


STATISTICS

2020, VOL. 54, NO. 6, 1255–1275

https://doi.org/10.1080/02331888.2020.1862113

Semi-parametric adjustment to computer models

Yan Wanga and Rui Tuob

aFaculty of Science, College of Statistics and Data Science, Beijing University of Technology, Beijing, People’s

Republic of China; bDepartment of Industrial and Systems Engineering, Texas A&M University, College
Station, TX, USA

ABSTRACT

Computer simulations are widely used in scientific exploration and
engineering designs. However, computer outputs usually do not
match the reality perfectly because the computer models are built
under certain simplifications and approximations. When physical
observations are also available, statistical methods can be applied
to estimate the discrepancy between the computer output and
the physical response. In this article, we propose a semi-parametric
method for statistical adjustments to computer models. The pro-
posedmethod is proven to enjoy nice theoretical properties. We use
three numerical studies and a real example to examine the predic-
tive performance of the proposedmethod. The results show that the
proposed method outperforms existing methods.
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1. Introduction

Design of experiments is a powerful tool in understanding complex systems. We refer to

Wu and Hamada [1] for an introduction to this area. However, it can be difficult or even

infeasible to study some physical systems via conventional experimental design and anal-

ysis procedures, because these physical experiments are expensive and time consuming

to conduct. The advances in numerical algorithms and computational techniques allow

us to study some complex physical systems with computer simulations which are much

less costly. Computer simulations have been applied successfully in many areas, like the

research of hydrocarbon reservoir Craig et al. [2], food and environment Boukouvalas et al.

[3], virtual brain tumours in health and medicine Drignei [4], fluidized-bed coating in

materialogyWang et al. [5], the electrical activity of myocytes in cell biology Plumlee et al.

[6] and so on.

A major problem of computer simulation is that, the simulation outputs from a com-

puter model do not usually match the corresponding physical responses perfectly, i.e.

there exists a discrepancy between the computer output and the physical response. This

is because the computer models are built based on certain simplifications and assumptions

which do not always hold in reality. For example, a solver to a set of partial differential

equations (PDEs) for a physical process may not give an accurate answer when the input
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initial or boundary conditions are not correct. In the presence of this discrepancy, com-

puter simulation becomes less reliable. Statistical adjustment plays an important role in

improving the accuracy of the computermodels. Itsmain idea is tomake use of the physical

observations, and correct the discrepancy by building a surrogate model with the physical

observations.

Existing statistical adjustment methodologies for computer models can be roughly

divided into two groups: parametric and non-parametric methods. Parametric meth-

ods are more classic. Roache [7], Trucano et al. [8], Xiong et al. [9] estimate the

discrepancy between the physical system and the computer model by building a

regression model. Joseph and Melkote [10] propose an engineering-driven parametric

model to capture the discrepancy. Marzouk and Xiu [11] parameterize the discrep-

ancy by generalized polynomial chaos which is an orthogonal approximation to random

functions.

Non-parametric methods are widely used to adjust the computer models. Most of the

existing non-parametric methods are based on Gaussian Process models, which can be

regarded as a non-parametric Bayesian approach [12]. Kennedy and O’Hagan [13] pro-

pose a Bayesian method to compute the posterior prediction distribution of the physical

process. This method is abbreviated as KO’s method. A number of modifications and

extensions of the KO’s method have been proposed in the literature. Here we review

a few of them. Higdon et al. [14] and Bayarri et al. [15] predict the physical process

by using the posterior estimation of the discrepancy between the computer model and

the physical response. Bayarri et al. [16] use a wavelet decomposition of both the com-

puter model and the discrepancy function, and then estimate this coefficients using the

maximum likelihood method. Qian and Wu [17] extend the KO’s method by replac-

ing a real-valued regression coefficients in the KO’s model by a general linear regression

function. Chang and Joseph [18] consider a different kind of experimental error, which

may occur randomly during the physical experiment, and use a non-parametric method

to get the posterior distribution of the physical process. Joseph and Yan [19] propose

an engineering-driven adjustment model which applies a transformation to the input

of the computer model, so that the computer outputs can better match the physical

responses.

In this article, we propose a semi-parametric statistical adjustment method, which

enjoys the advantages of both the parametric and non-parametric methods for reducing

the discrepancy. The methodology is inspired by the L2 estimation method proposed by

Tuo and Wu [20]. We model the true discrepancy in a semi-parametric manner, while

assuming that its main trend can be captured using a linear combination of a finite set

of regression functions. We use theoretical analysis, numerical simulations and real data

study to show that the proposed method estimates these regression coefficients more

efficiently.

This article is organized as follows. In Section 2, we review the existing discrepancy-

reducing methods and demonstrate their advantages and disadvantages. In Section 3,

we propose a new statistical adjustment methodology for computer simulations, called

the semi-parametric adjustment. In Section 4, the asymptotic behaviours of the proposed

method are studied. In Section 5, we compare the proposed method with existing ones

in three numerical examples and a Laser-Assisted Mechanical Micro-machining(LAMM)

example.
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2. Backgrounds

Denote the input domain of the physical experiment by�, which is assumed to be a convex

and compact subset of Rd. Let X = {x1, . . . , xn} ⊆ � be the set of design points for the

physical experiment, where xi = (xi1, . . . , xid)
T denote the vector of the ith input variable,

and Yp = {yp1, . . . , y
p
n} the corresponding physical responses.

In general, we suppose the physical responses come from the following model

y
p
i = ζ(xi) + ei, 1 ≤ i ≤ n, (1)

where the errors ei’s are independent and identically distributed following N(0, σ 2) with

unknown σ 2 > 0, ζ(·) is an underlying deterministic function, which is referred to as the

true process [13].

Suppose our goal is to reconstruct the function ζ(·). Sometimes this could be done by

data-driven methods, such as the traditional methods in design of experiments. However,

when the physical experiment is very costly to conduct, a full data-driven approach may

be unrealistic to carry out, especially when ζ(·) is highly nonlinear or high dimensional.

Another possible solution is to seek for a knowledge-based approach, such as a computer

simulation. Computer simulators are built using scientific knowledge. For example, most

computational fluid dynamics (CFD) problems can be simulated by solving the Navier-

Stokes equations. By using a computer simulation, we may avoid the expensive physical

runs and save the cost of the experiment. In this work, we assume that there is a computer

code available to simulation the physical responses.

Computer simulations also have some limitations. The computer simulation models

are usually built based on assumptions and simplifications which do not hold true in

reality. Consequently, the computer simulation outputs normally cannot match the phys-

ical responses perfectly. The difference between the computer outputs and the physical

responses is known as the discrepancy. Sometimes, the discrepancy can be large so that

the accuracy of the computer simulation does not meet the requirements for practical use.

Statistical adjustment methods tackle this problem by combining the knowledge-based

anddata-driven approaches. Although the computer outputs and the physical responses are

not the same in most scenarios, the computer model can usually capture the main trend of

the physical response surface. In this case, the discrepancy function between the physical

response surface and the computer output surface is usually much ‘simpler’ to model than

the original physical process and can thus be estimated using a few data points.

Denote the computer model by ys(·), and assume that the computer code is deter-

ministic. Let Xs = {xs1, . . . , xsN} ⊆ � be the set of design points for the computer exper-

iment, where xsi = (xsi1, . . . , x
s
id)

T denote the vector of the ith input variable, and Ys =
{ys1, . . . , ysN} the corresponding computer outputs. In this paper, we consider two types of

computer simulations. Following the terminologies introduced by Tuo and Wu [21], we

call a computer code cheap if each run of the computer code costs very little so that we can

regard ys(·) as a known function. In contrast, we call the computer code expensive when

the computer code is costly so that we can only run the code with a limited number of

input points. In this section, we suppose ys(·) is cheap. This assumption will be relaxed in

Section 3.

The most important step in statistical adjustments is how to estimate ζ(·) − ys(·), the
discrepancy function between physical system and computer model. There are two major
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approaches: non-parametric and parametric. We call a statistical adjustment approach

parametric, if ζ(·) is modelled in a parametric way, i.e. ζ(·) belongs to a set of functions

indexed by a finite number of parameters. Otherwise, we call the approach non-parametric.

2.1. Review of parametric methods

In general, a parametric model for ζ(·) can be expressed as

ζ(x) = h(x, ys,β), (2)

where h is a known function and β is a vector of unknown parameters. It is common to

choose h as a linear combination of certain regressors, i.e.

ζ(x) = β0y
s(x) +

m
∑

i=1

βifi(x), (3)

where {f1, . . . , fm} is a pre-specified set of basis functions, and β = (β0,β1, . . . ,βm) is a

vector of regression coefficients to be estimated. A natural estimator for the parametric

models is the least squares estimator.

Roache [7], Trucano et al. [8] and Xiong et al. [9] adjust the computer outputs by using

the regression model (3). Marzouk and Xiu [11] parameterize the discrepancy by using

the generalized polynomial chaos. Driven by engineering knowledge, Joseph and Melkote

[10] propose more complicated estimation approaches. These methods can be regarded as

variations of the general parametric model (2).

2.2. Review of non-parametric methods

A prevalent non-parametric discrepancy-reducing method is KO’s method proposed by

Kennedy and O’Hagan [13], which employs a hierarchical Bayesian approach. The true

process is modelled as

ζ(·) = ρys(·) + δ(·), (4)

where ρ is an unknown regression coefficient and δ(·) is called the discrepancy function.

Then δ(·) is modelled as a realization of a stationary Gaussian process:

δ(·) ∼ GP(0, τ 2	(·)), (5)

with the variance τ 2 and correlation function 	. Common choices of 	 include the

Gaussian correlation functions with

	(xi, xj;φ) = exp(−φ‖ xi − xj ‖2), (6)

and the Matérn correlation functions with

	(xi, xj; ν,φ) = 1

�(ν)

(

2
√

ν ‖ xi − xj ‖
φ

)ν

Kν

(

2
√

ν ‖ xi − xj ‖
φ

)

, (7)

where φ > 0 is the correlation parameter and Kν denotes the modified Bessel function of

the second kind with order ν. We refer to Santner et al. [22], Rasmussen [12] and Stein [23]
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for more discussions about Gaussian process modelling. In KO’s method, the prediction

for the true process reduces to calculating the posterior distribution of ζ(·). Higdon et al.

[14] and Bayarri et al. [15] set ρ = 1 and predict the true process ζ(·) at any given x0 by

ys(x0) + δ̂(x0), where δ̂(x0) is the posterior estimation of δ(x) on x0.

2.3. Comparation between parametric and non-parametric methods

In this part, we compare the parametric and non-parametric methods and demonstrate

their advantages and disadvantages. The parametric methods suffer from a glaring defi-

ciency: the assumptions of the these models are usually unacceptably strong. Compared

with the parametric models, the model assumptions of the non-parametric approaches

are much relaxed. Although KO’s method is consistent for prediction, it is less accurate

when the sample size of physical observations is small, because the rate of convergence of

KO’s method is much slower than the standard rate of parametric methodsOp(n
−1/2). See

Theorem 3 of Tuo and Wu [24].

Now we illustrate the above points in a numerical study. Consider the following simple

example. Suppose the true process is

ζ(x) = x + 0.12 sin(2πx), x ∈ [0, 1]. (8)

The physical observations are obtained by (1) with σ = 0.12 and the design point xi =
(i − 1)/(n − 1), i = 1, . . . , n. Suppose the computer model is

ys(x) = sin(
π

2
x), x ∈ [0, 1]. (9)

The parametric and non-parametric methods are considered.

• Parametric method:

We use the standard linear regression model to predict the true process.

ζ̂ (x) = β̂0y
s + β̂1 + β̂2x, (10)

where β̂ = (β̂0, β̂1)
T can be obtained from the OLS estimator

β̂
OLS

n = argmin
β

1

n

n
∑

i=1

(

yp(xi) − β0y
s(xi) − β1 − β2xi

)2
. (11)

• Non-parametric method:

Ordinary Kriging model with Matérn correlation function with smoothness param-

eter ν = 5/2 is used to fit the discrepancy between the true process and the computer

model.We choose aMatérn correlation function instead of a Gaussian correlation func-

tion because (1) To ensure the theoretical guarantees of the proposed method. See

Sections 4 and 6 for more discussions about this reason. (2) The left and right sub-

figure of Figure 1 show 10 realizations ofGP(0,	(·)), respectively, where	 is a Matérn

correlation function 	(xi, xj; ν = 5/2,φ = 1) (left) and a Matérn correlation function
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Figure 1. Realizations of GP(0,	(·)), where 	 is a Matérn correlation function 	(xi , xj ; ν = 5/2,
φ = 1) (left) and a Matérn correlation function	(xi , xj ; ν = 5/2,φ = 0.1) (right).

	(xi, xj; ν = 5/2,φ = 0.1) (right). We can see that the smoothness of the realizations

will increase with the increasing of scale parameter φ. That is, by choosing appropri-

ate scale parameter φ, the realizations of GP(0,	(·)) with Matérn correlation function

	(xi, xj; ν = 5/2,φ) are smooth enough to fit the discrepancy in this simulation study.

First we set n = 6. The corresponding design points are X = {0, 0.2, 0.4, 0.6, 0.8, 1}T .
TheMaximum likelihood estimate of the scale parameterφ is 1.1026, which is larger than 1.

That is, the estimation of discrepancy between ζ and ys is smoother than the realizations

which are shown in the left subfigure of Figure 1. It indicates that choosingMatérn correla-

tion function with smoothness parameter ν = 5/2 is suitable. The predictive curves from

the parametric and the non-parametric models are plotted in Figure 2. It can be seen that

the non-parametric predictive curve is too close to the observed points. In the presence of

the observation errors, there is a distance between the observed points and the true pro-

cess. As a result, the non-parametric predictive curve does not match the true process well.

This phenomenon is known as the overfitting problem in the literature [25]. To compare

the performance between the non-parametric and the parametric methods, we calculate

their Mean Square Prediction Error (MSPE), which is approximated by Monte Carlo as

1

1000

1000
∑

i=1

(ζ(ti) − ζ̂p(ti))
2, (12)

where ζ̂p(·) denotes either the non-parametric or the parametric predictor of ζ(·), and
ti’s are random samples from the uniform distribution on [0, 1]. The MSPE of the non-

parametric method is 0.102, which is greater than 0.090 for the parametric method.

This suggests that the simple linear regression method outperforms the non-parametric

method, even if the former uses a misspecified model.

Next we consider larger sample sizes. The results for n = 6+ 3i for i = 0, . . . , 7 are

shown in Figure 3. It can be seen that the non-parametric method outperforms the para-

metric method when the sample size is greater than 12. This can be explained by the

consistency of the non-parametric method. However, in many applications, the number
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Figure 2. A comparison between the predictive curves given by the parametric and non-parametric
models when n = 6. The solid line is the true process (8), the long dashed line is the computermodel (9),
the dashed line is the non-parametric predictive curve using ordinary Kriging model with a Matérn cor-
relation function with smoothness parameter ν = 5/2, and the dotted line is the parametric prediction
given by (10).
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Figure 3. MSPE by the parametric (triangles) and the non-parametric (circles) methods with different
sample sizes.

of physical observations can be rather small, and this is why we need computer simula-

tion. In this situation, the parametricmethods can perform better than the non-parametric

methods, like the results shown in Figure 3 for n<12. This phenomenon becomes even

more clear in higher dimensions, because the non-parametric methods suffer more from

the curse of dimensionality [26].

As discussed above, both the parametric and the non-parametric methods have cer-

tain advantages but also suffer from some deficiencies. A natural question is whether we

can find a method which enjoys the advantages of both methods, that is, a method which
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is robust as a non-parametric method and has the rate of convergence like a paramet-

ric method. In Section 3, we will introduce such a method, called the semi-parametric

adjustment.

3. Semi-parametric adjustment method

As before, we use model (1) for the physical responses. We do not impose a parametric

form for ζ(·) so that ζ(·) can be arbitrary. In this section, we suppose the computer code

is cheap, i.e. the computer model ys(·) is known. The proposed method adopts a semi-

parametric approach to predict the true process, i.e. the predictor depends only on a finite

number of unknown parameters. Inspired by KO’s method, a natural predictor of this kind

is ρys(·), where ρ is the regression coefficient introduced in (4). Here we consider a more

flexible class of predictors, given by

θTFs(·) = θ0y
s(·) + θ1f1(·) + · · · + θmfm(·), (13)

where Fs = (ys, f1, . . . , fm)T , f1, . . . , fm are prespecified basis functions, and θ =
(θ0, . . . , θm)T ∈ Rm+1 is a vector of regression coefficients. We remark that the predictor

given by (13) differs from that given by the parametric model (3), because in (3) the true

process ζ(·) ismodelled as a linear function of the computermodel, i.e. ,there exists a “true”

regression coefficient vector, but (13) is only an approximation to ζ(·).
Given the fact that there does not exit a value of θ such that θTFs(·) = ζ(·) in general, we

need to define the best ‘representative’ of ζ(·) in the set of {θTFs(·) : θ ∈ Rm+1}. Intuitively,
the “best” value of θ should be defined as theminimize of ‖ ζ(·) − θTFs(·) ‖ for somenorm

‖ · ‖. We suppose the input domain � is a convex and compact subset of Rd. Inspired by

Tuo and Wu [20], we choose the L2 norm and define θ∗ = (θ∗
0 , . . . , θ

∗
m)T as

θ∗ : = argmin
θ∈Rm+1

‖ ζ(·) − θTFs(·) ‖2L2(�),

=
(∫

�

Fs(x){Fs(x)}T dx
)−1 ∫

�

Fs(x)ζ(x) dx. (14)

In this work, we treat θ∗ as the ‘true’ value of θ .
One justification for choosing theL2 norm comes from the commonuse of the quadratic

loss function. Suppose that x follows the uniform distribution on �, then θ∗Fs(x) has the
minimum mean square predictive error among all predictors with the form θFs(x).

In practice, ζ(·) is unknown, and when the computer code is expensive, ys(·) is also
unknown. Consequently, θ∗ can’t be obtained by solving (14) directly. Here we construct

the proposed predictor by using the plug-in principle. First we find estimators for ζ(·) and
ys. Then we estimate θ∗ by replacing ζ(·) and ys in (14) by their estimates.

We estimate ζ(·) using the ridge kernel regression. Choose a positive definite kernel 	
over � × �. LetN	(�) be the reproducing kernel Hilbert space (RKHS) generated by the

kernel function 	. See Appendix 1 for details about RKHS. The ridge kernel regression of

ζ(·) is

ζ̂n(·) := argmin
g∈N	(�)

1

n

n
∑

i=1

(yPi (xi) − g(xi))
2 + λn ‖ g ‖2N	(�), (15)
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where ‖ · ‖N	(�) is the norm of N	(�). The smoothing parameter λn > 0 can be

selected through a model selection criterion, such as the generalized cross validation

(GCV) method [27]. Although ζ̂n is defined as the minimizer of an infinite-dimensional

optimization problem in (15), it admits a simple closed-form expression. Denote Yp =
(y

p
1, . . . , y

p
n)

T ,� = {	(xi, xj)}1≤i,j≤n and denote the n × n identitymatrix as In. According

to the representer theorem [27,28], for x ∈ �,

ζ̂n(x) =
n

∑

i=1

ui	(x, xi), (16)

where u = (u1, . . . , un)
T is the solution to the linear system

Yp = (� + nλnIn)u. (17)

When the computer code is expensive, we need a surrogate model to approximate ys(·).
The main idea is to run the computer code over a selected set of points and apply certain

function reconstructionmethod to build a surrogatemodel. Surrogatemodelling is amajor

topic in computer experiments and uncertainty quantification. One can construct ŷs(·) by
any of the standard methods such as Kriging models and their variations (e.g. [22,29,30])

or generalized polynomial chaos [11,31].

Now we define the L2 estimator of θ by

θ̂
L2
n := argmin

θ∈Rm+1

‖ ζ̂n(·) − θT F̂s(·) ‖L2(�), (18)

where F̂s = (ŷs, f1, . . . , fm)T and the semi-parametric prediction is

ζ̂ L2
n (·) = {θ̂L2n }T F̂s. (19)

Direct calculations show that θ̂
L2
n can be expressed as:

θ̂
L2
n = argmin

θ∈Rm+1

∫

�

(ζ̂n(x) − θT F̂s(x))2 dx,

=
(∫

�

F̂s(x){F̂s(x)}T dx
)−1 ∫

�

F̂s(x)ζ̂n(x) dx. (20)

When we choosem = 1,Fs = (ŷs, 1) and θ = (θ0, θ1)
T , (20) becomes

θ̂
L2
0n =

∫

�
ζ̂n(x)ŷ

s(x) dx −
∫

�
ζ̂n(x) dx

∫

�
ŷs(x) dx

∫

�
(ŷs(x))2 dx − (

∫

�
ŷs(x) dx)2

,

θ̂
L2
1n =

∫

�

ζ̂n(x) dx − θ̂0n

∫

�

ŷs(x) dx.

We summarize of main steps of the proposed methodology as follows.

Step 1. Build a surrogate model for the computer code using the computer experiment

(Xs,Ys). Skip this step if the computer code is cheap.



1264 Y. WANG AND R. TUO

Step 2. Compute the ridge kernel regression estimator for ζ(·) using (16).
Step 3. Choose the basis functions fi, i = 1, . . . ,m.

Step 4. Calculate θ̂
L2
n using (20). [Step 5.] Predict the true process using (19).

4. Asymptotic results

In this section, the asymptotic properties of the proposed method are studied. To estab-

lish suitable results, we need to require the surrogate model ŷs depending also on n. This

assumption agrees with a general principle in computer experiments: when we increase

our total budget to run additional experiment trials, we should run both the physical and

the computer experiments.

We will show the asymptotic normality of θ̂
L2
n and ζ̂

L2
n in Theorems 4.1 and 4.2. First,

we introduce technical conditions (C1)–(C6).

(C1) ys, f1, . . . , fm ∈ N	(�);

(C2) N	(�, ρ) = {f :‖ f ‖N	(�)≤ ρ, ρ ≥ 0} is a Donsker class;
(C3) ‖ ζ̂n(·) ‖N	(�)= Op(1);

(C4) ‖ ζ̂n(·) − ζ(·) ‖L2(�)= op(1);

(C5) λn = op(n
−1/2);

(C6) ‖ ŷs(·) − ys(·) ‖L∞(�)= op(n
−1/2).

Condition (C1) can be met easily if 	 is chosen to be a Matérn kernel. It is known that

the reproducing kernel Hilbert space generated by a Matérn kernel with smoothness ν is

equivalent to the Sobolev space Hν+d/2(�). See Wendland [32] and Tuo and Wu [21] for

details. In this case, all smooth functions, such as polynomials, lie inN	(�). However, the

reproducing kernel Hilbert spaces generated by Gaussian kernels are rather small. Even

nonzero constants are not contained in these spaces [33]. Therefore, we recommend using

Matérn kernels to ensure the theoretical guarantees. See Section 6 for more discussions.

If a Matérn kernel with smoothness ν is used, Conditions (C2)–(C4) are fulfilled pro-

vided thatλ−1
n = O(n2ν+d/(2ν+2d)). SeeVan derVaart [34], Tuo andWu [21,24]. Condition

(C6) is a requirement of the convergence of the surrogatemodel. Given the fact that a com-

puter code run is much cheaper than a corresponding physical trial, a typical computer

experiment should have much more computer runs than the physical runs. Thus it is rea-

sonable to assume that the approximation error of the surrogate model decays at a fast rate

as in (C6).

The proofs of Theorems 4.1–4.2 are given in Appendix 2.

Theorem 4.1: Suppose the physical design points {xi}ni=1 are independent and identically

distribution and following a uniform distribution over �. Under conditions (C1)–(C6), we

have

θ̂
L2
n − θ∗ = −2V−1

{

1

n

n
∑

i=1

eiF
s(xi)

}

+ op(n
−1/2). (21)
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Clearly, θ̂
L2
n

P→ θ∗ and

√
n(θ̂

L2
n − θ∗)

d−→ N(0, 4σ 2V−1), (22)

provided that V := E[Fs(x1)F
s(x1)

T] is invertible.

Theorem 4.2: Under the same conditions as Theorem 4.1, for any fixed x0 ∈ �, we have

ζ̂ L2
n (x0) − ζ ∗(x0) = −2

{

1

n

n
∑

i=1

eiF
s(xi)

}T

V−1Fs(x0) + op(n
−1/2), (23)

where ζ ∗(x0) = θ∗TFs(x0), ζ̂
L2
n (x0)

P→ ζ ∗(x0) and

√
n(ζ̂ L2

n (x0) − ζ ∗(x0))
d−→ N

(

0, 4σ 2{Fs(x0)}TV−1{Fs(x0)}
)

. (24)

5. Numerical studies

In this section, we compare the numerical behaviours of different predictors: the proposed

semi-parametric predictor, the KO’s predictor, the engineering-driven adjusted predictor

and the predictor based on the OLS estimator [21,35]. The predictor based on the OLSE is

defined as

ζ̂OLS(·) =
{

θ̂
OLS

n

}T
F̂
s
(·), (25)

where θ̂
OLS

n is the OLS estimator to θ∗, which is defined as

θ̂
OLS

n = argmin
θ∈Rm+1

1

n

n
∑

i=1

(y
p
i − θT F̂s(xi))

2,

=
{

F̂
s
(X){F̂s(X)}T

}−1
F̂
s
(X)Yp, (26)

where F̂
s
(X) = (F̂

s
(x1), F̂

s
(x2), . . . , F̂

s
(xn))

T .

5.1. Example 1: revisit the example in section 2

In Section 2, we compare the parametric and non-parametric methods using the true

process (8). Now we revisit this example and compare the semi-parametric method with

parametric and non-parametric methods. In the semi-parametric model, we estimate β̂ by

β̂
L2
n = argmin

β

∫ 1

0

(

ζ̂n(x) − β0y
s(x) − β1 − β2x

)2
dx, (27)

where ζ̂n is obtained by the non-parametric method (15) with Matérn kernel, and the

smoothing parameter is selected through generalized cross validation (GCV, [27]). Then
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Figure 4. A comparison between the predictive curves given by the parametric, non-parametric and
semi-parametric models when n = 6. The solid line is the true process (8), the long dashed line is
the computer model (9), the dashed line is the non-parametric predictive curve using ordinary Krig-
ing model with a Matérn correlation function with smoothness parameter ν = 5/2, the dotted line is
the parametric prediction given by (10), and the dotdash line is the semi-parametric prediction given
by (28).

the semi-parametric predictor is

ζ̂ L2
n = β̂

L2
n0y

s(x) + β̂
L2
n1 + β̂

L2
n2x, (28)

Same as Figure 2, we compare the predictive curves from the parametric, the non-

parametric and the semi-parametric models in Figure 4. It can be seen that, the semi-

parametric model is closer to the true process, that is, the semi-parametric method gives a

better prediction to the true process.

Figure 5 compares the prediction performance of the parametric, the non-parametric

and the semi-parametric methods with the different sample sizes. When the sample size is

smaller than 18, the semi-parametric method outperforms the other two methods.

To example the prediction error in (19) when the sample size is small, Figure 6 shows the

box plots of MSPE given by the parametric, the non-parametric and the semi-parametric

methods with the sample size smaller than 18.

Figure 6 shows that the variance of the MSPE given by the semi-parametric method is

smaller than other methods. It indicates that the performance of the proposed method is

better than the parametric and the non-parametric method when the sample size is small.

5.2. Example 2: one-dimensional function

Suppose the true process is

ζ(x) = 5 ∗ exp(−1.4x) cos

(

7πx

2

)

, x ∈ [0, 1], (29)



STATISTICS 1267

10 15 20 25

0
.0

5
0
.0

7
0
.0

9
0
.1

1

sample size

M
S

P
E

Non−parametric

Parametric

Semi−parametric

Figure 5. MSPE given by the parametric (triangles), the non-parametric (circles) and the semi-
parametric (crosses) methods with different sample size.

Nonparametric Parametric Semiparametirc

0
.0
5

0
.1
0

0
.1
5

0
.2
0

n= 6

M
S
P
E

Nonparametric Parametric Semiparametirc

0
.0
4

0
.0
8

0
.1
2

0
.1
6

n= 9

M
S
P
E

Nonparametric Parametric Semiparametirc

0
.0
4

0
.0
8

0
.1
2

n= 12

M
S
P
E

Nonparametric Parametric Semiparametirc

0
.0
4

0
.0
6

0
.0
8

0
.1
0

0
.1
2

n= 15

M
S
P
E

Figure 6. Box plots of MSPE given by the parametric, the non-parametric and the semi-parametric
methods with different sample size.

and the physical observations are given by

y
p
i = ζ(xi) + ei, i = 1, . . . , n, (30)

with

xi = i − 1

n − 1
, ei ∼ N(0, σ 2), σ 2 = 0.001.
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Suppose the computer model is

ys = 100 ∗ cos

(

7πx

2

)

, x ∈ [0, 1]. (31)

Let n = 10, N = 15, Fs(·) = (ys(·), 1)T . Denote the physical observations as Yp =
(y

p
1, . . . , y

p
10)

T and the computer outputs as Ys = (ys1, . . . , y
s
15)

T .

The surrogate model ŷs is built by using a Kriging model with a Matérn correlation

function with ν = 5/2. The non-parametric estimate ζ̂n(·) is constructed using a Matérn

correlation family, where the parameter φ in the non-parametric regression is selected by

Smoothly Clipped Absolute Deviation (SCAD) method [36].

For a comprehensive understanding of the performance of each method, we repeat this

simulation for 500 times. In each simulation run, we generate random ei’s. To examine

the performance of each predictor, we calculate the mean square prediction error (MSPE),

which is approximated by Monte Carlo as

1

1000

1000
∑

i=1

(ζ(ti) − ζ̂p(ti))
2, (32)

where ζ̂p(·) denotes either the KO’s, the OLS or the semi-parametric predictor of ζ(·),
and ti’s are random samples from the uniform distribution on [0, 1]. The result is shown

in Figure 7.Figure 7 shows that the proposed predictor gives the best prediction with

MSPEL2 = 0.5797, and the mean square error of the OLS predictor is MSPEOLS = 0.5978.

There is no much difference between the two estimators. While the mean square error of

KO’s predictor is MSPEKO
′s = 1.8044. If we use the computer output to predict the phys-

ical process directly, the prediction is poor with MSPECom = 4734.122. We do not show

this result in Figure 7.

According to Theorem 3 of Tuo and Wu [21], θ̂
OLS

n is also a consistent estimation of θ∗

with a greater asymptotic variance than θ̂
L2
n . We compare the numerical performance of

θ̂
OLS

n and θ̂
L2
n in Figure 8:Each entry of θ∗ = (0.0274, 0.1962) is shown the values of the

horizontal lines in the Figure 8. We can see that the proposed method estimated by L2
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L2
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estimator gives a much better estimate to θ∗ with more accurate point estimation and less

variance. This agrees with the theoretical result that the L2 estimator is semi-parametric

efficient while the OLS is not. See Tuo and Wu [21] for details.

5.3. Example 3: Branin function

Now we choose a frequently used test function, Branin function [37], as the true process:

ζ(x1, x2) = (x2 − 5x21/4π
2 + 5πx1 − 6)2 + 10(1 − 1/8π) cos x1 + 10,

0 ≤ x1, x2 ≤ 1. (33)

Suppose the computer model is

ys(x1, x2) = (x2 − x21/6 + 15x1 − 6)2. (34)

Let n = N = 100, and drawing 100 samples from the physical process and the computer

model using a full factorial designwhere x1, x2 ∈ {0, 19 ,
2
9 , . . . , 1}. Based on (1), we consider

6 levels of σ 2 := {0.01, 0.05, 0.1, 0.5, 1, 5} to investigate the stability of different methods.

For OLS and the proposed method, we use Fs(x1, x2) = (ys(x1, x2), cos(x1), 1)
T and θ =

(θ0, θ1, θ2)
T .

Following the same steps in example 1, we compare the MSPE of the proposed method,

the predictor based on OLS estimator and KO’s method based on 100 simulations. Denote

Uk[0, 1] = {T1, . . . ,Tk}, where {T1, . . . ,Tk} are generated uniformly and independently in

[0, 1]. In this example, we generate 100 testing points using full factorial design factorial

design where t1, t2 ∈ U10([0, 1]).

From Table 1, we can see that the proposed method outperforms OLS and the KO’s

methods. We also observe that KO’s method is less robust to the increase of the variance

of the measurement error σ 2, which is known as a common deficiency of non-parametric

methods. If we use the computer outputs to predict the physical process directly, the predic-

tion is rather poor, withMSPECom = 485.5705, when σ 2 = 0.01. Thus we do not include

these results in Table 1.
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Table 1. Numerical results, Example 3.

σ 2 0.01 0.05 0.1 0.5 1 5

Semi-parametric 0.0265 0.0268 0.0271 0.0290 0.0273 0.0333
OLS 0.0268 0.0270 0.0273 0.0288 0.0301 0.0365
KO’s 0.0368 0.0655 0.0690 0.0833 0.0933 0.2617

5.4. Example 4: LAMMprocess

Joseph andYan [19] discuss the calibration of Laser-AssistedMechanicalMicro-machining

(LAMM) process. They analyse the cutting forces y with four input variables: nomi-

nal depth of cut x1 ∈ [10, 25], cutting speed x2 ∈ [10, 100], laser power x3 ∈ [0, 35] and

laser location x4 ∈ {100, 200}. And a full factorial 4 × 2 × 3 × 2 design, in which x1 ∈
{10, 15, 20, 25}, x2 ∈ {10, 50}, x3 ∈ {0, 5, 10}, x4 ∈ {100, 200}, is performed to obtain com-

puter outputs. A physical experiment is carried out on the LAMM process using the same

full factorial design with three replicates per run. The data is in Singh et al. [38]. Joseph

and Yan [19] propose a engineering-driven adjustment model which makes an adjustment

to the computer model:

g(x, γ ) = ys(γ1x1, . . . , γdxd). (35)

The adjusted model g(x, γ ) is used to predict the true process, where γ is estimated using

a Bayesian approach. We compare the behaviour of the proposed predictor, the OLS pre-

dictor, the Engineering-driven method by Joseph and Yan [19], the Bayesian predictor by

KO and the computer model. We select 32 out of the 48 runs which also forms an orthog-

onal design, and make these 32 runs the training data and others testing data. Scatter plot

(Figure 9) of logarithmic computer outputs versus physical outputs shows obvious linear

relationship between ln ys and yp.

Singh et al. [38] proposed the following nonlinear regression model to approximate the

computer model:

ys(x) = β0x
β1
1 exp{β2x2 − β3x3e

−β4x4}. (36)

Estimations of parameters in (36) are β̂0 = 1.3272, β̂1 = 0.8962, β̂2 = 0.0016,

β̂3 = 0.0293, β̂4 = 0.0039, respectively, with an R2 = 0.9973 and residual standard error
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Table 2. Numerical comparison for LAMM process with
modified observations.

ς 0 0.7 1

Semi-parametric 0.3461 0.9558 1.148619
OLS 0.5098 1.0671 1.565882
Engineering-driven 0.4416 1.3983 1.455439
KO’s 1.2377 1.8938 2.292385
Computer model 11.3705 12.8469 14.16615

Note: τ is the standard deviation of the modified observations in (37).

σ̂ = 0.2752. Based on the the ANOVA decomposition in Joseph and Yan [19], the main

contributors to the discrepancy are the nominal depth of cut x1 and the laser power x3, so

we suppose that Fs(x) = (ln ys(x), x1, x3, x1 × x3, 1) and θ = (θ0, . . . , θ4).

In order to compare the prediction accuracy as well as the robustness of different

methods, we make some modifications to the LAMM process. Denote y
p
r the physical

observations in Singh et al. [38], and y
p
m themodified observations. To simplify the process,

let

y
p
m(·) = y

p
r (·) + �, (37)

where � ∼ N(0, ς2), with standard deviation ς . Joseph and Yan [19] gives the estimation

of ς that ς̂ = 0.7. We can compare the prediction accuracy of the proposed predictor, the

predictor based on OLSE, Engineering-driven statistical adjustment predictor in Joseph

and Yan [19], Bayesian predictor in Kennedy and O’Hagan [13] and the computer model

under the value of ς := {0, 0.7, 1}. TheMSPE of different methods are tabulated in Table 2.

It shows that without modification (ς = 0), the OLS and the proposed predictor

improve the prediction accuracy significantly than KO’s method, the proposed predic-

tor seems to fit the data more excellent than the predictor based on the OLS estimator,

and when ς gets larger, the engineering-driven method gives the better prediction than

the predictor based on the OLS estimator. The proposed method can obtain the robustest

predictions when the physical observation error is large.

6. Concluding remarks

We proposed a new statistical adjustment method for computer models, called the semi-

parametric adjustment. The proposedmethod is proven to enjoy nice theoretical properties

and its performance is confirmed by three numerical studies and one real data analysis.

As we said in Section 4, Condition (C1) is rather strong if a Gaussian kernel is used,

because many commonly used regression functions are not contained in the reproducing

kernel Hilbert spaces generated by Gaussian kernels. However, our numerical experience

implies that the estimation behaviour of θ∗ is not inferior in the case that a Gaussian kernel
is used. This suggests that Condition (C1) may be relaxed. Such a result requires a separate

investigation.

Some computermodels contain calibration parameterswhich need to be estimated from

the data. We can use the L2 estimation method [20] to estimate the calibration parameters

and the statistical adjustment parameters discussed in this work simultaneously. To do this,

we can treat the statistical adjustment parameters as calibration parameters aswell and then

invoke the L2 calibration method. In this case, the estimator does not have a closed form
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unless the computer output depends linearly on the computermodel parameters. Note that

identifying calibration parameters is already able improve the prediction performance of

the computermodel, introducing additional adjustment termsmay not lead to a substantial

improvement in the prediction accuracy. Also, estimating too many parameters may result

in a curse-of-dimensionality issue. Hence, we do not recommend applying the proposed

method when several computer models parameters are available for calibration.
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Appendices

Appendix 1. Reproducing Kernel Hilbert space

Let � ⊆ Rd denote the region of interest for the input variables, which is convex and compact. Let
x1, x2, . . . , xn be a set of points on �. Assume that 	 : � × � → R is a symmetric positive definite
function, define the R-linear space

F	(�) =
{

n
∑

i=1

βi	(·, xi) : βi ∈ R, xi ∈ �

}

,
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and equip this space with bilinear form
〈

n
∑

i=1

βi	(·, xi),
m

∑

j=1

γj	(·, yj)
〉

:=
n

∑

i=1

m
∑

j=1

βiγj	(xi, yj).

Then the reproducing kernel Hilbert space N	(�) generated by the function 	 is defined as the
closure of F	(�) under the inner product < ·, · >	, and the norm of N	(�) is ‖ f ‖N	(�)=
√

< f , f >N	(�), where< ·, · >N	(�) is induced by< ·, · >	. More detail about reproducing kernel
Hilbert space can be found in Wendland [32] and Wahba [27].

Appendix 2. Technical Proofs

In this section, we will give the proofs for Theorem 4.1–4.2. Donsker class is a crucial concept in
understanding central limit theorems for stochastic processes.We refer toVanDerVaart andWellner
[39], Kosorok [40] and Van der Vaart [34] for the definition and detailed properties of Donsker
classes. Here we mention some properties which are helpful in the proof of Theorem 4.1. LetF and
G be Donsker classes, then (a) For anyF1 ⊂ F ,F1 is a Donsker. (b)F

⋃

G andF + G are Donsker.
(c) If F and G are both uniformly bounded,F · G is Donsker.

A Proof of Theorem 4.1

Proof: Denote Ln = 1
n

∑n
i=1(y

P(xi) − g(xi))
2 + λn ‖ g ‖2

N	(�)
. Let Fsj be the jth entry of Fs.

According to (C1), we have that Fsj ∈ N	(�), j = 1, . . . ,m + 1. Because ζ̂n = argming∈N	(�)

Ln(g) ∈ N	(�), we have that

0 = ∂

∂tj
Ln

(

ζ̂n(x) + tTFs(x)
)

|t=0,

= ∂

∂tj

{

1

n

n
∑

i=1

(yP(xi) − ζ̂n(xi) − tTFs(xi))
2 + λn

〈

ζ̂n + tFs, ζ̂n + tTFs
〉

N	(�)

}

|t=0,

= 2

n

n
∑

i=1

Fsj(xi)
{

ζ̂n(xi) − ζ(xi)
}

− 2

n

n
∑

i=1

Fsj(xi)ei + 2λn

〈

ζ̂n, F
s
j

〉

N	(�)
,

= 2(Ij + IIj + IIIj). (A1)

First, we consider Ij, letAij(g, θ) = {g(xi) − ζ(xi)}Fsj(xi), where g ∈ N	(�, ρ). Define the empirical
process

Ejn(g, θ) = n−1/2
n

∑

i=1

{Aij(g, θ) − E(Aij(g, θ))}. (A2)

Because that N	(�, ρ) is a Donsker for all ρ > 0. Thus F1 = {g − ζ : g ∈ N	(�, ρ)} is also
Donsker. Moreover, F2j = {Fsj}, j = 1, . . . ,m + 1 is Donsker as well. For the theory of Donsker

classes, we refer to Kosorok [40] and the references therein. Thus the asymptotic equicontinuity
property holds, which suggests that for any ξ > 0, there exists a δ > 0 such that

lim
n→∞

sup P

(

sup
h∈F1×F2 ,‖h‖L2(�)≤δ

1√
n

n
∑

i=1

|h(xi) − E[h(xi)]| > ξ

)

< ξ . (A3)

Therefore, the condition ‖ζ − ζ̂n‖L2(�) = op(1) implies that

op(1) = E1n(ζ̂n, θ̂
L2
n ) = n−1/2

n
∑

i=1

{ζ̂n(xi) − ζ(xi)}Fsj(xi, θ̂
L2
n )

− n−1/2

∫

�

{ζ̂n(z) − ζ(z)}Fsj(z, θ̂
L2
n )dz. (A4)
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Thus, we have that

Ij =
∫

�

Fsj(x)
{

ζ̂n(x) − ζ(x)
}

dx + op(n
−1/2). (A5)

Denote I = (I1, . . . , Im+1)
T . Then we obtain

I =
∫

�

Fs(x)
{

ζ̂n(x) − ζ(x)
}

dx + op(n
−1/2),

= 1

2

∫

�

{

∂2

∂θT∂θ j

(

θTFs(z) − ζ(z)
)2

}

(θ̂
L2
n − θ∗),

= 1

2
V(θ̂

L2
n − θ∗) + op(n

−1/2), (A6)

where V := E[Fs(x)Fs(x)T] is invertible.
For each j, we apply Cauchy-Schwarz inequality to find that

|IIIj| ≤ λn ‖ ζ̂n ‖N	(�)‖ Fsj ‖N	(�)= op(n
−1/2). (A7)

So III = (III1, . . . , IIIm+1)
T = op(n

−1/2).

Note that II = (II1, . . . , IIm+1)
T = − 1

n

∑n
i=1 F

s(xi)ei. By combining (A1)–(A7), we arrive at the
desired result. �

B Proof of Theorem 4.2

Proof: Since (19) holds, we have that ζ̂
L2
n (x) − ζ ∗(x) = (θ̂

L2
n − θ∗)TFs(x), and thus we obtain the

desired result from Theorem 4.1. �
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