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ABSTRACT

Kriging based on Gaussian random fields is widely used in reconstructing unknown functions. The krig-
ing method has pointwise predictive distributions which are computationally simple. However, in many
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applications one would like to predict for a range of untried points simultaneously. In this work, we obtain

some error bounds for the simple and universal kriging predictor under the uniform metric. It works for
a scattered set of input points in an arbitrary dimension, and also covers the case where the covariance
function of the Gaussian process is misspecified. These results lead to a better understanding of the
rate of convergence of kriging under the Gaussian or the Matérn correlation functions, the relationship
between space-filling designs and kriging models, and the robustness of the Matérn correlation functions.

Supplementary materials for this article are available online.

1. Introduction

Kriging is a widely used methodology to reconstruct func-
tions based on their scattered evaluations. Originally, kriging
was introduced to geostatistics by Matheron (1963). Later, it
has been applied to computer experiments (Sacks et al. 1989),
machine learning (Rasmussen 2006), small area estimation from
survey data (Rao and Molina 2015), and other areas. With
kriging, one can obtain an interpolant of the observed data, that
is, the predictive curve or surface goes through all data points.
Conventional regression methods, like the linear regression, the
local polynomial regression (Fan and Gijbels 1996), and the
smoothing splines (Wahba 1990), do not have this property. It
is suitable to use interpolation in spatial statistics and machine
learning when the random noise of the data is negligible. The
interpolation property is particularly helpful in computer exper-
iments, in which the aim is to construct a surrogate model for a
deterministic computer code, such as a finite element solver.

A key element of kriging prediction is the use of conditional
inference based on Gaussian processes. At each untried point
of the design region (i.e., domain for the input variables), the
conditional distribution of a Gaussian process is normal with
explicit mean and variance. The pointwise confidence interval of
the kriging predictor is then constructed using this conditional
distribution. In many applications, it is desirable to have a joint
confidence region of the kriging predictor over a continuous
set of the input variables such as an interval or rectangular
region. The pointwise confidence interval for each design point
cannot be amalgamated over the points in the design region to
give a confidence region/limit with guaranteed coverage prob-
ability, even asymptotically. To address this question, it would
be desirable to have a theory that gives good bounds on the
worst (i.e., maximum) error of the kriging predictor over the
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design region. This bound can be useful in the construction
of confidence regions with guaranteed coverage property, albeit
somewhat conservatively.

In this work, we derive error bounds of the simple and uni-
versal kriging predictor under a uniform metric. The predictive
error is bounded in terms of the maximum pointwise predictive
variance of kriging. A key implication of our work is to show that
the overall predictive performance of a Gaussian process model
is tied to the smoothness of the underlying correlation function
as well as the space-filling property of the design (i.e., collection
of the design points). This has two major consequences. First,
we show that a less smooth correlation function is more robust
in prediction, in the sense that prediction consistency can be
achieved for a broader range of true correlation functions, while
a smoother correlation function can achieve a higher rate of
convergence provided that it is no smoother than the true
correlation. Second, these error bounds are closely related to
the fill distance, which is a space-filling property of the design.
This suggests that it makes a good design by minimizing its
fill distance. We also prove a similar error bound for universal
kriging with a random kernel function. In addition, our theory
shows that the maximum likelihood estimator for the regression
coeflicient of universal kriging can be inconsistent, which is a
new result to the best of our knowledge.

This paper is organized as follows. In Section 2, we review the
mathematical foundation of simple kriging and state the objec-
tives of this paper. In Section 3, we present our main results on
the uniform error bounds for kriging predictors. Comparison
with existing results in the literature is given in Section 3.3. Some
simulation studies are presented in Section 4, which confirm
our theoretical analysis. We extend our theory from simple krig-
ing to universal kriging in Section 5. Concluding remarks and
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discussion are given in Section 6. Appendix A contains the proof
of Theorem 1, the main theorem of this work. Appendices B-
D consist of the proofs of Theorems 2-4, respectively. Some
necessary mathematical tools are reviewed in the supplementary
materials.

2. Preliminaries and Motivation

In Sections 2.1 and 2.2, we review the kriging method and
introduce some proper notation. In Section 2.3, we state the
primary goal of our work.

2.1. Review on the Simple Kriging Method

Let Z(x) be a Gaussian process on R, In this work, we suppose
that Z has mean zero and is stationary, that is, the covariance
function of Z depends only on the difference between the two
input variables. Specifically, we denote

cov(Z(x), Z(x')) = o*W (x — x),

for any x,x € RY where ¢ is the variance and W is the
correlation function. The correlation function should be posi-
tive definite and satisfy W(0) = 1. In particular, we consider
two important families of correlation functions. The isotropic
Gaussian correlation function is defined as

W(x; ) = exp{—g|x[*},

with some ¢ > 0, where || - || denotes the Euclidean norm. The
isotropic Matérn correlation function (Santner, Williams, and
Notz 2003; Stein 1999) is defined as

(2.1)

V0,0) = s OV K VT, (22)
(v)2
where ¢,v > 0 and K,, is the modified Bessel function of the
second kind. The parameter v is often called the smoothness
parameter, because it determines the smoothness of the Gaus-
sian process (Cramér and Leadbetter 1967).

Suppose that we have observed Z(xy),...,Z(x,), in which
X1,...,%, are distinct points. We shall use the terminology
in design of experiments (Wu and Hamada 2009) and call
{x1,...,x,} the design points, although in some situations
(e.g., in spatial statistics and machine learning) these points
are observed without the use of design. In this article, we
do not assume any (algebraic or geometric) structure for the
design points {x1,...,x,}. They are called scattered points in
the applied mathematics literature.

The aim of simple kriging is to predict Z(x) at an untried x
based on the observed data Z(x;), . .., Z(x,), which is done by
calculating the conditional distribution. It follows from standard
arguments (Santner, Williams, and Notz 2003; Banerjee, Carlin,
and Gelfand 2004) that, conditional on Z(x1), ..., Z(x,), Z(x)
is normally distributed, with

E[Z(x)|Z(x1),. .., Z(x)] = rL (x)K"'Y, as., (2.3)
var[Z(x)|Z(x1), . . ., Z(xp)] = 02(1 — rL (x) K~ 'r(x)), as.,
(2.4)

wherer(x) = (W (x—x1),..., \Il(x—xn))T,K = (W —x1)jk>
and Y = (Z(x1),...,Z(xx))T.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 921

The conditional expectation E[Z(x)|Z(x}),...,Z(x,)] is a
natural predictor of Z(x) using Z(x1),...,Z(xy), because it is
the best linear predictor (Stein 1999; Santner, Williams, and
Notz 2003). It is worth noting that a nice property of the Gaus-
sian process models is that the predictor (2.3) has an explicit
expression, which explains why kriging is so popular and useful.

The above simple kriging method can be extended. Instead
of using a mean zero Gaussian process, one may introduce extra
degrees of freedom by assuming that the Gaussian process has
an unknown constant mean. More generally, one may assume
the mean function is given by a linear combination of known
functions. The corresponding methods are referred to as ordi-
nary kriging and universal kriging, respectively. A standard pre-
diction scheme is the best linear unbiased prediction (Santner,
Williams, and Notz 2003; Stein 1999). In this work, we shall
first consider simple kriging in Sections 2.2-4, and then extend
our results to universal kriging in Section 5. This organization
is based on the following reasons: (1) the predictive mean of
simple kriging (2.3) is identical to the radial basis function inter-
polant (see Section 2.2), which is an important mathematical
tool which our theory relies on, (2) our main theorem for simple
kriging (Theorem 1) requires less regularity conditions than
those for universal kriging, (3) our theory for simple kriging,
together with the techniques we develop to prove Theorem 1,
serves as a basis for establishing the results for universal kriging.

2.2. Kriging Interpolant

The conditional expectation in (2.3) defines an interpolation
scheme. To see this, let us suppress the randomness in the prob-
ability space and then Z(x) becomes a deterministic function,
often called a sample path. It can be verified that, as a function
ofx, 'K~ 1Y in (2.3) goes through each Z(xj),j=1,...,n.

The above interpolation scheme can be applied to an
arbitrary function f. Specifically, given design points X =
(x1,...,%x,) and observations f(x1),...,f(x,), we define the
kriging interpolant by

Zyxf(x) = rT(x)K'F, (2.5)

wherer(x) = (W(x—x1),..., ¥ (x—x,) T, K = (W (x5 — xk))jk»
and F = (f(x1),...,f (x,)T. This interpolation scheme is also
referred to as the radial basis function interpolation (Wendland
2004). The only difference between (2.5) and (2.3) is that we
replace the Gaussian process Z by a function f here. In other
words,

E[Z(x)|Z(x1),...,Z(x4)] = Ty xZ(x), a.s. (2.6)

As mentioned in Section 2.1, the conditional expectation
E[Z(x)|Z(x1),...,Z(x,)] is a natural predictor of Z(x). A
key objective of this work is to derive a uniform bound of
the predictive error of the kriging method, given by Z(x) —
E[Z(x)|Z(x1), ..., Z(x,)], which is equal to Z(x) — Zy xZ(x)
almost surely.

In practice, ¥ is usually unknown. Thus, it is desirable to
develop a theory that also covers the cases with misspecified
correlations. In this work, we suppose that we use another
correlation function @ for prediction. We call W the true cor-
relation function and ® the imposed correlation function. Under
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the imposed correlation function, the kriging interplant of the
underlying Gaussian process becomes Zo xZ(x). In this situa-
tion, the interpolant cannot be interpreted as the conditional
expectation. With an abuse of terminology, we still call it a
kriging predictor.

2.3. Goal of This Work

Our aim is to study the approximation power of the kriging
predictor. For simple kriging, we are interested in bounding the
maximum prediction error over a region £,

sup |Z(x) — Zo xZ(x)|

xeQ

2.7)

in a probabilistic manner, where € is the region of interest,
also called the experimental region, and 2 D {xi,...,x,}.
For universal kriging, our aim is to bound a quantity similar
to (2.7), but in which Z¢ xZ(x) should be replaced by the best
linear unbiased predictor, or a more general predictor given by
universal kriging with an estimated kernel function.

Our obtained results on the error bound in (2.7) can be used
to address or answer the following three questions.

First, the quantity (2.7) captures the worst case prediction
error of kriging. In many practical problems, we are interested in
recovering a whole function rather than predicting for just one
point. Therefore, obtaining uniform error bounds are of interest
because they provide some insight on how we can modify the
pointwise error bound to achieve a uniform coverage.

Second, we study the case of misspecified correlation func-
tions. This address a common question in kriging when the true
correlation function is unknown: how to gain model robustness
under a misspecified correlation function and how much effi-
ciency loss is incurred.

Third, our framework allows the study of an arbitrary set of
design points (also called scattered points). Thus, our results can
facilitate the study of kriging with fixed or random designs. In
addition, our theory can be used to justify the use of space-filling
designs (Santner, Williams, and Notz 2003), in which the design
points spread (approximately) evenly in the design region.

3. Uniform Error Bounds for Simple Kriging

This section contains our main theoretical results on the predic-
tion error of simple kriging.

3.1. Error Bound in Terms of the Power Function

It will be shown that, the predictive variance (2.4) plays a curial
role on the prediction error, when the true correlation function
isknown, thatis, & = W. To incorporate the case of misspecified
correlation functions, we define the power function as

Pix(®) =1—rT (0K 'r(x), (3.1)

where r(x) = (®(x — x1),...,P(x — x,)) and K = (P(xj —
XK))jk-

The statistical interpretation of the power function is evident.
From (2.4) it can be seen that, if ¥ = &, the power function
is the kriging predictive variance for a Gaussian process with
0% = 1. Clearly, we have P 4 (x) < 1.

To pursue a convergence result under the uniform metric, we
define

Pox = sup Pp x(x). (3.2)

xeQ

We now state the main results on the error bounds for kriging
predictors. Recall that the prediction error under the uniform
metric is given by (2.7).

The results depend on some smoothness conditions on the
imposed kernel. Given any function f, let f be its Fourier trans-
form. According to the inversion formula in Fourier analysis,
W /(2m)? is the spectral density of the stationary process Z if ¥
is continuous and integrable on R

Condition 1. The kernels ¥ and ® are continuous and inte-
grable on RY, satisfying

10/ ®Il; gay =: AT < +00. (3.3)
In addition, there exists « € (0, 1], such that
/ @] ®(@)dw =: Ag < +o0. (3.4)
R4

Now we are able to state the first main theorem of this paper.
Recall that o2 is the variance of Z(x). The proofs of Theorem 1
and the theorems in Section 5 make extensive use of the scat-
tered data approximation theory and a maximum inequality
for Gaussian processes. Detailed discussions of relevant areas
are given in, for example, Wendland (2004) and van der Vaart
and Wellner (1996), respectively. We also collect the required
mathematical tools and results in the supplementary materials.

Theorem 1. Suppose Condition 1 holds, and the design set X
is dense enough in the sense that Pg x defined in (3.2) is no
more than some given constant C. Then for any u > 0, with
probability at least 1 — 2 exp{—u?/ (ZA%azPé’x)}, the kriging
prediction error has the upper bound

sup |Z(x) — Zo xZ(x)| < Ko Pox log"/?(e/Pox) + u. (3.5)

xeQ

Here the constants C, K > 0 depend only on 2, &, A, and A;.

Theorem 1 presents an upper bound on the maximum pre-
diction error of kriging. This answers the first question posed in
Section 2.3. We will give more explicit error bounds in terms
of the design X and the kernel ® in Section 3.2. Theorem 1
can also be used to study the case of misspecified correlation
functions, provided that condition (3.3) is fulfilled. Condition
(3.3) essentially requires that the imposed correlation & is no
smoother than the true correlation function W. Theorem 1 can
also be used to address the third question posed in Section 2.3.
Note that the right side of (3.5) is a deterministic function
depending on the design, and is decreasing in P x if Ppx is
large enough. Therefore, it is reasonable to consider designs
which minimize Ppx. Such a construction depends on the
specific form of ®. In Section 3.2, we will further show that,
by maximizing certain space-filling measure, one can arrive at
the optimal rate of convergence for a broad class of correlation
functions.

From Theorem 1, we also observe that the constant A; in
(3.3) determines the decay rate of the maximum prediction



error. In other words, the maximum prediction error appears
more concentrated around its mean when the imposed kernel is
closer to the true correlation function. Note that condition (3.4)
requires a moment condition on the spectral density, which is
fulfilled for any Matérn or Gaussian kernel.

The nonasymptotic upper bound in Theorem 1 implies some
asymptotic results which are of traditional interests in spatial
statistics and related areas. For instance, suppose we adopt
a classic setting of fixed-domain asymptotics (Stein 1999) in
which the probabilistic structure of Z(x) and the kernel function
& are fixed, and the number of design points increases so that
Pg x tends to zero. Corollary 1 is an immediate consequence of
Theorem 1, which shows the weak convergence and L, conver-
gence of the maximum prediction error.

Corollary 1. For fixed ¥, ®, 2, and o, we have the following
asymptotic results

sup |Z(x) — Lo xZ(x)| = Op(Pox log"/*(1/Pox)),

xeQ

(3.6)

1/p
<E [sug |1Z(x) — ToxZ(x) |P]) = O(Pox log"*(1/Pox)),
(3.7)

forany 1 < p < 4+00,as Pox — 0.

Proof. Theorem 1 implies (3.6) directly. For (3.7), it follows
from

E [sup |Z(x) — Lo xZ(x) |P]

xeQ

o0
= / P(sup |Z(x) — Zo xZ(x)| > tY/P)dt
0

xeQ

[Ko Pox log'/?(e/Po.x))P 00
_ o )
( /0 [KoPgx log'/?(e/Pg x) 1P

xP(sup | Z(x) — T xZ(x)| > tY/P)dt

xeQ

< [KoPox log!/?(e/ P<I>,X)]p
+ /000 2 exp{—tz/p/(ZA%UZP%D,X)}dt
= O(be,x log?’*(1/Ps x)),
where the inequality follows from Theorem 1. O

We believe that (3.6) and (3.7) are the full convergence rate
because from (1.3) in the supplementary materials we can see
that the convergence rate of the radial basis approximation for
deterministic functions in the reproducing kernel Hilbert space
is O(Po,x) and these two rates are nearly at the same order of
magnitude, expect for a logarithmic factor. This is reasonable
because the support of a Gaussian process is typically larger than
the corresponding reproducing kernel Hilbert space (van der
Vaart and van Zanten 2008). As said earlier in this section, if
W = @, Py x is the supremum of the pointwise predictive SD.
Thus, Corollary 1 implies that, if ¥ is known, the predictive
error of kriging under the uniform metric is not much larger
than its pointwise error.
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3.2. Error Bounds in Terms of the Fill Distance

Our next step is to find error bounds which are easier to interpret
and compute than that in Theorem 1. To this end, we wish to
find an upper bound of P x, in which the effects of the design
X and the kernel & can be made explicit and separately. This
step is generally more complicated, but fortunately some upper
bounds are available in the literature, especially for the Gaussian
and the Matérn kernels. These bounds are given in terms of the
fill distance, which is a quantity depending only on the design X.
Given the experimental region €2, the fill distance of a design X
is defined as

hx := sup min [lx — x;]|. (3.8)
xeQ %X

Clearly, the fill distance quantifies the space-filling property
(Santner, Williams, and Notz 2003) of a design. A design having
the minimum fill distance among all possible designs with the
same number of points is known as a minimax distance design
(Johnson, Moore, and Ylvisaker 1990).

The upper bounds of Pg x in terms of the fill distance for
Gaussian and Matérn kernels are given in Lemmas 1 and 2,

respectively.

Lemma 1 (Wendland 2004, Theorem 11.22). Let Q@ = [0,1]%
d(x) be a Gaussian kernel given by (2.1). Then there exist
constants ¢, hg depending only on €2 and the scale parameter ¢

in (2.1), such that P x < h;{hx provided that hx < hy.

Lemma 2 (Wu and Schaback 1993, Theorem 5.14). Let Q be
compact and convex with a positive Lebesgue measure; ¢ (x) be
a Matérn kernel given by (2.2) with the smoothness parameter
v. Then there exist constants c, hy depending only on €2, v and
the scale parameter ¢ in (2.2), such that P x < chy provided
that hx < hy.

Using the upper bounds of Pg x given in Lemmas 1 and 2,
we can further deduce error bounds of the kriging predictor in
terms of the fill distance defined in (3.8). We demonstrate these
results in Examples 1-3.

Example 1. Here we assume @ is a Matérn kernel in (2.2) with
smoothness parameter v. It is known that

C'(v+d/2) 2
T(‘h’(ﬁ )

X (4vg? + [lw]|?) =TI/, (3.9)

where ¢ is the scale parameter in (2.2). See, for instance, Wend-
land (2004) and Tuo and Wu (2015). Suppose ¥ is a Matérn
correlation function with smoothness vy. It can be verified that
Condition 1 holds if and only if 0 < v < wvy. Therefore, if
0 < v < vy, we can invoke Lemma 2 and Theorem 1 to obtain
that the kriging predictor converges to the true Gaussian process
with a rate at least Op(hy logl/ 21 /hx)) as hx tends to zero. It
can be seen that the rate of convergence is maximized at v = vy.
In other words, if the true smoothness is known a priori, one can
obtain the greatest rate of convergence.

Cb(co) = 2954/

Example 2. Suppose @ is the same as in Example 1, and
W is a Gaussian correlation function in (2.1), with spec-
tral density (Santner, Williams, and Notz 2003) V(w) =
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Table 1. Comparison between our work and some existing results.

Type of Rate of convergence
Article/book Model assumption Predictor Design convergence (Matérn kernels)
Present work Gaussian process with Kriging Scattered points Lp conv., uniform in x hY (log(1/hx))'/2
misspecification
Yakowitz and Stochastic process Kriging Scattered points Mean square conv., NA
Szidarovszky with pointwise in x
(1985) misspecification
Stein (1990b) Stochastic process Kriging Regular grid points Mean square conv., n—v/d
with pointwise in x
misspecification
Buslaev and Gaussian process Best linear Optimally chosen Lp conv., uniform in x n~"(logn)'/?
Seleznjev approximation points in an interval
(1999)
Ritter (2000) Gaussian process Kriging Optimally chosen Mean square conv., Ly n—v/d
points inx
Wu and Schaback Deterministic Kriging Scattered points Uniform in x hy
(1993) function

(/)24 exp{—|l@||>/(4¢)}, where ¢ is the scale parameter
in (2.1). Then Condition 1 holds for any choice of v. Then we
can invoke Lemma 2 and Theorem 1 to obtain the same rate of
convergence as in Example 1.

Example 3. Suppose ® = W, and P isa Gaussian kernelin (2.1).
Then we can invoke Lemmas 1 and Theorem 1 to obtain the rate
of convergence O[p(h;/hxfl/ 2 logl/ 2(1/hx)) for some constant
¢ > 0. Note that this rate is faster than the rates obtained in
Examples 1-3, because it decays faster than any polynomial of
hx. Such a rate is known as a spectral convergence order (Xiu
2010; Wendland 2004).

The upper bounds in Lemmas 1 and 2 explain more explicitly
how the choice of designs can affect the prediction performance.
Note that in Examples 1-3, the upper bounds are increasing in
hx. This suggests that we should consider the designs with a
minimum hx value, which are known as the maximin distance
designs (Johnson, Moore, and Ylvisaker 1990). Therefore, our
theory shows that the maximin distance designs enjoy nice
theoretical guarantees for all Gaussian and Matérn kernels. In
contrast with the designs minimizing Pp x as discussed after
Theorem 1, it would be practically beneficial to use the max-
imin distance designs because they can be constructed without
knowing which specific kriging model is to be used.

3.3. Comparison With Some Existing Results

We make some remarks on the relationship between our results
and some existing results. In Table 1, we list some related results
in the literature concerning the prediction of some underlying
function, which is either a realization of a Gaussian process or a
determinisitc function in a reproducing kernel Hilbert spaces. It
can be seen from Table 1 that only Buslaev and Seleznjev (1999)
and Wu and Schaback (1993) address the uniform convergence
problem.

Buslaev and Seleznjev (1999) study the rate of convergence
of the best linear approximation under an optimally chosen
points in an interval. In other words, the predictor is constructed
using the best linear combination of the observed data. Thus,
this predictor is in general different from the kriging predictor.

Also, note that their work is limited to the one-dimensional
case where the points are chosen in a specific way. Therefore,
this theory does not directly address the question raised in
this paper. However, their result, together with our findings
in Example 1, does imply an interesting property of kriging.
Recall that in Example 1, the rate of convergence for a (known)
Matérn correlation is at least Op(hy logl/ 2(1/hx)). If a space-
filling design is used in an interval, then hx ~ 1/n and the
convergence rate is Op(n~" (log n) 1/2y which coincides with the
best possible rate of convergence given by a linear predictor.
Because the kriging predictor is a linear predictor, we can con-
clude that our uniform upper bound for kriging is sharp in the
sense that it captures the actual rate of convergence.

Among the papers listed in Table 1, Wu and Schaback (1993)
is the only one comparable to ours, in the sense that they
consider a uniform prediction error under a scatter set of design
points. They obtain error estimates of the kriging-type inter-
polants for a deterministic function, known as the radial basis
function approximation. Although the mathematical formu-
lations of the interpolants given by kriging and radial basis
functions are similar, the two methods are different in their
mathematical settings and assumptions. In radial basis function
approximation, the underlying function is assumed fixed, while
kriging utilizes a probabilistic model, driven by a Gaussian
random field.

Kriging with misspecified correlation functions is discussed
in Yakowitz and Szidarovszky (1985) and Stein (1988, 1990a,
1990b). It has been proven in these papers that some correlation
functions, especially the Matérn correlation family, are robust
against model misspecification. However, they do not consider
convergence under a uniform metric. More discussions on this
point are given in Section 6.

4. Simulation Studies

In Example 1, we have shown that if ¥ and ¢ are Matérn
kernels with smoothness parameters vy and v, respectively, and
v < vy, then the kriging predictor converges with a rate at least
Op(hx logl/ 21 /hx)). In this section, we report simulation stud-
ies that verify that this rate is sharp, that is, the true convergence
rate coincides with that given by the theoretical upper bound.



Table 2. Numerical studies on the convergence rates of kriging prediction.

Vo v Regression coefficient ~ Theoretical assertion  Relative difference
3 25 2.697 25 0.0788
5 35 3.544 35 0.0126
35 35 3.582 35 0.0234
5 5 4.846 5 0.0308

NOTE: The first two columns show the true and imposed smoothness param-
eters of the Matérn kernels. The third column shows the convergence rate
obtained from the simulation. The fourth column shows the convergence rate
given by Theorem 1. The last column shows the relative difference between
the third and the fourth columns, given by |regression coefficient — theoretical
assertion|/(theoretical assertion).

We denote the expectation of the left-hand side of (3.5) by £.
If the error bound (3.5) is sharp, we have the approximation

& ~ chy log"?(1/hx)

for some constant ¢ independent of hx. Taking logarithm on
both sides of the above formula yields
1
log€ ~ vloghx + 3 log(—vloghx) + logc. (4.1)
Since log(—v log hx) is much smaller than log hx, the effect of

log(—v log hx) is negligible in (4.1). Consequently, we get our
second approximation

log & ~ vloghx + logec. (4.2)

As shown in (4.2), log € is approximately a linear function in
log hx with slope v. Therefore, to assess whether (3.5) is sharp,
we should verify if the regression coeficient (slope) oflog £ with
respect to log hix is close to v.

In our simulation studies, the experimental region is chosen
to be © = [0, 1]2. To estimate the regression coefficient v in
(4.2), we choose 50 different maximin Latin hypercube designs
(Santner, Williams, and Notz 2003) with sample sizes 10k, for
k=1,2,...,50. Note that each design corresponds to a specific
value of the fill distance hx. For each k, we simulate the Gaussian
processes 100 times to reduce the simulation error. For each sim-
ulated Gaussian process, we compute SUPyeq, 1Z2(%) Lo xZ(x)|
to approximate the sup-error sup,.q |Z(x) — Zo xZ(x)|, where
2 is the set of grid points with grid length 0.01. This should give
a good approximation since the grid is dense enough. Next, we
calculate the average of sup, . [Z(x) — ZoxZ(x)| over the 100
simulations to approximate £. Then the regression coeflicient is
estimated using the least squares method.

We conduct four simulation studies with different choices
of the true and imposed smoothness of the Matérn kernels,
denoted by vy and v, respectively. We summarize the simulation
results in Table 2.

It is seen in Table 2 that the regression coefficients are close
to the values given by our theoretical analysis, with relative
error no more than 0.08. By comparing the third and the fourth
rows of Table 2, we find that the regression coeflicient does
not have a significant change when v remains the same, even
if vg changes. On the other hand, the third and the fifth rows
show that, the regression coefficient changes significantly as v
changes, even if vy keeps unchanged. This shows convincingly
that the convergence rate is independent of the true smoothness
of the Gaussian process, and the rate given by Theorem 1 is
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sharp. Note that our simulation studies justify the use of the
leading term log hx in (4.1) to assess the convergence rate but
they do not cover the second term log(—v log ix), which is of
lower order. Figure 1 in the supplementary materials shows that
the regression line for the logarithm of the fill distance and the
logarithm of the average prediction error fits the data very well.

From the simulation studies, we can see that if the smooth-
ness of the imposed kernel is lower, the kriging predictor con-
verges slower. Therefore, to maximize the prediction efficiency,
it is beneficial to set the smoothness parameter of the imposed
kernel the same as the true correlation function.

5. Extensions to Universal Kriging

In this section, we extend the main result in Theorem 1 from
simple kriging to universal kriging. As an extension of simple
kriging, universal kriging is widely used in practice. Instead of
using a zero mean Gaussian process, universal kriging assumes
that the Gaussian process has a nonzero mean function, mod-
eled as a linear combination of a set of basis functions with
unknown regression coeflicients. Specifically, we consider the
following model

Y(x) =fT(x)B + Z(x), (5.1)
where f(x) = (i(x),....fp ()T is a vector of p linearly inde-
pendent known functions over €2, B is an unknown vector of
regression coeflicients, and Z(x) is a zero mean stationary Gaus-
sian process with correlation function W. The goal of universal
kriging is to reconstruct Y (x) based on scattered observations
Y(x1),...,Y(xy).

A common practice is to use the maximum likelihood esti-
mation (MLE) method to estimate 8 and the best linear unbi-
ased predictor (BLUP) to predict Y(x) at an untried x. The
following facts can be found in the book by Santner, Williams,
and Notz (2003). As before, let K := (W(xj — x¢))jk. Define
F = (f(x1),... ,f(xn))T. We temporarily suppose that ¥ is
known. Then the MLE of B is given by

B =F'K'F'F'Ky, (5.2)
with Y := (Y(x1),..., Y(x,))L. To use (5.2), we should require
n > p so that F'K~!F is invertible. The BLUP of Y (x) is

Yerop®) =[fT (x) FTK'F)'FTK !

+rT K '1Q, - FETK'H'FTK 1)y,
(5.3)

where r(x) := (W(x — x1),..., U(x — x,)7.

As before, we are interested in the situation with a misspeci-
fied correlation function, also denoted by ®. Using (5.3), we can
calculate the “BLUP” of Y(x) under ®, denoted by ?BLUp,q) (%),
with redefined r and K given by r := (O (x — x1),..., P(x —
x,))T and K := (P (%) — x0))jk.

The goal of our theoretical study is to bound sup,.q | Y (x) —
}A’BLUp,q) (x)| in a way similar to Theorem 1. The results are given
in Theorem 2. We denote the minimum eigenvalue of a matrix
H by Amin (H). Let A be the set of p x p submatrices of F.
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Theorem 2. Suppose the conditions of Theorem 1 are fulfilled.
In addition, f; € No(Q) forj=1,...,p. Then

Ekqwﬂm—?mm@u{
xeQ

= O(Pox[pA +log!/2(1/Pox)]), (5.4)
where the asymptotic constant is independent of X, p and f;’s;
and

1/2
» /

2 T
M=ZW%@%gm&&)
j=1

The condition f; € N¢(S2) in Theorem 2 is mild if @ is a
Matérn kernel. It is known that in such case, N¢ (R2) coincides
with a Sobolev space, which contains all smooth functions, such
as polynomials. See Corollary 10.13 of Wendland (2004).

Compared to the uniform error bound for simple kriging,
(5.4) has an additional term O(P¢xpA), which is caused by
the unknown regression coefficient S. In many situations, pA
is bounded above by a constant, for example, when p and ﬁ’s
are fixed and x;’s are independent random samples. In this case
O(PpxpA) = O(Popx) and can be absorbed by the simple
kriging uniform error bound.

As a by-product of our analysis, we show that the MLE 8 is
inconsistent when W is known. The result in Theorem 3 shows
that the covariance matrix of § — § is no less than the inverse
of the inner product matrix of f;’s in the reproducing kernel
Hilbert space, in the sense that the former subtracting the latter
is positive semidefinite.

Theorem 3. If ® = W and f; € No(Q) forj = 1,...,p, we

have Var([} —B) >V where V:= ({fj> fk) Vo () jk 1s positive
definite.

The proof of Theorem 3 shows that the estimation of § is
perturbed by the Gaussian process, and thus becomes incon-
sistent. In addition, the well-known theory by Ying (1991) and
Zhang (2004) suggests that the model parameters in the covari-
ance functions may not have consistent estimators. Therefore, it
would be more meaningful to use Gaussian process models for
prediction, rather than for parameter identification.

Next, we study the uniform error bound when a random
kernel function is used. Such a result can be useful when an
estimated correlation function is used. The main idea here is
to study a more sophisticated type of uniform error, which also
takes supremum over a family of correlation functions.

Let ®p be a family of correlation functions indexed by 6 =
6. .., Gq)T € ©. Suppose O is a compact subregion of R9. For
notational simplicity, denote Px = maxgce P, x. Theorem 4
provides a uniform error bound in terms of both untried x and
parameter 6.

Condition 2. The kernels ®¢ are continuous and integrable on
RY, satisfying
I/ ®gl; rey =t AT < 400 (5.5)

and
fd l@]|% P (w)dw =: Ay < +00, (5.6)
R

for constants « € (0, 1], Ap, A; independent of 6.

Theorem 4. Suppose the conditions of Theorem 2 and Condi-
tion 2 are fulfilled. Suppose ®g(x) is differentiable in 8 for each
x. In addition, suppose the differentiation in # and the Fourier
transform in x are interchangeable, that is,

0y 9Dy
W:%’ ]=1,...,q. (5.7)
j j
Moreover, suppose
o~ .
sup |—log®dp| <Ay <400, j=1,...,4. (5.8)
xeR49co | 9Y)
Then,
E |: sup |Y(x) — YeLup,o, (x)|j|
x€Q,0€0
= O(Px[pA +log'/*(1/Px))), (5.9)

where A is the same as in Theorem 2 and the asymptotic con-
stant is independent of X, p, and f;’s.

The uniform error bound in (5.9) can govern the error bound
when a random kernel is used. Specifically, suppose a random
kernel, denoted by ®;, is used, and the support of the random

variable (estimator) 9 is ©. Then we have Esup,.oY(x) —
YeLup,e, (%) = O(PxIpA +log!/>(1/Px))).

We now verify the conditions of Theorem 4 for Matérn and
Gaussian kernels. Suppose W is a Matérn kernel with smooth-
ness vg. Let @ = (¢,v) and © is a compact subregion of
(0,4+00) x (0, vp). Clearly, Condition 2 is fulfilled. Recall that
®y is given in (3.9). Dominated convergence theorem ensures
(5.7) and we can verify (5.8) via direct calculations. Suppose W
is a Gaussian kernel in (2.1) with ¢ = ¢. Suppose @ = ¢ and ©
is a compact subregion of [¢, +00). Similar direct calculations
can show that the conditions in Theorem 4 are also fulfilled in
this case.

The proofs of Theorems 2 and 4 use the techniques we
developed for proving Theorem 1. These theorems show that
the general rate of convergence Op(Pg x log'/? Pg x) is still valid
even if estimated mean and covariance functions are used.

6. Conclusions and Further Discussion

We first summarize the statistical implications of this work. We
prove that the kriging predictive error converges to zero under
a uniform metric, which justifies the use of kriging as a function
reconstruction tool. Our analysis covers both simple and uni-
versal kriging. Kriging with a misspecified correlation function
is also studied. Theorem 1 shows that there is a tradeoff between
the predictive efficiency and the robustness. Roughly speaking,
a less smooth correlation function is more robust against model
misspecification. However, the price for robustness is to incur
a small loss in prediction efficiency. With the help of the classic
results in radial basis function approximation (in Lemmas 1 and
2), we find that the predictive error of kriging is associated with
the fill distance, which is a space-filling measure of the design.
This justifies the use of space-filling designs for (stationary)
kriging models.



We have proved in Theorem 1 that the kriging predictor is
consistent if the imposed correlation function is undersmoothed,
that is, the imposed correlation function is no smoother than
the true correlation function. One would ask whether a similar
result can be proven for the case of oversmoothed correlation
functions. Yakowitz and Szidarovszky (1985) proved that krig-
ing with an oversmoothed Matérn correlation function also
achieves (pointwisely) predictive consistency. In light of this
result, we may consider extensions of Theorem 1 to the over-
smoothed case in a future work.

In a series of papers, Stein (1988, 1990a, 1990b, 1993) inves-
tigated the asymptotic efficiency of the kriging predictor. The
theory in our work does not give assertions about prediction
efficiency, although we provide explicit error bounds for kriging
predictors with scattered design points in general dimensions.
Another possible extension of this work is to consider the impact
of a misspecified mean function. Jiang, Nguyen, and Rao (2011)
address this problem in the context of small area estimation.

Appendix A: Proof of Theorem 1

Because Zg x is a linear map between two functions, Ze x Z(x) is also
a Gaussian process. Therefore, the problem in (2.7) is to bound the
maximum value of a Gaussian process. The main idea of the proof is
to invoke a maximum inequality for Gaussian processes, which states
that the supremum of a Gaussian process is no more than a multiple of
the integral of the covering number with respect to the natural distance
0. The details are given in the supplementary materials. Also see Adler
and Taylor (2009) and van der Vaart and Wellner (1996) for related
discussions.

Without loss of generality, assume o = 1, because otherwise we can
consider the upper bound of sup,c |1Z(x) —Zp xZ(x)|/0 instead. Let
g(x) = Z(x) — Ly xZ(x). Por any x,x" € Q,

2(x,+)? = E(g(x) — g(+))*
= E(Z(x) — ToxZ(x) — (Z(x) — To xZ(x)))*
=Yx—x)— 2rT(x)K_1r1(x) + rT(x)K_lKlK_lr(x)
+U —x) — ZrT(x’)K_lrl )
+T ORI K ()
—2[W(x — &) — rT (@)K 1 (x) — 1T ()K e (x)
+rT KKK ()],

where r1() = (W( — x1),..., (¢ — x)T, r() = (( —
) @ —x) T K1 = (W(xj — xp))jp and K = (@ (x — xp))j.
The rest of our proof consists of the following steps. In step 1, we
bound the covering number N(e, €2, 0). Next we bound the diameter
D. In step 3, we invoke Lemma 1 in the supplementary materials to
obtain a bound for the entropy integral. In the last step, we use (1.8) in
the supplementary materials to obtain the desired results.
Step 1: Bounding the covering number
Leth(:) = ¥V(x — ) — V(' — ) and b1 (1) = rT(x)Kflrl(-) —
rT(x YK~ 1r1 (). It can verified that

(x,%)? = — [h(x) — Zop xh(x)] + [h(x) — Zo xh(x)]
+ [ () — To xh1 ()] — [h1 (x) — T xh1(%)].

By Condition 1, h € N (RY), since W(x—-) € Ng(R?) forany x € Q.
Thus, by (1.3) in the supplementary materials,

0(x6,2)? < 2Po x(Ihl pry mety + 1 I pry vy (AD)
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By Theorem 1 in the supplementary materials,

2 o _af @)

Using Condition 1 and (A.2), we obtain

do. (A2)

2 o af @
By = 2~ [ 2o
7 2
< A2em)™ / M@ o
RY V(w)

_ A2 2

= A7 ||h||N\1/(Rd)' (A.3)
We need the following inequality to bound ||h||3\/,\p ®)’ Forany 0 <

B < landx € R, we have

11— cosx| < 2x|P. (A4)
This inequality is trivial when |x| > 1 because |1 — cos x| < 2; and for
the case that |x| < 1, (A.4) can be proven using the mean value theorem
and the fact that |x| < |x|#. Note that the definition of implies that
”hllf\/\p &’ = W (x—x) —2W (¥’ —x)+ W (¥’ —x’). Thus, by the Fourier

inversion theorem and (A.4), we have

”h”fw(kd) =Ux—x) =20 —x) + U —«)
= 2(2n)_d/ (1 — >0V (o) do
Rd
< (4<2n)*d f Nl if(w)dw) Ilx—x1P  (A5)
R

: Crllx —«/|1P,

(A.6)

forany 0 < B < «. In particular, we now choose 8 = «/2. Now we
consider A1 (-). It follows from a similar argument that ||k ”3\/’ ®) <
@

A3l ”3\&» () The definition of hy implies [y ||i/\u &/ = (r(x') —

r)) TKTK KL (r(x) — r(x)).
For any u = (u1,..., un) T, the Fourier inversion theorem and
Condition 1 yield

n
Z iV (x5 — x)
k=1

1 n . e -
" nyd / > ujine @500 (@) do
s R

k=1
: / | b (A7)
= u;e w)aw .
@0 Jra|
A2 N AL
== ld /d uje”‘f“" & (w)dw
@m)® Jrd | o
n
=A7 ) i@ (xj — xp).
k=1
Then we choose u = K~ (r(x') — r(x)) to get
Ih 13y, ey < ATE@) —r@) KT () — (). (AB)
Let hy() = @( — &) — ®(- — x). Then Zgpxhy(-) =

rTOK () — r(x)). By (1.3) in the supplementary materials and
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the fact that ||h2||f\/®(Rd) =P(x—x) =200 —x) + D — ), we
have
(r(x) — re) K (r(x') — r(x))
< () = Zo xha (x))| + |2 (x) — Zo xh2 ()]
+ | ()| + [h2(x)]
< 2P xV/P(x —x) — 20 (x' —x) + (¥ —«)
+2(d(x — x) — 20 —x) + D' —x))
<2(Ppx +VP(x —x) — 20(x —x) + O(x —«')
x VOx —x) — 20 —x) + D —«))

<2Popx +DVP(x —x) —20(x —x) + D(x' —«/). (A9)
Thus, if P x < 1, by a similar argument in (A.5) (with the choice
B = @), and together with (A.8) and (A.9), we have
2 _ /2
VI, gy < Calle = 212, (A.10)
for a constant C,.
In view of (A.1), (A.6), and (A.10), there exists a constant C3 such
that

(%)% < C3Po xlx — | 4/4. (A.11)
Therefore, the covering number is bounded above by
68 o
logN(e,2,0) < IOgN<W,Q> Il - ||>- (A12)
C3 PCD,X

The right side of (A.12) involves the covering number of a Euclidean
ball, which is well understood in the literature. See Lemma 4.1 of
Pollard (1990). This result leads to the bound

4/a 4/
Cs50CyP
log N(€,£2,0) < Cqplog (%)
€
1/2
CsP,
=: Cylog [ —2X |, (A.13)
€
provided that
€ < CsPY%, (A.14)

where Cy,0 and Cs g are constants depending on the dimension and the
Eucliden diameter of 2.
Step 2: Bounding the diameter D

Recall that the diameter is defined by D = sup,. ,scq 9(x,%"). For
any x,x’ € Q,

o6 x)? = E(g(x) — g < 4 S“SE(g(x))z
xe
= 4 sup E(Z(x) — Zo xZ(x))*
xeQ
=4sup(W(x—x) — Zf{(x)K_IT(x)
xeQ

+rT (K 'K K r(x)), (A.15)

where r, r1, K, and K] are defined in the beginning of Appendix A.
Combining identity (A.7) with

W (xj — ) /Rd )0 () do,

" 2

for any u = (uy,...,uu), under Condition 1, we have

uTKlu — ZuTr1 x) +¥(x—x)

1 " i |2
=i | e = oo
)4 JRd | 4
=1
AZ n T T 2~
<1 uiei ? — % @ d(w)dw
@m)? Jra | &
)4 JRd | 4
=1

=A2(uTKu — 2uTr(x) + ©(x — x)). (A.16)

We can combine (A.16) with (A.15) by substituting u in (A.16) by
K~ 1r(x) and arrive at

(%, x)? <4A? sup (O (x — x) — r(x)K lr(x)).
xeQ

Note that the upper bound of @ (x — x) — r(x)K™ L) is P%D x> Which

implies 0 (x, x )2 < 4A%P%I>,X' Thus, we conclude that
D <2A1Ppx. (A.17)

Step 3: Bounding the entropy integral
Under Condition 1, if

Pex < Ci/A? =C,

(A.14) is satisfied for all € € [0, D/2]. Thus, by (A.13) and (A.17),

D/2
V1ogN(e, 2,0)de
0

1/2 1/2
A1Pox A1Pox P
< </ de) (/ Cy4log (Cs(b’xde>>
0 0 €
(A.18)
Coe (A.19)

o X

Because P x < 1, the quantity inside the logarithm can be replaced

by e/Pg x at the cost of (possibly) increasing the constant Cy.

D/2

Step 4: Bounding P(sup,cq |1Z(x) — ZoxZ(x)| > Kfo

JI9ogN(e, T,0)de + u)

Noting that sup,.q E(Z(x) — ZpxZ(x))> = D2, by plugging
(A.17) into (1.8) in the supplementary materials, we obtain the desired
inequality, which completes the proof.

Appendix B: Proof of Theorem 2

Denote Z = (Z(x1), ... ,Z(xn))T. Direct calculations show that

Y(x) - YLup,o (¥
=72(x) — T WK 'Z— fT(x) — T K 'R ETK P 'FTK1Z.

L L
(B.1)

Thus, supcq |Y () — YBLup,o(®)| < supyeq Il + supycg ID-
Clearly, sup,cq [I1] is the uniform error of simple kriging, which
is studied in Section 3. Corollary 1 suggests that Esup,.q [1| =

O(Po x log!/2(1/Pg x)).



Now we turn to I;. By Cauchy-Schwarz inequality,
Ll =I¢" @) - "K' HE KB TETK Tz

<@ MK BT ~ T xpT]

1/2
~{ZTK_lF(FTK_lF)_l(FTK_IF)_IFTK_IZ} )

Note that the right-hand side of (B.2) is the product of a deterministic
function and a random variable independent of x.

Clearly, the jth entry offT(x) — rT(x)K~IF is)j-(x) — Iq;)xfj(x),
whose absolute value is bounded above by P X IIfj | /g, (2)- See The-
orem 11.4 of Wendland (2004), also see (1.3) in the supplementary
materials. Therefore,

P
@ — "K' BET @ —rTOK BT < P x Y Ik, o)
=

Our final goal is to bound

1/2\2
(IE{ZTK_IF(FTK_lF)_l(FTK_lF)_lFTK_ll} />
< EZ'KkrE'k1Ip) - LEKIPIFT K1z
=ETe[F KPR K122 kR ETK 1P
= Te[(FTK ' TF KK K IRETK IR Y,

where K; = (W (xj — x5))jk s the true correlation. Via the treatment
used in (A.7)-(A.8), it can be shown that
oTKIK K e < CaTK Lo, (B.3)

for any « and a constant C depending only on ||¥/®|| Lo (R?)> Which
implies
Te(FTK ' ' KK K FETK 1P
<CTr[(FTK™'F) ™1 < Cp/Amin (BTK™F).
. ,otp)T, we have

Fora = (o, ..

Amin(FTK™'F) = min o«TF'K !Fa

lel=1
P 2
= min, | Tox 2 e
=1 No ()

Now take a p-point subset of X, denoted by X, = {x,..., ;,}. Define
K, = (Cb(x]/. _x;c))jk and Fp = (f(x)), ... ,f(x},)). Then by (1.5) in the
supplementary materials, we have

2

Amin(FTK™YF) > min
llee]=1

Iy

Tox, Y ifi®)
= No(®

R I

ocToc

TrTyw—1
a F K, "Fra
= min aTFng_leoz > min P TP P
fleell=1 a#0 aTFproc a0
> min (K ) Amin By Bp) = Amin(F) Fp)/Tr(Kp) = Amin (E, Bp) /p.
(B.4)

Because X/, can be chosen as an arbitrary p-point subset, the right-hand
side of (B.4) can be replaced by the maximum value over all possible
choices of Fy, which completes the proof.
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Appendix C: Proof of Theorem 3

We use the notation in the proof of Theorem 2. It is easily verified
that 8 — B8 = (FTK'F)"!FTK~'Z. Because ® = ¥, var(Z) = K.
Therefore,

var(B — B) = FTK'F)~L.

Leto = (aq,... ,ap)T be an arbitrary vector. Then
p 2 P 2
aTFTK'Fo = Io X Z ajf; < Z ajf;

= liNe@ ET
:otTVot,

No ()

where the inequality follows from Corollary 10.25 of Wendland (2004);
also see (1.4) in the supplementary materials. Clearly, V is positive
definite, because fj’s are linearly independent. Then then desired result

follows from the fact that if A < B then A~! > B~

Appendix D: Proof of Theorem 4

First we prove the simple kriging version. Similar to the proof of
Theorem 1, we examine the distance defined by

22((x1,01), (2,02)) = E [Z(xl) — Loy, xZ(x1) — Z(x2)
2
+I<1>92,XZ(x2)] :

It follows from a similar argument as in Theorem 1 that the diameter
of 0 is no more than a multiple of Px. It remains to study the cover
number given by 0. First we can separate the effect of x and 6 using the
following inequality

0% ((x1,01), (x2,02))
2
< 2B[Z(x1) — Loy, xZ(x1) — Z(x2) + Loy, xZ(x2)
2
+ 2B [ Toy, xZ(%2) = Tog, xZ(x2)| (D.1)

The first term in (D.1) is studied in the proof of Theorem 1. It suffices
to show that

2
E[Zoy, x20) — To,,x2®)]" = CPklo1 - 6
01> 0> =X >

for all x € €2 and some constant C. Let Ky, = (Pg,(xj — x¢))jk, and
rg, = (Pg,(x—x1),..., ®9Z(x—xn))T, for I = 1, 2. By the mean value
theorem, we have

[T, x26) — Ty, x2(0)| = 275 g, — 5 ' rg,)

< max ZTi(K_lr)
= a9 0 "0

61— 62]l.
6cO®

It remains to prove that IE[ZTE)(K(;I1’0)/891]2 < CP)Z(, foralld € ®
and I = 1,...,q. For notational simplicity, we denote K := Ky, r :=

rg,K = 0K/06,,# = 0r/06;, & = 0®/36;, and ® = 9d/06). As
before, denote the covariance matrix of Z by Kj. Then

E[zTo®1r/06)> = ¢TK KK — #TK~DHK,;
x(K~IRK1r — K7 15)
< CrTKIR — iKY KK r — ),

where the inequality follows from (B.3).
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Sup)T = K lr, and h(y) = Z]”:l ujcb(y —

xj) — <i>(y — x). Clearly, the jth entry of KK lr —#is h(xj). Thus,

Define u = (uy,..

(r"KTK = #DHKTHRK T r = i) = | Toxhlg, ey < 11157, e

Finally, we use Fourier transform to calculate ||A]| 5\/, (Rd)’ It is worth
®

noting that the Fourier transform is performed with respect to y, not

x. It is easy to find that fl(a)) = (2}1:1 uje_i“)xi — e~i®%) B (@), which

implies

R [ h@h)
11, mey = /Rd de
2.
n )
:/ Zujeiwxi — ¢lwx qi @) dow (D.2)
R |5 b()

2
n
Liwxj _ Jiox| &
= Az/Rd Zuje i—e P (w)dw
j=1

=GP x < 0P (D.3)

where the first inequality follows from the condition that
|01log ®/06)| = |D/D| < Aj.

The proof for the universal kriging case follows from similar lines
as that of Theorem 2. Hence, we complete the proof.

Supplementary Materials

In the supplementary materials, we review some mathematical tools which
are used in the proofs presented in Appendix, and provide an additional
figure related to Table 2.
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