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HODGE REPRESENTATIONS
XIAYIMEI HAN AND COLLEEN ROBLES

ABSTRACT. Hodge representations were introduced by Green—Griffiths—Kerr to clas-
sify the Hodge groups of polarized Hodge structures, and the corresponding Mumford—
Tate subdomains of a period domain. The purpose of this article is to provide an
exposition of how, given a fixed period domain D, to enumerate the Hodge repre-
sentations corresponding to Mumford-Tate subdomains D C D. After reviewing
the well-known classical cases that D is Hermitian symmetric (weight n = 1, and
weight n = 2 with p, = h*? = 1), we illustrate this in the case that D is the period
domain parameterizing polarized Hodge structures of (effective) weight two Hodge
structures with first Hodge number p, = h*? = 2. We also classify the Hodge repre-
sentations of Calabi—Yau type, and enumerate the horizontal representations of CY
3-fold type. (The “horizontal” representations those with the property that corre-
sponding domain D C D satisfies the infinitesimal period relation, a.k.a. Griffiths’

transversality, and is therefore Hermitian.)
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1. INTRODUCTION

1.1. Hodge groups. Fix a period domain D = Dy, = Gg/GY parameterizing Q—
polarized Hodge structures on a rational vector space V' with Hodge numbers h =
(h™0, ... h%™). Here

g]R = Aut(VRaQ)

is either an orthogonal group O(a, 2b) (if n is even) or a symplectic group Sp(2r, R) (if
n is odd), and GY is the compact stabilizer of a fixed ¢ € D. To each Hodge structure
¢ € D is associated a (Q-algebraic) Hodge group G, C Aut(V,Q), and a Mumford-
Tate domain D = D, = G,-¢ C D, where G, = G,(R). Briefly, the Hodge structure
¢ € D determines a homomorphism of R-algebraic groups ¢ : St — Aut(Vg, Q), and
the Hodge group G, is the Q-algebraic closure of p(S'). The Hodge group G, may
be equivalently defined as the stabilizer of the Hodge tensors of .

1.2. Motivations. The geometric considerations motivating a classification of the
Hodge groups for a given period domain D include the following. For generic choice
of ¢ € D, the Hodge group G, is the full automorphism group Aut(V, Q). So when
containment G, C Aut(V, Q) is strict, the Hodge structure has nongeneric Hodge
tensors. (And, because G, C G, for all ¢’ € D,,, the Mumford-Tate domain D,
will parameterize Hodge structures with nongeneric Hodge tensors.) An extreme
example here is the case that D, is a point {¢}; this is the case if and only if G, is
a torus; equivalently, End(V, ¢) is a CM field. When containment G, C Aut(V, Q) is
strict and the Hodge structure is realized by the cohomology of an algebraic variety,
the variety “should” admit nongeneric arithmetic properties (such as extra Hodge
classes, or automorphisms, et cetera). In general, the Hodge group can have significant
geometric consequences; for example, it plays a key role in Ribet’s study [Rib83] of the
Hodge conjecture for principally polarized abelian varieties (expanding upon earlier
work of Tanke’ev’s [Tan81, Tan82]).

Likewise much geometric motivation for the classification of the Mumford-Tate

domains comes from the moduli of algebraic varieties. In general, the period domain
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is not Hermitian. Two significant exceptions are the period domains arising when con-
sidering moduli spaces of principally polarized abelian varieties and K3 surfaces. The
Hermitian symmetric structure of D in these two cases, along with global Torelli theo-
rems, is the underlying structure that has made Hodge theory such a powerful tool in
the study of these moduli spaces and their compactifications [Laz16]. Even when the
period domain D is not Hermitian, it may contain Hermitian symmetric Mumford-
Tate subdomains D. (For example, every horizontal subdomain is Hermitian symmet-
ric.) Given a moduli space M geometrically realizing D as a Mumford—Tate domain
(with a Torelli theorem), Hodge theory is again a significant tool in the study of M
and its compactifications, cf. [ACT02, ACT11, Bor97, GvG10, Kon00, LPZ18, PZ19,
Roh09, Voi93]. Reciprocally, given a Hermitian symmetric Mumford-Tate domain
D C D it is a very interesting problem to find geometric (or motivic) realizations of
the domain; work in this direction includes [KP16, PZ19, Yunl4, Zhal4, Zhal5].

1.3. Objective and approach. The principal goal of this paper is to present an ex-
pository discussion of the Green—Griffiths-Kerr [GGK12] prescription to identify the
real algebraic groups G, = G,(R) that may arise. More precisely, Green-Griffiths-
Kerr identify the underlying real Lie algebra gr. This determines G, to finite data,
and suffices to identify the domains D, as intrinsic G?Ddfhomogeneous spaces. (See
[Pat16] for the classification of general G.,.)

Ezample 1.1. The case of weight one Hodge representations is classical [Del79, Mil05]:
The real form gg is one of sp,, R, u(a,b), su(a,a), so(2,m) and so*(2r). See Example

3.3 for the corresponding Hodge representations.

Remark 1.2. We are aware of only a few cases in which the classification of the
G, as Q-algebraic groups has been completely worked out. These include Zarhin’s
classification [Zar83| of the Hodge groups of K3 surfaces (see Example 5.3 for the cor-
responding Hodge representations), and Green—Griffiths—Kerr classification [GGK12,
§7] for period domains D with Hodge numbers h = (2,2) and h = (1,1,1,1).

Green—-Griffiths—Kerr [GGK12] showed that the Hodge groups G = G, and

Mumford-Tate domains D = D, C Dy, are in bijection with Hodge representations

S % Gr, G < Aw(V,Q),
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with Hodge numbers h, < h. (Given hy = (R}°,... A%™) and hy = (B3, ..., h3"),
we write hy < hy if A7 < hE for all p,q.) Effectively one may say that the Hodge
groups and Mumford—Tate domains are classified by the Hodge representations: given
a fixed D = Dy, (with specified Hodge numbers h), one identifies all possible Hodge
domains D C D by enumerating the Hodge representations with hy, < h.

Remark 1.3. There are some obvious subdomains that can be identified without
Hodge representations: (products of) period subdomains. If D; is the period domain
for Hodge numbers h; and h; +--- 4+ hy, < h, then D; x - - - x Dy is a Mumford—Tate

subdomain of D.

Green—Griffiths—Kerr’s characterization of the Hodge representations is formu-
lated as Theorem 3.1, which asserts that the induced (real Lie algebra) Hodge repre-

sentations
(14) R — gr — EHd(VR,Q)

are enumerated by tuples (g, E®, i, ¢) consisting of:
(i) a semisimple complex Lie algebra g = [gc, gc],
(ii) an element E*® € g with the property that ad E*® acts on g¥ diagonalizably with
integer eigenvalues,
(iii) a highest weight p of g&, and
(iv) a constant ¢ € Q satisfying p(E®) + ¢ € 3Z.
The real form g is the Lie algebra of the image G%' of Ad : G, — Aut(gr). We have
D, = G% -, and E*® is essentially equivalent to the isotropy group Stabgaa (¢).

1.4. Examples and special cases.

1.4.1. Horizontal Hodge domains. As discussed above (§1.2) the identification of the
horizontal subdomains is of particular interest. These are the domains that satisfy the
infinitesimal period relation (IPR, a.k.a. Griffiths’ transversality). It is well-known
that horizontal subdomains are necessarily Hermitian, and as such their structure
as intrinsic homogeneous complex manifolds is classical and well-understood. These
results are reviewed in §3.2. The Hodge representations with horizontal Dy are char-

acterized in Proposition 3.7.
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1.4.2. Weight two Hodge representations. In §4 we apply the prescription of Theorem
3.1 to identify all Hodge representations and Mumford-Tate subdomains D of the pe-
riod domain D parameterizing —polarized, (effective) weight n = 2 Hodge structures
with p, = h?? = 2 (Theorems 4.1, 4.3, 4.4 and Theorem 4.6). This period domain
is chosen as our primary example for two reasons. First, it is in a certain sense the
simplest example of a period domain that is not Hermitian symmetric. (The infinites-
imal period relation is a contact subbundle of TD.) Second, it is the period domain
arising when considering families of Horikawa surfaces [Hor78, Hor79], in which there
has been much interest recently [FPR15, FPR17, PZ19].

1.4.3. Hodge representations of Calabi—Yau type. Hodge representations of CY-type
(those with first Hodge number h™° = 1) are of considerable interest and have been
studied by several authors, including [FL13, FL14, Gro94, SZ10]. Much of this work
is over R, but Friedman and Laza [FL14] have identified some rational forms G, (Q)
admitting Hodge representations of CY 3-fold type. In §5 we classify the (Lie algebra)
Hodge representations of CY-type (Theorem 5.2). The CY-Hodge representations
with D Hermitian are well-known, and those with gg semisimple have been classified
[Rob14, Proposition 6.1]; so the content of Theorem 5.2 is to drop the hypothesis that
gr be semisimple from the classification. This result is used in [Han21] to enumerate
the set of all Hodge representations of CY 3-fold type. Those with horizontal (and

therefore Hermitian) domain D C D are listed in Example 5.4.

2. HODGE REPRESENTATIONS

What follows is a laconic review of the necessary background material on Hodge

representations. References for more detailed discussion include [GGK12|, [Robl4,
§82-3] and [Rob16, §§2-3].

2.1. Basics. Let
(21) ¢ : Sl — GR and GR — Aut(VR,Q)

be the data of a (real) Hodge representation [GGK12]. Without loss of generality, we

may suppose that the induced Lie algebra representation

(2.2) gr — End(Vg, Q)
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is faithful. The associated Hodge decomposition

Ve = v

is the ¢p—eigenspace decomposition; that is,
Vit = {veVe | o(x)(v)=2""v, V2 € S

The associated grading element E, € igg (or infinitesimal Hodge structure) [Rob14]
is defined by E4(v) = §(p — q)v for all v € V}*; that is, E, € End(V) is defined so
that V(f @ is the Eg—eigenspace with eigenvalue %(p —q); for this reason it is sometimes

convenient to write

Vi = V(p—q)/2'

Remark 2.3. Together the grading element E and Lie algebra representation (2.2)

determine the group representation (2.1) up to finite data.

Definition 2.4. We call the the pair (gr — Aut(Vk,Q), E) the data of a real, Lie
algebra Hodge representation (R-LAHR).

Remark 2.5. A key point here is that a Hodge representation (2.1) determines a
grading element E, € igr. Conversely a complex reductive Lie algebra gc, a grading
element E € gc determines both a real form gr (§2.3.2) and a Hodge representation
(§2.3.3).

Notice that ¢ is a level n Hodge structure on Vg if and only if the E,—eigenspace

decomposition is
(2.6) V(c = Vn/g D Vn/2_1 ©---D Vl—n/2 ©® V—n/2-

Remark 2.7. The Hodge structure is of level zero (equivalently, Vi = Vq? ’0) if and only

if ¢ is trivial. We assume this is not the case.

Remark 2.8 (Period domains). The Hodge domain D determined by (2.1) is a period
domain if and only if Gg = Aut(Vg, Q).
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2.2. Induced Hodge representation. There is an induced Hodge representation

on the Lie algebra gg. Define

gy " = {eac | VP VIV p g}

Then
(2.9) gc = P
¢ez
is a weight zero Hodge structure on gg that is polarized by —x, with s the Killing
form.

The Jacobi identity implies

k—k _0,—¢ k+-0,—k—1
[9¢> » 96 ] C 9 :
The subalgebra
Vi 20,—20
goc = 9
tez

is the complexification £, ®r C of the (unique) maximal compact subalgebra €5 C ggr

containing the Lie algebra g% = gg N gg’o of the stabilizer/centralizer G% of ¢.

2.3. Grading elements. Hodge structures are closely related to grading elements.
This relationship is briefly reviewed here; see [Rob14, §§2-3] and [Rob16, §§2-3] for
details.

Remark 2.10. Here grading elements are essentially linearizations of the circle ¢ :
St < GR in the Hodge representation (2.1). The essential observation of this section
is that the data (gc,E) determines the real form gg, and the Hodge domain and
compact dual D C D (as intrinsic homogeneous spaces. They are not represented as
subdomains of a period domain D until we select the second half Gg — Aut(Vg, Q)
of the Hodge representation (2.1)).

2.3.1. Definition. Fix a complex reductive Lie algebra gc. A grading element is any
element E € gc with the property that ad(E) € End(gc) acts diagonalizably on gc

with integer eigenvalues; that is,

(2.11) gc = P, with g"" = {¢egc|[EE=1¢}.

LeZ
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Remark 2.12. The notation g“~¢ is meant to be suggestive. The grading element E
determines a weight zero (real) Hodge decomposition that is polarized by —k, with x
the Killing form (§2.3.3).

Remark 2.13. The data (gc,E) determines a parabolic subgroup Pz C G¢ with Lie
algebra pg = ®>0 g“~*. The resulting generalized grassmannian D = G¢/Ps (or ra-
tional homogeneous variety) is the compact dual of the Hodge domain (as an intrinsic

homogeneous space).

2.3.2. Grading elements versus real forms. Fix a complex reductive Lie algebra gc.
Given gc and E, there is a unique real form gg of gc such that (2.11) is a weight zero
Hodge structure on gg that is polarized by —x [Robl16, §3.1.2]. The real form gg is

26-2¢ is the complexification £c of a maximal

determined by the condition that @&, g
compact subalgebra ¢ C gg.

See §3.2 for a discussion of the examples that of the most interest here.

2.3.3. Grading elements versus Hodge representations. Given the data of §2.3.2, the
grading element E acts on any representation Gg — Aut(Vg) by rational eigenvalues.
The E-eigenspace decomposition Ve = @req Vi is a Hodge decomposition (polarized
by some @), with V79 = V{,_, /5 as in §2.1, if and only if those eigenvalues lie in %Z
[GGK12]. The corresponding Hodge representation is given by the circle ¢ : ST — Gg

defined by
p(2)v == 2P, z€ S, veEVPI=V, p.

Note that E = Es.

2.3.4. Normalization of grading element. The Lie algebra g of G is reductive. Let
(2.14) g =3dg”

denote the decomposition of g into its center 3 and semisimple factor g = [g, g]. Let
E = E'4+E* be the decomposition given by (2.14). The Hodge domain D is determined
by ¢g* and E®.

Fix a Cartan subalgebra h C g¢ that contains E,, is contained in g(;,o and that is
defined over R. Then

h =3 0bh”,
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where h* = h N g¥ is a Cartan subalgebra of g&. Choose simple roots {ay,..., o} €
(h*)* of g¥ so that o;(E*) > 0, for all j. Without loss of generality, we may as-
sume that a;(E) € {0,1}.[Rob14, §3.3]' This is equivalent to the condition that the
infinitesimal period relation T"D C TD is bracket-generating; equivalently, g'!

generates gt~ = @y g~ ¢ as a Lie algebra.

2.4. Reduction to irreducible V. If Vx = V; & V5 is reducible as a real repre-
sentation, then the associated domain D factors D = D; x Dy into the product of
the domains D; for the V;. So without loss of generality we may assume that Vg is

irreducible. The Schur lemma (and our hypothesis that (2.2) is faithful) implies
(2.15) dimz € {0,1}.
Remark 2.16. Note that 3 = span{E'}, so that g = g* if and only if E' = 0.

Given an irreducible real representation Vg there exists a (unique) irreducible

representation U of G¢ such that one of the following holds:

U and U=U* (U is real w.r.t. gr),
. rROC = ©® an 1s complex w.r.t. gr),
(2.17) Ve C UeU* d U#U* (Ui [
U U* and U =U* (U is quaternionic w.r.t. gg) .

Let p, u* € b* denote the highest weights of U and U* respectively. When we wish
to emphasize the highest weight of U, we will write U = U,,.

Remark 2.18 (Period domains). In this case of Remark 2.8, we have V¢ = U,,, with
1 = wy the first fundamental weight.

Remark 2.19. It follows from Remark 2.16 that action of the center 3 C gr on Vi
is determined by the action of E'. The latter acts on U by scalar multiplication by
c = u(E) € Q. In particular, 3 # 0 if and only if ¢ # 0. Moreover, E' necessarily
acts on the dual by —c = p*(E'). So p # p*, and U is complex with respect to gg

whenever gg has a nontrivial center (3 # 0).

IThere is a typo in [Robl4, Proposition 3.4]: in general one may assert only that the group F is
R-algebraic (not Q-algebraic).
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2.5. Real, complex and quaternionic representations. Note that U is complex
if and only if © # p*. By Remark 2.19, this is always then case when 3 # 0;
equivalently, g # g**. When 3 = 0 (equivalently, g = g* is semisimple) the real and
quaternionic representations may be distinguished as follows. Recall the conventions
of §2.3.4, and let {A', ... A"} C b be the basis dual to the simple roots {a, ..., a,}.
Then

ES = ) ai(Eg)A', with a;(E) € {0,1}.

T¢ = 2 Z AZ

i (E)=0

Define

If p = p*, then U is real if and only if ;4(T,) is even, and is quaternionic if and only
if 1u(Ty) is odd [GGK12].

2.6. Eigenvalues and level of the Hodge structure. Set

m = p(Es) and m* = p*(Ey).
Then the nontrivial eigenvalues of E, on U are

{m,m—-—1,m—-2,....,2—m", 1—m", —m*}.
Equation (2.6) implies
2m, 2m* € 7.
The Hodge structure ¢ on Vg is of level
n = 2max{m,m"}.

2.7. Reductive versus semisimple. Let (gc,Eg, i) be a triple underlying a Hodge
representation; gc is a complex reductive Lie algebra, E, € gc is a grading element
(determining a real form gg, §2.3.2), and p is the highest weight of an irreducible
gcmodule U = U,. The purpose of this section is to observe that such triples are
equivalent to tuples (g, ES, 1, ¢) with g a complex semisimple Lie algebra, EY € o7
a grading element, ;1* the highest weight of an irreducible g¥-module, and ¢ € Q.
Recall the notations of §2.3.4. As discussed in Remark 2.19, the central factor E,

acts on the irreducible U by a scalar

c = wE,) € Q,
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and on U* by —c. It follows that (gc,Eg, ) and (g¢, EF, 4, ¢) carry the same data.
(Here pi* = ply. is the highest weight of U as a g¢-module.)

As noted in Remark 2.19, gc = ¢¢ is semisimple if and only if ¢ = 0.

The remainder of this section is devoted to discussing the relationship between
the E—eigenspace decomposition of U and the Hodge decomposition (§2.1) of V.

Let

be the E}-eigenspace decomposition of U. We have

Likewise, the Ej—eigenspace decomposition of U is

U* — U**(E(S;) @ e @ Uiu(Ef’;) .

1

It is a general fact from representation theory that u(E}) and —u*(E¥) are both

elements of Q, and any two nontrivial E}'-eigenvalues of U differ by an integer.
(a) If U, is real, then p = p* and Vg = U, imply that ¢ = 0 and

VP = Up—q)2-

(In this case, we have 3 = 0.)

(b) If U is complex or quaternionic, then
VPe = U(p—q)/2—c b U(*p—q)/2+6 .

Remark 2.21. From (2.20), we see that the number of nontrivial E-eigenvalues for U,
is precisely e(u,E) = (i + p*)(E) + 1. By (2.6) and (2.17), we have e(u,E) < n + 1.
And by Remark 2.7, e(u,E) > 2. Thus

2 < e(E) = (p+p)E+1 < n+l.

3. IDENTIFICATION OF HODGE DOMAINS: GENERAL STRATEGY

3.1. Main result. Given a complex semisimple Lie algebra gc with Cartan subal-

gebra b C gc, and irreducible ge—representation U and a rational number ¢ € Q, let
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E' = clId € End(U) be the operator acting on U by scalar multiplication. We specify
that E' = —cId € End(U*) act by —c on the dual representation. Then

dc = gc D spanc{E'}

is a reductive Lie algebra (semisimple if ¢ = 0), with semisimple factor gc and center
3 spanned by E'. (We are essentially making a change of notation here, replacing
the reductive/semisimple pair gc, g& of the previous sections with (possibly) reduc-
tive/semisimple pair gc, gc. This is done for notational simplicity: it is cleaner to
drop the * superscript.)

The upshot of the discussions in §§2.3-2.7 is

Theorem 3.1 (Green—Griffiths—Kerr [GGK12)). In order to identify the Hodge repre-
sentations (2.1) with specified Hodge numbers h = (h™°, ... hO™) it suffices to iden-
tify tuples (gc, E, 1, ¢) consisting of a complex semisimple Lie algebra gc, a grading ele-
mentE € h C gc (asin §2.3.2 and §2.3.4), the highest weight i € b* of an a irreducible
gc—module U, and ¢ € Q that satisfy the following conditions: m := u(E)+c € %Z, and
the irreducible representation Vi (§2.4) of the real form gr determined by E (§2.3.2)
has (E 4+ E')—eigenspace decomposition of the form (2.6) with dim V,_q /2 = hP1.

Example 3.2 (Period domains). The domain Dy, is a period domain if and only if the
tuple (gc, E, i, ¢) is of one of the following two forms:
(i) gc = 5py,C; u = wy, so that U = C* is the standard representation; «,.(E) = 1
and ¢ = 0.
(i) gc = $0,,C; p = wy, so that U = C™ is the standard representation; and ¢ = 0.
If m = 2r is even, then we also have («,_1 + «,)(E) € {0,2}.

Ezample 3.3 (Weight n = 1). The weight n = 1 Hodge representations well under-
stood [Del79, Mil05]. The corresponding tuples (gc, E, u, ¢) are
(i) (spy,C, A", wy,0), with gg = gr = sp,, R. The corresponding Hodge domain D is

the period domain D parameterizing polarized Hodge structures with h = (r, r).

(i) (s641C, A" wi, =5 — 5), with gr = gr = su(1,7) if 20 = r + 1, and gg = u(1,r)
otherwise.
(iii) (slo4C, A% wy, 5 — a%b), with g = gr = su(a,a) if a = b, and gg = u(a,b)

otherwise.
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(iv) (80,,42C, AL, w,,0), with m + 2 € {2r,2r + 1} and gr = gr = 50(2,m).
(V) (5027»((:, AT, w1, 0), with QR = 0Or = s0* (2’/“)

Remark 3.4. Note that the two tuples (gc,E, i, ¢) and (gc, E, u*, —¢) determine the
same Hodge representation (§§2.4 & 2.7).

Remark 3.5. One consequence of Remark 1.3 is that in any particular example — that
is, the case of a fixed period domain D with specified Hodge numbers h — it suffices to
identify the irreducible Hodge domains D with Hodge numbers h’ < h. For example,
in §4, where we consider the case that h = (2, ht! 2), it will suffice to consider the
two cases that h' = (1,h,1) and h' = (2, h, 2) with h < AbL

3.2. Horizontal Hodge domains. Theorem 3.1 identifies all the Hodge subdomains
D of the period domain Dy,. We are especially interested in the horizontal subdomains,
which are necessarily Hermitian. These are the domains that satisfy the infinitesimal
period relation (IPR, a.k.a. Griffiths’ transversality). These distinguished subdomains
may be identified as follows.

It is a consequence of the normalization in §2.3.4 that the Hodge subdomain
D C D is horizontal if and only if the induced Hodge decomposition (2.9) is of the

form
(3.6) gc = g5 @ g e g

that is, gf;j_g = 0 for all |¢| > 2, cf. [CS09], [Rob14, §§2-3]. This is a condition on the

grading element:
O~A(E¢) =1,

where & is the highest root. All such domains are necessarily Hermitian symmetric.

For the simple, complex Lie groups gc the set of all such grading elements (see
§2.5 for notation), the corresponding compact duals D, the real forms gr, and the
maximal compact subalgebra € C gg are listed in Table 3.1. Here Gr(a, C**?) is
the grassmannian of a-planes in C***, Q% C P! is the quadric hypersurface, and
GrQ(r, C?) is the Lagrangian grassmannian of (—isotropic r—planes in C*". The

following proposition is immediate and well-known.
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Proposition 3.7. If (g¢,E, i, ¢) is a tuple indexing a Hodge representation (2.1)
(cf. Theorem 3.1), then the resulting Hodge domain Dy is horizontal if and only if
(gc, E) is a sum of those pairs listed in Table 3.1.

In general the Hodge domains D C D are cut out by nondegeneracy conditions
defined by a Hermitian form J. For example, in the case of period domains, the
compact dual essentially encodes the first Hodge-Riemann bilinear relation, and the
second Hodge—Riemann bilinear relation is the nondegeneracy condition cutting out
D. To illustrate this, we describe the Hodge domains for the first three rows of Table
3.1.

(1) In the case of D = Gr(a, C*™), we note that C*** has an underlying real struc-
ture, and we fix a nondegenerate Hermitian form 3 on C**° of signature (a, b).
Then

D = {E € Gr(a,C*"™) | H|, is pos def } .

(2) In the case that D = Q% = Gr9(1, C**?) we define a Hermitian form 3 on C4+?
by H(u,v) = —Q(u,v). Then

D = {E€Gr91,C"?) | H| is pos def} .

(3) In the case that D = Gr%(r,C?) we define a Hermitian form H on C* by
H(u,v) =iQ(u,v). Then

D = {E € Gt C”) | H|, is pos def } .

TABLE 3.1. Data underlying irreducible Hermitian symmetric Hodge domains

gc E D =Gc/F Or ¢
sl(a+b,C) A® Gr(a, C**t?) su(a,b)  s(u(a) ®u(b))
so(d+2,C) Al Q4 50(2,d) s(0(2) @ o(d))
sp(2r,C) A" Gr%(r,C?) sp(2r,R) u(r)
so(2r,C) A" Spinor variety 50%(2r) u(r)
¢ A® Cayley plane EIII so(10) ® R
e7 A" Freudenthal variety — EVII ¢ BR.
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4. EXAMPLE: HODGE DOMAINS FOR LEVEL 2 HODGE STRUCTURES

The purpose of this section is to illustrate the application of the strategy outlined
in §3 in the case that D = Dy, is the period domain parameterizing ()—polarized,

(effective) weight two Hodge structures on Vx with Hodge numbers
h = (2% 0", 0%%) = (2,h",2).
Equivalently, ¢ € D parameterizes Hodge decompositions
Ve = V20 yhl g o2,

with
dimc V?Y = 2 = dimc V2.

(We assume throughout that A = dimc V%' # 0.) Geometrically such Hodge
structures arise when studying smooth projective surfaces with p, = 2.
We have

Gr = Aut(Vk,Q) = O(h,4).

As discussed in §1.3 it suffices to identify the irreducible Hodge representations (2.1)
with either hy, = (1,h,1) or hy = (2,h,2), and h < h*'. (Each such Hodge represen-
tation corresponds to a Hodge subdomain D = G - ¢ of the period domain D = Dy,
parameterizing ()-polarized Hodge structures on Vg with Hodge numbers hy.) The

analysis decomposes into three parts:

(A) We begin with the simplifying assumptions that gc is simple and that D is
horizontal. This has the strong computational advantage that we may take
the grading element E to be as listed in Table 3.1. The resulting domains are

enumerated in Theorems 4.1 and 4.3.

(B) Continuing to assume that gc is simple, we turn to the case that horizontality

fails; the domains are enumerated in Theorem 4.4.
(C) Finally we consider in Theorem 4.6 the case that gc is semisimple (but not
simple).

Together Theorems 4.1, 4.3, 4.4 and 4.6 give a complete list of the irreducible Hodge
representations (2.1) with hy, < h = (2, k"1 2).
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Theorem 4.1. The irreducible Hodge representations (2.1) with gc simple, hy =
(1,h,1) and horizontal Hodge domain D C D 1y are given by the following tuples
(9c, E, p, ¢):

(i) Period domains: (so(h+2,C), A", wy,0), with hy = (1,h,1).

(ii) Grassmannian Hodge domains: both tuples
(sl(1 +7,C),A"  w,, —1/(r+1)) and (sl(1+7r,C),A" wy,—1/(r+1))
yield Hodge representations with hy = (1,2r,1).

Remark 4.2 (Geometric realizations). Pearlstein and Zhang [PZ19] have exhibited
geometric realizations of G, = G x Gy with G; one of SO(2, h;) or U(1,7;), corre-

sponding to the two cases/factors of Theorem 4.1.

Theorem 4.3. The irreducible Hodge representations (2.1) with gc simple, hy =
(2,h,2) and horizontal Hodge domain D C Do) are all grassmannian Hodge do-
mains (corresponding to the first row of Table 3.1), and are given by the following
tuples (sl(a + b,C), A% u,c):

(i) The tuples

(s[(3,C), A", w2,2/3) and (sl(3,C), A", wy, —2/3)

yield Hodge representations with hy = (2,2,2).

(ii) The tuple (sl(r+1,C), A%, wy,2/(r+1)) yields a Hodge representation with hy, =
(2,2r —2,2).

Theorem 4.4. The irreducible Hodge representations (2.1) with gc simple and hy <
h = (2, "1, 2), for which the Hodge domain D C Dy, is not horizontal are given by
the following tuples (gc,E, p, ¢):

(i) Period domains: (so(h+4,C), A% wy,0), with hy = (2,h,2).
(ii) Special Linear contact domains: (sl(r + 1,C),A* + A", w1, 0), with hy = (2,2r —
2,9).
(iii) Special Linear contact domains: (sl(4,C), A' + A% ws, 0), with hy = (2,2,2).
(iv) Spinor contact domains: (s0(5,C), A% wy,0) and (s0(7,C), A% ws,0), both with
h, = (2,4,2). (The first is quaternionic, the second is real.)
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(v) Symplectic contact domains: (sp(2r,C),A',wy,0), with hy = (2,4(r — 1),2).
(vi) Ezceptional contact domains: (ga, A?, wr,0) with hy = (2,3,2).

See §4.8 for further discussion of the domains D appearing in Theorem 4.4 as homo-

geneous spaces.

Remark 4.5. The Spinor contact domain given by the tuple (s0(5,C), A% wy,0) in
Theorem 4.3(iv) is a special case of Theorem 4.3(v) under the isomorphism so(5, C) ~

sp(4,C).

Theorem 4.6. The irreducible Hodge representations (2.1) with hy, < h = (2, h",2)
and gc semisimple (but not simple) are given by:

(i) gc = sLC & sl,C acting on U = C* @ C* with E = A' + A?; and

(i) gc = slLC @ sp,C acting on U = C?> @ C* with E = A' + A3.
Each of these Hodge representations is real (implying ¢ = 0). The Hodge numbers are
h = (1,2,1) and h = (2,4,2), respectively.

The remainder of this section is devoted to the proofs of these theorems. The
general argument is outlined in §4.1. Theorems 4.1 and 4.3 are proved simultaneously
in §84.2-4.7; Theorem 4.4 is proved in §4.8; and Theorem 4.6 is proved in §4.9.

4.1. Outline of the arguments. The proofs of Theorems 4.1 and 4.3 proceed by
considering each of the cases listed in Table 3.1. Given the pair (gc,E) it suffices to
determine when there exists an irreducible gc-representation U, of highest weight
i € b*, and ¢ € Q satisfying the conditions of Theorem 3.1 for the specified h,. First
note that U, has either two or three nontrivial E-eigenvalues; equivalently (Remark
2.21),

(47) (h+1)(E) € {1,2}.
This gives us the following three possibilities (cf. §§2.5 and 2.7):
(a) If U, is real, then ¢ = 0 (§2.7(a)) and it is necessary and sufficient that the E-

eigenspace decomposition (equivalently, the Hodge decomposition) of Ve = U,
be
V2’0 ) Vl’l () V0’2 = U1 D U() D U_1 R

with dim Uy, = hi’o € {1,2}. In particular, u(E) = 1.
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(b) If U, is complex or quaternionic, so that Ve = U, ® U, and there are three

nontrivial E-eigenvalues, so that the E-eigenspace decompositions are
Ui = Uue) @ Uup—1 ® Upe)—2
Up = Vs © Urpm) ® Uope)

Then we are looking for ¢ € QQ so that

Ve ‘ V2.0 el V0.2
Ui| Uy Unm—1 Upm—

Ui | Vompey Ur—pe) U-pee) -
Equivalently, u(E) 4+ ¢ =1 and 2 — u(E) — ¢ = 1. That is,

¢ = 1—u(E).
Note that each of the eigenspaces U, &) and U (,&)—2) must have dimension one,
and we have h*? = 2. (In particular, this case will not appear in Theorem 4.1.)
(c) Suppose U, is complex, so that Vo = U, @ U, and there are two nontrivial
E—eigenvalues, so that the E—eigenspace decompositions are
Ui = Une) @ Upe)—
Ui = Uluem © Ul -

We are looking for ¢ € Q so that either
Ve ‘ V20 Ll /0.2

Ui | Uney Unm—
U, ue) Ulum

or

Ve ‘ V2.0 728! /0.2
Uy
U,

Uy Une-1 -
Ul UZ

—u(E)

Equivalently, either
1 = puE)+c and dimcU,g = hi’o € {1,2},

or
WE) = —c and dimc UT_H(E) = hi’o e {1,2}.
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The proofs of Theorems 4.1 and 4.3 now proceed by applying the observations of this

section to each pair (gc,E) corresponding to a row of Table 3.1.

We now turn to the simultaneous proofs of Theorems 4.1 and 4.3 in §§4.2-4.7,

followed by the proofs of Theorems 4.4 and 4.6 in §4.8 and §4.9, respectively.

4.2. Grassmannian Hodge domains. We begin with the first row of Table 3.1 and
the pair (gc,E) = (sl(a+b,C), A%).2

The standard representation U, = C**? of g¢ = sl,4C admits a decomposition
C*** = A ® B with dim A = a and dim B = b and such that A is an eigenspace of E
with eigenvalue b/(a +b), and B is an eigenspace with eigenvalue —a/(a +b). Tt will
be helpful to note that the E-eigenspace decomposition of A\'C** is

(4.8) N(AeB) = B (A4 @ (A’B).
a+pB=i
Fix bases {e1,...,¢e,} and {e 11, .., €440} Of A and B, respectively.

We assume throughout §4.2 that a+b=1i+4+j =k + ¢ =r + 1. Consulting §4.1
and §A.2.1, we see that the pair (i, E = A%) must be one of the following:

(i) a=1and p=w;, any 1 <i <r;
(i) a=1and p = w; +wg, any 1 < ik <r;
(iii) a=2 and p = w;, any 2 <i <r — 1;
(iv) p € {w1, 2w}, any 2 <a <r —1;
(V) p=ws and any 2 < a <r—1.
(This list suppresses some cases that are essentially symmetric with those already

listed. For example E = A" and p = w; is symmetric with (i).) We proceed to consider

each of these five cases.

(i) Consulting (4.8) we see that

U,

7

= N(AeB) = (A9N'B) & (N'B) .

2Despite what the reader might anticipate, this case/row is the most tedious and painstaking to
work through. This is essentially due to the numerically more complicated relationship between the
roots (dual to the basis A% for the grading elements) and the weights (i.e. the complexity in the
Cartan matrix) for gc = sl(a 4+ b,C). The other cases §§4.3-4.7 are easier to analyze.
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These eigenspaces have dimensions ((211), (:)) In order to realize a Hodge represen-
tation with hi’o € {1,2}, one of these dimensions must be 1 or 2.

The first dimension will be one if and only if » = 1 (which forces i = 1). But in
this case the representation U, is real, and so the resulting Hodge representation will
be weight n = 1, not the desired weight n = 2.

The second dimension will be one if and only if ¢ = r. Then the dimensions
of the E-eigenspaces of U, and U} = U,, are (r,1) and (1,7), respectively. The
eigenvalue for A"B C U, is —r/(r + 1). So setting ¢ = —1/(r + 1) gives us a Hodge
representation with eigenvalues hy = (1,2r, 1), yielding Theorem 4.1(ii).

The first dimension will be two if and only if ¢ = r = 2. In this case the dimensions
are (2,1), and U, = U,, is complex with U} = U,, = C*. The E-eigenspaces of U;
have dimensions (1,2). We have u(E) = 1/3. Setting ¢ = —1/3 yields a special case of
Theorem 4.1(ii), and setting ¢ = 2/3 yields a special case of Theorem 4.3(ii) (Remark
3.4).

The second dimension will be two if and only if » = 2 and ¢ = 1. In this case the
dimensions are (1,2), and U, = U,, = C? is complex with U = U,, = A*C®. The
E-eigenspaces of U have dimensions (2,1). We have u(E) = 2/3. Setting ¢ = 1/3
yields a special case of Theorem 4.1(ii) (Remark 3.4). Setting ¢ = —2/3 yields a

special case of Theorem 4.3(ii).
(i) We have U, 4o, C (AN'C"T) ® (AC™+1), with the latter having three distinct
E—eigenspaces
(NCTH e (ACH) = (AeAe (N T'B)® (A7'D))
(A® (N'B)® (\"B))
(A® (N'B)@ (A\"'B))
& ((N'B)@ (A\"B))
The product (e A---Ae;)®@ (et A---Aeg) € AR AR (NT'B)® (AF'B) is a highest
weight vector of U, 1., . Without loss of generality ¢ < k. The products
(er A Ne)@(er A Nep), k<h<r+1,

are all elements of the first eigenspace U, C A® A® (A"'B) @ (\*"'B). Because

this eigenspace may have dimension at most hz’o < 2, we see that kK = r (and the
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eigenspace has dimension at least 2). Likewise
(e1 A Nep)® (g A Nep), 1<h<r,

are also elements of this eigenspace; and dimension/Hodge number considerations
again force i = k = r. The representation Us,, is complex, unless r = 1; if complex,
then the associated Hodge representation has hi’o > 2, which is too large. So we must
have 7 = 1, in which case Vg = Us,, = Sym®C? is real and we have h, = (1,1,1).
However, under the isomorphism sl,C ~ s0(3,C), this is a special case of Theorem
4.1(1).

(iii) In this case we have E-eigenspace decomposition
Us = N(C) = (N @ (NT?B)) @ (A2 (N7'B)) @ (N'B).

The condition that the first and third eigenspaces (A?A) ® (A""?B) and A\'B have
dimensions 1 or 2 forces i = b = 2. Then U, = U, is self-dual and real. This is a

special case of Theorem 4.1(i) under the isomorphism sl(4, C) ~ so(6, C).

(iv) If u = wy, then U, = C*** = A® B is the standard representation. Recalling
the discussion at the beginning of this section we see that we must have either a = 2
orb=r+1—a=2 Takingc=2/(r+1)ifa=2,and c = —-2/(r+1)if b =2,
yields hy = (2,2r — 2,2) and Theorem 4.3(ii) (Remark 3.4).

If 1 = 2wy, then U, = Sym*C**® = (Sym®A) @ (A ® B) @ (Sym>B). In this case
dime Sym?A > 3 > hi’o is too large.

(v) If 4 = wy, then U, = N\*C** = (A’A) @ (A® B) @ (A\*B). The first and
third eigenspaces A\>A and A?B are constrained to have dimension at most hi’o < 2.
This forces a = b = 2. In this case U, is real and we have Hodge numbers (1,4, 1).
This is the special case of Theorem 4.1(i) that we encountered above in part (iii) of

the proof.

4.3. Quadric hypersurface Hodge domains. We next consider the second row of
Table 3.1 and the pair (gc,E) = (so(d + 2,C), A'). Here we may assume that either

d=3ord>5 (else we are in the case considered in §4.2).
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4.3.1. Period domains. If p = wy, so that U, = C%*? is the standard representation,
and real with respect to (gc,E), then Vi = U,, has eigenspace decomposition C @
C? @ C with eigenvalues (1,d,1). Of course, in this case the Hodge domain is the
period domain D parameterizing ()—polarized Hodge structures with Hodge numbers
h=(1,d,1).

4.3.2. Exterior powers. For the analysis that follows, it will be helpful to make the
following observations about exterior powers of the standard representation. Given
2<1<r—1< %d, the representation A\‘C*? is real, defines a Hodge representation,

and has E—eigenspace decomposition

AN(CaC'@C) = (C® (A" 1<Cd))
® ( NTIC)eC) @ (N'CY)
& (AN~ 1Cd )®C) .

The dimension hi’o of the first eigenspace C® (A"'C%) is (Z.ill). We have hi’o e {1,2}
if and only if © = 2 and d = 2. But we are assuming d > 3.

We assume g # wp for the remainder of §4.3. (The case yu = w; is treated in
§4.3.1.) The representation theory of gc = so(d + 2,C) depends on the parity of d;
we begin with d odd.

4.3.3. The case of d odd. Assume d = 1 mod 2. Consulting (4.7) and §A.2.2, we see
that either y = w; with 2 < i <r —1, or u € {w,,2w,}. In the first case we have
U,, = N'C¥2 which is treated in §4.3.2.

e The representation Uy, = A'U,, = A"C?*? has E-eigenspace decomposition
U2wr — ((C@ (/\r—lcd)) D /\r(cd D ((/\r—l(cd) ®C) )

The resulting Hodge representation has hi’o > dimeA\"'C? > 3, which is too large.

e Likewise, the dimensions (2"71,2"71) of the E-eigenspaces in the spinor repre-
sentation U, are to large, unless » = 2. But in this case that representation is real,

and the Hodge representation is of weight 1 (§4.1(a)).
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4.3.4. The case of d even. Assume d = 0 mod 2. Consulting (4.7) and §A.2.2, we see
that either = w; with 2 <i<r—2 or u € {w,_1,w, } U{2w,_1,w,_1 + w;, 2w, }. In
the first case we have U, = A\'C%*2, which is treated in §4.3.2. Likewise, U,, 1., =
A\"TIC*? is treated in §4.3.2.

e The cases = w,_1 and u = w, are symmetric, so we treat yu = w, here.
The half-spin representation U,, decomposes into two E-eigenspaces of dimensions
(2r=2,2772). Since r > 4, these dimensions are too large to realize a Hodge represen-
tation (as in §4.1) with hz’o € {1,2}.

e Similarly the cases ;1 = 2w, and p = 2w, are symmetric, and we treat yu = 2w,

here. We have \"C%*2 = \"C?" = Us,, , ®Us,, . The representation Uy, decomposes

into three E—eigenspaces, the first and last of which have dimension %(2:__12

since 7 > 4, these dimensions are too large to realize a Hodge representation (as in
. 2,0
§4.1) with by~ € {1,2}.

) . Again,

4.4. Lagrangian grassmannian Hodge domains. Consider the third row of Table
3.1 and the pair (gc,E) = (sp(2r,C), A"). Here we may assume r > 3 (else we are
in the case considered in §4.3.) Consulting (4.7), §4.1(a) and §A.2.3, we see that u
must be one of 2wy, ws; in each case Ug is real. The E—eigenspace decomposition of
the standard representation U, = C*" is C" @ C"; in particular, the dimensions of

the eigenspaces are (r,7).

e In the case that p = 2w, the representation Us, = Sym?C’” has E-eigenspace
decomposition (Sym*C")@ (C" — C") @ (Sym?C"). The dimensions of the eigenspaces
are (37(r+1), %, $r(r+1)). The requirement r(r+1) = hi’o € {1,2} forces r =1,

a contradiction.

e In the case that = ws, we have U, ®spanc{Q} = A’C?, and the dimensions
of the E-eigenspaces are (37(r —1), 7> —1, 1r(r — 1)). The requirement $r(r —1) =
hz’o € {1,2} forces r = 2, yielding h, = (1,3,1). This case is covered by Theorem
4.1(31).

4.5. Spinor Hodge domains. Let (gc,E) = (s0(2r,C), A"). We may assume with-
out loss of generality that r > 4. Consulting §4.1 and §A.2.4, we see that pu is

restricted to be one:
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(i) p € {wr, 2wy, wo}, any r > 4;
(i)

)
)

(iii) 7 =5, p € {ws, w5 };
1

r=4and w € {ws, w1 + w3, 2ws, w4 };

(iv) r =6, u = ws.
We consider each of these cases below.

(i) If p = wy, then U, is the standard representation C*", with E-eigenspace
decomposition C" @ C". The dimensions (r,7) of the E-eigenspaces are too large
(r>4>22> h;’l). If 4 = 2w, then Uy, @ spanc{Q} = Sym*C?, and the
dimensions (37(r + 1),7? — 1,2r(r + 1)) of the E-cigenspaces are again too large.
If i = ws, then U,, = A\°C* = (A\*C") @ (C" ® C") @ (A\°C") and the dimensions
(3r(r —1),7%, 3r(r — 1)) are again too large.

(ii) Now suppose that » = 4. Then the dimensions of the E-eigenspaces for the
representations in (ii) are (8,8), (15,26,15), (10,15,10) and (1,6,1), respectively.
The requirement that h;’l € {1,2}, restricts us to pt = wy. In this case U, is real, and
we have Hodge numbers h, = (1,6,1). This is a special case of Theorem 4.1(i) under

an outer automorphism (triality) of so(8,C) that permutes the weight {w;,ws, w4}
of

(ili) Next take r = 5. The E-eigenspaces of U,, and U, have dimensions (5,10, 1)

and (1, 10,5), respectively. These are too large for our desired Hodge numbers hy.

(iv) Finally, we consider r = 6 and p = ws. In this case U,, is quaternionic, and
the the E—eigenspaces have dimensions (6,20,6) so that the Hodge numbers of the
associated Hodge representation Vg = U,, @ U, are h = (12,40, 12); again these are

too large.

4.6. Cayley Hodge domains. Let (g¢c,E) = (¢6, A%). Consulting §4.1 and §A.2.5,
we see that p is restricted to be one of {wy, wy, wg}. In each case (u+ p*)(E) = 2,

so that U, has three nontrivial eigenvalues. The dimensions of the E-eigenspaces are
(10,16, 1), (16,46,16) and (1,16, 10), respectively. In each case the first/last is too
large (> 2 > hz’o) to yield a Hodge representation satisfying the desired constraints.

4.7. Freudenthal Hodge domains. Let (gc,E) = (e7, A7). Consulting §4.1 and
§A.2.6, we see that p is restricted to be the first fundamental weight ¢ = w;. In this
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case the representation U,, is real (with respect to ggr) and we have Hodge numbers
(27,79,27); the first is too large (> 2 > hi’o).

This completes the proofs of Theorems 4.1 and 4.3.

4.8. When horizontality fails. In this section we prove Theorem 4.4. Computa-
tionally the identification of Hodge subdomains for which horizontality fails entails
dropping the assumption that the grading element E is of the form listed in Table 3.1.
Fortunately, the period domain Dy, parameterizing weight two, polarized Hodge struc-
tures with p, = 2 is “close enough” to the classical Hermitian period domains (for
principally polarized abelian varieties and K3s) that we still have strong restrictions
on the possible grading elements. For this period domain the horizontal subbundle
F~Y(TDy) C TDy, (also known as the infinitesimal period relation (IPR)) is a contact
subbundle.?
Any Hodge structure ¢ € Dy, induces a Hodge structure on the Lie algebra

dc = End(Ve,Q) = P
p

of Gg as in §2.2. Assuming the normalization of §2.3.4, the period domain Dy, is
Hermitian if and only if /™7 = 0 for all [p| > 2 (8§3.2). And the IPR is contact (as in
the present example) if and only if g% = 0 for all [p| > 3, and dim g%~> = 1. Given
a Hodge representation (2.1), since the induced Hodge structure (2.11) on gg is given
by 9¢’_p =gc N g¢7_p
fail for the Hodge subdomain D C Dy, if and only if the induced Hodge decomposition
(2.9) is of the form

, it follows (from the discussion of §3.2) that horizontality will

(4.9) ge = gz,—z o g(:;),—1 o gg,o o gd—)l,l o gd—)z,z’

with dimg¢ gi’_Q = 1. In this case the grading element is necessarily of the form listed
in Table 4.1, cf. [CS09, Proposition 3.2.4].* (See [Kna02] for remaining notation.)

3In particular, it has corank one. In the classical case that the period domain is Hermitian the
subbundle F'~(TDy,) = TDy, has corank zero. This is the sense in which the period domain Dy, with
h = (2,h11,2) is as “close as one can get to the classical/Hermitian case.” (We use the notation
F~1(TDy,) for the horizontal subbundle because it is the first subspace in a natural filtration of the
holomorphic tangent bundle 7Dy, D TDy.)

4Be aware there are typos in the table of that proposition.
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For each of the five exceptional cases, the compact dual D = G /P; — PV, is a
rational homogeneous variety with isotropy group P; the maximal parabolic subgroup
associated with the grading element E = A%,

The proof of Theorem 4.4 now proceeds as outlined in §4.1, the single exception
being that we work with Table 4.1 (not Table 3.1). As it is a straightforward variation
on the proof of Theorems 4.1 and 4.3, the proof is left to the reader; for easy reference,

the relevant eigenvalues are listed in §A.3.

4.9. When simplicity fails. Here we prove Theorem 4.6. To begin, suppose that
gc = 91 D go factors into the direct sum of two nontrivial ideals. Then U = U, is
necessarily of the form 77 ® T, with T; an irreducible representation of g; of highest
weight p; and p = puy + po. Likewise, E = E; + Eo, with E; a grading element of g;.
We write

(g((:aE?/J“) = (glaEla,ul) ¥ (927E2a,u2)-

The Hodge representation will have weight/level n = 2 if and only if
1 =c+ uE) = c+ m(Er) + pa(E).

Recall Remark 2.21, and note that e(u, E) = e(u1, E1) +e(p2, E2) > 2. The hypothesis
e(u, E) = 2 forces e(u;, E;) = 1 and g; to be simple.

TABLE 4.1. Data underlying irreducible contact Hodge domains

gc E D= Ge/P: gRr ¢
sl(r+1,C) A'+ A" Flag(l,7;C™™) su(2,r —1) s(u(2)®u(r—1))
so(d+4,C) A Gr?9(2,CH4) s0(4,d) s(0(4) @ o(d))

sp(2r, C) Al p2r-1 sp(l,r—1) sp(1) Dsp(r—1)
e AZ EIl su(6) @ su(2)
e7 Al EVI 50(12) @ su(2)
es A8 EIX e7 @ su(2)
f4 Al FI sp(3) @ su(2)

92 A? G su(2) @ su(2).
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Proposition 4.10. Any semisimple algebra gr admitting a Hodge representation of
level n = 2 1is either simple, or decomposes as the sum gr = g1r D gor. In the latter
case, the triples (g;,E;, pu;) are necessarily one of:

(i) (s0,11C, A% wy). The (standard) representation U,, = C™*! is real if r = 1, and
complex otherwise. The A®—eigenspace decomposition is C't1 = C* @ Cri-e,

(i) (sl,11C,AY w,). The representation U, = N*C™* is complex unless r +1 = 2a,
in which case the representation is real if and only if a is odd. The A'—eigenspace
decomposition N\*C™+' = (C' @ A\°"*C") & (A\*C") is induced by that of C'T' =
CeapCr.

(iii) (sp(2r,C),A",w1). The (standard) representation U, = C?" is real, and has
A" —eigenspace decomposition C* = C" & C".

(iv) (so(2r,C),A,,w;). The (standard) representation U, = C*" is quaternionic, and
has A" —eigenspace decomposition C** = C" & C".

(v) (so(2r+1,C),A"w,). The (spin) representation U, is real if ir(r — 1) is even,
and quaternionic otherwise. The A'—eigenspace decomposition is U, = (OX=S
cr .

(vi) (so(2r,C),A",w,). The (half-spin) representation U, is complex if r is odd. Ifr
is even, then the representation is real if +(r+1)(r —2) is even, and quaternionic

otherwise. The A'~eigenspace decomposition is U, = C¥ * @ C2 .
Proof. The proof proceeds as outlined in §4.1 and demonstrated in §§4.2—4.7; details
are left to the reader. O

Let
Ti = Tie) © Tiuey)-—1 = Ti/ ® Ti”
be the E,—eigenspace decompositions. Then the E—eigenspace decomposition
U= Uy @ Uug-1 ® Uyp—
is given by
Uy = Ti © T
U1 = (110 Ty) ® (TY © Ty)
UM(E)_Q = Tl// & Té/.
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So in order to obtain a Hodge representation (2.1) with p, = h*" = 2 we must have
1 < dmT7] @ Ty, dim7] @ Ty < 2;
in particular,
dim7; < 4.

Modulo isomorphisms of (low-rank) Lie algebras, this leaves us with (i) and (iii) of
Proposition 4.10. Theorem 4.6 now follows from the discussion of §4.1; details are
left to the reader.

5. HODGE REPRESENTATIONS OF CALABI-YAU TYPE

We say that a Hodge representation (2.1) is of Calabi—Yau type (or CY-type) if
the first Hodge number hZ’O = 1. The irreducible CY-Hodge representations with gg
semisimple are classified in [Rob14, Proposition 6.1]. They are precisely the tuples
(gc, E, , ¢) of Theorem 3.1 with ¢ =0 (§2.7), and such that:

(a) p' =0 whenever o;(E) = 0, where «; are the simple roots of (the semisimple) g¢
and the 0 < p® € Z are the coefficients of y = p'w; as a linear combination of
the fundamental weights w;;

(b) either the representation is real (equivalently, U = U* and pu(Ts) is an even
integer), or

(c) 1(Ep) # p*(Ey), and U is necessarily complex.

Remark 5.1. The condition (a) above is equivalent to the statement that dim U,g =

1; equivalently, U, g) is a highest weight line.

Theorem 5.2. An irreducible Hodge representation (2.1) is of CY-type if and only
if the corresponding tuple (gc, E, p, ¢) of Theorem 3.1 has the properties:

(i) The condition (a) above holds.
(ii) If U, is not real (with respect to the semisimple gr), then (E) + ¢ > p*(E) — c.

Proof. 1t is straightforward to deduce the theorem from the proof of [Rob14, Propo-
sition 6.1] and the discussion of §2.7. Details are left to the reader. O

Ezample 5.3. The (rational) Hodge groups of K3 type (CY 2-fold type) were deter-
mined by Zarhin [Zar83]. The corresponding (real) Hodge representations (2.1) are
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those with Hodge numbers h, = (1, h,1). The list of all associated tuples (Theorem
3.1) is

(i) (s0p42C, A',wy,0), with hy = (1,h,1) and h > 3.°
(ii) (sC ® sl,C, A" + A% w; + wy,0), with hy = (1,2,1).°
(iii) (s, C, AL, wy, r_+1) with hy = (1,2r,1) and r > 2.
(iv) (sl,C, A, 2wy, 0) with hy = (1,1,1).
) (

(V 5[4@ A? WQ,O), with h¢ = (1,4, ].)

Ezxample 5.4. The set of all Hodge representations (2.1) of CY 3-fold type (Hodge
numbers h, = (1,h, h,1)) is enumerated in [Han21]. In the case that D, is hori-
zontal (and therefore Hermitian) these are of particular interest [FL14, Gro94]. The
corresponding (horizontal) tuples (gc, E, , ¢) of Theorem 3.1 are

(i) (sl,C, A%, 3wy, 0) with hy, = (1,1,1,1).

) Y )

ii 5[2@ Al ,w1,0 3 with hy = 1,3,3,1 .
(i) ( o

i) (sl6C, A% w3,0) with hy = (1,9,9,1).

¢

(iv) (sh41C AN wy, 3 — —) with hy = (1,7,7,1).

(v) (sbaC, A", 2wy, 3 — 25) with hy = (1,2, h,1) and b+ 1 = 5(r +1)(r + 2).

(Vi) (sh1C, A% ws, 3 — 22Uy with hy = (1,h, b, 1) and h+ 1 = r(r + 1).
(Vll) (5[T+1C Al wl) © (5[7«/+1C,A ,wl) and ¢ = % - T’L-‘rl - m, with h¢ = (1,h, h, 1)

and h=r+7r" +rr.

(viii) (sLC, AY wy,0)® (gr, B, i/, ¢) with hy = (1, W'+ 1,1/ +1,1), where (g, E, 1/, ¢)
is any tuple of Example 5.3 with Hodge numbers h’ = (1, 7/, 1).

(ix) (spgC, A% w3, 0) with hy = (1,6,6,1).

(x) (50,C,AY wy,1/2) with hy, = (1,m —1,m —1,1).
(xi) (s010C, A%, ws, 1/4) with hy = (1,15,15, 1),
(xii) (5012C,A°% we, 0) with hy = (1,15,15,1).

(xiii) (eq, A% wg,1/6) with hy = (1,26,26,1).

5The associated domain Dy is the period D parameterizing polarized Hodge structures of K3-type
with hy = (1, h, 1), cf. Example 3.2.

6Recall that 504C = sbC @ sl,C is semisimple. Here Dy, is again the period domain.
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(xiv) (e7,A”,wr,0) with hy = (1,27,27,1).

APPENDIX A. DUALITY AND EIGENVALUES FOR HODGE REPRESENTATIONS

For the computations of §§4-4.8 it is useful to make some general observations
about the irreducible gc-representations U, that yield Hodge representations Vg for
each such pair. (Those that follow are all elementary consequences of the representa-
tion theory of complex, simple Lie algebras and may be found in any standard text.)
Throughout we let {wy,...,w,} C h* denote the fundamental weights of g¢, and write
the dominant integral weight p = p'w; with 0 < u* € Z.

Motivated by the considerations of §2.5, we define

Ti = 2ZAj

A.1. Duality. Every representation U, of gc = s0(2r+1,C), sp(2r, C), e7, es, f4 and
g9 is self-dual.
(1) A gc = sl(r + 1,C) representation U, is self-dual if and only if x* = p/ for all
1+ =r+1
(2) A gc = so(2r,C) representation U, fails to be self-dual if and only if » is odd
and p" £

(3) For gc = eg, we have wi = wg, wi = wa, Wi = ws, Wi = wy.

A.2. Hermitian symmetric domains. Let (gc, E) be the data underlying the irre-

ducible Hermitian symmetric domains (Table 3.1).

A.2.1. Grassmannian Hodge domains. With the notation in the first row of Table
3.1, we have r + 1 = a + b. Given Remark 2.21 it will be useful to note that, given
1+ 7 =r+1, we have

a, a<i1<7,
(wi +w)(A") = ¢ i, i<a<yjy,
b, 1<j<a;
(wi+wj)(Ta) = 22]— (wi+wj)(2A“).
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A.2.2. Quadric Hodge domains. Here (the second row of Table 3.1) the rank r of gc¢
is given by d +2 € {2r,2r + 1}.

In the case that d = 1 mod 2, we have

1  <r—1
(A)Z'(Al) _ { 17 7j_7“ )

PR 1=T.
wi(T1) = 0 mod 2, i<r—1,
wy(T1) = 2(r—1)(r+2).

%, t=r—1,r
wi(Ty) = 0 mod 2, i<r—2,
wr_l(Tl) = wr(Tl) = %(’F—Q)(’l“—}—l)

A.2.3. Lagrangian Grassmannian Hodge domains. We have
wi(A’") =
wi(T,) = 0 mod 2.

In particular, every representation U, is real (§2.5), with respect to the data (g¢,E) =

(sp(2r,C), A").

A.2.4. Spinor Hodge domains. We have

wi(A) = i, wi(T,) = i mod 2, i<r—2;
wea (A7) = j(r=2),  w(T) = 507—=2r+2);
w(A) = Lp, w(T,) = 3r(r—2)

A.2.5. Cayley Hodge domains. We have

(Wi +we)(A%) = 2, (w1 +we)(Te) 0 mod 2,
wo (A9) 1, we(Tg) = 0 mod 2,
(w3 +ws)(A%) = 3,  (wz3+ws)(Tg) = 0 mod 2,
wy(A®) = 2, wi(Tg) = 0 mod 2.

In particular, every representation is either real or complex with respect to the data
(9, E) = (e6,A°).
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A.2.6. Freudenthal Hodge domains. Every representation is self-dual. We have

wi(AT) = 1, we(A) = 3/2,  w3(AT) = 2, wy(AT) = 3,
ws(AT) = 5/2,  we(AT) = 2, wr(AT) = 3/2,

and w;(T7) = 0 mod 2, for all 1 <14 < 7. So every representation is real (§2.5) with
respect to the data (gc,E) = (er,A").

A.3. Contact domains. Let (gc,E) be the data underlying the irreducible contact
Hodge domains (Table 4.1). (Duality of representations is as in §A.2 and so will not
be repeated here.)

A.3.1. Special Linear. We begin with the first row of Table 4.1. We have w;(A*'+A") =
Lforall1 <i <r. Wehave Ty = 2(A%+---+A"1). If r = 3, then wy(Ty) = 1 = ws3(Ty)
and wy(Ty) = 2. If r > 4, then w;(T,) = 0 mod 2.

A.3.2. Orthogonal. Here (the second row of Table 4.1) the rank r of g¢ is given by
d+4e{2r2r+1}.

In the case that d = 1 mod 2, we have

1 =1
wi(A2) — {27 ? A

. 2<i<r—1.

&
—
—
N
~—
Il

0 mod 2, i<r—1,

&
<
—~
=
[}
~

Il

ir(r+1) mod 2.

In the case that d = 0 mod 2, we have

wi(T1) = 4 mod 2.
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A.3.4. Exceptional, rank 6. We have (gc,E) = (eg, A%) and

(w1 + we)(A?) 2, (w+we)(T2) = 0 mod 2,
wo(A%) 2, wa(Ty) = 0 mod 2,
(ws+ws)(A%) = 4,  (w3+ws)(Te) = 0 mod 2,
wy(A?) = 3, wy(Te) = 0 mod 2.
A.3.5. Exceptional, rank 7. We have (gc, E) = (e7, Al), with w;(A!) = 1 and w;(A?) > 2

for all 1 <7 < 6. Also w1(T;) =0 mod 2.
A.3.6. Exceptional, rank 8. For (gc,E) = (es, A®) we have w;(A%) > 2 forall 1 <i < 8.
A.3.7. Exceptional, rank 4. We have (g¢,E) = (f4,A!) and w;(A') > 2forall 1 < i < 4.

A.3.8. Exceptional, rank 2. We have (gc,E) = (g2, A?), wi(A?) = 1 and wy(A?) = 2,
and w;(T;) =0 mod 2 for all 1 <i <2,
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