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Estimation of model parameters of computer simulators, also known as
calibration, is an important topic in many engineering applications. In this
paper we consider the calibration of computer model parameters with the
help of engineering design knowledge. We introduce the concept of sensible
(calibration) variables. Sensible variables are model parameters, which are
sensitive in the engineering modeling, and whose optimal values differ from
the engineering design values. We propose an effective calibration method to
identify and to determine appropriate levels for the sensible variables with
limited physical experimental data. The methodology is applied to a compos-
ite fuselage simulation problem.

1. Introduction. Composite parts have been widely used in various industrial applica-
tions, including aerospace, automotive and energy industries, due to their superior properties
which include high strength-to-weight ratio, high stiffness-to-weight ratio, potentially long
life usage and low life-cycle cost (Mallick (2007)). Dimensional variation modeling of com-
posite parts lays a foundation for quality control and process improvement, and numerous
studies have been conducted in this area. Literature review related to composite parts assem-
bly and variation modeling refers to Shi (2006), Zhang and Shi (2016a, 2016b) and Yue et al.
(2018). Most of these studies in variation modeling and analysis of composite parts are based
on the finite element analysis (FEA). FEA is a numerical simulation method and widely used
in structural analysis, fluid dynamics, heat transfer and electromagnetic potential analysis.
Therefore, obtaining an accurate finite element model is a fundamental step for subsequent
variation analysis and quality control of composite fuselage assembly.

Finite element modeling of composite fuselage is a challenging task due to the compliant
nature and anisotropic characteristics of composite structures (Jones (1998), Barbero (2013)).
Many model parameters, such as material property parameters, multiple layer thickness and
constraints on composite parts, make important impacts on the accuracy of the computer
model. Although the values of these parameters are available according to engineering design
knowledge, the actual values of those parameters in the real fabricated fuselage are unknown
because of inevitable variabilities in the manufacturing system, such as part fabrication errors,
fixture errors and positioning errors.

The present research is motivated by a composite fuselage dimensional simulation. Our
goal is to find the optimal values of the model parameters, under which the finite element
outputs match the structural load experimental observations of the composite fuselage. In the
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area of computer experiments, identification of unknown model parameters based on com-
puter simulation outputs and physical experimental observations is referred to as calibration
of computer models. There has been a vast amount of literature discussing the calibration
methodologies and their applications since the pioneering work by Kennedy and O’Hagan
(2001) appeared. To name a few authors, see Kennedy and O’Hagan (2001), Higdon et al.
(2004), Bayarri et al. (2007), Joseph and Yan (2015), Tuo and Wu (2015) and Gramacy et al.
(2015). Calibration of computer models has been applied successfully in many areas, like the
research of hydrocarbon reservoir (Craig et al. (2001)), the electrical activity of myocytes
in cell biology (Plumlee, Joseph and Yang (2016)), the diffusion of radionuclides released
during nuclear bomb tests (Pratola and Higdon (2016)) and so on.

In a typical computer experiment problem, the corresponding physical experiment is ex-
pensive to run, and this is why we need the help of the computer simulator. Thus, the physical
experimental sample size is normally rather limited. On the other hand, many computer simu-
lators have a number of calibration parameters. In many problems, simultaneously estimating
all calibration parameters from the data can be intractable due to the curse of dimensionality.
In the composite fuselage simulation problem discussed in Section 5, there are quite a few
calibration parameters, such as material property parameters, multiple layer thickness, sup-
port parameters, fabrication angle and temperature. Because of the time and cost constraints,
only eight physical experimental observations are obtained.

To break the curse of dimensionality, we resort to the engineering knowledge to obtain a
sparse model for the calibration problem. In most calibration problems in engineering, engi-
neers have some expert knowledge of the model parameters using the information from the
design process. Based on the knowledge, engineers can give some engineering values for the
calibration parameter. Because the engineering knowledge is likely to be reliable, most engi-
neering values are likely close to their corresponding optimal values such that experimental
data can be used to indicate a only the sparse subset of the model parameters that need ad-
justment to improve agreement between model and experiment. We call them the sensible
calibration variables, or abbreviated as sensible variables. Adjusting the sensible variables
can significantly improve the accuracy of the simulation model. The sensible variables differ
from the sensitive variables which have been widely considered in engineering problems. The
related area is known as sensitivity analysis (Shi (2006)).

In this paper we propose an effective method to identify and determine appropriate levels
for the sensible variables. A loss function of the projected kernel calibration method intro-
duced by Tuo (2019) is used to measure the model fitness, and an /;-type penalty (Tibshirani
(1996)) is used to encourage a minimum adjustment for the calibration parameters. We em-
ploy an approximation technique giving an objective function that becomes convex and thus
can be solved efficiently. The proposed method proceeds by identifying and adjusting the sen-
sible variables which is particularly useful when the physical experimental observations are
limited. The performance of the proposed method is shown in numerical studies. We apply
the proposed method to the calibration of the finite element model in the composite fuselage
simulation problem.

In Section 2 we review some existing calibration methods related to the current work. In
Section 3 we propose an effective model calibration via sensible variable identification and
adjustment. In this section we introduce the concept of sensible variables and discuss their
properties. We also illustrate how the proposed method can identify and determine appropri-
ate levels for the sensible variables. In Section 4 we conduct a numerical study to assess the
performance of the proposed method. In Section 5 we study the finite element model cali-
bration problem of composite fuselage using the proposed method. Concluding remarks and
further discussion are given in Section 6. The data from the composite fuselage simulation
problem and the R code are provided in the Supplementary Material (Wang et al. (2020)).
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2. Review on calibration of computer models. Calibration of computer models has at-
tracted considerable attention in the literature. In a calibration problem, the input of the com-
puter model consists of two types of variables: the control variables x = (x, ..., xg)7 € R¢
and the calibration parameters 6 = (61, ..., 0,,)T € R™. Control variables can be controlled
in the corresponding physical experiments. Calibration parameters are involved in the com-
puter models, but their values cannot be controlled or measured in the physical experiments.
Normally, calibration parameters represent certain inherent attributes of the physical system.
We refer to Kennedy and O’Hagan (2001) for more discussion about the calibration param-
eters. Denote the set of design points for the physical experiments by {xy, ..., X,}, and the
corresponding responses by Y = {yi, ..., y,}. A commonly used model for the physical ex-
perimental observations is

(2.1 yi =¢(X;) +e;,

where i = 1,...,n. ¢(-) is called the true process, which is an unknown function, and e;’s
are the observation errors following N (0, o) with unknown o2 < co. Kennedy and O’Hagan
(2001) claim that the computer outputs cannot perfectly fit the physical experimental obser-
vations because the computer outputs are biased: the computer models are usually built under
assumptions and simplifications which are not exactly correct in reality. Taking this model
bias into account, one could use the following model (Kennedy and O’Hagan (2001), Higdon
et al. (2004)):
22) EO) =y (- 0%) +80),
where 6 denotes the combination of the optimal calibration parameters, y* denotes the com-
puter model and § is the discrepancy function. The goal of calibration is to estimate 8, so
that the computer outputs are close to the physical experimental observations. It is worth not-
ing that equation (2.2) only is not enough to fully determine 6, because the function § is
also unknown. This problem is known as the identifiability issue of Kennedy and O’Hagan’s
method.

To resolve this identifiability problem, Tuo and Wu (2015) define 8™ as

* . : ) 2
(2.3) 0" = arg;mn/;z({(x) y'(x,0))” dx,

that is, #* minimizes the L, distance between the true process and the computer outputs.
Plumlee (2017) observes that (2.3) is generally equivalent to the orthogonality constraints

dy°(x,6%) _
(2.4) /Q T}_a(x) dx =0,

for j =1,...,m. Based on (2.4), Plumlee (2017) proposes a Bayesian calibration method
which rectifies the identifiability problem of Kennedy and O’Hagan’s model.

Inspired by the work of Plumlee (2017), Tuo (2019) suggests a frequentist method to
estimate the calibration parameter. First, we choose a positive definite kernel function .
A common choice is the Gaussian correlation family with

2.5) @ (x;, %)) = exp(—olIxi —x; ),

for some ¢ > 0. The projected kernel of ®, according to the constraints (2.4), is defined as
(2.6) g (x;, X)) = D(x;, X)) — ho (%) Hy 'ho (x,),

with

Jvs /’0
hg(x)zfg%cb(x/,x)dx’,

y*(x',0) [3y* (X', 0) }T / )
Hp = ® .
i /Q/Q 20 { 90 (x', ) dx'dx

2.7)
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Tuo (2019) proposes the following projected kernel calibration estimator:

(2.8) 6" = argmin(Y — Y3)7 (@9 + n°1,) "' (Y - Y3),
[4

where Y = {y*(x1,0), ...,y (xy, 0))7, &g = [Do(xi, X;)|1<i,j<n, In denotes the identity
matrix and 1 > 0 is a tuning parameter which can be chosen using the Bayesian method
suggested by Chang and Joseph (2014). The scale parameter ¢ can be estimated by maximum
likelihood (ML) method, that is, in (2.8) we maximize the objective function with respect
to both @ and ¢. Tuo (2019) proves the consistency and efficiency of the projected kernel
estimator.

Because of the high cost of physical experimental runs, only a small number of physi-
cal experimental observations can be obtained. Thus, only a few model parameters can be
adjusted using a data-driven method. In many engineering problems the number of model
parameters can be large so that not all of them can be adjusted effectively. In the composite
fuselage FEA simulation problem in Section 5, the computer model has one control variable
(actuator force) and five calibration parameters, including surface body thickness, support
parameter, material thickness ratio, fabrics orientation and temperature. Only eight physical
experiments can be conducted by adjusting actuator forces to collect physical experimental
observations. Similar challenges of parameter estimation occur in many composite parts finite
element model calibration problems in the areas of aerospace, automotive, energy industries,
etc. Clearly, existing calibration methods will suffer from the curse of dimensionality.

To break the curse of dimensionality, we will introduce the concept of sensible variables in
Section 3. An effective calibration method will be proposed to solve the calibration problems
with limited physical experimental observations.

3. Methodology. In this section we introduce a novel methodology which tackles the
curse of dimensionality in calibration problems with the help of engineering design infor-
mation. A variable selection and estimation procedure is performed by identifying a sparse
subset of the calibration parameters which need to be adjusted. Such calibration parameters
are called sensible variables. The most common definitions of “sensible” are: practical, rea-
sonable, logical, rational, etc. In the proposed method, by identifying and adjusting these
sensible parameters, the performance of the computer model will be improved, that is, the
discrepancy between the computer model and the physical experimental observations will be
reduced.

3.1. Sensible variable. In a typical engineering problem initial guesses of the model pa-
rameters are usually available. These values are generally obtained using the engineering
design information or the domain expert knowledge. We call them the engineering design
values. 1deally, the physical properties of a product should be consistent with its engineer-
ing design values. This consistency, however, may be violated in practice due to certain in-
evitable variability in the manufacturing system, such as fabrication errors or fixture errors. In
the composite fuselage simulation, although an ideal engineering design value of the surface
body thickness is given, the actual thickness of a specific batch of the fabricated fuselage is
still unknown because of fabrication errors. From engineering design the fabrics orientation
should be 45 degrees, but fabrication uncertainty may also exist.

Recall that calibration of model parameters may suffer from the curse of dimensionality
when the input dimension of the calibration parameters is relatively high. Fortunately, our
engineering knowledge suggests that we can reasonably assume that most of the calibration
parameters can be set as their engineering design values, because the quality of the product
is generally well controlled. Thus, only a small number of the model parameters need to be
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TABLE 1
Sensibility vs. sensitivity

Variable type Description Needs adjustment?
Insensitive 0; has less influence on the simulation outputs No
Sensitive but insensible 0; is sensitive and Qi(o) =0 No
Sensible 0; is sensitive and Qi(o) #0; Yes

adjusted. For the remaining calibration parameters, which do not need to be adjusted, we call
them insensible variables.

It is worth noting that sensible variables differ from sensitive variables. The latter has been
widely used in engineering modeling which are model variables that have significant influ-
ence on the simulation outputs. Sensible variables must be sensitive. If a model parameter
is insensitive, the right-hand side of (2.3) is largely unaffected by this parameter, and the
optimization with respect to this paramter in (2.3) does not make sense. On the other hand,
sensitive variables are not necessarily sensible. When the engineering design value of a model
parameter is close to its optimal value, we do not need to adjust this parameter, even if it is
sensitive.

Denote the engineering design values as 00 = (91(0), ey 9,5,0))T. We summarize the pro-
ceeding discussion on the relationship between sensibility and sensitivity in Table 1.

In the next two subsections we will propose a statistical method to identify and determine
appropriate levels for the sensible variables.

3.2. Surrogate modeling of computer models. Before introducing the proposed calibra-
tion methodology, we consider the surrogate modeling of the computer outputs with many
calibration parameters. In the fuselage simulation each run of the FEA code is time con-
suming. Thus, it is unrealistic to run the code as many times as we want. In order to make
statistical inference about the model parameters, we need to reconstruct the computer output
response surface based on computer code runs over a set of designed input settings. Specif-
ically, we choose a set of design points {(x1, 1), ..., (Xy,8x)} and run the computer code
over each point in this set. Space-filling designs are commonly used for this purpose in the
computer experiments literature. We refer to Santner, Williams and Notz (2013) for a re-
view of computer experiment design methods. Based on (x;, ;, y*(x;, 0,~))lN: 1> we build a
surrogate model y* which serves as an approximation to y*.

Recall that x = (xq,...,x4) and @ = (01, ..., 6,,). Assume that y® is nearly linear in §. We
apply a Taylor expansion to y*(x, 8) at ® and obtain

(6 —6;") + 0(|6 —63).

, , L 3yS (x,0©
G Y=y &)+ F T (X. )

et 00;
We assume that the residual term is negligible. Then, we can consider the surrogate model
y¥(x, 0) with the form

3.2) ' (x,0) = f(x) +07§(x),

2 A . 395 (x.0©
where f(x) and g(x) can be regarded as estimates of y“(x,o(o)) — %O(O) and

s 0) ~ A .
%, respectively. It is worth noting that f and g are independent of the parameter 6.
This implies that the complex computer models have been approximated by models in linear

form.
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Another advantage of surrogate model (3.2) is that % = g is independent of #. As a
result, the matrix &y defined in (2.6) is also independent of # and thus (2.8) becomes a
convex optimization problem. In Section 3.3 we will use (3.2) and formulate the penalized
calibration as a convex optimization problem which can be solved efficiently.

Now, we consider how to construct the surrogate model (3.2) given the data from the com-
puter experiment. A simple method is to impose parametric models on f and g. For instance,
we may suppose that f and g are linear in x, and then the parameters can be estimated using
the least squares method. We will adopt this parametric method in the case study discussed
in Section 5.

A more flexible method can be considered by using Gaussian process modeling to con-
struct f and g. Write y; = y*(x;, ;). Then, we consider the following Gaussian process
surrogate model:

(3.3) yi= )+ 0 gx) + e,

where g = (g1,...,gm)": f. 81, ..., gn are modeled as realizations of independent Gaussian
processes F, Gy, ..., G, respectively, and ¢; are mutually independent nugget variables fol-
lowing the normal distribution N (0, t2) with unknown 72 > 0. The simplest Gaussian pro-
cess models for f and g are the simple kriging models, in which we assume F, G, ..., G,

have zero mean and covariance functions K2K(-, ), K12K1(-, I, .. K2 K, (-, -), respectively,

2 m
with unknown variances k2, k7, ..., k2 > 0 and known correlation functions K, K1, ..., K.
One may introduce more degrees of freedom to these simple kriging models so that more
complex functions can be fit. Such extensions are fairly straightforward and have been widely
discussed in the literature; see, for example, Santner, Williams and Notz (2013), Banerjee,
Carlin and Gelfand (2004). The nugget term ¢; is necessary because the partial linear Gaus-
sian process model f(x) + 87 g(x) is only an approximation to the true function y*(x, ) and
thus f(x;) + 0,-Tg(x,-) may not be able to interpolate y? for all i.

The functions f and g can be estimated using the standard conditional inference technique
for Gaussian process surrogate models. Conditional on the observed data and the model pa-

rameters, the expectations of F(x) and G(x) = (G((x), ..., G, (X)) are

(3.4) E[F®|YYy,y]=a” (C+121y) 7YY,

and

(3.5) E[G®)|YYy.y] = B(C+721y) 'Yy,

respectively, where Y}, = (yf,...,y;‘v)T, y = {tz,/cz,/clz,...,/c%}, a= K*’K(x1,X),...,

KK (%0, X)), B = [1GK j(xi, )i, C = [KPK (%;, %)) + XLy Oi61jic} Ki(xi, Xj)]ij and Iy
denotes the identity matrix. We can choose f and g in (3.2) as (3.4) and (3.5), respec-
tively. The model parameters can be estimated using the maximum likelihood method or
the Bayesian methods. For the parameter estimation for Gaussian process models, we refer to
Santner, Williams and Notz (2013), Banerjee, Carlin and Gelfand (2004). A related Gaussian
process surrogate model is considered by Ba and Joseph (2012).

3.3. Penalized orthogonal calibration. Recall that the calibration parameter is 6 =
®1,..., Gm)T. As discussed in Section 3.1, the key to break the curse of dimensionality is
to adjust only the sensible variables which is an unknown subset of {61, ..., 6,}. As before,
we denote the engineering design parameter values by the vector 00 = (01(0), ey 9,(,10))T and
the optimal calibration parameter 8* = (6}, ..., 9;',1)T by (2.3). The goal of this paper is to
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propose a novel calibration method to identify and to determine appropriate levels for the
sensible variables. First, we consider the estimator defined by the optimization problem

m
(3.6) 6 = argmin(Y — Y3)" (®¢ + 1°L,) T (Y = Y§) + 1 w6,
0 i=1
where Y, Y} and ®¢ are the same as (2.8); W ={w;,i =1, ..., m} is aknown weight vector,
A is a tuning parameter and 0= (él, e ém)T.

The objective function of (3.6) consists of two components. The first part is
3.7) (Y —Y5)" (@ +n1) " (Y - Y5) = L(Y,Y})

which is the objective function of the projected kernel calibration method (2.8). We call this
term the model loss, because it captures the discrepancy between the computer outputs and
the physical experimental observations. The second term is an adaptive-lasso-type penalty. It
is a weighted multiple of the /; distance between the current calibration parameters and the
engineering design values, denoted by

(3.8) Dy, (6,0©) Zw 6; — 67|

In the statistical analysis /{-type penalties are widely used because they encourage sparse
solutions to break the curse of dimensionality (Biihlmann and van de Geer (2011), Tibshirani
(1996)). Similar with Zou (2006), we suppose the weight w; = 1/10; —8'”,if |6; —0'?|
0 and w; = 00, if [0; — 0| =0, where 6 = argming L(Y, Y3).

In the current context a sparse 6 means that é,- = 95(0) for some or most i’s. The degree of
sparsity is determined by the tuning parameter A. If A = 0, the proposed method goes back
to the projected kernel calibration which gives a nonsparse solution. When A goes to infinity,
the proposed method gives a fully sparse solution with =060 In practice, one should
make a suitable choice of A to balance the model fitting and the model complexity. Cross-
validation is widely used in identifying the tuning parameter (Friedman, Hastie and Tibshirani
(2001)). However, the adaptive lasso-type variable selection models often include too many
variables when selecting the tuning parameter by the cross-validation method. Wang, Li and
Tsai (2007a, 2007b) demonstrated that adaptive lasso can identify the true model consistently
when the tuning parameters is selected by a BIC-type criterion. As a result and in order to
better convey the characteristics of the proposed method, we select A using the BIC-type
criterion,

L(Y,YS)

0, logn

3.9) BIC), = log( ) + |Sy] x
where L(Y, ng) is the model loss; S; = #{|ék,j _91(0)| #0,j=1,...,m}; éx is the estimate
for some chosen value of A.

As outlined in Section 3.2, the computer code is expensive to run and thus Yj cannot be
regarded as a known function of 8. Therefore, it is infeasible to solve (3.6) directly. To obtain
a computationally efficient estimator, we replace the computer response surface y* with the
surrogate model y* introduced in (3.2). According to (2.6)—(2.7), the projected kernel matrix
@y in (2.6) now becomes

(3.10) CD@(XZ',XJ')=CD(XZ',XJ') —hg(X,’)THg_lhg(Xj),
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with

hg(x) = f g(x)@(x', x)dx/,

(3.11)
// x)gx) T @ (x, x) dx dx.

Then, the estimator (3.6) becomes

m
(3.12) 0 = argmin(Y — Y5)" (@ + n*5) " (Y = Y5) + 1 wi|6; — 6]
0 i=l

where SA(S ={9°(x1,0), ...,y (X,,0)}. We call the estimator defined by (3.12) the penalized
~PO

orthogonal calibration and write it as @

Because ®; is a positive semidefinite matrix, (3.12) is a convex optimization problem. We
can apply the existing methods such as the NEWUOA algorithm (Powell (2006)) to solve
this problem efficiently. In this paper we use the Monte Carlo method to approximate the
integrals in (3.11).

To justify the proposed method, we examine whether the three types of calibration vari-
ables in Table 1 would be adjusted by the method in the desired manner. We call the first part
of (3.12), given by

(3.13) LY, Y5) = (Y = Y5) (@5 +n°1,) ' (Y - Y3),

the empirical model loss. First, we consider insensitive variables. Suppose 6; is insensitive.
We also suppose that our surrogate model should be reasonably accurate. Then, by definition,
V5 should be (nearly) independent of ;. Consequently, LY, f(o) is also independent of 6;.
In this case, (3.12) reduces to minimizing Aw; |6; — Q(O)I + L(Y Y0< )) +AD;, (0,0 o l))
which gives the answer 6; = 9( ) . Thus, the penalized orthogonal calibration leaves 6; unad—
justed. If 6; is sensitive but 1nsens1b1e accordlng to the consistency of the projected kernel
calibration (Tuo (2019)), the minimizer of L(Y Y ) With respect to 6; should be close to
9(0) In this situation the /; penalty will regularize 0 and set 6; = 9(0) If 6; is sensible, 0(0)
does not give a good model fitting. Then, for a suitably chosen A, the partial derivative of
L(Y, SA(;) atg; = Qi(o) has a magnitude greater than Aw; which is the maximum subgradient

of Dy, (0, 0©) with respect to 6;. As a consequence, 0;0) cannot be a solution to (3.12) and,
therefore, 6; will be adjusted.

4. Numerical study. In this section we conduct a simulation study to examine the
performance of the proposed method. Suppose the vector of control variables is x =
(x1,x2, x3, x2)T €0, 1]* and the true process is

) ¢00 =S 1+ (2 + e/ = 1]+ (a1 o+ 3x0)

x exp(1 + sin(x3)).

Suppose the computer model is

1 + 6 sin
y'(x,0)= il ; () \/1 + (x2 + x3)xa/x?

4.2) + (x1 + 625 + 3603x4) x exp(sin(x3))+

+ 04x1 + 05x3 4 Oex3 + 010,
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where 8 = (01, 65, ...,010)7 is the vector of the calibration parameters. Let X = {x1, ..., Xs50}
be the set of the design points, where Xx;’s are generated independently from the uniform
distribution on [0, 1]*. The physical experimental observations are generated by

(4.3) yi =¢(xi) +ei,

where the observation error ¢;’s are mutually independent and follow N (0, 0. 12).
Suppose the engineering design values of the calibration parameters are 0© =(0,0,1,

—0.5,0,0,0,0,0, 7). Let 9PO = (éfo, 9}30, - éﬁ?)T be the penalized orthogonal calibra-
tion of @ given by (3.12). We use a Gaussian function (2.5) as the kernel function ®. To
determine the hyperparameter ¢ in (2.5), we first build a Gaussian-process model to approxi-
mate the physical observations and estimate ¢ by using the maximum likelihood method. The
BIC-type criterion (3.9) is used to choose the tuning parameter A in the penalized orthogonal
estimations of the sensible variables. We repeat the above simulation procedure 100 times to
assess the average performance of the proposed method.
Recall that the optimal value of #, denoted as 8™ = (6}, .. ., 91*0)T, is defined as

o 1 D) — vi(. 2
(4.4) 0" = arg;n1n/;2(§() y'(-, 0))" dx.

It is worth noting that (4.4) can define only the sensitive variables, because, with respect to
the insensitive variables, the above objective function is flat. Using the standard sensitivity
analysis method (Sobol (2001)), we identify that 87, 6g, 89 are insensitive parameters.

We compare the proposed method with the usual projected kernel calibration estimator,

denoted by 6PK as well as the ordinary least squares estimator 6 (Tuo and Wu (2015))
defined as
~OLS

4.5) 0 = arg;nin(Y — f(;)T (Y- ?i)
We calculate the integrated error, defined as
IE@) = [ (600 =y x. ) dx,

to assess the performance of an estimator 6. Clearly, /E measures the discrepancy between the

true process and the computer model. We compute the Monte Carlo average value of /E (é) for

each estimator 6 mentioned above. We also include the optimal value 6* for comparison. The
results from the engineering design 9(0), éOLS, the projected kernel calibration estimation éPK
(2.8), the penalized orthogonal estimation ] (3.12) and the optimal values of the calibration
parameters 0™ are summarized in Table 2. The /E values and the point estimates for ;-6
and 69 are presented. We skip the estimates for 67, 63 and 0y because they are insensitive
parameters and thus their optimal values do not exist.

From Table 2 we can see that 93(0), 9}0), él(g) are relatively far from their optimal values,
while other variables are either identical or close to their optimal values. Thus, adjusting only
53(0) , 9:50), 51(8) is ideal which, according to Table 2, is exactly what the proposed method does.
This result implies that the proposed method can successfully identify the sensible variables.

To assess the estimation accuracy regarding the sensible variables, we consider the relative

error defined as
RE; = |éi —071/167.
The results are summarized in Table 3. Clearly, the relative errors of the proposed method are

much lower than those of the ordinary least squares and the projected kernel methods. This
implies the proposed method can adjust the sensible variables effectively.
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TABLEOZLS PK ~PO
The performance of 89,0~ "~ 8 .8 = and 0*

IE Estimator 01 0> 03 04 05 06 610
35177 9 0 0 1 ~05 0 0 7
2046 6% 0.001 0017 0027  —0060  —0.707 0.054 7523
w712 §F —0.014 0020 0200 —0185  —0.712 0.0275  7.388
nes 60 0 0 0329  —0.545 0 0 6.865
2581 0% 0 0001 0300 —0557  —0.001  —0.002 6.849

To better understand the performance of the proposed method, we present the curve of the
estimators with respect to A. Let AG; = |éiPO — Qi(o) |,i=1,...,10. Figure 1 plots the average
curves of each Aé,- over the 100 simulation runs.

Figure 1 shows that, as A increases, Aé1, Aéz, Aés, Aé6, Aé7, Aég and Aég decrease
rapidly. Their values vanish even under a small X, say A = 0.1. According to our method, 61,
63, 05, 06, 07, O3 and 69 are suggested as insensible variables. This is a correct result, as we
have learnt from the sensitivity analysis that 67—09 are insensitive and from Table 2 that 61,
6>, 05, ¢ are sensitive but insensible.

5. Composite fuselage simulation. FEA is an effective numerical technique for com-
posite fuselage analysis. During the development of the variation model and quality control
system for composite fuselage assembly process, an accurate finite element model is needed
which helps to increase the flexibility and efficiency of model development and control sys-
tem design. ANSYS Composite PrepPost is an add-in module to the ANSYS Workbench and
is integrated with standard analysis for composite parts. By using the Composite PrepPost,
two kind of materials, carbon fiber and epoxy resin, are used to generate multiple fabrics
with different geometric parameters. Fabrics can be stacked up depending on specific se-
quence and orientations. And then, stack-ups are used to generate sublaminates and further
integrated into a composite part. Both stress and deviations, in addition to a range of failure
criteria, can be analyzed by using the finite element model.

In the finite element model of the composite fuselage, the input variable, calibration
variables and output variables are summarized in Table 4. One input variable x, actua-
tor force, with eight levels is considered, as shown in Figure 2(a). Dimensional deforma-
tions in five key points, y* = (yf, e yg)T, are selected as computer outputs of the FEA,
shown in Figure 2(a). The circumferential distances of these five key points in FEA are
{0,9.43, 18.85, 28.27, 37.71} inches, respectively. In addition, when we calibrate the finite
element model of composite fuselage, five calibration parameters 61, ..., 65 are considered,
including surface body thickness, support parameter, material thickness ratio (between car-
bon fiber and epoxy resin), fabrics orientation angle and temperature. The engineering design

TABLE 3
Relative errors of the estimators

Variable REQLS REpK REpo

03 91% 3333%  9.667%
n 89.05%  66.79% = 2.154%
010 9.84% 7.87%  0.234%
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FI1G. 1. The relationship between ) and Aéi, where Aé,- = Iéi - Qi(O)I, i=1,...,10. The engineering design
value of 8 is 89 = (0,0,1,—0.5,0,0,0,0,0, 7).
values for calibration parameters 00 — (91(0), cee 05(0))T are determined based on the en-

gineering design of fuselage or fixture constraints in the physical experiments. Due to the
inevitable manufacturing deviations, the real fuselages cannot be exactly the same as design
values. Here, we obtain the parameters from the literature (Feraboli et al. (2009)) and other
engineering background knowledge.

In order to obtain the physical experimental observations, a real structural load experi-
ment is set up to measure the deformations of the composite fuselage under different actuator
forces. We ensure that the key parameters (e.g., length, width, thickness and weight) are con-
sistent between the computer simulated part and the real composite fuselage. In the validation
test the actuator force is changed from zero to 650 pounds, as shown in Table 4. Because of
the experimental setup, it is challenging to localize the five key points of FEA output ac-
curately in our physical experiment. We could obtain the dimensional responses in multiple
raw measurement points and then calculate the corresponding observations by linear inter-
polation. In order to cover the range of circumferential distance 0-37.71 inches in the FEA,
dimensional deformations in nine points are measured, as shown in Figure 2(b). The circum-
ferential distance of these nine points ranges from about 10 to 45 inches. We need to point
out that the circumferential distance ranging from O to 10 inches is not measurable because of
the fixture set-up of physical experiment. After we get the dimensional deformations in these
nine raw measurement points, we compute the five physical experimental observations asso-
ciated with same circumferential distances in the FEA by linear interpolation. Afterward, we
apply the proposed calibration method based on computer outputs and interpolated physical
experimental observations to find the optimal magnitudes of model parameters.

TABLE 4
Variables in the FEA

Input Actuator force X = {0, 100, 200, 300, 400, 500, 600, 650}7
01 surface body thickness, 0.29-0.30 inch

(2 support parameter, 2—4 inches

03 material thickness ratio, 19.5-22.5

04 fabrics orientation, 40-50 degree

0Os temperature, 6871 degree

Output y* =(yf,...,y§)T




1770 Y. WANG ET AL.

(b)
// \
/ Output: nine raw \
' measurement points in “‘v,‘
t( physical experiments |
\ /

\
\

\

oL 4B
Force Sensor

Wood Deformation
Floor Jack —> Stand Measurement

Output: five key Input: actuator force
points in FEA

FI1G. 2. (a) FEA simulation: Input actuator force and dimensional outputs in five key points; (b) physical exper-
iments setup with dimensional outputs in nine raw measurement points (right).

All settings details of the finite element model and the physical structural load experiment
are shown as follows:

e Prespecified design parameter values: 00 = (0.29, 2.5, 21,45, 69)T;

e Physical design: X = {0, 100, 200, 300, 400, 500, 600, 650} ;

e Interpolated physical experimental observations: Y = (Yy,..., Y)Y i=1yix,...,
v, j=1,....5

e Computer design: X* =D ® X; where D = {01, ..., 050} is a Maximum Latin Hypercube
Design (Morris and Mitchell (1995)) for 0;

e Computer outputs Y s-

Figure 3 shows the relationship between the computer outputs Y3 = (y3(x1), ..., y3 (xg)T
(associated with circumferential distance 18.85 inches) and the computer design X with three
different choices of 0:

61 =(0.298,2.3,21.0,45.5,69.4)7 .0, = (0.296, 2.8,20.4,49.4,70.5)" and 03 = (0.290,
2.0,22.1,47.4,68.2)T. Figure 3 shows a linear relationship between X and Y3 for each
fixed 0. After a careful examination we confirm that such a linear relationship between X and

Y} holds foreach i € {1, ..., 5}. This result is consistent with our engineering knowledge that
o0
24a8, N
+ 63
= a
E 1c—> 1 A o °
8. A © + +
S o +
g 0 A (o) +
o +
A
?
o4

T T T T T T T
0 100 200 300 400 500 600

Actuator Force (Ibf)

FI1G. 3. Relationship between X and Y% with three different choices of 6: 6 = (0.298,2.3,21.0,45.5, 69.4)T,
0, = (0.296, 2.8,20.4,49.4, 70.5)T and 03 = (0.290, 2.0, 22.1,47.4, 68.2)T. Y§ gives the computer outputs in
the third observation point.
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the elastic dimensional deformation should be a linear function with respect to the actuator
force. Therefore, we use a linear model to link X and Y;’s. The slope of this linear model is
a function of #. Hence, for the input x and @, we use following model to fit the jth item of
the computer output:

(5.1) )A);(x,a):h(b’)x, j=1,...,5.

By applying the linear approximation (3.2), (5.1) becomes

(5.2) $5(x.0) = Bjox + Bjifix + -+ Bjsbsx,  j=1,....5.
The parameters 8o, ..., B;5 are estimated by using the least squares method.

We calculate the total model loss for all outputs by using a weighted sum of the jth em-
pirical model loss L (Y, Yp),j=1,...,5as

5
(5.3) LY. Y)) =Y wiL;(Y.Y}),
j=1

where the weight w’; corresponds to the relative importance of this measurement point. In the
structural load experiment of the composite fuselage, different measurement points show dif-
ferent quality features which have weights corresponding to relative importance. According
to our engineering knowledge, we choose the weights as

wj=exp{—02(5—-j)?}, Jj=1,...,5.

Figure 4 shows the function relationship between A and Aéi,i =1,...,5, where Aél- =
10: — 6%,

It can be seen that Ad;, Af3 and Ads decay to zero rapidly as A increases which implies
that 01, 65 and 65 are insensible variables. Consequently, we do not need to adjust the engi-
neering design parameter values of these three parameters. We also observe that Af, does
not decay as A increases, and Aé4 decays rather slowly. Therefore, 6> and 64 are sensible
variables.

We are also interested in whether 1, 63 and 65 are sensitive. We change the engineering
value © to (0.295,2.7,22.5, 47, 7O)T. The corresponding results are shown in Figure 5.
It can be seen that, in this case, Aél and Aé5 decay to zero rapidly as A increases, while
Aé3 does not. This implies that 81 and 65 are insensitive variables and 65 is sensitive, but its
engineering design value 93(0) =21 is very close to 65.

[ee]
o - ABy

rrrrrrr A0,

...... A6,
© _| -—- Ay
e — A0

____\____\\
PR ! \
\
N R RIRILITTITIIeS
A
N \
e N
N
~——
S ~~
o \\\// ~<
° o I T T T T 1
0 2 4 6 8 10 12
A
FI1G. 4. The relationship between )\ and Aé,-, where A; = |éi - 91'(0)|’ i=1,...,5. The engineering design

value of 0 is (0.29,2.5,21, 45, 69)T.
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F1G. 5. The relationship between A and Aéi, where Aéi = |éi - Gi(o)l, i=1,...,5. The engineering design

value of 0 is (0.295,2.7,22.5,47, 70)T.

Next, we will show that, after sensible variable identification, the model loss can be dra-
matically reduced with a minimum amount of model adjustment Table 5 gives the model
loss L(Y, Yy), defined in (3.7), and empirical model loss L(Y Y p)» defined in (3.13), under
some input settings. It is worth noting that the model loss cannot be computed given only
the training data. Here, we conduct an extra set of necessary validation computer runs so
that L(Y, Y}) can be computed numerically. In Table 5 we list 11 settings of the calibration
parameters. The last column of Table 5 gives the number of adjusted calibration parameters
which can be regarded as the model complexity. The first row is the engineering design val-
ues 0. Under this setting, no calibration parameters are adjusted, and thus its complexity is
zero. Next, we consider the parameter estimation given by the projected kernel method (2.8)
adjusting only sensible variables. Since we have already identified 6, and 6,4 as the sensible
variables using the proposed method, we consider three cases: (i) the estimation only adjust-
ing 6,; (ii) the estimation only adjusting 64 and (iii) the estimation adjusting both 6, and 64,
denoted as 9(2), 9(4) and 9(2,4), respectively. The model complexities for these three cases

TABLE 5
Model loss of different values of 6

0 Values of 6 L(Y, Yz) LY, f(;) Complexity
Q) (0.290, 2.5, 21.0,45.0, 69.0)T 353.15 391.36 0
b4 (0.290,2.5,21.0,40.0,69.0)” 212.52 235.31 1
9(2) (0.290, 3.2,21.0,45.0, 69.0)T 81.24 85.41 1
0(2’4) (0.290, 3.0, 21.0, 40.0, 69.O)T 53.29 63.11 2
0[1] (0.295,2.5,19.6,43.8, 68.9)T 52.61 69.38 4
0[2] (0.290, 3.3,22.5,42.9, 68.2)T 55.12 73.81 4
013 (0.291,2.6, 19.8,40.0,70.6)” 57.91 75.57 5
0[4] (0.294,2.4,20.5,46.4, 70.6)T 65.59 82.81 5
05 (0.291,2.4,19.9,48.9, 68.3)T 66.50 85.48 5
0[6] (0.300,3.4,22.4,47.1, 69.7)T 73.50 87.71 5

Ly, Yj) is the model loss (3.7); LY, ?5) is the empirical model loss (3.13).

2 Complexity = the number of parameters been adjusted.
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are one, one and two, respectively. We also list six calibration parameter values, denoted by
011, i =1,...,6 which are inputs of the training data with the smallest six model losses.

From Table 5, we can see that, before model calibration, the model loss is 353.15. If only
0, is adjusted, the model loss decreases to 81.24. When two sensible variables 6, (support
parameter) and 6,4 (fabrics orientation) are both adjusted, the model loss further decreases to
53.29. This value is smaller than those given by the most training samples. Only @[ gives
a slightly smaller model loss 52.61. The complexity for @[; is four, which means one needs
to adjust two more calibration parameters to achieve a minor improvement in the model loss.
Noting the fact that higher model parameter dimensionality results in increasing estimation
instability, one should consider 9(2,4) as a better choice of the calibration parameters. Besides,
as we mentioned, the model loss relies not only on the training data but also on the extra
validation computer runs. Only the empirical model loss relies solely on the training data.
Among all settings shown in Table 5, the proposed estimator has the smallest empirical model
loss.

We show the effect of model calibration by visual comparison between computer outputs
and raw physical experimental observations in Figure 6 and Figure 7. Recall that dimen-
sional deformations in nine points are measured in the physical experiment. So there are nine
physical experiment points in Figure 6 and Figure 7.

Figure 6 corresponds to the 0© with model loss 353.15, while Figure 7 corresponds to
@(2,4) with model loss 53.29. The horizontal axis is circumferential distance from the cen-
ter, and the vertical axis is dimensional deformation under the actuator force. From Figure 6
we can find that, as the circumferential distance becomes larger, the deformation becomes
smaller; that makes sense because the actuator force is applied in the center where circumfer-
ential distance is zero. The discrepancy between computer outputs and physical experimental
observations increases when the circumferential distance becomes larger. In addition, as the
magnitude of the actuator force becomes larger, the discrepancy between computer outputs
and physical experimental observations becomes much larger. In Figure 7 the results after

. Force =100 Ibf . Force =200 Ibf . Force =300 Ibf
= 30 = 30 =30
Q [$) [$)
£ £ £
8 20 8 20 8 20
=) = =5
§10 IS § 104~
® ® © -
E £ £ e
S0 R Re] go T -
@ [0 [0
a a [a)
0 20 40 0 20 40 0 20 40
Circum. Distance (inch) Circum. Distance (inch) Circum. Distance (inch)
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= 30 = 30 =30
[$] [$) [$)
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820 8 20 g 207
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FI1G. 6.  Results before calibration: Comparison between computer outputs (FEA data, dashed line with triangle
mark) and physical experimental observations (experiment data, line with asterisk mark) under the actuator force
from 100 pounds to 600 pounds.
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FI1G. 7.  Results after calibration: Comparison between computer outputs (FEA data, dashed line with triangle
mark) and physical experimental observations (experiment data, line with asterisk mark) under the actuator force
from 100 pounds to 600 pounds.

calibration are shown. We find that, under different actuator forces, the computer outputs
match the physical experimental observations much better. Although the model fitting is ex-
cellent after the calibration, we do not believe that our model overfits the data because only
two calibration parameters are adjusted.

6. Discussion. Due to inevitable errors or variabilities in manufacturing, the actual val-
ues of the physical or engineering attributes of a product can differ from their engineering
design values. To build an accurate computer simulator for this product, one needs to cali-
brate the model parameters. A common scenario in computer experiments is that there exist a
number of calibration parameters, while the physical experimental sample size is commonly
limited due to certain time and financial constraints. Thus, it is often intractable to estimate
all calibration parameters using the physical experimental data.

In this paper we introduce the concept of sensible variables. Adjusting the sensible vari-
ables can significantly improve the performance of the computer model. We propose the
penalized orthogonal calibration method to identify and determine appropriate levels for the
sensible variables. This method can identify the calibration parameters that need to be ad-
justed. Based on numerical simulation and case study, we show the efficiency and effective-
ness of the proposed calibration method. The complex finite element model of the composite
fuselage has been improved a lot after calibration, and the computer outputs match the phys-
ical experimental observations very well.

As the computer model cannot match the physical observation perfectly in many cases, the
discrepancy between the computer model and the true process can not be ignored. In general,
there is no bright line between “tuning” and “calibration”. In the proposed method, if the
computer model discrepancy is small, then the estimation of model parameters is regarded as
calibration instead of model tuning.
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SUPPLEMENTARY MATERIAL

Supplement to “Effective model calibration via sensible variable identification and
adjustment with application to composite fuselage simulation” (DOI: 10.1214/20-
AOAS1353SUPP; .zip). R Code.
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