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Abstract 

Topological insulator (TI) nanoribbons (NRs) provide a unique platform for 

investigating quantum interference oscillations combined with topological surface states. One-

dimensional subbands formed along the perimeter of a TI NR can be modulated by an axial 

magnetic field, exhibiting Aharonov–Bohm (AB) and Altshuler–Aronov–Spivak (AAS) 

oscillations of magnetoconductance. Using Sb-doped Bi2Se3 TI NRs, we discovered that the 

relative amplitudes of two quantum oscillations can be tuned by varying the channel length. 

The gate-voltage-dependent phase alternation of AB oscillations is discernible even for a 70-

μm-long channel. Analyses based on ensemble-averaged fast Fourier transform of 

magnetoconductance curves revealed exponential temperature dependences of AB and AAS 

oscillations, which are due to thermal broadening and thermal dephasing effects, respectively. 

Our observations indicate that the channel length in a TI NR can be a useful control knob for 

tailored quantum interference oscillations, which would be promising for developing various 

topological quantum devices. 

  



The quantum interference effects of a charged particle’s wave function provide the 

cornerstone for mesoscopic physics, as they affect the development of quantum information 

devices. The Aharonov–Bohm (AB) effect1 resulting from the coupling of an electromagnetic 

potential with the phase of a charged particle’s wave function can be utilized to investigate the 

phase shift between two coherent electron beams propagating around a magnetic field. The 

solid-state AB effect, known as AB oscillations (ABOs), has been demonstrated in various 

quasi-ballistic ring structures fabricated using normal metals2, quantum wells3, and graphene4. 

The conductance is modulated periodically as a function of magnetic flux,  through a loop 

with a period of the flux quantum, i.e., 0 = h/e, where h is the Planck constant, and e is the 

elementary charge. For a weakly disordered ring5 or a hollow metallic cylinder6, 7 including 

carbon nanotubes8 and core/shell nanowires9, the h/2e–periodic oscillations, which are known 

as Altshuler–Aronov–Spivak (AAS) oscillations10, dominate h/e oscillations. The AAS 

oscillations are caused by the interference between a pair of time-reversed paths propagating 

clockwise and counterclockwise around the magnetic flux7.  

Topological insulator (TI) nanoribbons (NRs) provide a novel platform for 

investigating mesoscopic quantum interference effects combined with a nontrivial topological 

order11, 12. Because three-dimensional (3D) TIs are bulk insulators with gapless spin-textured 

surface states13, TI NRs can be regarded as hollow metallic cylinders, whose surface states are 

topologically protected from time-reversal invariant perturbations13. Considering quantum 

confinement along the perimeter of TI NRs, the surface states form discrete one-dimensional 

(1D) subbands exhibiting flux-dependent dispersion14, which comprises the AB phase of 

20 owing to the axial magnetic field (Baxial) and the Berry phase of  caused by the spin–

momentum locking effect in TIs11, 12. When the axial flux through the core of a TI NR becomes 

an odd multiple of the half-flux quantum, the AB phase shift cancels the Berry phase and hence 



restores a topologically protected zero-gap 1D mode13, 14, which can host the Majorana bound 

states15. Resultantly the density of states of the surface states is modulated by Baxial with a 

period of 0, resulting in magnetoconductance (MC) oscillations in TI NRs, whereas the MC 

maxima occur at the integer (0-ABO) or half-integer (-ABO) multiples of 0, depending on 

the location of the Fermi level13, 14.  

Thus far, topological ABOs have been observed in various NRs made of Bi2Se3
14, 16, 17, 

Sb-doped Bi2Se3
18, Bi2Te3

19, 20, 21, and 3D Dirac semimetals22, 23. However, several unresolved 

issues remain. First, AAS-type MC oscillations are concomitantly observed with ABOs in 

many cases14, 16, 19, 23; however, their absence has also been reported18, 21, 22 without a clear 

explanation. Furthermore, for the observations of h/2e-periodic MC oscillations, two 

conflicting explanations have been suggested: the weak antilocalization (WAL) effect along 

the perimeter of the TI NR in the diffusive regime14, 16, 19 or the second harmonic of ABOs 

occurring in the quasi-ballistic regime17, 20. In addition, the temperature dependence of ABOs 

follows the diffusive16, 19 or quasi-ballistic14, 17, 20 transport behavior for the same kind of NRs 

with similar geometric dimensions. Finally, the crossover between AB and AAS oscillations in 

TI NRs is expected based on theory11, 24; however, its experimental verification has not been 

performed yet.  

Herein, we present an extensive experimental study of AB and AAS oscillations 

obtained from Sb-doped Bi2Se3 TI NRs with various channel lengths (Lch) on the same NR. 

Their axial MC oscillations were measured as a function of gate voltage (Vg) and temperature 

(T), whereas their oscillation amplitudes were analyzed using the ensemble-averaged fast 

Fourier transform (FFT) method to avoid sample-specific features. We observed the crossover 

behavior between AB and AAS oscillations and discovered that their respective oscillation 

amplitudes were adjustable depending on the channel length of the TI NR. AAS oscillations 



were absent for channel lengths shorter than the perimeter length (Lp), and their length 

dependence was consistent with theoretical expectations based on WAL corrections11 along the 

perimeter of TI NR. ABOs were discernible even for the 70 m-long channel; furthermore, the 

Vg-dependent alternations of 0- and -ABOs, a characteristic feature of topological ABOs20, 

were evident in all segments with Lch = 1–70 µm. Our observations suggest that the Lch of the 

TI NR can be a control knob to alter the quantum electronic transport from quasi-ballistic to 

diffusive regimes, which would be advantageous for investigating quantum interference effects 

associated with topological surface states.   

Results 

Channel length dependence of AB and AAS oscillations. Figure 1a shows the scanning 

electron microscopy (SEM) image of the Sb-doped Bi2Se3 TI NR device (D2) with various 

channel lengths fabricated on the same NR. The geometric dimensions of the TI NR are 

provided in Supplementary Table 1. When an external magnetic field is applied along the NR 

axis, the axial MC, G(Baxial) curve shows oscillatory behavior superposed on a parabolic 

background (see Supplementary Fig. 4). After subtracting the smooth background signal from 

the MC data, we obtained the periodic oscillations of MC variation, G, as shown in Fig. 1c. 

The oscillation period is obtained to be Baxial = 0.075 T, which corresponds to  = 1.050 

considering a 5 nm-thick native oxide layer19, 23 formed on the surface of the TI NR (see 

Supplementary Fig. 2). In addition, two G(Baxial) curves obtained at Vg = ˗2.5 and ˗2.8 V show 

0- and -ABOs, respectively. Figure 1d shows the color plots of G(Baxial) curves as a function 

of Vg for different Lch values on the same TI NR. For Lch = 1 µm, the ABO phase alternates 

between 0 and  with varying Vg, exhibiting a checkerboard-like pattern with sharp boundaries. 

Similar rectangular patterns were obtained from different devices (D1) with Lch = 1 µm over a 



wide range of Vg (see Supplementary Fig. 5), revealing the out-of-phase relationship between 

two G(Vg) curves for = 0 and 0.50 as supporting evidence for topological ABOs11, 20 in 

the TI NRs. The FFT analysis for a 1-µm-long segment in D2, as shown in Fig. 1e, shows a 

single peak corresponding to the h/e-periodic oscillations of G, indicating that the axial MC 

curves obtained from the short-channel devices were dominated by the ABOs only. Because 

the G(Baxial) curve was extremely sensitive to Vg, the FFT spectrum in Fig. 1e represents the 

ensemble average of the total 51 FFT spectra obtained at different Vg with a constant increment 

of Vg = 100 mV.  

When the channel length was increased on the same TI NR, the overall amplitude of 

the G(Baxial) curve decreased, and the shape of the checkerboard pattern deformed from 

rectangular to elliptical (see Fig. 1d). In particular, the positive G patterns elongated along the 

Vg axis, whereas their widths reduced along the Baxial axis. Such deformations in the G(Baxial, 

Vg) plots are attributed to the occurrence of h/2e-periodic MC oscillations in the long-channel 

devices, which are superposed on the topological ABO patterns in the TI NR. Contrary to the 

ABOs showing Vg-dependent phase alternation, the h/2e-periodic MC oscillations showed their 

conductance maxima at integer multiples of 0/2, irrespective of Vg. The Vg-independent 

behavior of the h/2e-periodic oscillations suggests that they were caused by the AAS effect 

rather than the second-harmonic AB effect.  

The ensemble-averaged FFT results with different Lch values are shown in Fig. 1e, in 

which two peaks corresponding to the h/e- and h/2e-periodic oscillations are shown. The peak 

heights of the FFT spectra are shown in Fig. 1f as a function of Lch. The FFT peak height 

corresponding to the ABOs decreases monotonically with increasing Lch, whereas the AAS 

oscillations exhibits a nonmonotonous channel-length dependence: nearly absent for Lch = 1 



µm, maximized at Lch = 2−3 m, and decreases gradually for Lch > 3 m. The absence of AAS 

oscillations in the short-channel device is attributed to an incomplete formation of the time-

reversed path11 along the perimeter of the TI NR for Lch < Lp, where Lp is 1.2 µm for D2. The 

solid line, which agrees well with the experimental data, is the best fit of the WAL correction11 

along the perimeter of the TI NR (see Methods), indicating that our observed h/2e-periodic 

oscillations for Lch > Lp were caused by AAS oscillations in the TI NR in the weak-disorder 

limit. 

The decreasing amplitudes of the ABOs with increasing Lch can be explained by the 

effect of ensemble averaging of the uncorrelated ABOs in the TI NRs. Because the TI NRs are 

topologically analogous to hollow metallic cylinders20, the long-channel device can be 

considered as a series array of metallic AB loops5 exhibiting random polarity of G(Baxial = 0) 

at fixed Vg. Here, the number of loops, NAB, is expressed as NAB = Lch/L, where L is the phase 

coherence length25. We obtained L = 465 nm at T = 3 K from the WAL analysis of 

perpendicular MC in the TI NRs (see Supplementary Fig. 6). It is well known that the stochastic 

average of ABOs in a chain of NAB loops results in the suppression of the oscillation amplitude, 

which is proportional to NAB
-3/2, considering the connecting leads between the loops5, 25. Hence, 

we fitted a Lch
-3/2 function to the ensemble-averaged FFT peak heights of the h/e-periodic 

oscillations (see the dashed line in Fig. 1f), and it agrees reasonably well with the experimental 

data except Lch = 1 µm.  

More interestingly, AB and AAS oscillations were also observed in an extremely long 

NR segment of Lch = 70 µm, as shown in Fig. 2a. To the best of our knowledge, this is the 

longest NR exhibiting ABOs thus far. The δG(Baxial) curve in Fig. 2c shows the coexistence of 

AB and AAS oscillations, exhibiting the Vg-dependent alternation of 0- and π-ABOs as well. 

The color plot of δG(Baxial, Vg) shows the checkerboard pattern of the ABO overlaid with AAS 



oscillations. The h/2e-periodic oscillations became insignificant at Baxial fields greater than ~ 

0.5 T, which is due to the suppression of coherent backscattering induced by time-reversal 

symmetry breaking9, 14. By contrast, the ABO persisted up to greater Baxial fields, as depicted in 

Fig. 2c, because the AB phase was due to the coherent forward scattering of the surface 

electrons on the TI NRs. It is noteworthy that the TI NR segment with Lch = 70 µm corresponds 

to a chain of AB loops with NAB ~ 151, indicating that the visibility of the ABO in the TI NR 

is robust to the ensemble average compared with the metallic loops5. The robustness of the TI 

NR is attributable to the extremely thin topological-surface-state thickness (i.e., < 6 nm, as 

estimated from the full-width at half maximum of the FFT spectral peak16) and the uniform 

cross-sectional area of the TI NR used in this study (see Supplementary Fig. 3). Moreover, the 

modulation of the density of states in the 1D subbands of the TI NR, which is due to the zero-

gap 1D mode occurring at half-integer multiples of 0, is also resonsible for the robust ABOs. 

For the segment with Lch = 5 µm, similar features were observed, as shown in Fig. 2b, except 

the relative ratio between the AB and AAS oscillation amplitudes.  

The ensemble-averaged FFT spectra with different Lch values, normalized by the sum 

of the two peak heights of h/e- and h/2e-periodic oscillations, are shown in Fig. 2d. As 

mentioned previously, the ABOs dominated over the 1-µm-long channel device with NAB ~ 2, 

which is characteristic of quasi-ballistic transport in TI NRs. By contrast, the quantum 

interference oscillations in the 70-µm-long channel with NAB ~ 151 were dominated by AAS 

oscillations with WAL corrections, indicating that the long-channel TI NRs exhibited diffusive 

quantum transport at low temperatures. For the 5-µm-long channel (NAB ~ 11), the FFT peak 

height of the AB oscillations was similar to that of the AAS oscillations, indicating a crossover 

from ballistic to diffusive quantum transport in the TI NRs. Although temperature- or disorder-

driven crossover between AB and AAS oscillations has been predicted theoretically26, 27, it has 



not been demonstrated experimentally yet. Our observations indicate that those quantum 

interference oscillations can be tuned by adjusting the channel length of the TI NR, which is in 

the weak-disorder limit. Meanwhile, the ensemble-averaged FFT spectrum can be used to 

identify the electrical transport regime of the TI NRs at an arbitrary disorder strength. We 

expect the channel-length-dependent topological quantum interferometers of the TI NR to be 

useful for investigating various features of topological quantum devices combined with 

superconductivity28, 29, ferromagnetism30, 31, or nanomechanics32.   

Temperature dependence of AB and AAS oscillations The color plots of G(Baxial, Vg) with 

different Lch values as a function of temperature are shown in Figs. 3a–c. The overall amplitude 

of G(Baxial, Vg) diminished owing to thermal fluctuations. Furthermore, the boundaries of the 

checkerboard patterns became highly irregular at higher temperatures for Lch = 2 µm in D2, as 

shown in Fig. 3a. However, the other segments in D6, maintained their pattern shapes at high 

temperatures (see Figs. 3b–c), which will be discussed later. The ensemble-averaged FFT 

spectra obtained at different temperatures are shown in Figs. 3d–f, showing two peaks 

corresponding to the h/e- and h/2e-periodic oscillations. The FFT amplitudes for the δG(Baxial) 

curves with different Vg were averaged over 21 (27) traces with the increment of Vg = 100 

(50) mV for the 2-µm-long segment in D2 (5- and 70-µm-long segments in D6).  

Figures 3g–i show the heights of the two FFT peaks as a function of temperature. Linear 

T dependences of the FFT peak heights in the semi-log plot indicate that the amplitudes of the 

AB and AAS oscillations in the TI NRs, regardless of Lch, decay exponentially with 

temperature, resulting in Gi(T) ~ exp(-biT), where bi is the damping parameter (i signifies h/e 

or h/2e oscillations) of each quantum oscillation. Previous studies using the single-trace FFT 

method reported exponential temperature dependence14, 17, 20, 21 or a T-1/2 behavior16, 19 for the 

amplitude of the ABOs in TI NRs. In this study, we observed the exponential T dependence of 



both AB and AAS oscillations using the ensemble-averaged FFT method to avoid any 

confusion caused by universal conductance fluctuations33 or Vg-dependent voltage fluctuations 

due to residual charges on the substrate34.  

The exponential temperature dependence of the ABO amplitude, which was also 

observed in a ballistic AB ring34, 35 comprising two-dimensional electron gas, is attributed to 

the averaging effect of temperature-induced phase shifts near the Fermi energy36. The thermal 

broadening effect can be described by exp(-bh/eT) = exp(-kBT/Ec), where kB is the Boltzmann 

constant, Ec = ħvF/Lp the correlation energy, ħ the reduced Planck’s constant, and vF the Fermi 

velocity14, 35. For Lch = 2 µm in D2, we obtained Ec = 165 µeV using Lp = 1.2 µm and vF = 3 × 

105 m/s (see Supplementary Note 3). Subsequently, the AB damping parameter was calculated 

to be bh/e,cal = kB/Ec = 0.52 K-1, which is similar to the experimental value of bh/e = 0.56 K-1 in 

Fig. 3g. For other NR segments in D6, we obtained Ec = 251 µeV and bh/e,cal = 0.34 K-1 using 

Lp = 0.79 µm, which agreed well with the experimental values of bh/e = 0.35 and 0.34 K-1 for 

Lch = 5 and 70 µm, respectively, as shown in Figs. 3h–i. The smaller Lp for the segments in D6 

resulted in a larger Ec than that obtained from D2; hence, the ABO in D6 was more robust 

against thermal fluctuations and preserved the pattern shapes at high temperatures, as shown 

in Figs. 3b–c. 

Although the amplitude of the AAS oscillations exhibited an exponential behavior of 

exp(-bh/2eT), similar to those shown in Figs. 3g–i, its underlying mechanism differed from that 

of the ABO. Because the AAS oscillations are due to the quantum interference between two 

time-reversed paths, the phase shift for the same path is zero; therefore, the AAS oscillations 

are insensitive to the thermal broadening effect35. By contrast, thermal dephasing through 

inelastic electron–electron scattering results in a shorter phase coherence length35; therefore, 

the expression exp(-bh/2eT) = exp(-2Lp/Lφ,c(T)) holds, where Lφ,c, which is the phase coherence 



length along the circumference of the TI NR, was used instead of Lφ estimated from the 

perpendicular MC data. Using the relation Lφ,c = 2Lp/bh/2eT, the circumferential coherence 

length at T = 1 K is estimated to be Lφ,c(T = 1 K) = 2.8, 4.2, and 3.4 µm for Lch = 2, 5, and 70 

µm, respectively, from the experimental values of bh/2e in Figs. 3g–i. It is noteworthy that our 

observed Lφ,c(T = 1 K) is two to five times longer than Lp, which is sufficient to assure phase-

coherent quantum transport along the circumference of the TI NRs. Moreover, our Lφ,c values 

are two to three times larger than those reported previously17, 20, indicating that the TI NRs in 

this study are in the weak-disorder limit. Furthermore, Lφ,c(T = 1 K) is much longer than Lφ(T 

= 1 K) = 830 nm obtained from the perpendicular MC data, inferring that the Lφ of the TI NR 

can be underestimated owing to the narrow width of the NR22.  

In summary, we studied the channel length dependence of AB and AAS oscillations in 

Sb-doped Bi2Se3 TI NRs. Our observations demonstrate that the relative amplitudes of the AB 

and AAS oscillations can be adjusted by the channel length in comparison with the perimeter 

length of TI NR. The AAS oscillations are absent in short-channel devices in quasi-ballistic 

transport regime, while the AB oscillations are clearly observed even in a 70-μm-long device 

in diffusive regime. Thermal broadening and thermal dephasing effects are responsible for the 

exponential temperature dependence of the AB and AAS oscillations, respectively. Our 

observations suggest that the channel length in TI NR can be a useful tool for tailoring quantum 

interference effects combined with topological surface states.  

  



Methods 

Device fabrication. Sb-doped Bi2Se3 NRs were synthesized via chemical vapor deposition 

method in a horizontal tube furnace. Detailed information is available elsewhere37. Energy-

dispersive X-ray spectroscopy of the NRs revealed the atomic percentages of Bi, Sb, and Se of 

approximately 36.0%, 5.5%, and 58.5%, respectively (see Supplementary Fig. 1). After the 

growth was completed, individual (Bi1-xSbx)2Se3 NRs were mechanically transferred onto a 

highly n-doped Si substrate covered with a 300-nm-thick SiO2 layer. The Si substrate was used 

as a back gate electrode. Source and drain electrodes were defined using standard electron-

beam lithography followed by the electron-beam evaporation of Ti (10 nm)/Au (200 nm). Prior 

to the metal deposition, the electron-beam resist residue and the native oxide layer on the 

surface of NR were removed using oxygen plasma treatment and by dipping into a 6:1 buffered 

oxide etch for 7 s.  

Measurements. All electrical transport measurements were performed using a conventional 

lock-in technique in a four-probe configuration. We used a closed-cycle 4He cryostat 

(Seongwoo Instruments Inc.) and 3He refrigerator system (Cryogenic, Ltd.), which had base 

temperatures of 2.4 and 0.3 K, respectively. 

Weak antilocalization correction along the perimeter of TI NR. The WAL correction 

using the boundary conditions of the cylindrical geometry is as follows:11  
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where Lp is the perimeter length of the NR, Lch the channel length, and  the correlation length 

of the disorder potential. The line of best fit in Fig. 1f was obtained using  = 850 nm as a 



fitting parameter and Lp = 1.2 μm (for D2) considering a 5-nm-thick oxide layer17, 21 on the 

surface (see Supplementary Fig. 2). 



Figure Captions 

Figure 1 | Channel length dependence of h/e- and h/2e-periodic 
oscillations. (a) SEM image of Sb-doped Bi2Se3 NR device (D2) with various 

Lch in the same NR. Channel lengths between the electrodes were Lch = 1, 2, 3, 

and 4 μm for electrode pairs 1-2, 3-4, 5-6, and 6-7, respectively. Those pairs 

were used to measure voltage differences while a bias current was flowing 

through the entire NR. (b) Tilted-view SEM image of NR segment between 3-4 

electrodes. (c) Conductance variation, G, vs. axial magnetic field, Baxial curves 

obtained from NR segment (1-2) with Lch = 1 μm for two different gate voltages, 

Vg at T = 2.4 K. Magnetic flux is denoted by Φ/Φ0. (d) Color plot of G as a 

function of Baxial and Vg for different Lch. (e) Ensemble-averaged FFT amplitudes 

of G(Baxial) curves for different Lch. (f) FFT peak heights corresponding to h/e- 

and h/2e-periodic oscillations as a function of Lch. The solid line is from the 

theoretical fit to the WAL correction (see Methods), whereas the dashed one 

from Lch -3/2 dependence (see text).   

Figure 2 | h/e- and h/2e-periodic oscillations in long-channel devices. (a) 

SEM image of (Bi0.89Sb0.11)2Se3 NR device (D6) with channel lengths of Lch = 5 

and 70 μm. Bias current was applied between a pair of electrodes numbered 1 

and 5, whereas voltage difference was measured between electrodes 3 and 4 

(2 and 3) electrodes for Lch = 70 (5) μm. G(Baxial) curves at different Vg and 

color plot of G(Baxial, Vg) at 2.6 K for (b) Lch = 5 μm and (c) Lch = 70 μm. G(Baxial) 

curves were offset vertically for clarity. (d) Normalized ratio plot of ensemble-

averaged FFT spectra with various Lch. h/e (h/2e) oscillations are indicated by 

red (blue) arrows.   

Figure 3 | Temperature dependence of FFT for h/e and h/2e period 
oscillations. Color plot of G(Baxial, Vg) at different temperatures for (a) Lch = 2 

μm, (b) 5 μm, and (c) 70 μm. Ensemble-averaged FFT amplitudes of G(Baxial) 

curves at different temperatures for (d) Lch = 2 μm, (e) 5 μm, and (f) 70 μm. FFT 

curves were averaged for all measured Vg. Temperature dependence of FFT 

peak heights of h/e and h/2e oscillations for (g) Lch = 2 μm, (h) 5 μm, and (i) 70 



μm. Solid lines are best fit results with damping parameters bi (i = h/e, h/2e) (see 

text). 

 

Data availability 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request. 
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