable when the computer model is inexpensive.

3In our theoretical analysis in Theorems 3.2--3.4, we relax this assumption by incorporating sub-Gaussian
noise.D
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3.2. Asymptotic theory. The MLE estimator \^\theta in (3.4) has a close relationship with the
kernel ridge regression discussed in section 2.4. The following proposition is the same as
Lemma 2.1 of [10].

Proposition 3.1. The MLE estimator \^\theta and the estimator of discrepancy function \^\delta can be
expressed as the estimator of the kernel ridge regression as follows:

(\^\theta , \^\delta ) = argmin
\theta \in \Theta ,\delta \in \scrN \Phi (\Omega )

l(\theta , \delta ),

where

(3.5) l(\theta , \delta ) =
1

n

n\sum 
i=1

(yi  - ys(xi; \theta ) - \delta (xi))
2 + \lambda \| \delta \| 2\scrN \Phi (\Omega ).

Define

\zeta \theta (x) = \xi (x) - ys(x; \theta ), \zeta \theta i = yi  - ys(xi; \theta ).

For each \theta \in \Theta , denote

\^\zeta \theta = argmin
g\in \scrN \Phi (\Omega )

1

n

n\sum 
i=1

(\zeta \theta i  - g(xi))
2 + \lambda \| g\| 2\scrN \Phi (\Omega ),

which is the kernel ridge regression estimator for \zeta \theta . Then \^\theta can be represented as

(3.6)

\^\theta = argmin
\theta \in \Theta 

l(\theta , \^\zeta \theta )

= argmin
\theta \in \Theta 

1

n

n\sum 
i=1

(\zeta \theta i  - \^\zeta \theta (xi))
2 + \lambda \| \^\zeta \theta \| 2\scrN \Phi (\Omega ).

To employ the theory developed in section 2.4, we assume that \zeta \theta lies in \scrN \Phi (\Omega ) or a
subspace of it. This assumption does not hold when \zeta \theta is sampled from a Gaussian process
because the set \scrN \Phi (\Omega ) has probability zero under the probability measure of the correspond-
ing Gaussian process [6]. Our discussion, however, should not be affected because we are
not adopting a Gaussian process model. Also, we believe that \zeta \theta \in \scrN \Phi (\Omega ) is a reasonable
assumption in the context of computer experiments because the reproducing kernel Hilbert
space is large enough, which covers all smooth functions.

For notational consistency with section 2.4, we write \^\theta as \^\theta n to emphasize its dependency
on n. Similarly, we write \lambda as \lambda n. Then (3.6) becomes

\^\theta n = argmin
\theta \in \Theta 

1

n

n\sum 
i=1

(\zeta \theta i  - \^\zeta \theta n(xi))
2 + \lambda n\| \^\zeta \theta n\| 2\scrN \Phi (\Omega ),

with

\^\zeta \theta n = argmin
g

1

n

n\sum 
i=1

(\zeta \theta i  - g(xi))
2 + \lambda n\| g\| 2\scrN \Phi (\Omega ).D
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Following the standard framework for establishing asymptotic theory for M-estimation, we
should consider the limiting behavior of the objective function:

(3.7)
1

n

n\sum 
i=1

(\zeta \theta i  - \^\zeta \theta n(xi))
2 + \lambda n\| \^\zeta \theta n\| 2\scrN \Phi (\Omega ).

Although this function is related to the kernel ridge regression, the standard rates of conver-
gence for kernel ridge regression given by Corollary 2.9 are insufficient to provide an asymptotic
result for \^\theta n. To see this, we note that according to Corollary 2.9, the second term in (3.7) is
merely known to be Op(\lambda n). This error bound is too crude to ensure a convergence result for
\^\theta n.

In contrast, if the conditions of Proposition 2.10 are fulfilled, the improved rate of conver-
gence gives the asymptotic representation

\| \^\zeta \theta n\| 2\scrN \Phi (\Omega ) = \| \zeta \theta \| 2\scrN \Phi (\Omega ) +Op(\lambda n),

which gives a much finer error bound. Thanks to the improved rates of convergence, we can
establish an asymptotic theory for \^\theta n.

We first consider the prediction problem: how accurate \^\zeta \theta n can approximate \zeta \theta in a uniform
sense. The result, which is a generalization of Proposition 2.10, is given by Theorem 3.2. As
in section 2.4, we assume that the reproducing kernel Hilbert space \scrN \Phi (\Omega ) is equal to some
(fractional) Sobolev space Hm(\Omega ) with equivalent norms for some m > d/2. Specifically, if \Phi 
is a Mat\'ern kernel in (2.9), then m = \nu + d/2.

In Theorem 3.2, we pursue nonasymptotic error bounds; that is, the sample size n is as-
sumed to be fixed rather than tending to infinity. In the rest of this article, we use c1, c2, c3, . . .
to denote universal positive constants. They are independent of n. They may depend on
m, d,\Omega and the quasi-uniformity constant B in (2.27) but are independent of the specific col-
location scheme of the design points. For simplicity, we may use the same ci in different places
to denote different constants.

Theorem 3.2. Suppose the set of design points is quasi-uniform, i.e., (2.27) holds. Suppose
for each \theta \in \Theta , we have \zeta \theta \in \scrN \Phi (\Omega ), and there exists v\theta \in L2(\Omega ) such that

\zeta \theta (x) =

\int 
\Omega 
\Phi (x - t)v\theta (t)dt,

\=v := sup
\theta \in \Theta 

\| v\theta \| L2(\Omega ) < +\infty .
(3.8)

Then, for n > c1, the inequalities

sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| n \leq c2\=v\lambda n \vee c3tn
 - 1

2\lambda 
 - d

4m
n ,

sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| \scrN \Phi (\Omega ) \leq c4\=v\lambda 
1
2
n \vee c5tn

 - 1
2\lambda 

 - 2m+d
4m

n

hold simultaneously on the event

(3.9) At :=

\left\{   sup
g\in \scrN \Phi (\Omega )

| \langle e, g\rangle n| 

\| g\| 1 - 
d

2m
n \| g\| 

d
2m

\scrN \Phi (\Omega )

\leq tn - 1/2

\right\}   .
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Condition (3.8) is a uniform version of the condition (2.13) because in (3.8) we require
not only the existence of v\theta \in L2(\Omega ) but also the uniform boundedness of their L2 norms.
Suppose a Mat\'ern kernel in (2.9) with m = \nu + d/2 is used. Theorem 2.3 shows that (2.13) is
equivalent to \| fe\| H2m(Rd) < \infty . From the proof of Theorem 2.3, one can justify that (3.8) is

equivalent to sup\theta \in \Theta \| \zeta \theta e\| H2m(Rd) < \infty . From Theorem 3.2, we can establish the asymptotic
rates of convergence as given in Corollary 3.3.

Corollary 3.3. Suppose ei's are sub-Gaussian. Then, under the conditions of Theorem 3.2,
we have the rates of convergence

sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| n = Op

\biggl( 
\lambda n \vee n - 1

2\lambda 
 - d

4m
n

\biggr) 
,

sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| \scrN \Phi (\Omega ) = Op

\biggl( 
\lambda 

1
2
n \vee n - 1

2\lambda 
 - 2m+d

4m
n

\biggr) 
.

Proof. According to Lemma A.1, At has probability at least 1  - c1 exp\{  - c2t
2\} for all

t > c3, which tends to one as t \rightarrow +\infty . The rates then follow from Theorem 3.2.

Next we state the convergence results for \^\theta n. We will show that under certain conditions,
\^\theta n will tend to

\theta \prime = argmin
\theta \in \Theta 

\| \zeta \theta \| \scrN \Phi (\Omega )(3.10)

as n \rightarrow \infty . Here we only present the error bound of \| \^\theta n  - \theta \prime \| for the case \lambda  - 1
n = Op(n

2m
4m+d )

because this case gives the best rate of convergence. By using similar but more cumbersome

mathematical analysis, we can show that \^\theta n converges to \theta \prime if \lambda  - 1
n = op(n

2m
2m+d ). The general

error bounds are more complicated, and we choose not to pursue them here.

Theorem 3.4. Suppose the conditions of Theorem 3.2 are fulfilled. In addition, we suppose
that \theta \prime is the unique solution to (3.10). Moreover, there exists constants a2, a3, \gamma > 0 such
that

\| \zeta \theta \| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) \geq a2min\{ \| \theta  - \theta \prime \| \gamma , a3\} (3.11)

for all \theta \in \Theta , where \| \cdot \| denotes the Euclidean distance. Let At be the event defined in (3.9)
and

\lambda 
4m+d
4m

n > a1\=v
 - 1tn - 1/2(3.12)

for some a1 > 0. If \=v2\lambda n < c1, then on the event At,

\| \^\theta n  - \theta \prime \| \leq c3\=v
2/\gamma \lambda 1/\gamma 

n .

Remark 3.5. Condition (3.11) is a counterpart of the local strong convexity around the
minimum point. Specifically, (3.11) requires \| \zeta \theta \| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) \geq a2\| \theta  - \theta \prime \| \gamma for \theta 

near \theta \prime , which is a H\"older condition. If h(\theta ) := \| \zeta \theta \| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) is continuously twiceD
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differentiable around \theta \prime , then we can apply Taylor's theorem to conclude that (3.11) holds with
\gamma = 2. When \theta is far away from \theta \prime , (3.11) requires that \| \zeta \theta \| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) is bounded
below from zero, which means that we do not require the whole function to be convex. If \Theta 
is bounded, the only global assumption here is that the minimizer is unique. The condition
\=v2\lambda n < c1 requires that \lambda n should be small enough, which can be fulfilled asymptotically by
choosing \lambda n \downarrow 0 but not decreasing too fast so that (3.12) holds as well.

Corollary 3.6. Under the conditions of Theorem 3.4 and \lambda  - 1
n = O(n

2m
4m+d ), we have the

rate of convergence \| \^\theta n  - \theta \prime \| = Op(\lambda 
1/\gamma 
n ). Specifically, if h(\theta ) := \| \zeta \theta \| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) is

continuously twice differentiable around \theta \prime , then \| \^\theta n  - \theta \prime \| = Op(\lambda 
1/2
n ).

Proof. According to Lemma A.1, At has probability at least 1  - c1 exp\{  - c2t
2\} for all

t > c3, which tends to one as t \rightarrow +\infty . The rate then follows from Theorem 3.4.

Remark 3.7. [26] observed that under certain conditions, the limit value of the K-O
method is \theta \prime defined in (3.10), i.e., \theta 0 = \theta \prime . In Theorem 4.2 of [26], they prove the limit
result when the physical observations yi have no random error, i.e., ei's in (3.1) are zero.
In Tuo--Wu's result, the condition (3.8) is also necessary in the mathematical treatments.
In Theorem 3.4 of this paper, we generalize the Tuo--Wu theory by assuming that ei's are
independent and identically distributed sub-Gaussian random variables and obtain the rate
of convergence. Given the fact that physical responses are always subject to random noise,
Theorem 3.4 in this paper is much more useful than Theorem 4.2 of [26] for practical applica-
tions. Therefore, the result we obtain here can be viewed as a substantial improvement over
the Tuo--Wu theory.

Remark 3.8. It is worth noting that the limit value of the K-O calibration estimator under
the current framework differs from that of some other methods, including [9, 10, 24, 25]. These
existing methods converge to the minimizer of \| \zeta \theta \| L2(\Omega ), i.e.,

\theta \ast = argmin
\theta \in \Theta 

\| \zeta \theta \| L2(\Omega ).(3.13)

Note that (3.13) differs from the definition of \theta \prime in (3.10) because the reproducing kernel
Hilbert space norm in (3.10) is replaced by the L2 norm. Besides, these existing methods
turn out to have faster rates of convergence. Especially, a n - 1/2 rate of convergence and
a semiparametric efficiency can be achieved [24, 25]. We believe that such a high rate of
convergence cannot be achieved in the current context, in which we require the limit value to
be \theta \prime instead of \theta \ast .

4. Numerical studies. We conduct numerical studies in sections 4.1 and 4.2 to validate
the theoretical results in sections 2.4 and 3.2, respectively.

4.1. Numerical results for kernel ridge regression. Corollary 2.12 shows that under

certain conditions and \lambda n \sim n - 2m
4m+d , we have the rate of convergence of \^fn:

\| \^fn  - f\| L2(\Omega ) = Op(n
 - 2m

4m+d ).(4.1)D
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In this section, we consider the following model to verify whether the rate of convergence

Op(n
 - 2m

4m+d ) is sharp. We start by taking the logarithm on both sides of (4.1) to get

log \| \^fn  - f\| L2(\Omega ) \lesssim  - 2m

4m+ d
log n+ c.

This inspires us to consider a set of sample sizes, denoted as \{ n1, . . . , nk\} , and for each nj , we

conduct an independent simulation and compute Lj = \| \^fnj  - f\| L2(\Omega ). Next we consider the
regression problem given by

logLj = a+ b log nj + ej , j = 1, . . . , k.(4.2)

We estimate the regression coefficients (a, b) by the least squares method and denote the

estimator as (\^a,\^b). Then we can regard Op(n
\^b) as the estimated rate of convergence. We shall

check whether \^b is close to  - 2m
4m+d .

In our simulation study, we need functions that satisfy the condition (2.35). Suppose \Phi (x)
is the exponential kernel function \Phi (x) = exp\{  - | x| \} , which is also the Mat\'ern kernel function
(2.9) with \phi = 1 and \nu = 0.5, and the experimental region \Omega = [ - 1, 1]. The corresponding
Sobolev space is H1[ - 1, 1], that is, m = 1 and d = 1.

Suppose the true function f is

f(x) =

\int 1

 - 1
\Phi (x - t)\Phi (t)dt = e - | x| + | x| e - | x|  - ex - 2/2 - e - (x+2)/2.(4.3)

Clearly, f satisfies the condition (2.35). Suppose we observe data

yi = f(xi) + ei, i = 1, . . . , n,

where ei's are independent and identically distributed random errors following N(0, \tau 2) and
\tau = 0.1.

To estimate the regression coefficient in (4.2), we choose 30 different Sobol designs [18]
with sample sizes nj = 20j, j = 1, . . . , 30. For each j, we use the Monte Carlo method to

calculate \| \^fnj  - f\| L2(\Omega ), where \^fnj is computed by using (2.19). Following the theoretical

guidance in Corollary 2.12, we choose \lambda j = \^\eta n
 - 2m/(4m+d)
j and determine the constant \^\eta by

the following cross-validation approach. We consider the largest sample size in the simulation
nk = 600, and the estimate \^\eta is obtained by the K-fold cross-validation method [12] in one
simulation run with K = 10. We use the caret package [14] in R to find \^\eta = 0.0668, and then
we use this value in the rest of this simulation study.

We repeat the simulation 100 times and calculate the Monte Carlo sample mean to reduce
the random error. The scattered plot of logLj against log nj is shown in Figure 1. The
estimated regression coefficient is  - 0.399, which closely agrees with our theoretical assertion
 - 0.4.

4.2. Numerical results for the K-O calibration. In this section, we verify the rate of
convergence given by Theorem 3.4. Theorem 3.4 asserts that under certain conditions andD
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Figure 1. The scattered plot and the regression line of the simulated data for kernel ridge regression.

\lambda n \sim n - 2m
4m+d , we have the rate of convergence \| \^\theta n  - \theta \prime \| = Op(\lambda 

1/\gamma 
n ). Specifically, if h(\theta ) :=

\| \zeta \theta \| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) is continuously twice differentiable around \theta \prime , then

\| \^\theta n  - \theta \prime \| = Op(\lambda 
1/2
n ) = Op(n

 - m
4m+d ).(4.4)

Denoting Ej = \| \^\theta nj  - \theta \prime \| , we consider the regression problem given by

logEj = a+ b log nj + ej , j = 1, . . . , k.(4.5)

We shall check whether \^b is close to  - m
4m+d , the theoretical rate of convergence asserted by

Theorem 3.4. Suppose the true process \xi (x) is same as the function (4.3) in section 4.1 and
the computer model is

ys(x, \theta ) = \xi (x) - 
\int 1

 - 1
\Phi (x - y)(\theta y2 + 0.8)dy,

where \Phi (x) = exp\{  - | x| \} and \theta is the model parameter to be calibrated.
Clearly, the discrepancy function \zeta \theta (x) =

\int 1
 - 1\Phi (x - y)(\theta y2+0.8)dy satisfies all conditions

of Theorem 3.4. The identity (2.14) implies

\| \zeta \theta \| 2\scrN \Phi (\Omega ) =

\int 1

 - 1

\int 1

 - 1
(\theta x2 + 0.8)\Phi (x)\Phi (x - y)\Phi (y)(\theta y2 + 0.8)dxdy.

By numerical search, we find that, as a function of \theta , \| \zeta \theta \| 2\scrN \Phi (\Omega ) is minimized at \theta \prime =  - 2.348.
Suppose we observe data according to

yi = \xi (xi) + ei, i = 1, . . . , n,D
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Figure 2. The scattered plot and the regression line of the simulated data for K-O calibration.

where xi's are same as the ones in section 4.1 and ei's are independent and identically dis-
tributed random errors following N(0, \tau 2). Now we can compute \^\theta in (3.6). We choose

\lambda j = \^\eta n
 - 2m/(4m+d)
j , and the constant \^\eta is determined by a cross-validation approach similar

to that in section 4.1. The resulting \^\eta = 0.0615. For each j, we repeat the simulation 100
times and calculate the Monte Carlo sample mean to reduce the random error.

The scattered plot of logEj against log nj is shown in Figure 2. The estimated regression
coefficient is  - 0.227, which closely agrees with our theoretical assertion  - 0.2.

5. Discussion. In this work, we obtain some new results on the improved rates of conver-
gence for kernel ridge regression. We apply this theory to study the asymptotic properties of
the K-O calibration method for computer experiments. This new result generalizes the work
of [26].

Several related problems can be studied in the future. In this article, we suppose the
design set \{ x1, . . . , xn\} is fixed and quasi-uniform. A further question is whether the improved
rates still hold if the design points are random samples, for instance, if the design points are
independent and follow the uniform distribution over \Omega .

As is discussed in section 2.4, compared to the existing results, the bias of the kernel ridge
regression estimator is reduced by imposing the condition (2.35), while the variance remains
the same. Improved rates of convergence are achieved by rebalancing the bias and the variance.
In other words, the choice of the smoothing parameters \lambda n is crucial in achieving the optimal
rate of convergence. Suppose condition (2.35) is fulfilled. Proposition 2.10 implies that the

optimal tuning parameter is \lambda n \sim n - 2m
4m+d . If condition (2.35) is not satisfied, we should return

to the classic results given by Proposition 2.5. In this case, the optimal tuning parameter

is \lambda n \sim n - 2m
2m+d , and \lambda n \sim n - 2m

4m+d would render a suboptimal rate of convergence. In mostD
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practical scenarios, we do not know whether the condition (2.35) holds or not. Therefore, there
is no a priori optimal choice of \lambda n. One would ask whether the optimal order of magnitude for
\lambda n can be obtained by a data-driven approach. We conjecture that model selection criteria
like generalized cross validation [31] can automatically adapt an optimal choice of \lambda n.

Appendix A. Technical proofs.

Proof of Theorem 2.3. Without loss of generality, we can assume that the scale parameter
\phi in (2.9) is 1/(2

\surd 
\nu ) because otherwise we can stretch the region \Omega to make this happen. In

this situation, the Mat\'ern kernel becomes

1

\Gamma (\nu )2\nu  - 1
| x| \nu K\nu (| x| ).

Suppose f(x) =
\int 
\Omega \Phi (x - t)v(t)dt with v \in L2(\Omega ). It can be justified that fe =

\int 
\Omega \Phi (x - 

t)v(t)dt for x \in Rd. See Lemma 11.34 in [20] for details. Define

ve(x) =

\Biggl\{ 
v(x), x \in \Omega ,

0, x /\in \Omega .

Clearly, fe(x) =
\int 
Rd \Phi (x - t)ve(t)dt. For h \in L2(Rd), denote its Fourier transform and inverse

Fourier transform by \scrF (h) and \scrF  - 1(h), respectively. Then by the convolution theorem,
\scrF (fe) = (2\pi )d/2\scrF (\Phi )\scrF (ve). Direct calculations [22, 32] give

\scrF (\Phi )(\omega ) = (2\pi )d/2
\Gamma (\nu + d/2)

\Gamma (\nu )
(1 + \| \omega \| 2) - (\nu /2+d/4)

:= C0(1 + \| \omega \| 2) - m/2.(A.1)

Note that \scrF (fe)/\scrF (\Phi ) = (2\pi )d/2\scrF (ve) \in L2(Rd), which gives\int 
Rd

(1 + \| \omega \| 2)m| \scrF (fe)(\omega )| 2d\omega < +\infty .(A.2)

According to Paragraph 7.62 of [1], (A.2) is equivalent to fe \in H2m(R).
Suppose fe \in H2m(R). Then by (A.2) and (A.1), we have \scrF (fe)/\scrF (\Phi ) \in L2(Rd). Theorem

4.3 of [20] proves that in this case, hf := \scrF  - 1(\scrF (fe)/\scrF (\Phi )) is zero almost everywhere outside
\Omega . Then according to the convolution theorem, v := hf | \Omega satisfies (2.17).

Lemma A.1. Suppose \{ x1, . . . , xn\} \subset \Omega , e1, . . . , en are independent and identically distrib-
uted random variables which are sub-Gaussian. Then, for all t > c1, we have

sup
g\in \scrN \Phi (\Omega )

| \langle e, g\rangle n| 

\| g\| 1 - 
d

2m
n \| g\| 

d
2m

\scrN \Phi (\Omega )

\leq tn - 1/2,(A.3)

with probability at least 1 - c2 exp\{  - c3t
2\} , where \langle e, g\rangle n is defined in (2.25).D
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Proof. For g \in \scrN \Phi (\Omega ), let h = g/\| g\| \scrN \Phi (\Omega ). It is easily verified that

| \langle e, g\rangle n| 

\| g\| 1 - 
d

2m
n \| g\| 

d
2m

\scrN \Phi (\Omega )

=
| \langle e, h\rangle n| 

\| h\| 1 - 
d

2m
n

.

Let \scrH = \{ h \in \scrN \Phi (\Omega ) : \| h\| \scrN \Phi (\Omega ) = 1\} . Noting that \scrN \Phi (\Omega ) can be embedded into Hm(\Omega ), we
can use the metric entropy of the Sobolev spaces [7, 25] to find an upper bound of the metric
entropy of \scrH as

H(\epsilon ,\scrH , \| \cdot \| n) \leq c4\epsilon 
 - d/m.

We refer the reader to [30] for the definition and detailed discussions about the metric en-
tropy of a function space. The remainder of the proof follows by invoking the concentration
inequality given by Corollary 14.6 of [4].

Proof of Theorem 3.1. Using (2.19) and (2.20), we find that \^\zeta \theta can be expressed by

\^\zeta \theta =

n\sum 
i=1

c\theta i\Phi (x - xi),

with c\theta = (c\theta 1, . . . , c
\theta 
n)

T defined as

c\theta = (\Phi + n\lambda In)
 - 1Y\theta ,

where \Phi = (\Phi (xi, xj))ij and Y\theta = (\zeta \theta 1 , . . . , \zeta 
\theta 
n)

T . The norm of \^\zeta \theta in \scrN \Phi (\Omega ) can be calculated
using (2.8), given by

\| \^\zeta \theta \| 2\scrN \Phi (\Omega ) = Y T
\theta (\Phi + n\lambda In)

 - 1\Phi (\Phi + n\lambda In)
 - 1Y\theta .(A.4)

Also, \^\zeta \theta (X) := (\^\zeta \theta (x1), . . . , \^\zeta 
\theta (xn))

T can be expressed by

\^\zeta \theta (X) = \Phi (\Phi + n\lambda In)
 - 1Y\theta ,

which yields

Y\theta  - \^\zeta \theta (X) = (I  - \Phi (\Phi + n\lambda In)
 - 1)Y\theta 

= n\lambda (\Phi + n\lambda In)
 - 1Y\theta .

Thus,

1

n

n\sum 
i=1

(\zeta \theta i  - \^\zeta \theta (xi))
2 =

1

n
(Y\theta  - \^\zeta \theta (X))T (Y\theta  - \^\zeta \theta (X))

= n\lambda 2Y T
\theta (\Phi + n\lambda In)

 - 2Y\theta .(A.5)

From (A.4) and (A.5) we obtain

1

n

n\sum 
i=1

(\zeta \theta i  - \^\zeta \theta (xi))
2 + \lambda \| \^\zeta \theta \| 2\scrN \Phi (\Omega ) = \lambda Y T

\theta (\Phi + n\lambda In)
 - 1Y\theta ,

which implies the desired results.D
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Lemma A.2. Let \lambda , P,Q, s, t be nonnegative numbers and n be a positive integer. If there
exist constants a1, a2, a3, a4 > 0 such that

P 2 + a1\lambda Q
2 \leq a2s\lambda P + a3tn

 - 1
2P 1 - d

2mQ
d

2m ,(A.6)

then we have

P \leq b1s\lambda \vee b3tn
 - 1

2\lambda  - d
4m ,

Q \leq b2s\lambda 
1
2 \vee b4tn

 - 1
2\lambda  - 2m+d

4m .

Here b1, b2, b3, b4 are independent of P,Q, \lambda , s, and t.

Proof. Clearly, (A.6) implies either

P 2 + a1\lambda Q
2 \leq 2a2s\lambda P

or

P 2 + a1\lambda Q
2 \leq 2a3tn

 - 1/2P 1 - d
2mQ

d
2m .

Next we consider these two cases separately.
Case I. Suppose P 2 + a1\lambda Q

2 \leq 2a2s\lambda P . Then we have

P 2 \leq 2a2s\lambda P,

a1\lambda Q
2 \leq 2a2s\lambda P,

which yields

P \leq 2a2s\lambda = b1s\lambda ,

Q \leq 2a2a
 - 1/2
1 s\lambda 1/2 = b2s\lambda 

1/2.
(A.7)

Case II. Suppose P 2 + a1\lambda Q
2 \leq 2a3n

 - 1/2P 1 - d
2mQ

d
2m . Then we have

P 2 \leq 2a3tn
 - 1/2P 1 - d

2mQ
d

2m ,

a1\lambda Q
2 \leq 2a3tn

 - 1/2P 1 - d
2mQ

d
2m .

(A.8)

By elementary calculations, we find that (A.8) implies

P \leq b3tn
 - 1

2\lambda  - d
4m ,

Q \leq b4tn
 - 1

2\lambda  - 2m+d
4m .

(A.9)

The desired results then follows by combining (A.7) and (A.9).

Proof of Theorem 3.2. Following similar arguments as those in (2.32)--(2.34), we can de-
duce the improved basic inequality

\| \zeta \theta  - \^\zeta \theta n\| 2n + \lambda n\| \zeta \theta  - \^\zeta \theta n\| 2\scrN \Phi (\Omega )

\leq 2\langle e, \^\zeta \theta n  - \zeta \theta \rangle n + 2\lambda n\| v\theta \| L2(\Omega )\| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ),
(A.10)

which holds for all \theta \in \Theta .D
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It follows from Proposition 2.8 and (2.29) that, for sufficiently large n,

\| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ) \leq C
\sqrt{} 

\| \zeta \theta  - \^\zeta \theta n\| 2n + n - 2m
d \| \zeta \theta  - \^\zeta \theta n\| 2Hm(\Omega )

\leq C
\Bigl\{ 
\| \zeta \theta  - \^\zeta \theta n\| n + n - m

d \| \zeta \theta  - \^\zeta \theta n\| Hm(\Omega )

\Bigr\} 
\leq C\| \zeta \theta  - \^\zeta \theta n\| n + C \prime n - m

d \| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ),(A.11)

where the last inequality follows from the assumption that \| \cdot \| Hm(\Omega ) and \| \cdot \| \scrN \Phi (\Omega ) are
equivalent.

Combining (A.10), (A.11), and the condition \=v = sup\theta \in \Theta \| v\theta \| L2(\Omega ) < +\infty yields

\| \zeta \theta  - \^\zeta \theta n\| 2n + \lambda n\| \zeta \theta  - \^\zeta \theta n\| 2\scrN \Phi (\Omega ) \leq 2\langle e, \^\zeta \theta n  - \zeta \theta \rangle n
+ 2C\lambda n\=v\| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ) + 2C \prime \lambda n\=vn

 - m
d \| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ).

(A.12)

Now we consider three different cases.
Case I. Suppose n - m

d \| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ) \leq \| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ). Then we obtain from (A.12) that

\| \zeta \theta  - \^\zeta \theta n\| 2n + \lambda n\| \zeta \theta  - \^\zeta \theta n\| 2\scrN \Phi (\Omega ) \leq 2\langle e, \^\zeta \theta n  - \zeta \theta \rangle n
+ 2(C + C \prime )\lambda n\=v\| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ).

(A.13)

Case II. Suppose n - m
d \| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ) > \| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ) and 4C \prime \=vn - m

d \leq \| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ).

Then we can cancel the term \lambda n\| \zeta \theta  - \^\zeta \theta n\| 2\scrN \Phi (\Omega )/2 from both sides of (A.12) and get

\| \zeta \theta  - \^\zeta \theta n\| 2n +
1

2
\lambda n\| \zeta \theta  - \^\zeta \theta n\| 2\scrN \Phi (\Omega ) \leq 2\langle e, \^\zeta \theta n  - \zeta \theta \rangle n

+ 2C\lambda n\=v\| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ).
(A.14)

Case III. Suppose n - m
d \| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ) > \| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ) and 4C \prime \=vn - m

d > \| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ).
It follows directly from this assumption that

\| \zeta \theta  - \^\zeta \theta n\| \scrN \Phi (\Omega ) < 4C \prime \=vn - m
d ,

\| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ) < 4C \prime \=vn - 2m
d ,

from which we have already arrived at the desired results.
Now we only need to consider the first two cases. Clearly, both (A.13) and (A.14) can be

expressed as

\| \zeta \theta  - \^\zeta \theta n\| 2n +B1\lambda n\| \zeta \theta  - \^\zeta \theta n\| 2\scrN \Phi (\Omega )

\leq 2\langle e, \^\zeta \theta n  - \zeta \theta \rangle n +B2\lambda n\=v\| \zeta \theta  - \^\zeta \theta n\| L2(\Omega ).
(A.15)

On the event At, we have the inequality

| \langle e, \^\zeta \theta n  - \zeta \theta \rangle n| 

\leq sup
g\in \scrN \Phi (\Omega )

| \langle e, g\rangle n| 

\| g\| 1 - 
d

2m
n \| g\| 

d
2m

\scrN \Phi (\Omega )

\cdot \| \^\zeta \theta n  - \zeta \theta \| 1 - 
d

2m
n \| \^\zeta \theta n  - \zeta \theta \| 

d
2m

\scrN \Phi (\Omega )

\leq tn - 1/2\| \^\zeta \theta n  - \zeta \theta \| 1 - 
d

2m
n \| \^\zeta \theta n  - \zeta \theta \| 

d
2m

\scrN \Phi (\Omega ).(A.16)D
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Combining inequalities (A.15)--(A.16) yields

\| \zeta \theta  - \^\zeta \theta n\| 2n +B1\lambda n\| \zeta \theta  - \^\zeta \theta n\| 2\scrN \Phi (\Omega )

\leq B2\lambda n\=v\| \zeta \theta  - \^\zeta \theta n\| n + 2tn - 1/2\| \^\zeta \theta n  - \zeta \theta \| 1 - 
d

2m
n \| \^\zeta \theta n  - \zeta \theta \| 

d
2m

\scrN \Phi (\Omega ).

Then we obtain the desired results by applying Lemma A.2.

Proof of Theorem 3.4. Under the condition (3.12), it is not hard to verify that \=v\lambda n and

\=v\lambda 
1/2
n are bounded by the product of tn - 1/2\lambda 

 - d
4m

n and tn - 1/2\lambda 
 - 2m+d

4m
n , respectively. Thus,

Theorem 3.2 gives

sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| n \leq c2\=v\lambda n,(A.17)

sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| \scrN \Phi (\Omega ) \leq c3\=v\lambda 
1/2
n .(A.18)

Using the definition of \^\theta n, we obtain the basic inequality

1

n

n\sum 
i=1

(\zeta 
\^\theta n
i  - \^\zeta 

\^\theta n
n (xi))

2 + \lambda n\| \^\zeta 
\^\theta n
n \| 2\scrN \Phi (\Omega )

\leq 1

n

n\sum 
i=1

(\zeta \theta 
\prime 

i  - \^\zeta \theta 
\prime 

n (xi))
2 + \lambda n\| \^\zeta \theta 

\prime 
n \| 2\scrN \Phi (\Omega ),

which is equivalent to

\lambda n

\Bigl\{ 
\| \zeta \^\theta n\| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega )

\Bigr\} 
\leq 

\Bigl\{ 
\| \^\zeta \theta \prime n  - \zeta \theta 

\prime \| 2n  - \| \^\zeta \^\theta nn  - \zeta 
\^\theta n\| 2n

\Bigr\} 
+ 2

\Bigl\{ 
\langle e, \^\zeta \^\theta nn  - \zeta 

\^\theta n\rangle n  - \langle e, \^\zeta \theta \prime n  - \zeta \theta 
\prime \rangle n

\Bigr\} 
+ \lambda n

\Bigl\{ 
\| \zeta \^\theta n\| 2\scrN \Phi (\Omega )  - \| \^\zeta \^\theta nn \| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) + \| \^\zeta \theta \prime n \| 2\scrN \Phi (\Omega )

\Bigr\} 
=: D1 + 2D2 + \lambda nD3.

(A.19)

Now we bound D1, D2, and D3 conditional on the event At. Using (A.17), we have

D1 \leq sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| 2n \leq d1\=v
2\lambda 2

n.(A.20)

By (A.17)--(A.18) and the definition of At, we obtain

D2 \leq 2 sup
\theta \in \Theta 

| \langle e, \^\zeta \theta n  - \zeta \theta \rangle n| 

\leq 2 sup
g

| \langle e, g\rangle n| 

\| g\| 1 - 
d

2m
n \| g\| 

d
2m

\scrN \Phi (\Omega )

sup
\theta \in \Theta 

\| \^\zeta \theta n  - \zeta \theta \| 1 - 
d

2m
n sup

\theta \in \Theta 
\| \^\zeta \theta n  - \zeta \theta \| 

d
2m

\scrN \Phi (\Omega )

\leq d2tn
 - 1

2 \=v\lambda 
4m - d
4m

n

\leq d\prime 2\=v
2\lambda 2

n,(A.21)D
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where the last inequality follows from condition (3.12). For any \theta \in \Theta , we bound\bigm| \bigm| \bigm| \| \^\zeta \theta n\| 2\scrN \Phi (\Omega )  - \| \zeta \theta \| 2\scrN \Phi (\Omega )

\bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \| \^\zeta \theta n  - \zeta \theta \| 2\scrN \Phi (\Omega ) + 2\langle \^\zeta \theta n  - \zeta \theta , \zeta \theta \rangle \scrN \Phi (\Omega )

\bigm| \bigm| \bigm| 
\leq \| \^\zeta \theta n  - \zeta \theta \| 2\scrN \Phi (\Omega ) + 2

\bigm| \bigm| \bigm| \langle \^\zeta \theta n  - \zeta \theta , \zeta \theta \rangle \scrN \Phi (\Omega )

\bigm| \bigm| \bigm| 
= \| \^\zeta \theta n  - \zeta \theta \| 2\scrN \Phi (\Omega ) + 2

\bigm| \bigm| \bigm| \langle \^\zeta \theta n  - \zeta \theta , v\theta \rangle L2(\Omega )

\bigm| \bigm| \bigm| 
\leq \| \^\zeta \theta n  - \zeta \theta \| 2\scrN \Phi (\Omega ) + 2\| v\theta \| L2(\Omega )\| \^\zeta \theta n  - \zeta \theta \| L2(\Omega )

\leq c23\=v
2\lambda n + 2c2\=v

2\lambda n

= d3\=v
2\lambda n,

where the second equality follows from (2.14), the second inequality follows from the Cauchy--
Schwarz inequality, and the third inequality follows from (A.17) and (A.18). Therefore, we
obtain the bound

D3 \leq 2d3\=v
2\lambda n.(A.22)

Combining (A.19), (A.20), (A.21), and (A.22) and using the condition t > 1 yields

\| \zeta \^\theta n\| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ) \leq d4\=v
2\lambda n.(A.23)

The assumption (3.11) implies

a2min\{ \| \^\theta n  - \theta \prime \| \gamma , a3\} \leq \| \zeta \^\theta n\| 2\scrN \Phi (\Omega )  - \| \zeta \theta \prime \| 2\scrN \Phi (\Omega ),

which, together with (A.23) and the condition \=v2\lambda n < c1 := a3/(a2d4), yields the desired
results.
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