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Abstract

We provide an analytical solution for the elastic fields in a two-dimensional unbounded
isotropic body with a rigid inclusion. Our analysis is based on the boundary integral for-
mulation of the elastostatic problem and geometric function theory. Specifically, we use the
coordinate system provided by the exterior conformal mapping of the inclusion to define a
density basis functions on the boundary of the inclusion, and we use the Faber polynomials
associated with the inclusion for a basis inside the inclusion. The latter, which constitutes
the main novelty of our approach, allows us to obtain an explicit series solution for the
plane elastostatic problem for an inclusion of arbitrary shape in terms of the given arbitrary
far-field loading.
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1 Introduction

The so-called isolated inhomogeneity problem, also known as the Eshelby problem, con-
sists in the determination of the elastic fields in an inclusion embedded in an unbounded
medium, given some prescribed elastic fields in the far-field. Indeed, an inclusion with dif-
ferent material parameters from that of the background will induce some perturbation in
the hosting medium which will depend on the shape of the inclusion as well as its material
parameters. Such a problem has a long history (see, e.g., the review papers [26, 39, 52]),
given its fundamental importance in material modeling, especially for its application to the
determination of the effective properties of composite materials (see, for instance, the books
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by Buryachenko [5], Dvorak [13], and Qu and Cherkaoui [42]). It was first addressed for an
ellipsoidal inclusion by Poisson [40] within the context of the Newtonian potential problem,
then followed by Maxwell [35], who provided some explicit formulas for the electric and
magnetic fields inside the ellipsoid.

With specific reference to the elastostatic case, which is the topic of this paper, early
results concerned the case of inclusions with simple shapes subject to uniform strains or
tractions: just to name a few, see [20, 50] for spherical inclusions, [14] for spheroids, and
[43, 47, 48] for ellipsoids. This problem is usually associated with Eshelby as his 1957 paper
[16], in which he proved that a homogeneous isotropic ellipsoidal inclusion embedded in an
unbounded homogeneous isotropic medium would experience uniform strains and stresses
when uniform strains or tractions were applied in the far-field, is one of the most cited papers
in Applied Mechanics. Later, Eshelby [17] conjectured that this occurs only for ellipsoidal
inclusions, a fact that was proved independently by Kang and Miton [27] and Liu [33] for
three-dimensional isotropic media subject to any uniform far-field loading, by Sendeckyi
[49] for the two-dimensional case, and by Ru and Schiavone [46] for anti-plane elasticity.
Note that such a conjecture has not been proved yet for any uniform far-field loading in the
case of anisotropic elastic media [4, 29, 51].

The extension of Eshelby’s work [16] to inclusions of arbitrary shape is not straightfor-
ward as it involves either the computation of complicated Green’s functions (e.g., [8, 38]), or
solutions only in algorithmic closed form [44]. In practical applications, on the other hand,
such as in metallurgy, in which the goal is to model perturbations of elastic fields due to
precipitates, twinnings and martensitic transformations, the inclusions have a more complex
shape. To overcome such a drawback, some authors applied the theory of conformal map-
ping to the Eshelby problem in plane elastostatics by relying on the complex formulation
introduced by Muskhelishvili [37] (see also [15, 34]). This method can be applied to elastic
inclusions of arbitrary shape, but in general, it does not provide an explicit solution (see,
for instance, [32, 49]), and in those cases in which an explicit solution can be provided, the
far-field loading is considered to be uniform [36, 45, 53]. The determination of explicit for-
mulas for the elastic fields in an inclusion of arbitrary shape subject to an arbitrary far-field
loading is still, to the best of the authors’ knowledge, an open problem.

We remark that analytical and numerical methods to compute the elastic tensor (of-
ten called the Eshelby tensor field) for inclusions of various shapes have been developed
[7, 19, 23, 31, 53]. In particular, in [53], the inclusion problem to determine the strain field
of an infinite homogeneous medium induced by a uniform eigenstrain field in an inclusion
was extensively studied. Eshelby’s tensor field relates the resulting strain field to the uni-
form eigenstrain, and it has an expression as an integral on the boundary of the inclusion in
terms of the derivatives of the Green’s function of the elastic body. For inclusions of various
shapes, given the corresponding conformal mappings, Eshelby’s tensor field is explicitly
expressed in [53]. In the present paper, we consider the inclusion problem to find the defor-
mation due to an inclusion for a given arbitrary loading, when the solution is expressed as
the single-layer potential having the Green’s function as kernel.

For the conductivity problem (or antiplane elasticity), Jung and Lim [24] found an ex-
plicit solution for an inclusion of arbitrary shape based on the layer potential technique and
geometric function theory: the solution inside the inclusion is expanded into a series of Faber
polynomials (see [12, 18] for the definition and properties), whereas the solution in the sur-
rounding medium is expanded into a series of harmonic functions expressed in terms of the
coordinates of the exterior conformal mapping, supposed to be known. The layer poten-
tial operators and the Neumann—Poincaré operator admit expansions into series of the basis
functions so that one can find a series solution to the transmission problem by using the layer
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potential technique; we refer the reader to see, for instance, the comprehensive books [1, 2]
for the layer potential formulation for the conductivity transmission problem and its appli-
cations. Moreover, the two sets of interior and exterior basis functions have explicit relations
on the boundary of the inclusion so that the interior and exterior values of the solution can
be matched by using the transmission condition on the boundary of the inclusion (see also
[9]). This geometric series solution method was successfully applied to the study of inclu-
sion problems in anti-plane elasticity and the spectral property of the Neumann—Poincaré
operator [10, 11, 25]. Analogous results for the elastic problem have not been found yet.

In the present paper, we extend the series solution approach for the conductivity trans-
mission problem in [24] to the elastostatic case. In particular, we provide an explicit analytic
series solution for the hard inclusion problem in plane elastostatics.

The remainder of this paper is organized as follows. Section 2 mainly describes the com-
plex formulation for the plane elastostatic transmission problem. Section 3 is devoted to
the series solution for the rigid inclusion problem. We provide solutions for inclusions of
various orders in Sect. 4. The paper ends with some concluding remarks in Sect. 5.

2 Preliminary
2.1 Formulation of the Problem

Consider an unbounded homogeneous isotropic medium in R? with an embedded simply
connected homogeneous isotropic inclusion §2 of arbitrary shape. Let A and & be the Lamé
constants of the system, A being the bulk modulus and p the shear modulus. Suppose that
the displacement field, u(x), is assigned in the far-field in a quasi-static manner, that is
u(x) =uy(x) + O(x|7!) as |x| — oo, with uy(x) the far-field displacement.

If there were no inclusion, the displacement field u(x) would be exactly uy(x), whereas
the strain field e(x) and the stress field o (x) would be determined uniquely by the following
well-known formulas (assuming the displacements to be small):

1
e=§(Vu+VTu) and o =Ce=Atre +2ue, 2.1)

where tr stands for the trace. If we assume there are no body forces (so that the stress
field is divergence-free), then uy(x) satisfies the equation £, ,up =0 in R?, L, , being the
following differential operator

L u:=V-Ce(X)=pAu+ A+ pn)VV-u.

Note that £, ,, is elliptic under the strong convexity assumption for which u > O and A +pu >
0 (see, e.g., [30]).

However, due to the presence of the inclusion £2, the displacement field in the medium is
not uy(x). Indeed, under the assumptions that the inclusion is rigid (so that the displacement
field on 942 is a rigid displacement), and that there are no body forces, u(x) turns out to be
the solution of the system

CK.[I.u:O in ]Rz \E,
3

u’+=chRj(x) on 052, (22
Jj=1

u(x) —up(x) = 0(|x| ") as x| — oo,
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where the superscript + denotes the limit from outside §2, and {R;, R, R3} is a basis of the
space of rigid displacements, say

Rl=[(1)], R2=|:ﬂ, R3=[_";1}. (2.3)

The conormal derivative from outside on 942, that represents the traction forces on the
exterior of 052, is defined to be

du:=1(V-wn+pu(Vu+Viu)n,
n being the unit outward normal vector to d§2. The real coefficients ¢;, j = 1,2, 3, in (2.2)
are determined by the following equilibrium condition on 9£2:

/ du|"-Rjdo =0, j=1,2,3. (2.4)
082

2.2 Layer Potential Technique

A classical way of solving the transmission problem (2.2) is the layer potential technique
(see, e.g., [30]), which is based on the ansatz that the displacement field in the medium is the
superposition of the far-field loading uy(x) (the field that would be in the medium if there
were no inclusion), and a perturbation field Sy [¢@](x) (the term which takes into account
the effect of the inclusion):

u(x) =uy(x) + Sy [e](x), (2.5)

for some density function ¢ = (¢;, ¢,)7 satisfying the equilibrium condition (2.4), i.e.
/ ¢ -Rjdo=0, j=1,2,3. (2.6)
a2

Indeed, @ (x) is given by ¢ = avu|+ on 52 (see, e.g., [28, Appendix A.2]).
The perturbation field Sy [@](x) is called the single-layer potential of the density func-
tion @(x) on 952 associated with the Lamé system, and it is defined as

Sialel) = [ Fx-plplydoy) forxeR? @)
EYe)
where I' = (1",»_,~)i2,./.:1 is the Kelvin matrix of the fundamental solution to the Lamé system

in R? when there is no inclusion, namely,

o o) XiX;
mwzi%mw—ﬁﬁﬁ (2.8)

d;; being Kronecker’s delta, and

b(r, 1 . 1/1 1 29)
a1 =—| — and ar,=—-(—— . .
o\ T 2u T2\u 2wta

Note that, due to (2.5), the problem of finding the displacement field u(x) satisfying (2.2)
is equivalent to finding the single-layer potential Sy [¢@](x) (2.7) by finding the density
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function ¢(x) satisfying (2.6) and the boundary condition in (2.2). The density function

@(x) is associated with the inversion of the operator —1I+ K}, , where K}, is the so-called
elastostatic Neumann—Poincaré operator:

K}, [p]l(x) := p.V./ o ' X—Yy)p(y)do(y) ae. xe0d52.
ks

The symbol p.v. stands for the Cauchy principal value, 9, I"(x —y) denotes the conormal
derivative of the Kelvin matrix with respect to the x-variable, defined by

o I'(x—y)b=20, (I'(x—y)b)
for any constant vector b.
2.3 Complex Formulation

For plane elastostatics, one could identify the coordinate vector x = (x|, x;)T € R? with
the complex variable z = x; + ix, € C. The vector-valued displacement field u = (u;, u)"
then can be expressed, upon complexification, as the complex function u(z) = u; + iu,.
Analogously, the density function ¢ = (¢;, ;)7 and the single-layer potential Syq[¢](X)
can be written as ¢(z) = ¢1 +i¢; and S[@l(z) = (Ssele])1 +1(Ssel@])2, respectively.

Following [37], the equation £, ,u=0in C\ 2, in which the two unknowns are i (x)
and u,(x), can then be written as an equation in terms of two complex functions ¢ (z) and
¥ (z), which are analytic in C \ £2:

A+ 3u
A+’

2uu(z) =kp(2) —2¢'(2) — ¥ (@), k= (2.10)

where the bar denotes complex conjugation. Similarly, the background solution uo(z) =
(ug) +1(up), admits the complex representation (dividing by the constant p to simplify the
formula)

2u(z) =kh(z) —zh'(z) —1(z) in £2 (orin C\ ), 2.11)
where 4(z) and I(z) are analytic functions in £2 (or in C \ £2). Indeed, uy(x) satisfies
L;. . up = 0 in R?, so that the representation (2.11) holds in the whole complex plane.

As the single-layer potential Sy [¢](x) satisfies the Lamé system as well, the following
holds
2S[pl(z) =«f(z) —2f"(z) —g(z) in 2 (orin C\ 2) (2.12)

for some complex analytic functions f(z) and g(z), which can be expressed as

(@) = flel(@) = Lp](2), (2.13)
g(2) = glel(z) = —a1 L[P1(2) — aaClLpl(z) (2.14)

with the complex integral operators £ and C given by
1
Lly1(z) = 2—/ log(z = Oy (£)do (£), (2.15)
T Jae
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1 V()
ClYl@) =LY () = oyl do (¢) (2.16)
7 Jiez—¢
for any complex function v (z) (see [3] for the derivation). Indeed, we can express the single-
layer potential S[¢](z) in a simpler form by using the real logarithmic function (note that,
by (2.9) and (2.10), kay = a1):

28[¢1(z) = 201 L[p](z) — 2z Cl@](z) + a2C[C@l(z) inC (2.17)

with
1
Llpl(z) := E/ In|z —¢le(&) do (§). (2.18)
92

The rigid inclusion transmission condition on 952, see (2.2), and the single-layer poten-
tial ansatz (2.5) imply that, on the boundary,

Slel(z) = —uo(z) + 1 +ica —icsz. (2.19)

In Sect. 3, we will develop a series solution method for the transmission problem (2.2)
by using the theory of conformal mapping. Therefore, we review some related results in
complex analysis in the following subsection.

2.4 Exterior Conformal Mapping and Associated Density Basis Functions

From the Riemann mapping theorem, there uniquely exist a real number y > 0 and a com-
plex function ¥ (w) that conformally maps the region R = {w € C : jw| > y} onto C \ £2
and satisfies ¥ (00) = oo and ¥'(co) = 1. Here, the quantity y is called the conformal
radius of §2, which coincides with the logarithmic capacity of £2, and ¥ is the exterior con-
formal mapping associated with £2. The function ¥ (w) admits the following Laurent series
expansion:

o0
a a
W) =w+ag+ —+ 5+ =wt Y aw (220)
w w s

for some complex coefficients a,, see [41, Chap. 1.2] for the derivation. Being a conformal
mapping, ¥ (w) preserves the angle between two intersecting curves and, hence, it can define
an orthogonal curvilinear coordinate system in C \ §2 in a simple way. Indeed, we can
express w € R in the modified polar coordinates (p, 8) € (pg, 00) X [0, 2) with pg =Iny
as

w = e, 2.21)

Consequently, (o, ) provides an orthogonal coordinate pair for z = ¥ (w) € C \ £2 via the
relation

=W (p,0):=w ("),

From the Caratheodory extension theorem [6], ¥ (p, 8) admits the continuous extension
to the boundary of the domain. We assume that the boundary 32 is C'* so that, by the
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Kellogg—Warschawski theorem [41], ¥'(p, 6) can be continuously extended to the bound-
ary. In particular, the map ¥ (p,6) is C! on [py, 00) x [0, 27). Therefore, we can use the
polar coordinate system (p, 6) associated with (2.20) to define a density basis, that is, a basis
for functions defined on 92 (p = py), as follows

im6 efimQ

T s Pem (Z) =

Pn(2) = (2.22)

for each m € N, where £ is the scale factor
ov ow
hp.0) = || = |
0p 00

Later, we will use the basis (2.22) to expand the density function ¢(z) of the single-layer
potential (2.7). Notice that the length element on 952 is then given by

do () =h(py,0)d0 for & =W (po,0). (2.23)
2.5 Faber Polynomials

In view of the exterior conformal mapping (2.20), the expansion

o]

wy’ (w)
" 2.24
o) —z n; w(@Dw™ (2.24)
is valid for sufficiently large |w|, where the function F,,(z) is an m-th order monic poly-
nomial, called the m-th Faber polynomial associated with ¥ (w) (or §2), that is uniquely
determined by the coefficients of ¥ (w) in (2.20). As an example, the first three polynomials
are

F() =1, Fi(@=z—ay, F(2)=2"—"2ayz+ (aj—2a).

In general, by comparing the w ™" terms in (2.24) (after multiplying both sides by ¥ (w) — z)
one observes the following recursion relation

—ma,, = Fp1(2) + Zas Fou_s(2) — 2Fn(2) foreachm =0,1,2,.... (2.25)
s=0

The concept of Faber polynomials was first introduced by G. Faber in [18] and has been one
of the essential elements in geometric function theory (see, e.g., [12]).

The Faber polynomials satisfy the convenient property that F,, (¥ (w)) has only one pos-
itive term: w™. In other words,

Fp(W W) =w" 4 cppw™. (2.26)
k=1

The coefficients c,, ; are called the Grunsky coefficients, and they satisfy the following iden-
tity:

ke =mcy,, forallm,keN. (2.27)
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Furthermore, they satisfy the so-called strong Grunsky inequalities [21] (see also [12]): let
N be a positive integer and A, A,, ..., Ay be complex numbers that are not all zero, then
we have

N

Z 2l (2.28)

Zk

The strict inequality holds unless £2 has measure zero. As a corollary, the following relation,
the so-called weak Grunsky inequality, holds:

N N .-
ZZ yZ+k}‘ nhi

n=1 k=1

>
yn+k An

n=1

< Z” A% (2.29)

n=I1

Plugging A, = 78”’" into (2.28), we have

v m+k

< 1. Now, letting A, = —8,,,,, + 8,U for m # s, (2.29) leads us to

2

il

Cm.m
2m

In particular,

CW!.W! CW!.S CS,VIY CS,S 1 + 1 < 2
myZm mym+s S)/S+m syZS m s
and, by using (2.27),
|m.s| < 2my™*s. (2.30)
By applying this bound to (2.26), it follows that
m m y
[Fo (W ()| < [w|™ + 2my . (2.31)
lwl =y

We can derive more formulas for Faber polynomials starting from the generating relation
(2.24). For instance, by integrating (2.24) with respect to w, we have (see, e.g., [12, Chap. 5])

(o]
w 1
1 — | = —F, .
% (ww) = z) 2 Pl
Differentiation of this relation with respect to z leads to
L s Lo 232)
— = — w™". .
Y(w)—z —m mi%

Note that the complex function 1/(¥ (w) — z) is analytic with respect to w in {w : |w| > y}
and decays at infinity, while the right-hand side is its Laurent series. Hence, for a fixed
z € §2, (2.32) is uniformly and absolutely convergent for |w| > y; with y; > y.
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Note that, thanks to the properties of Faber polynomials, any complex function v(z)
analytic in £2g, R > y, admits the expansion

V@ =) duFu(x) in2 (2.33)

m=0
with the coefficients d,, given by (from the Cauchy integral formula and (2.24))

4 - 1 v(¥(w))

=5 ] dw, y<r<R. (2.34)
|lw|=r

In other words, Faber polynomials form the interior basis: they can be used as an expansion
basis on §2 for complex functions that are analytic on a domain containing 2.

3 Series Solution for the Rigid Inclusion Problem

The goal of this section is to develop a series solution method for the transmission problem
(2.2), in order to provide the displacement field in the exterior of the inclusion. Specifically,
we will expand the far-field loading in terms of the interior basis and the single-layer poten-
tial in terms of the density basis (2.22). By using the transmission condition (2.19) and the
properties of Faber polynomials, we will find an explicit expression for the elastic fields in
the exterior of the inclusion in terms of the coordinate w (2.21).

3.1 Series Expansion of the Far-Field Loading

As shown by equation (2.33), Faber polynomials constitute a basis for analytic functions in
£2. Specifically, we can expand the functions A (z) and /(z) in the complex representation
(2.11) of the far-field loading u((z) as

h@) =Y AnFu(@), 1) =) BuFu() 3.1)
m=0 m=0

for some complex coefficients A,, and B,, to be determined by using equation (2.34). Hence,
the far-field loading u((z) in (2.11) can be written as

20@) =k Y AnFu() =2 Y  AnFp (@) = Y BuFu(@) inS2. (3.2)

m=0 m=1 m=0

3.2 Series Expansion of the Single-Layer Potential

To obtain a series expansion of the single-layer potential S[¢](z), we expand the density
function ¢ on 942 in terms of the density basis (2.22) on 02:

o0
@)=Y (s +is?) oo + (s +is) @m. (33)
m=1
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where s(’ ) m e N, j =1,2, 3,4, are real coefficients. The constant term (m = 0) is zero due

to the equilibrium condition (2.6) with j = 1,2, and the condition with j = 3 implies that
Im (f,, ¢(2)zdo (2)) =0, i.e.,

o0
s = —Im (Z (s +1s?) @) . (3.4)

m=1

From now on, we assume y = 1 for the sake of simplicity.
Notice that, by plugging (3.3) into (2.17), the single-layer potential S[¢](z) can be ex-
pressed in terms of the basis functions (2.22) as follows:

2S[¢1(z) = 201 L[¢](z) — 022 Clp1(z) + a2C[L9l(z) inC

IZ[ (st +is®) 2LIp_n1(2) + (s (3)+is,‘;‘>)2L[¢m](Z>]

m=1

—01222[<S,(nl)+lsr(nz)) o nl@ + (s +isi) @ [¢m1<z>]

m=1
s [( W +ish? ) ClEg-nl(D) +mci¢m](z)} L3S
m=1

The operator L given by (2.18), which corresponds to the single-layer potential of the Lapla-
cian, admits the following series expansion [24]: for each m € N,

1l — _
o F,(2), 7€ 82,
L [(p—m] (Z) = i’}’l o (36)
——(Fm(Z)—W-i—w_m), 7=V (w)eC\ 2,
m
—%Fm(z), 7€ 82,
L{pn](z) = iﬂ L . 3.7
——(Fm(Z)—wm+w‘"’), =¥ (w)eC\ 2.
2m

Likewise, the explicit computation of the integral operators C[¢.,,](z) and | C [Egaim](z_),
whose general expression is given by (2.16), depends on whether z € C \ §2 or z € £2,
as will be shown in Lemma 3.1 and Lemma 3.2.

3.2.1 Series Expansion of the Single-Layer Potential Inside the Inclusion
For notational convenience, we define the following polynomial functions

1 !

;Fk(z) fork > 1,

0 fork <0.

Fie(z) := (3.8)

Lemma 3.1 For each m € N, we have

Closn] (@) =—Fin(@), Clloin] (@ ==Y @& Fin(z) forzeg.
k=—1
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Proof We parametrize 32 by ¢ = ¥ (1) = ¥ (e'?) € 3£2. From the definition (2.16) of the
integral operator C and (2.32), we have

1 (7 1
Clotml(z) = o /0 (‘ Z ;F,;(Z)ﬂn) n*"do (3.9)
n=1
1 !
=——F, () or0.
m

Indeed, for a fixed z € £2 we have

1 @im(f)
Clo+ml(z) = hnolr . /ag m do (¢)

= lim —f Z F,@((1+ 00" 9un(¢)do (§) (3.10)
02

As the power series in w in (2.32) is convergent for [w| > y, we can exchange the order of
the integral and summation in (3.10), and thus in (3.9).
By using the Laurent series expansion (2.20) of ¥, we then get

Cl¢em] () = [‘P(n)nim ] (@)

_C[Z_ki’” ](z) Zﬁc[n"i’”ﬂ(z). 3.11)

k=—1 k=—1

Recall that the map ¥ (p, ) is C' on [pgy, 00) x [0, 27). Since the Fourier series of a con-
tinuously differential function is uniformly convergent, we can exchange the order between
the operator C and the summation in (3.11). This completes the proof. 0

By plugging the relations in Lemma 3.1 into (3.5), we obtain the following theorem.

Theorem 3.1 The single-layer potential S[¢](z) with the density function ¢ given by (3.3)
admits the following expansion, for z € §2:

[e°] L0 —
1 .
28191() = —an Y — (s + st ) () + a2 Y (587 +isf? ) Fo2)
m=1

m=1

o0
1 _
—o Z %(s»(nl) + is}‘(IIZ))Fm(Z)
m=1
—— ]
_aZZ[( ) sty ) Z ar Fy m(z)+< (3)+1s,(;‘)) > akfk+m(z)].

k=m+1 k=—1
(3.12)

The derivative of the m-th Faber polynomial is a linear combination of the Faber poly-
nomials of lower order, that is

m—1

Fl ()= yu,Fi@), (3.13)

j=0
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where the coefficients y,, ;, j =0, ..., m — 1, depend on the conformal mapping coefficients
ay (see (2.20)). In matrix form, (3.13) takes the following expression

F=TF+p, (3.14)
where
F] 0 0 0 e Yo
F ya 0 0 --- Y20
F=|pF

oW

M=y yn 0 - and  po:=| 1y |- (3.15)

By using (3.13) or, equivalently (3.14), we can express S[¢](z) (3.12) in terms of Faber
polynomials only (not their derivatives).

3.2.2 Series Expansion of the Single-Layer Potential Outside the Inclusion

We define

k—1

w
Gi(w) := 7 w)

fork e Z, |lw| >y, (3.16)
which approximates F(2) given in (3.8), according to (2.26):

F.(¥(w)) =Gi(w)+ 0 (ltlv_l) for each k € Z.

Lemma 3.2 For each m € N, it holds that for z =¥ (w) € C \E,

Closml(z) = —(ﬁim(z) - G:I:m(w)), 3.17)
CC o] @ ==Y T(Fien(@ — Grzn(w)). (3.18)

k=—1

Proof Like in the proof of Lemma 3.1, we parameterize 352 by { = ¥ (5)) = ¥ (¢) € 812.
From (2.24), (2.26), and the properties of Grunsky coefficients, we have

2 1
c = lim — ———*"df, F=(1+t
(@] (z) = Tim — T v s n=(1+0n,

1 I @ w—n—l
= lim — E,(W m 4o 3.19
Jlim 2n£ ; ( (ﬁ?)w,(w}n (3.19)
1 o0 2 o0 n w—n—l
= lim — i —cpal ¥ )| —— ™ do, 3.20
—o+ 21 X_;fo (” +§kc’" 7 )w*(w)” (3-20)

We assume 1 + 7 < |w| so that from (2.31), the infinite series in (2.24) is uniform with
respect to z = ¥ (7)) with |7j| = 1 4 ¢. Hence, one can exchange the order of integration
and summation in (3.19). Furthermore, from (2.30), the integrand in (3.20) is uniformly
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convergent in 7 so that one can again exchange the order of integration and summation in
(3.20). Therefore, we have

[e°]

_ 1 2 —n—1
Clonl ) = s ; —Cpw
1 1 d
= ) 1 (P ) — w")
and
—m—1
Clo—ml (@)= )

From the definition of Fk (z) and G (w), we have (3.17). Using (3.11), one can then easily
find the expansions of C [E (pim] (w). O

Following the same steps taken for the series expansion of the single layer potential in
the interior of the inclusion, one has just to plug (3.17) and (3.18) into (3.5) to find the
expansion for S[¢](z) in (2.7) with z = ¥ (w) in the exterior of the inclusion. The result is
presented in the following theorem.

Theorem 3.2 The single-layer potential S[¢](z) with the density function ¢ given by (3.3)
admits the following expansion, for z =¥ (w) € C\ £2:

Sext[0]1(2) = —ajv1(w) + 2 ¥ (W) v2 (W) — av3(w), (3.21)

where

o= E 42 () (6 i) (o ) |

00

|: (” + 1s(2) Fon(z) — G_p(w)) + (s,(,?) + is,(,f))(ﬁm(z) - Gm(w))],

II
I M8

(1) + 15(2) ak (Fk—m (@) = Gi-m (w))
k_—l

+ (s,;> +ist?) > @i (Fran(o) - GHm(w))]

k=—1

with Fk (z) and G (w) given by (3.8) and (3.16), respectively.
3.3 Determination of the Density Function via the Transmission Condition

The single-layer potential, (2.7), is continuous on d52. In particular, the expansions (3.12)
and (3.21) coincide when |w| = 1. In order to solve the rigid inclusion problem, we have first
to find the density function ¢(z) that satisfies the transmission condition (2.19), that is, we

have to determine the unknown real coefficients s,(,',f ), meZ,j=1,2,3,4 in the expansion
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(3.3) of ¢(z), by comparing the expansion of the single-layer potential, (3.12), with the
expansion of the far-field loading (3.2) via (2.19). We recall that the real coefficients c;,
j=1,2,31in (2.19) are implicitly determined by the equilibrium condition (2.4) for which
the solution of the transmission problem has first to be found.

The strategy to determine the coefficients s,,(f), meZ,j=1,2,3,4is the following. We
will first determine the coefficients s> and s, m € Z. Below we will show that, for m > 1,
such coefficients are completely determined by the coefficients of the series expansion (3.2)
of the far-field loading u((z). The determination of sf3) and s1(4), instead, as well as the
determination of the coefficients s and 52, m € Z, requires the knowledge of the constant
c3, which we will derive at the end of this section by using the linear dependence of s{" and
5@ meZonc.

3.3.1 Determination of the Coefficients s(3) and s(4) meZ

By using the transmission condition (2.19) and comparing the analytic part, that is ¢ in the
decomposition of the form (2.10), in (3.12) and (3.2), we get

1 1
sO +isV = — A + —2ics, (3.22)
[0%) (03]

1
s 4is™® = —mA,, foreachm > 2. (3.23)
[0%]

Hence, all the coefficients s and s for m > 2 are explicitly given by the coefficients A,
of the series expansion (3.2) of the far-field loading u((z). The case m = 1 is more complex,
due to the fact that c3 in (3.22) is unknown. However, it will be determined by solving a
linear equation as explained in Sect. 3.3.3.

(2)

3.3.2 Determination of the Coefficients s(l) ands,,’ ,me7Z

By using the relations (3.22) and (3.23), as well as (3.2) and (3.12), the transmission condi-
tion (2.19) on 942 turns into the following.

Problem (A) Find sV and s, m € Z satisfying

P(z) =c3J1(z) + J2(z) + C, (3.24)
where
o0 l o0
P) = ZZ (s + ) Fn @ — o Y (8 + s Z aFen(@ (325
m=1 m=1 k=m+1
and

2 =
(@) === ) @k (),
ke k=0

o0
h@) =Y By Fu@)+ ZmA Z aFen (@), (3.26)
m=1 m=1 k=—1
C = —k Ay + By + 2¢; + 2ics — 2icsag. 3.27)
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Note that P(z) is the only complex function that contains the unknowns s{ and s?,
m € Z, whereas J;(z) and J,(z) are known complex functions. Indeed, since £2 is given,
we can compute the Faber polynomials F), (z) associated with 2 via (2.24), as well as
their derivatives (or, equivalently, the coefficients y,,; in (3.13)). Hence, J (z) is determined.
Since u((z) is given, J»(z) is also completely determined.

For the sake of clarity, we adopt a matrix notation. Then, let us denote with s the vector
containing the unknown coefficients s and s, m > 1, i.e.,

S0 1 is®

e
si= | 52 +is;”

To stress the fact that P(z) is an operator acting on the unknown vector s, let us use the
notation P [s] (z). To write P [s] (z) in matrix form, let us start by the term

e N M—
bm = Z akafm(Z): Z k_—kka,—m(Z)’ m=1,

k=m+1 k=m+1

which, in matrix notation, reads

b=ADF, (3.28)
where F is given by (3.15), and
b1 ay das dg 1 0 0
b, as a4 as - 0 % 0
b:=|p |, A=|g a a ---|> D=|0 0 % (3.29)
By using (3.14), (3.28) turns into
b=AD (TF+%) , (3.30)

and, consequently, the operator P [s] (z) in (3.25) reads
Pls](2)=—a (ks"D+5"ADT)F — o,5" AD Y. (3.31)

In order to write the right hand side of (3.24) in matrix form, let us introduce the vector y,
defined as the vector containing the coefficients of the expansion of the function

J@)=c3Ji(@) + L) +C
with respect to the basis functions F,, (up to the coefficient —a), that is
J(@2)=—ary'F —ay jo. (3.32)

Note that the unknown constants ¢; and c¢; are incorporated in the constant j,, whereas the
constant ¢z appears linearly both in y and jj, due to the linear dependence of J(z) on c3.
Hence, equation (3.24) turns into

(ks"D+S"ADT)F+5"ADy =y'F + jp (3.33)
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and by comparing the coefficients of the series expansion with respect to the Faber polyno-
mials, we get

ks'D+sTADT =y’ (3.34)

sTADY, = Jjo. (3.35)

As we will show explicitly in Sect. 4, for domains of order up to 2, the matrix A defined

in (3.29) is the zero matrix and, therefore, the coefficients s{ and s are easily found in
terms of the unknown constant c3 as (3.34) reduces to k Ds =y, in which the matrix D
defined in (3.29) is invertible, and the vector y incorporates c3. For domains of higher order,

the coefficients s and 52 are found as follows. By taking the transpose of (3.34) and then
the complex conjugate of the transpose, we respectively get

«Ds+T DAs=y,
I''DAs+«kDs=y, (3.36)
which leads to the reformulation of Problem (A) in a block matrix form:

Problem (A’) Find s satisfying
«kD T DA|[s y
B = . (3.37)
I''DA «D S y

The invertibility of the block matrix in (3.37) has to be assessed case by case. Specifically,
itis invertible if k2I— (FTDAD™) (TT D AD') is invertible (note that D, defined in (3.29),
is invertible). In Sect. 4 we will show some explicit examples in which it can be proven
the matrix is invertible. Again, we stress the fact that the vector y depends linearly on the
constant c3, i.e., y = c3y; + Y2 with y; and y, corresponding to J;(z) and J,(z), respectively.
Hence, the solution s, upon inversion of the block matrix, is

where 'y is given by (3.32).

S=c3u; + Uy, (3.38)
where u; and u, are solutions to (3.37) with y, and y; in the place of y, respectively.
3.3.3 Determination of the Constants ¢y, ¢3, ¢3

The linear dependence of s on the constant c3 in (3.38) plays a crucial role in the determina-
tion of c¢3. Indeed, by combining (3.4) and (3.22) we get
Im(A,) 2c;

Im(s-a) = % Pt (3.39)
1

where a is the vector containing the coefficients of the conformal mapping (2.20), that is,
a’ =[a;; ay; a3; ...]. By using (3.38), we get
—Im(A;) — apIm(u, - a)

3=k — . (3.40)
2+ o Im(u; -a)

Once c3 and, consequently the vector s, are known, the coefficients ¢; and ¢, are then found
by using equation (3.35).
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3.4 Solution Expansion in the Exterior of the Inclusion

Due to the ansatz (2.5), the displacement field outside the inclusion is given by
u(z) = up(2) + Sextl@l(z)  Withz =¥ (w) € C\ 2, (341)

where uo(z) is the given far-field loading, and S..;[¢](z) is the expansion (3.21) of the single
layer potential in the exterior of the inclusion, in which the coefficients i, j=1,2,3,4,
m € 7, are determined as explained in Sect. 3.3.

4 Examples

In order to provide an explicit expression for the solution (3.41) of the transmission problem,
the coefficients s,(nj ), Jj =1,2,3,4 have to be determined explicitly: equation (3.23) allows
one to obtain all s and s for m > 1 explicitly in terms of the coefficients A,, of the
series expansion (3.2) of the far-field loading u((z), whereas the case m = 1, see equation
(3.22), requires the knowledge of the constant c3, which can be found when the block matrix
in (3.37) is invertible. In such a case, the coefficients sV and 52, m € Z are completely
determined as well. The inversion of the matrix in (3.37) is ensured for domains of order up

to 3, whereas for domains of higher degree some numerical computations are necessary.
4.1 Elliptic Inclusion with an Arbitrary Far-Field Loading

Let us start by considering the case in which the inclusion is an ellipse. Consequently, the
exterior conformal mapping (2.20) takes the following expression:

a
V(w)=w-+ —.
w

For this case, one can obtain a simple formula for the Faber polynomials and their deriva-
tives by applying the recursive formula (2.25), with a_; =1, a; = a, and a; = 0 for all
J # £1. Indeed, after some algebra, one gets

Fy(z) =1

1 m m
Fm(Z)=y|:(Z+ z2—4a) +(z—Vz2—4a) ] m=12,...
Upon derivation one obtains

R = i [(VE ) - (- V) ]

and by using the formula
m—1
C"—D"=(C-D)y C"/'D/

j=0
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one can derive an explicit formula for F), (z). After some lengthy algebra, we obtain

m—1
2

my;2 a

nrtoj Fj m odd,
F,(2)=

m
T me
my i arlFjo m even.

Therefore, the matrix I' and the vector y, in the matrix equation (3.14) take the following
explicit expression:

0 0 0O 0O 0 0 0 0 1
2 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 3a
4a 0 4 0 0 O O 0 0
0 5 0 5 0 0 0 0 5a>
F'={6s2 0 62 0 6 0 0 0 and y=| 0
0 7¢>* 0 7¢a 0 7 0 0 74’
8> 0 8> 0 8 0 8 0 0
0 94° 0 9% 0 9a 0 9 9a*

4.1

As already mentioned, the coefficients sr(f) and s,(,j”, m > 1, are explicitly given by (3.23)
in terms of the coefficients A,, of the series expansion (3.2) of the far-field loading ug, here
supposed to be arbitrary.

For what concerns the coefficients s{ and sV, we have that, for this case, the operator
P [s] (z) reads

Pls] (@) = —aIZ s’ +is? ) ).

whereas the known complex functions in the right-hand side of equations (3.24) take the
following expression:

Ji(z) = —i% F;(2), 4.2)

1@ =L EF@+ 50 FO+Y A—( ‘1+"’(Z)+“Fl+"’(1)>. (43)

— —14+m 1+m

Since A = 0, the problem in matrix form, Problem (A’) (3.37), turns into

kD 0 S y
o «p]ls] |3l
in which the matrix D, given by (3.29), is invertible and y is given by (3.32). Upon inversion,

the coefficients s{" and s{ can be written as (3.38), and the constant c; is found by means
of equation (3.40).

In Fig. 1, we provide the graph of the density function as well as the level curves of the
single layer potential when the far-field loading is linear.
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Fig. 1 (a)—(b) components of the density function ¢, (¢)—(d) level curves of the components of the single
layer potential Sy [¢@], when o; = 0.5, k = 0.3, and the inclusion is an ellipse with a; = 0.1 + 0.1i subject
to a linear far-field loading A1 = By =1

4.2 Inclusion of Order 2 with an Arbitrary Far-Field Loading
Let us consider an inclusion described by the following exterior conformal mapping:
aj a
Yyw)y=w+ — + —.
woow

In this case, it is not straightforward to determine an analytical expression for the Faber
polynomials and their derivatives as it is for the ellipse case. Therefore, one has to use the
recursive formula (2.25) to generate the Faber polynomials and, consequently, their deriva-
tives.

Again, the coefficients s and sV, m > 1, are explicitly provided by (3.23), whereas the
coefficients s and s are given by (3.24), in which

[o¢]
1 -
Plslx) =—a; ) — (s +1s\?) F,, (z) + Const.

m=1
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Fig. 2 (a)—(b) components of the density function ¢, (c¢)—(d) level curves of the components of the sin-
gle layer potential Sy [¢@], when oy = 0.5, x = 0.3, and the inclusion is a second-order inclusion with
a) =apy = 0.1+ 0.1i subject to a linear far-field loading A| = B] =1

and
2 i
Ji(z) = —1; (?Fz(z) + ?F3(Z)> ,
o0 a a o] 2 a
N B TF Ao a (Y T kT
Jﬂz)-m;Bm P+ A (FHO+5 F3<z))+m§mAmk:Z_1k+m o (2)-

In matrix form, since T’ DA = 0, the system (3.37) turns into

kD 0 S y
o «p]ls] |3l
where y is given by (3.32). Again, thanks to the invertibility of the matrix D, the constant c3
and the coefficients sV and s can be easily found.

In Fig. 2, we provide the graph of the density function as well as the level curves of the
single layer potential when the far-field loading is linear.
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4.3 Inclusion of Order 3 with an Arbitrary Far-Field Loading

Let us consider now the case of an inclusion of order 3, for which the conformal mapping
looks like

a) as as
Yy =w+—+— +—.
w w w

Again, the coefficients s> and s{*) are given by (3.23), whereas the coefficients s and 52
are provided by (3.24) in which

s1(2) = —a Z (s +is@)F, (Z)—Olzag( +1s<2>) Fi() +Const.  (4.4)

and
2 & a
. k=
Jl(Z)Z—IE;m 14 (2),

3

Dr(2) = ZBm Fm(z>+AIZ g+1(z)+ZmEZ o @)

m=1 m=2 k=-1

In this case, one has to invert the block matrix in (3.37), which is invertible, given that the

matrix TTAD has only one non-zero entry, that is, the (1, 1)-entry.
In Fig. 3, we provide the graph of the density function as well as the level curves of the
single layer potential when the far-field loading is linear.

4.4 Matrix Formulation for Inclusions of Higher Order with an Arbitrary Far-Field
Loading

Suppose now that the domain £2 has order M, that is, the corresponding conformal mapping
(2.20) is

a am
Yw=w+ag+—+--+ — (an #0).
w w

Then, the matrix A defined by (3.29) is an upper anti-triangular matrix and so is I’ TDA
given that D is dlagorﬂ (see (3.29)) and I r7is upper triangular (see (3.15)). In such a case,

the (i, j)-th entry of T'"D A is zero for all i + j > M so that Problem (A) (or (A’)) can be
reduced to the following.

Problem (A") Find sy—» = (s{ +is®)1<m<m—2 satisfying

«Dy_s (FDA)M_2 |:SM2i| _ |:YM2:| “5)

(rTDX)M_2 «Dy_»

Su—2

andSy—> = (s\P +is?)=p—2 satisfying

kDy_» 0 Sm—2 Yu—2
R B = _ . 4.6)
0 kDo SM—2 Yu-2
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Fig. 3 (a)—(b) components of the density function ¢, (¢)—(d) level curves of the components of the sin-

gle layer potential Sy [¢], when «; = 0.5, k = 0.3, and the inclusion is a third-order inclusion with
a1 =ay =a3z =0.1+ 0.1i subject to a linear far-field loading A1 = By =1

Here, for notational convenience, we denote by v, = (v;)!_, the n x 1 subvector of a given

vector v= (v;)2, and B, the n x n submatrix (b;; ?,j:l of a given matrix B = (b,vj)ff}:l. We

also set V, = (v));2, ., and B, = (bij)5_,,11-

As a consequence of (4.6), the coefficients s{ +is(® with m > M — 2 can be determined
in a unique way:

. m _
stV +is@ =—5, form>M—2. 4.7)
K
Clearly, to determine the coefficients s,(n]) + is,(wz) with m < M — 2, one has first to assess the

invertibility of the 2M —4) x (2M — 4) matrix in (4.5).

5 Conclusion

The plane elastostatic transmission problem is a classical problem in Applied Mechanics,
for which the solution is provided explicitly only when the inclusion has a simple shape,
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such as in the case of an ellipsoidal inclusion for which one can use elliptic coordinates
(see, e.g., [3]). For an inclusion of arbitrary shape such a coordinate system can be defined
only locally, thus preventing one from finding an explicit series solution to the transmission
problem. To the best of our knowledge, there has been no previous work that provides an
explicit series solution in the case of a domain of arbitrary shape with an arbitrary far-field
loading.

The key idea of our approach, successfully applied to the conductivity case in [24], con-
sists in the introduction of two sets of bases, one for analytic functions defined outside of
the inclusion and one for analytic functions defined inside the inclusion. The exterior basis
is based on the coordinate system introduced by the external conformal mapping associated
with the inclusion, whereas the interior basis is based on the Faber polynomials associated
with the inclusion. The introduction of Faber polynomials allows one to overcome the draw-
backs associated with the use of conformal mappings, and it presents a novel method to
determine the solution of the elastic transmission problem in an elegant way. Indeed, thanks
to the properties of Faber polynomials, the transmission condition at the boundary of the in-
clusion allows one to derive an explicit formula for the coefficients of the series expansion of
the transmission problem in terms of the coefficients of the series expansion of the far-field
loading, supposed to be arbitrary. Specifically, in this work, we provide an explicit analytical
formula in the case of an arbitrary far-field loading and an algebraic inclusion of order up to
3, whereas, for higher order domains, some numerical computations are required.

This paper represents the first step towards a complete characterization of the plane elas-
tostatic transmission problem. Indeed, for the general case, besides the transmission condi-
tion regarding the displacements, one should also consider the one concerning the continuity
of tractions at the boundary of the inclusion. This would put forward another research av-
enue—the solution of the so-called E-inclusion problem for the plane elastostatic case—thus
extending the results found in [10] for the conductivity problem. Such a problem involves the
determination of the shape of the inclusion that provides uniform fields inside the inclusion
for any or some applied far-field loadings. Note that finding E-inclusions is an important
problem in many practical applications concerning the design of materials which induce
stress fields with small variances in the inclusion phase: these inclusions, which are tai-
lored to the applied field, are generally less likely to break down than inclusions with large
variances of the stress field. The ultimate goal would be to solve the elastostatic neutral
inclusion problem: some coated inclusions, when placed in a medium, do not disturb the
exterior field, and these are denoted as neutral inclusions. Once a neutral inclusion has been
found, similar inclusions, possibly of different sizes, can be added to the background matrix
without altering the exterior uniform field (e.g., [22]). In this way it becomes possible to
construct a composite, consisting of multiple inclusions and a background matrix, whose
effective property exactly coincides with that of the matrix.
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