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a b s t r a c t 

Inspired by the application of differential correction to initial-value problems to find pe- 

riodic orbits in both autonomous and non-autonomous dynamical systems, here differen- 

tial correction is applied to boundary-value problems. As a numerical demonstration, the 

snap-through buckling of circular arches in structural mechanics are selected as exam- 

ples. Due to the complicated geometrical nonlinearity in such problems, limit points and 

turning points might exist. In this case, the typical Newton–Raphson method commonly 

used in numerical algorithms will fail to cross such points. In the current study, an arc- 

length continuation is introduced to enable the current algorithm to capture complicated 

load-deflection paths. We present rigorous mathematical derivations inside the current al- 

gorithm, for both differential correction and arc-length continuation. To show the accu- 

racy and efficiency of differential correction, we also compare results with the continu- 

ation software package COCO. The results obtained by the proposed algorithm and COCO 

agree well with each other, suggesting the validity and robustness of differential correction 

for boundary-value problems. 

© 2021 Elsevier Inc. All rights reserved. 

 

 

 

 

 

1. Introduction 

Nonlinear behaviors can be widely found in both the natural world and engineering applications. In general, however, 

it is difficult to get analytical solutions for nonlinear systems. The increase of degrees of freedom makes it even harder.

In order to efficiently find more accurate solutions for nonlinear systems, researchers have kept attempting to develop new 

numerical algorithms, such as the finite element method (FEM) [1] , the differential quadrature method (DQM) [2] , the mesh-

free method [3] , to name but a few. Generally, when applying the numerical algorithm, a discretization process is needed

by meshing the domain into small elements (e.g., in FEM) or using an appropriate number of sampling points (e.g., in DQM

and the mesh-free method). After the discretization, the nonlinear differential equations are converted to nonlinear algebraic 

equations which need to be solved by an iteration process [4] . 

Differential correction [5–9] , or simply the shooting method [10] , is a widely used numerical method in the analysis of

finite-dimensional continuous dynamical systems. One common application is to obtain periodic orbits in both autonomous 

[11–13] and non-autonomous systems [14,15] . It uses the state transition matrix, the solution to the variational equations 
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Fig. 1. A qualitative schematic of the load-displacement relation of a plate, a spherical shell, and a cylindrical shell. The three structures have the same 

dimensions, loading and boundary conditions, but different initial curvatures. Of course, the change of parameters for the shells might topologically change 

the equilibrium paths. The corresponding quantitative study of such structures is given in [16] . Readers are referred to the paper for details. (a) shows 

the classic nonlinear bending of a rectangular plate whose load-displacement relation present a monotonic behavior which can be captured by the classic 

Newton–Raphson method under either load-control or displacement-control. (b) gives the classic snap-through of a spherical shell. The Newton–Raphson 

method with load-control will fail to capture the whole path. Once the limit point A on the equilibrium path is reached, a slight increase of load will 

trigger a quick snap-through into its inverted position C without capturing curve A-B-C. However, the whole path can be traced by displacement-control. 

(c) shows a more complicated snap-through of a cylindrical shell. Different from the previous two examples, the complexity of the current structure comes 

from the existence of turning points E and F. The typical Newton–Raphson method fails in capturing the whole load-displacement curve. 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the governing ordinary differential equations, to measure the linear relationship between the perturbation of the initial 

conditions and the final displacements of a specific reference trajectory. The initial conditions are adjusted according to 

the state transition matrix by iteration so that the final displacements can be searched to target the desired final state.

For periodic orbits, the trajectory will return to its original state after one period so that the goal is to correct the initial

condition to realize the coincidence of initial and final states. The difference between autonomous and non-autonomous 

systems (by which we mean time-periodic systems) is that the period of periodic orbits for the former case is unknown,

while in the later case it is equal to an integer multiple of the external excitation. 

Different from other numerical methods, differential correction does not need any discretization process so that it will 

not yield a large matrix even when the dimension of the system increases. Any integration algorithm for solving the initial-

value problems can work, such as the Runge–Kutta [10] or Newmark method [17,18] . Considering this advantage, we seek to

extend the application of differential correction to boundary-value problems. In this case, we need to regard the boundary- 

value problems as initial value problems by considering the boundary conditions at one end as the initial conditions which 

need to be adjusted to satisfy the boundary conditions at the other end. 

Generally when dealing with nonlinear problems by numerical algorithms, an iteration process is necessary after the 

discretization among which the Newton–Raphson method is a popular one due to its rapid convergence. It keeps parameters 

constant during the iteration process, such as the external load applied to plates and shells. However, it requires a good

initial guess to guarantee the convergence. Moreover, problems will appear when the iteration process is faced with a limit 

point (the local minimum or maximum of the equilibrium path, such as points A, B, D, and G as shown in Fig. 1 ) or a turning

point (snap-back point, such as points E and F). For example, curved structures which have multistability can withstand a 

certain loading. When subjected to large external loading or sufficient disturbance, the structures will snap-through to a 

remote equilibrium state. This behavior is sudden and associated with a fast dynamic jump which presents a decrease in 

the load along the equilibrium path [19–21] . The Newton–Raphson method fails in capturing the branch after the limit

point, such as A-B-C in Fig. 1 (b) and D-E-F-G-H in Fig. 1 (c). Although some strategies, such as using the displacement

as the increment parameter, were developed to cross the limit points, they still fail when snap-back phenomena appear 

[22] , such as points E and F in Fig. 1 (c). To allow numerical continuation safely past the limit point, Riks [23] creatively

developed a pseudo arc-length method. It seeks a new equilibrium point along the normal direction of the tangent to the

current or known equilibrium state at a prescribed distance along the tangent. Later, other types of arc-length methods were 

created [22] . To make the current algorithm capable of passing the limit points and turning points so that the complicated

equilibrium path can be detected, the arc-length continuation will be adopted. 

Although the topic of differential correction (or shooting) is covered by extensive literature [10,24,25] , the Newton–

Raphson method is the most widely used iteration method and has unavoidable disadvantages as already mentioned above. 

To remedy these disadvantages, a popular choice of continuation is the pseudo arc-length method [14,15,26] , but this has

generally been limited to the application of computing the periodic orbits of dynamical systems. Taking another perspective, 

in this study we incorporate the arc-length method to differential correction and apply the current algorithm to boundary- 

value problems, using the snap-through buckling of circular arches as examples. We rigorously present the mathematical 

derivations in detail for the differential correction including the state transition matrices for both the state variables and 

parameters, and the implementation of the arc-length continuation [22] to differential correction, which is largely absent in 

the existing literature. 
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Although the example problems considered here are well-studied in structural mechanics, we select them to clarify some 

specific situations that might cause confusions when applying the current algorithm, such as how to deal with concentrated 

forces, as well as how to trace the bifurcated branches without the ability of branch switching. In particular, when the

concentrated force is applied at a fixed spatial position, the arc-length value along the arch where the force is located

is unknown, which is analogous to the unknown period of periodic orbits in autonomous systems. Here we present an 

effective way to deal with this situation. Although other numerical schemes exist such as the Asymptotic Numerical method 

[27,28] and Generalized Path-Following [29] with more advanced capabilities of branch switching and tracing of critical 

points etc, our algorithm, as an integration method, is fundamentally different from these discretization methods. Moreover, 

capabilities such as branch switching and tracing of critical points can also be embedded into the current algorithm, which 

will be the subject of future work. To compare the effectiveness and robustness of differential correction to the state of the

art, the software package COCO [30] is also used. 

The outline of the paper is as follows. In Section 2 , we give a detailed derivation of differential correction method with

arc-length continuation. In Section 3 , mathematical models of the circular arches are introduced, followed by numerical 

results and discussions. 

2. Numerical method 

2.1. Differential correction method 

As discussed in the introduction, differential correction or shooting method is commonly used to find periodic orbits 

in both autonomous and non-autonomous systems [11–15] . The idea is to properly select the approximations as the initial

seeds and update the initial conditions in an iterative process so that the final state returns to the initial state. In this paper,

we aim to extend the application of differential correction from initial-value problems to boundary value problems, using 

structural mechanics as examples. In practical applications, limit points or turning points are frequently encountered. To 

make the current algorithm more versatile, the arc-length continuation will be embedded. 

In what follows, we briefly describe the idea of differential correction. When applying differential correction, the 

boundary-value problem will be regarded as an initial-value problem. The boundary conditions at one boundary should 

be considered as initial conditions which will be modified by differential correction until the boundary conditions at the 

other boundary of the domain are satisfied by which the system is solved. 

Consider a continuous, autonomous, dynamical system of the form, 

d u 

d t 
= f (u, λ, t) , where u ∈ R 

n , λ ∈ R 
p , (1) 

where t ∈ R is the independent variable, u is the (dependent) n -dimensional state variable , λ is a set of p parameters , and

the flow field f is an n -dimensional C r vector field with respect to u and λ. We will limit our discussion to the case of p = 1

parameter so that the functional dependence of f is, 

f : R 
n × R → R 

n , (u, λ) �→ f (u, λ) . 

Let the trajectories of the system (1) with initial condition u (t 0 ) = u 0 and parameter λ = λ0 be denoted by the flow map

φ(t, t 0 ;u 0 , λ0 ) or simply 1 φ(t;u 0 , λ0 ) , with dependence, 

φ : R × R 
n × R → R 

n , (t, u 0 , λ0 ) �→ φ(t;u 0 , λ0 ) . 

One can easily verify the flow map satisfies the dynamical system (1) , 

d 

d t 
φ(t;u 0 , λ0 ) = f 

(
φ(t;u 0 , λ0 ) , λ0 

)
, with initial condition φ(t 0 ;u 0 , λ0 ) = u 0 . (2) 

For a specific time t 1 , we denote u 1 = φ(t 1 ;u 0 , λ0 ) . A schematic of the flow map is shown in Fig. 2 . 

Consider a reference trajectory ū (t) with initial condition ū 0 at time t 0 and parameter λ̄0 . Also select a nearby trajec-

tory with a displaced initial condition ū 0 + δū 0 and perturbed parameter λ̄0 + δλ̄0 , that is, it starts out with the state and

parameter displaced by δū 0 and δλ̄0 , respectively, from that of the reference trajectory. The perturbation of the state will 

evolve as the n -dimensional vector displacement of the perturbed trajectory from the reference trajectory, 

δū (t; λ̄0 + δλ̄0 ) = φ(t; ū 0 + δū 0 , ̄λ0 + δλ̄0 ) − φ(t; ū 0 , ̄λ0 ) . (3) 

Measuring the displacement at time t 1 and expanding in a Taylor series in δū 0 and δλ̄0 yields, 

δū (t 1 ; λ̄0 + δλ̄0 ) = 

∂φ(t 1 ; ū 0 , ̄λ0 ) 

∂u 0 
δū 0 + 

∂φ(t 1 ; ū 0 , ̄λ0 ) 

∂λ0 

δλ̄0 + higher order terms in δū 0 and δλ̄0 . (4) 
1 Since the flow map of an autonomous ordinary differential equation does not depend on the initial time t 0 , but only the elapsed time t − t 0 . 
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Fig. 2. A schematic of the flow map. We show the reference trajectory φ(t; ū 0 , ̄λ0 ) and a neighboring trajectory φ(t; ū 0 + δū 0 , ̄λ0 ) starting from an initial 

condition displaced by δū 0 from the reference initial condition. No perturbation of λ̄0 is considered for simplicity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that in initial-value problems, t 0 and t 1 are often considered the initial and final time , while in the boundary-value

problem context considered here, they are the two boundaries . The n × n matrix, 
∂φ(t 1 ;ū 0 , ̄λ0 ) 

∂u 0 
, which satisfies the above rela-

tion to first-order, when δλ̄0 = 0 , is called the state transition matrix , usually denoted by �(t 1 , t 0 ; λ̄0 ) . It measures the initial

and final displacements by the linear relationship 

δū (t 1 ; λ̄0 ) = �(t 1 , t 0 ; λ̄0 ) δū 0 , (5) 

when there is no perturbation on the parameter. It can be obtained as the fundamental matrix solution to the linear varia-

tional equations of (1) , 

δ ˙ ū (t; λ̄0 ) = D f ( ̄u (t) , ̄λ0 ) δū , (6) 

which are the linearized equations for the evolution of the ‘variations’, that is, displacements, δū about the reference trajec- 
tory ū (t) . Here D f ( ̄u (t) , ̄λ0 ) = 

∂ f 
∂u 

( ̄u (t) , ̄λ0 ) is the Jacobian matrix of the flow field f evaluated along the reference trajectory

ū (t) when there is no perturbation on the parameter. 

The n -dimensional vector 
∂φ(t 1 , ̄u 0 , ̄λ0 ) 

∂λ0 
in (4) , denoted by �λ(t 1 , t 0 ; λ̄0 ) , measures the sensitivity of the final displacement

with respect to the perturbation of the parameter, δλ̄0 , that is, 

δū (t 1 ; λ̄0 ) = �(t 1 , t 0 ; λ̄0 ) δλ̄0 , (7) 

when there is no initial displacement, i.e., when δū 0 = 0 . 

Computation of � and �λ. To apply the differential correction procedure, one needs to compute the state transition 

matrix � and the vector �λ along a reference trajectory. Since the flow map φ(t; ū 0 , ̄λ0 ) satisfies (2) , we differentiate this

equation with respect to the initial condition u 0 and obtain, 

d 

d t 

∂φ(t; ū 0 , ̄λ0 ) 

∂u 0 
= D f (φ) 

∂φ(t; ū 0 , ̄λ0 ) 

∂u 0 
, with 

∂φ(t 0 ; ū 0 , ̄λ0 ) 

∂u 0 
= I n , (8) 

where I n is the n × n identity matrix. Hence, the state transition matrix � solves the following initial value problem: 

˙ �(t, t 0 ; λ̄0 ) = D f ( ̄u (t ))�(t , t 0 ; λ̄0 ) , with initial condition, �(t 0 , t 0 ; λ̄0 ) = I n . (9)

On the other hand, since the flow map φ(t; ū 0 , ̄λ0 ) also depends on the parameter λ̄0 , we differentiate (2) with respect

to λ0 and obtain, 

d 

d t 

∂φ(t; ū 0 , ̄λ0 ) 

∂λ0 

= D f (φ) 
∂φ(t; ū 0 , ̄λ0 ) 

∂λ0 

+ 

∂ f 

∂λ0 

, with 
∂φ(t 0 ; ū 0 , ̄λ0 ) 

∂λ0 

= 0 , (10) 

Denoting f λ = 

∂ f (t;ū 0 , ̄λ0 ) 
∂λ0 

and using �λ from before, this can be rewritten as another initial value problem, 

˙ �λ(t, t 0 ; λ̄0 ) = D f ( ̄u (t ))�λ(t , t 0 ; λ̄0 ) + f λ, with initial condition, �λ(t 0 , t 0 ;λ0 ) = 0 . (11)

Note that generally (1) , and more specifically the flow map (2) , cannot be solved analytically, which means (9) and (11) are

also not available analytically. In this case, we need to simultaneously solve, via numerical integration, n 2 + 2 n first-order

scalar differential equations in (9), (11) , and (2) , representing the elements of �, �λ, and φ, associated with the dynamical

system (1) . In the current study, we apply 

Arc-length method . Once we numerically integrate (2), (9) and (11) , we obtain the final states of the system so that we

can use the differential correction procedure to adjust the initial conditions in order to target the desired final states. In

a general case where a limit point (the local maximum or minimum) exists, Newton–Raphson type continuation methods 
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which usually fix the load parameter will fail. In order to pass such points, we will introduce arc-length continuation to find

the equilibrium path which allows for variable parameters. 

Suppose we want to satisfy a specific state at time t 1 (or specific boundary conditions in boundary-value problems) such 

that, 

R ( ̄u 0 , ū 1 , ̄λ0 ) = 0 , (12) 

where for now we let the form of R be general, merely assuming the functional form 

R : R 
n × R 

n × R → R 
n . 

To make the problem-set closed, there should be n boundary conditions such that R ∈ R 
n . Considering small perturbations in

the initial condition δū 0 and parameter δλ̄0 , and expanding in a Taylor series, we obtain the following, keeping only terms 

to first order in δū 0 and δλ̄0 , 

R ( ̄u 0 , ū 1 , ̄λ0 ) + 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂u 0 
δū 0 + 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂u 1 
�(t 1 , t 0 ; λ̄) δū 0 

+ 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂λ0 

δλ̄0 + 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂u 1 
�λ(t 1 , t 0 ; λ̄) δλ̄0 = 0 . (13) 

Here R ( ̄u 0 , ū 1 , ̄λ0 ) is the residual vector, or out-of-balance vector [31] . It will gradually approach zero during the process to

convergence. For convenience, we introduce the following two notations: 

K T = 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂u 0 
+ 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂u 1 
�(t 1 , t 0 ; λ̄) , 

F T = 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂λ0 

+ 

∂R ( ̄u 0 , ū 1 , ̄λ0 ) 

∂u 1 
�λ(t 1 , t 0 ; λ̄) , (14) 

where K T is the known tangent stiffness matrix. Thus, the iteration process requires incremental solutions at the i th iteration

step of the form, 

( δū 0 ) i = −K −1 
T 

(
R − F T δλ̄0 

)

= δu Ri + δu F δλ̄i , (15) 

where, 

δu R = −K −1 
T R, δu F = K −1 

T F T . (16) 

In this case, at the i th iteration step, the displacement and load parameter are updated by 

( ̄u 0 ) k = ( ̄u 0 ) k −1 + (�ū 0 ) i , 

( ̄λ0 ) k = ( ̄λ0 ) k −1 + (�λ̄0 ) i . 
(17) 

where the subscript k means the k th load step in the continuation process and it has the same meaning in the following

text. Note that (�ū 0 ) i is, 

(�ū 0 ) i = (�ū 0 ) i −1 + (δū 0 ) i , 

(�λ̄0 ) i = (�λ̄0 ) i −1 + (δλ̄0 ) i , 
(18) 

which we refer to as the cumulative incremental displacement and cumulative incremental load , respectively. Since the load 

parameter λ varies during the iteration, we need to add an extra constraint to determine how the parameter changes. Riks 

[23] developed a pseudo arc-length method which searches the solution along the normal to the tangent with specific length 

to the converged equilibrium state. Crisfield [22] suggested a modified arc-length method which searches the solution along 

a hyper circular or spherical path. In this study, we follow the idea in [22] . Denoting the arc-length by �S, we use the

following equation as the extra constraint: 

( �ū 0 ) 
T 
i ( �ū 0 ) i = ‖ ( �ū 0 ) i ‖ 

2 = �S 2 . (19) 

where ‖ · ‖ denotes the usual norm in R 
n . Substituting the cumulative incremental displacement in (18) to (19) , one can

obtain the following quadratic algebraic equation in terms of increment of the load parameter: 

a 
(
δλ̄i 

)
2 + 2 b 

(
δλ̄i 

)
+ c = 0 , (20) 

where 

a = δu T F δu F , 

b = 

[
( �ū 0 ) i −1 + ( δu R ) i 

]
T δu F , 

c = 

[
( �ū 0 ) i −1 + ( δu R ) i 

]
T 
[
( �ū 0 ) i −1 + ( δu F ) i 

]
− ( �S ) 2 . 
85 
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Fig. 3. The schematic of a circular arch with length L, cross-sectional area A, span X L and height H. Its bending stiffness is denoted by EI. The arch is 

subjected to a vertical concentrated force F with the position denoted by (S F , X F , Y F ) . 

 

 

 

 

 

 

 

 

 

For b 2 − ac > 0 in (20) , there are two solutions which are given by 

(δλ̄i ) 1 , 2 = 

−b ± √ 

b 2 − ac 

a 
. (21) 

The two solutions of δλ̄i determine two results of (�ū ) , i.e. (�ū ) i 1 and (�ū ) i 2 , which in turn lead to two directions on

the equilibrium path, one going to a new path and the other one returning to the old path. To avoid ‘doubling back’ onto

the old equilibrium path, the cumulative incremental displacement in the current and previous iteration steps, (�ū ) i and 

(�ū ) i −1 , should be positive which means [32] , 

cos θ = 

(�ū ) T 
i −1 

(�ū ) i 

‖(�ū ) i −1 ‖‖(�ū ) i ‖ 

= 

(�ū ) T 
i −1 

(δū R ) i 

‖(�ū ) i −1 ‖‖(δū R ) i ‖ 

> 0 . (22) 

If both roots are positive, we choose the one that is closest to the linear solution, 

δλ̄L = − c 

2 b 
. (23) 

In general, different sizes of arc-length �S will result in different numbers of iteration steps. To make the number of 

iterations constant, the arc-length can be adjusted by the following strategy, 

�S k = �S k −1 

I d 
I k −1 

, (24) 

where I d is the desired number of iterations, usually smaller than 5. Based on our experience, I d does not have to be an

integer and can be varied to make the equilibrium path smoother. The first arc-length in the first load is computed by, 

�S 0 = δλ
√ 

(δu F ) T 1 (δu F ) 1 . (25) 

For subsequent load steps, the initial incremental load parameters are given by [32] , 

δλ̄0 = 

�S k √ 

δu T 
F 
δu F 

sgn 
[
(�ū ) T k −1 δū F 

]
. (26) 

where sgn [ ·] is the sign function. After the cumulative incremental displacement converges to a stable value or the residual

converges to a small prescribed tolerance, the iteration process stops for that load, and proceeds to the next load step. 

3. Numerical results 

After we clarified the principles of differential correction and arc-length continuation, we apply the algorithm to the 

structural mechanics, using the snap-through buckling of circular arches as examples. In order to compare the accuracy and 

convergence rate of the current algorithm, the continuation software package COCO will be used. 

3.1. Snap-through of circular arches 

As the numerical examples, we study the snap-through of a circular arch with length L, span X L , height H, cross-sectional

area A and bending stiffness EI, as shown in Fig. 3 . From the left end of the arch, we use S, X(S) , Y (S) to denote the

arc length, horizontal and vertical coordinates. The angle in radians, measured counterclockwise from the horizontal, is 

denoted by θ (S) . The internal forces along horizontal and vertical directions are denoted by P (S) , Q(S) , respectively, and the

bending moment denoted by M(S) . The arch is subjected to a vertical concentrated force F with initial position (S F , X F , Y F ) .

In this study, we assume the arch is slender so that the planar Euler elastica , which deals with uniform, thin, flexible and
86 
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unshearable rod, is applicable to establish the governing differential equations. Based on the geometry, constitutive relation, 

and equilibrium, the differential equations are given by [33,34] , 

X ,S = cos θ, 

Y ,S = sin θ, 

EI ( θ,S − θ0 ,S ) = M, 

M ,S = Q cos θ − P sin θ, 

P ,S = 0 , 

Q ,S = 0 , 

(27) 

where θ0 (S) is the initial shape of the arch. The comma in the subscript denotes the derivative with respect to the following

coordinate. To make it more general, the following non-dimensional parameters are introduced: 

( s, x, y, s F , x F , y F , x L ) = 
1 
L ( S, X, Y, S F , X F , Y F , X L ) , m = 

ML 
EI 

, ( p, q, f ) = 
L 2 

EI ( P, Q, F ) , (28) 

where the arc-length of the arch is normalized to unity, i.e., s ∈ [0 , 1] . The resulting non-dimensional differential equations

are given by 

x ,s = cos θ, 

y ,s = sin θ, 

θ,s = m + θ0 ,s , 

m ,s = q cos θ − p sin θ . 

p ,s = 0 , 

q ,s = 0 . 

(29) 

In this study, we consider a circular arch whose initial shape in the non-dimensional form is given by 

θ0 (s ) = (1 − 2 s ) β, θ ′ 
0 (s ) = −2 β, (30) 

where β is the angle of the left end. In this study, two types of boundary conditions with in-plane immovable ends, i.e,

pinned end and clamped end, are considered. The in-plane immovable boundary conditions are given by, 

x (0) = y (0) = y (1) = 0 , x (1) = x L . (31) 

Additional boundary conditions for the pinned or clamped ends are needed, 

m = 0 , for pinned ends, 

θ = ±β, for clamped ends. 
(32) 

The sign of θ depends on which end of the arch is clamped. If the left end is clamped, θ = + β, otherwise we have θ = −β .

For the concentrated force considered here, we decompose the arch into two parts at where the force is applied. Each

sub-arch is governed by its differential equations and connected with the other by continuity conditions. Before we give the 

continuity relations, we rescale the domain of each sub-arch by its respective arc-length, s F and 1 − s F , respectively, so that

each arch has unit arc-length measuring from the left end of each arch. In this study, we apply the concentrated force at a

fixed point on the arch. Thus, the horizontal coordinate might change during the deformation. The continuity conditions of 

the two sub-arches are written by, 

x 1 (1) = x 2 (0) , y 1 (1) = y 2 (0) , θ1 (1) = θ2 (0) , 

m 1 (1) = m 2 (0) , p 1 (1) = p 2 (0) , q 1 (1) − f = q 2 (0) . 
(33) 

where the subscript ‘1’ and ‘2’ denote the left and right sub-archs, respectively. Now the 12 first-order differential equations, 

along with 6 boundary conditions and 6 continuity conditions together are closed to be solved. It should be noted that in the

non-dimensional governing differential equations of a circular arch based on elastica theory, the only appearing parameters 

are the end angle β and the boundary conditions. Other geometric and material parameters, such as the width and thickness 

of the cross-section, the Young’s modulus, do not appear. Another factor that affects the deformation is the location of the

vertical concentrated force. 

In fact, the force can also be applied at a fixed horizontal coordinate. In this case, the arc-length of each sub-arch might

change in the loading history. Before the implementation of differential correction, we need to rescale the domain of sub- 

arches to unity so that the true arc-length of each arch will explicitly appear in the governing equations behaving as a

parameter. Here we also consider the arc-length of each arch as a state variable whose derivative with respect to s is

zero. In this case, we have an extra differential equation written by, s F,s = 0 . On this condition, the continuity condition

x 1 (1) = x 2 (0) should be corrected to be x 1 (1) = x 2 (0) = x F . Again, x F is the fixed horizontal coordinate of the location of

the applied vertical force. A similar situation exists when differential correction is applied to compute the periodic orbits 

in an autonomous system [5,12,13] . In such problems, the period is unknown beforehand which will be corrected during 

iteration. We can consider the period as a parameter or a state variable [24,35] . 
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Fig. 4. Comparison of the load-displacement relation of a pinned-clamped circular arch obtained by differential correction with references [36–38] . The 

arch with central angle equal to 215 ◦ is subjected to a vertical concentrated load at the apex. Here R is the radius of the circular arch. Notice that in this 

figure the load is rescaled, while the displacements keep consistent as before. 

Fig. 5. Schematic of a semicircular arch subjected to a vertical concentrated force. In the corresponding numerical examples, the force will be applied at 

two locations: the first one is a symmetric case where the force is applied at the crown of the arch; the second one is an asymmetric case where the force 

is applied with an offset angle ( π/ 50 ) from crown. Moreover, different boundary conditions will be considered, including pinned and clamped ends. 

 

 

 

 

 

 

 

 

Comparison We start the numerical results by giving a comparison with published results [36–38] of a pinned-clamped 

deep circular arch subjected to a vertical concentrated force at the crown. The central angle of the arch is 215 ◦. In thise
case, β = 107 . 5 ◦ which is the only parameter we need to assign to the non-dimensional governing equations. This example

was first studied in [39] and then attracted tremendous study using different beam or arch models. Abundant data can be

obtained so that it is easy to compare the results obtained by differential correction with references among which we select

Refs. [36–38] . Fig. 4 gives the load-displacement relations, where both horizontal and vertical displacements are included. 

From the comparison, excellent agreement between current results and references is observed, which demonstrates our 

manipulation is reasonable and numerical computation is accurate. More good comparisons can be found in [40–45] which 

are not given here for simplicity. It should be mentioned that along the equilibrium path, self-contact was observed which 

cannot physically occur in practical experiments, as also reported in [36] . For comparison, we ignore this impossibility and

give the whole equilibrium path. 

Numerical results of semicircular arches In this part, we give the numerical results of snap-through buckling of semicircular 

arches [46,47] as shown in Fig. 5 . The vertical concentrated force will be applied in two cases: the symmetric and asymmet-

ric forces. The symmetric force is applied at the crown of the arch, while the asymmetric force is applied at slightly offset

location to the crown with offset angle valued at π/ 50 . For comparison, the results obtained by COCO will also be given. 

Fig. 6 gives the force-displacement relation and some configurations on the equilibrium path of a clamped-clamped 

arch subjected to an asymmetric force. Here and in the following, the displacements in the load-deflection relation are 

measured at the point where the force is applied. The horizontal and vertical displacements at that point are denoted by

u and w, respectively. Fig. 6 (a) is a typical snap-through scenario in curved structures. In the force-displacement relation, 
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Fig. 6. Example of a clamped-clamped semicircular arch subjected to an asymmetric force. In (a) it gives the load-displacement relation. The results 

obtained by differential correction agree well with those obtained by COCO. Along the equilibrium path, We select 11 points, denoted by circles, to show 

the corresponding configurations. In (b) the configuration of each point selected along the equilibrium path is shown, where the blacks dot denote the 

location of the force during the deformation process. 

Fig. 7. Example of a semicircular arch with pinned-clamped boundary subjected to a symmetrical force. (a) and (b) are the force-displacement relation and 

configurations of equilibrium states on the equilibrium path, respectively. [50] also predicted close results for force-displacement relation, but in different 

scaling. 

 

 

 

 

 

 

 

 

 

initially the vertical displacement increases with the increment of the applied force until it reaches the local maximum. Then 

the displacement keeps increasing, while the load decreases until it reaches the local minimum. Finally, the displacement 

increases again with the continued application of force. On this equilibrium path, the local maximum and minimum are 

usually called limit points. If the force is applied via a displacement-controlled device, the full equilibrium path can be 

detected [4 8,4 9] . However, if the force is applied via a load-controlled device, the situation is different. The force can be

increased until it reaches the upper limit point. Once the load is further increased, no matter how small it is, the arch will

directly snap-through with a sudden and fast dynamic jump to its inverted configuration, since there is no longer any locally

available stable equilibrium state. In Fig. 6 (a), 11 points marked as circles are selected on the equilibrium path. Each point

represents a possible equilibrium path. The corresponding configuration is shown in Fig. 6 (b) from which we can notice the

deformation is asymmetric. 

Fig. 7 (a) shows the force-displacement relation of a pinned-clamped semicircular arch. It can be seen from the figure 

that this equilibrium path is more complicated than that in Fig. 6 (a). Here, the snap-back behavior occurs and, moreover,

the looping type equilibrium path appears. Two more limit points exist, compared with the previous case, which separate 

the equilibrium into five branches among which two remote equilibrium states are stable, and the other three in the mid-

dle are unstable. Close results were predicted by [50] , but were given in a different scaling. To show the configurations on

the equilibrium path, 11 points denoted by circles are selected on the force-displacement relation and the corresponding 

configurations are shown in Fig. 7 (b). From the configurations, we notice that once the load is applied, the apex begins to

deflect and the left end of the arch rotates in a counterclockwise direction. However, the arch cannot directly snap-through 

to the inverted configuration just by continuing to rotate along the counterclockwise direction due to physical and geomet- 
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Fig. 8. Example of the primary equilibrium path of a semicircular arch with pinned-pinned boundary subjected to symmetric concentrated force at the 

crown. (a) is the force-displacement relation. The curve presents a looping path with increment of flexuosity in configurations. (b) and (c) show the 

configurations on the equilibrium path where all configurations are symmetric. 

 

 

 

 

 

 

 

rical constraints. After the force-displacement relation reaches the first snap-back point, the reconfiguration begins which 

makes the left end rotate in a clockwise direction and pushes the center to the upper right direction. When the equilibrium

path arrives at the second turning point, the whole structure gradually moves downward to the inverted configuration. As 

anticipated, the asymmetric boundary conditions induce asymmetric deformation. 

The examples given in Figs. 6 and 7 show asymmetric deformation, induced by the asymmetric loading and boundary 

conditions, respectively. COCO does not find any bifurcation point (the intersection of two or more equilibrium paths) in 

these simulations, indicating both snap-throughs occur at a limit point. Similar conclusions were given in [51] . In the next

example we will present the semicircular arch with symmetric boundary constraints subjected to symmetric force at the 

crown. As pointed out in [19] , in the deflection of a deep arch, the pitchfork bifurcation may appear before the limit point.

The asymmetric deformation [52] might exist which is another type of asymmetric deformation. 

It should be noted that the current algorithm cannot predict the bifurcation point so that only the primary branch of

the equilibrium paths can be followed. Thus, we first present the symmetric snap-through of a pinned-pinned semicircular 

arch subjected to a symmetric force at the crown, as shown in Fig. 8 . The force-displacement relation shows a looping type

of curve with multiple snap-back points which is much more complicated than Fig. 7 (a). From the configurations of 12

points selected on the equilibrium path, as shown in Fig. 8 (b) and 8 (c), symmetric deformation patterns are observed. The

increment of the loop is accompanied with the increase of the wave number and the configurations become more flexuous, 
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Fig. 9. Example of the bifurcated equilibrium path of a semicircular arch with pinned-pinned ends subjected to concentrated force at the crown. (a) gives 

the primary and bifurcated equilibrium paths. The two stars on the secondary equilibrium path are the two bifurcation points, diving the bifurcated path 

into three parts where the left and right parts are symmetrical deformation, while the middle part is asymmetrical deformation. The two panels at the 

bottom show the the zoom-in view around the bifurcations points. (b) shows the configurations of the equilibrium states on the secondary equilibrium 

path. (c) gives the comparisons with [55,56] which shows a good agreement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

as also pointed out by [53,54] . On the equilibrium path shown in the figure, COCO detects 8 bifurcation points, marked

as stars, among which the first one appears before the first limit point. It implies asymmetric branch might occur at the

bifurcation point. Other bifurcation points are the bifurcations at higher order modes. Ref. [53] predicts close results. Readers 

are referred to the paper for details. 

Although the current algorithm cannot predict the bifurcations, it is possible to trace the asymmetric deformation. A 

commonly adopted way is to break the symmetry in the system (as already indicated in the previous two examples): ei-

ther the symmetries of initial configuration or those of the applied load. In the buckling of flat plates, small imperfections

[57] can be added so that the geometric symmetry can be broken, while in the snap-through of curved structures, small 

horizontal loads can be added so that the symmetry in the load can be destroyed [55,58] . For proper imperfections, the bi-

furcated equilibrium path can be well approximated. However, extremely large values might produce a significant difference 

from the true equilibrium path of asymmetric deformation, while extremely small values can prevent the equilibrium path 

from switching to the asymmetric deformation. Moreover, based on our experience, the desired iteration step I d will also 

affect the selection of initial imperfection. Here in the current problem, we add a very small horizontal load at the crown of

the arch, i.e., 0 . 07% f . Fig. 9 gives the bifurcated branch of a pinned-pinned semicircular arch subjected to symmetric load-

ing. From the force-displacement relation in Fig. 9 (a), at the beginning of the loading process, the displacement increases

with the increment of the external force and the deformation is symmetric. When it reaches the area around the first bi-

furcation point, the asymmetric deformation gradually becomes obvious. Before the first limit point, the equilibrium state 

is still stable. The displacement and force both increase. After the first limit point, the force decreases while the displace-

ment keeps increasing. This process is unstable. Finally after the second bifurcation point, the arch deflects to its inverted 

symmetric configuration. The two panels at the bottom of Fig. 9 (a) give the close-up around the bifurcation points. From

the configurations in 9 (b), we find the configurations of points 1, 2, 12, and 13 are symmetric, while other configurations

are asymmetric. We also notice COCO exactly predicts the bifurcation points which are cusps connecting the symmetric and 

asymmetric branches of the equilibrium path. However, since the small horizontal external force is applied at the crown in 

differential correction, the bifurcation point disappears making the equilibrium path smooth. Nevertheless, the results ob- 

tained by differential correction and COCO match well with each other. Fig. 9 (c) gives an additional comparison with [55,56] .

Good agreement is observed which demonstrates the validation of the current results. 
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Fig. 10. Example of a semicircular arch with pinned-pinned boundary subjected to an asymmetrical force. (a) gives the force-displacement relation, which 

presents a looping type of curve with multiple snap-back points. In the results, no bifurcations are detected by COCO. (b) and (c) show the configurations 

of different equilibrium states on the equilibrium path. In the current case study, asymmetric deformation is observed. With the increment of the loops, 

the wave number of the configuration increases. 

 

 

 

 

 

After we investigate the symmetric case of the pinned-pinned semicircular arch, we analyze the asymmetric case. Fig. 10 

gives the asymmetric deformation of a pinned-pinned semicircular arch subjected to an asymmetric force. The equilibrium 

path shows a looping curve. Due to the asymmetric loading position, the configuration during the deformation process is 

asymmetric. The wave number increases with the increment of the loop, as shown in Fig. 10 (b) and 10 (c). In the current

asymmetric case, the offset angle is merely π/ 50 ≈ 0 . 0628 , but it makes the equilibrium path quite different from the

symmetric case shown in Fig. 8 . Combining with the example to obtain the secondary equilibrium path in Fig. 9 , we find

that the process of computing the equilibrium path for the deep circular arch is very sensitive to perturbations, such as the

offset distance from the apex and the disturbance in the horizontal force. The small disturbance can transfer the equilibrium 

path to different branches. Ref. [53] presents close results with a good agreement with the current algorithm; readers are 

referred to it for the details. 

3.2. Discussion 

After presenting the snap-through behaviors of circular arches, we have a clearer picture about the efficacy of differen- 

tial correction. In the process of the implementation of differential correction to solve boundary-value problems, we need 

to know the conditions at one boundary that we want to target, including the final state of the trajectory and the state

transition matrix, which can be obtained by simultaneously integrating the governing equations and variational equations. 

By giving the initial guesses of the boundary conditions, we can begin the continuation process to update the boundary 
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conditions at the other end used as the initial conditions in the differential correction process. Since the iteration process 

aims to search for the correct boundary conditions, the dimension of the matrix is at most equal to the number of the state

variables (or the boundary conditions). Because some of the boundary conditions can be automatically satisfied, generally 

the dimension of the matrix is lower than the state variables. 

However, in discretization methods, such as the finite element method, orthogonal collocation method, and mesh-free 

method, etc, the dimension of the matrix will be the number of the state variables multiplied by the number of nodes or

sampling points in the domain. The huge storage of node information slows down the iteration process and increases the 

computational time. The more sampling points we mesh, the worse the situation will be. Due to the large dimension of

the tangent stiffness matrix in such algorithms, the tangent stiffness matrix is only updated at certain preselected steps 

of the iteration in order to cut down the computation cost. Although it needs more iteration steps for convergence, the

computation time should be less. However, the dimension of the tangent stiffness matrix in differential correction is constant 

and is much lower than that of the discretization methods. It can be updated at every iteration step, making it fast to

converge. Another advantage of differential correction is its easy implementation. No matter what the problems are, we use 

the same core of the arc-length continuation. Once it is established, it does not need to be updated. For different boundary

value problems, we only need to work on the governing equations and variable equations to prepare the tangent stiffness 

matrix, tangent force vector and the residual vector which will be used in the arc-length continuation. 

Based on our experience, the implementation of differential correction is as simple as COCO, and they predict consistent 

results. However, one unavoidable flaw of differential correction, compared with COCO, is its inability to detect bifurcations. 

Fortunately, a sophisticated strategy of breaking the symmetry in the initial configuration and load makes it possible to get 

the bifurcated branches of the equilibrium paths. Another shortcoming of differential correction, which cannot be avoided, 

is its inability to solve partial differential equations with respect to two dimensional spatial coordinates. As for the partial 

differential equations with respect to one dimensional spatial derivative and one dimensional time derivative, differential 

correction is applicable disposing of the time derivative by using the Newmark method. 

4. Conclusions 

In this paper, we extend the application of differential correction along with arc-length continuation to structural me- 

chanics, examples of the boundary-value problems. The detailed derivations of the present algorithm are given. Examples 

about the snap-through of circular arches are given to show the process of the implementation of differential correction 

and arc-length continuation. This method is capable of passing the limit points and turning points, enabling the computa- 

tion of complicated equilibrium paths. Compared with other discretization schemes, the current algorithm involves a low 

dimensional matrix calculation, saving storage space and speeding up computation. In the meantime, the off-the-shelf con- 

tinuation tool COCO was adopted to compare with our scheme. The results obtained by the present algorithm and COCO are

consistent, showing the accuracy and robustness of the current algorithm. 

From the numerical examples, we find that a small asymmetry in boundary conditions and loading, such as a slight offset

of location or tiny off-axis-of-symmetry force component, can destroy the symmetrical deformation of the structures. This 

gives us a strategy, breaking the symmetry of the system by introducing small imperfection of the configuration and load, to

trace the existing bifurcated branches of the equilibrium path which commonly exist in symmetrical deep curved structures. 

On the other hand, boundary conditions will significantly affect the snap-through behavior. Deep structures might have a 

looping type of equilibrium path with multiple turning points or even bifurcations. 

Here we discussed some specific points that might cause confusion when applying differential corrections to boundary- 

value problems, such as how to deal with concentrated forces and how to trace the bifurcated branches. Although the 

current algorithm is applied to boundary-value problems, it also works for computing stable and unstable periodic orbits in 

both autonomous and nonautonomous systems of initial-value problems. Future work can be aimed to equip the algorithm 

with the ability to predict bifurcations and branch switching. 
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