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Urban heat island (UHI), driving by urbanization, plays an important role in urban sustainability under climate
change. However, the quantification of UHI's response to urbanization is still challenging due to the lack of ro-
bust and continuous temperature and urbanization datasets and reliable quantification methods. This study
proposed a framework to quantify the response of surface UHI (SUHI) to urban expansion using the annual
temperate cycle model. We built a continuous annual SUHI series at the buffer level from 2003 to 2018 in
the Jing-Jin-Ji region of China using MODIS land surface temperature and imperviousness derived from
Landsat. We then investigated the spatiotemporal dynamic of SUHI under urban expansion and examined
the underlying mechanism. Spatially, the largest SUHI interannual variations occurred in suburban areas com-
pared to the urban center and rural areas. Temporally, the increase in SUHI under urban expansion was more
significant in daytime compare to nighttime. We found that the seasonal variation of SUHI was largely affected
by the seasonal variations of vegetation in rural areas and the interannual variation was mainly attributed to
urban expansion in urban areas. Additionally, urban greening led to the decrease in summer daytime SHUI in
central urban areas. These findings deepen the understanding of the long-term spatiotemporal dynamic of UHI
and the quantitative relationship between UHI and urban expansion, providing a scientific basis for prediction
and mitigation of UHI.
©2021ChinaUniversity of Geosciences (Beijing) andPekingUniversity. Production andhostingby Elsevier B.V. This

is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Urbanization alters surface energy budget, resulting in higher
temperatures in urban areas than in surrounding rural areas,
which is called urban heat island (UHI) effect. Air temperatures
in the central areas of big cities can be more than 10 K higher
than that in the neighboring rural areas (Oke, 1982). Elevated tem-
peratures strengthen heat waves in summer (Constantinescu et al.,
2016), especially under the background of climate change. Com-
pared to rural residents, urban residents usually suffer more from
heat stress, directly threatening their health (Wang et al., 2019).
Moreover, higher temperatures increase the consumptions of
building energy (Li et al., 2019c) and urban water (Guhathakurta
and Gober, 2007) in summer and affect the urban vegetation
(Alberti et al., 2017; Li et al., 2017a; Meng et al., 2020) and air pol-
lution (Li et al., 2018a, 2020). UHI has become an important factor
of urban sustainability because of continuous urbanization and cli-
mate change (Wu, 2014). Quantifying the spatiotemporal dynamic
ijing) and Peking University. Produc
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of UHI and its response to urbanization is necessary to better iden-
tify and assess the possible heat risk in cities.

Although UHI has been investigated over the decades, the spatio-
temporal dynamic of UHI at a large scale has only been revealed during
the satellite era. Remote sensing provides observations for monitoring
surface UHI (SUHI) at the city, regional, and even global scales. At a
city scale, SUHI spatial pattern and driving factors have been widely in-
vestigated by analyzing the relationships between SUHI and various
landscape indexes (Tang et al., 2017; Yue et al., 2019; Liu et al., 2020).
For example, Connors et al. (2013) assessed the relationship between
landscape configuration and SUHI and modeled the determinants of
SUHI in Phoenix using ASTER data. Li et al. (2018b) investigated the re-
lationship between SUHI and imperviousness and developed a new
method for the quantification of SUHI intensity in Berlin using MODIS
data. At the regional and global scales, the spatial variations of SUHI
across cities were analyzed. For example, Zhou et al. (2017) and Li
et al. (2017b) revealed the relationship between SUHI and city size
and population in Europe and North America using MODIS data. Peng
et al. (2012) and Chakraborty and Lee (2019) investigated the global
SUHI characteristics and revealed the dominant driving factors behind
using MODIS data.
tion and hosting by Elsevier B.V. This is an open access article under the CC BY license
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However, most previous studies mainly explored SUHI's spatial pat-
tern in short periods (i.e., daily and seasonal). Analysis of long-term spa-
tiotemporal dynamic of SUHI remains a challenge, due to the limitations
in the acquisition of long-term and continuous remote sensing land sur-
face temperature (LST) data (Zhou et al., 2019). With the extended and
continuous remote sensing observations over time, the investigation of
the interannual SUHI dynamic using satellite data has become possible.
For example, Yao et al. (2019) investigated the long-term variation of
SUHI globally using MODIS data and revealed the influence of rural
greening on SUHI. Even though, the data continuity is still a major chal-
lenge in studying long-term SUHI using remote sensing data (Zhou
et al., 2019). This is because remote sensing LST data usually have a
large number of missing pixels, due to the disturbance of cloud contam-
inations. Especially in urban areas, the spatial coverage of valid pixels of
remote sensing LST is intrinsically lower than that in rural areas (Hu and
Brunsell, 2013). Li et al. (2018c) reported that the availableMODIS daily
LST cover is less than one-third for urban areas in the conterminous
United States. To overcome this problem, some gap filling methods,
such as time aggregation and spatiotemporal interpolation, have been
developed. However, the time aggregation method decreases the tem-
poral resolution and spatiotemporal interpolation method usually
costs a larger number of computing resources (Li et al., 2018c). A
more efficient approach is needed to generate a continuous LST time se-
ries for the long-term SUHI study.

The Annual Temperature Cycle (ATC)model offers an alternative ap-
proach to generate a continuous temperature series on the annual time
scale (Bechtel, 2012). The ATC model fits the annual LST cycle, which
shows a comparable deterministic variation in the irradiation, as a sin-
gle sinusoidal function. The derived LST represents the climatology of
annual LST on an annual time scale. The robustness of the ATC model
has been widely validated using both MODIS (Bechtel, 2015; Zou
et al., 2018) and Landsat datasets (Bechtel, 2012; Weng and Fu, 2014).
Moreover, the ATC model can be used to generate continuous LST data
at a large spatial scale. For example, Bechtel (2015) generated a global
LST dataset using the ATC model and MODIS data. Because of the
above advantages, the ATC model has been successfully used to study
SUHI in various regions. For example, Huang et al. (2016) validated
the reliability of the ATC model in quantifying SUHI intensity in Beijing
and Shanghai. Bechtel et al. (2019) compared the SUHI of 50 cities
across the globe from the ATC model and established a consistent and
comprehensive SUHI analysis framework. However, few studies
employed the ATC model to investigate the interannual dynamic of
SUHI (Weng and Fu, 2014). Moreover, the derived overall SUHI inten-
sity based on the urban-rural dichotomy approach in previous studies
(Bechtel, 2015; Huang et al., 2016) cannot reflect the spatial variation
of SUHI. Some studies proposed to divide a city into several buffers
and calculate SUHI intensity in each buffer (Hu and Brunsell, 2015; Li
et al., 2018b). Themean SUHI in each buffer represents the overall ther-
mal characteristic of the buffer. The ATCmodel can be used at the buffer
level to reduce computing time.

This studyproposed a framework to quantify the response of SUHI to
urban expansion at buffer level in the Beijing-Tianjin-Hebei (Jing-Jin-Ji
(JJJ)) region using the ATCmodel. We first estimated buffer specific pa-
rameters in the ATC model using MODIS land surface temperature and
imperviousness derived from a high-resolution urban map and devel-
oped an annual SUHI time series from 2003 to 2018 at the buffer level
in 13major city clusters in the JJJ region. Thenwe investigated the rela-
tionship between ATC model parameters and imperviousness and the
spatiotemporal dynamic of SUHI across urban-rural gradients. Finally,
we examined and discussed the underlying mechanism of SUHI's spa-
tiotemporal dynamic. The derived SUHI time series from the ATC
model can contribute a deeper understanding of the long-term and con-
tinuous spatiotemporal dynamic of UHI, and the relationship between
the ATCmodel parameters and imperviousness reveals the quantitative
response of UHI to urban expansion, providing a scientific basis for pre-
diction and mitigation of future heat stress.
2

2. Study area, data and methodology

2.1. Study area

The study area is the JJJ region of China (Fig. 1a). The JJJ region is lo-
cated at North China Plain and occupies ~218,000 km2 area. The popula-
tion in this region is ~111 million in 2014, accounting for more than 8%
of the national population in China. There are a total of 13 prefecture
and higher-level city clusters in this region, including three large cities
(i.e., Beijing, Tianjin, and Shijiazhuang). The JJJ region is recognized as
one of China's most dynamic urban cluster with fast urban expansion
in the past several decades, which significantly alters the local urban cli-
mate. Therefore, the JJJ region serves as an ideal area for UHI study.

2.2. Data

The major remote sensing datasets, including LST, impervious sur-
face areas (ISA), and urban cluster map, were used. LST data was used
to calculate the SUHI, which was then used to estimate the ATC model
parameters. The urban clustermapwas used to determine theboundary
of each city. The ISA was used to build buffers and quantify urban
expansion.

MODIS daily LST product collection 6 at a resolution of 1 km was
used. MODIS LST product was retrieved by the generalized split-
window algorithm. The retrieved LST was further refined by correcting
the biases. The collection 6 dataset has high accuracywith errors within
±1 K inmost cases (Wan, 2014). MODIS LST has beenwidely applied to
study SUHI regionally (Li et al., 2017b) and globally (Chakraborty and
Lee, 2019). This study used the MODIS LST product (MYD11A1) from
Aqua satellite with overpass time of ~ 01:30 pm (approximating daily
maximum) and ~ 01:30 am (approximating daily minimum). In addi-
tion, MODIS monthly Enhanced Vegetation Index (EVI) product
(MOD13A3) at a resolution of 1 kmwasused to investigate the variation
of vegetation. MODIS water product (MOD44W) at a resolution of
500 m was also used to exclude the water pixels in calculating SUHI
intensity.

Percent ISA was calculated from an urban map at a resolution of
30 m. The urban map from 2003 to 2015 was from Li et al. (2018e)
using annual Landsat time series data and a temporal segmentation ap-
proach. We calculated the percent ISA value by aggregating the 30 m
urbanmap data to the spatial resolution of MODIS LST data. Urban clus-
ter map was developed by Zhou et al. (2014, 2015a, 2015b, 2018) using
nighttime light data based on a cluster-based method. This urban clus-
ter map can accurately capture the boundary of cities globally and has
been successfully used to study UHI (Li et al., 2017b). The most recent
urban cluster map in 2013 was used.

2.3. Methodology

This study developed a framework to quantify spatiotemporal dy-
namics of SUHI and its response to urbanization using the ATC Model.
The framework includes three key steps: (1) quantifying SUHI intensity
at the buffer level, (2) fitting the annual cycle of SUHI using the ATC
model, and (3) analyzing the response of SUHI to urbanization.

2.3.1. Quantifying SUHI intensity
We quantified SUHI intensity at the buffer level using MODIS data.

First, we built buffers in the areas of the urban cluster and the surround-
ing rural zone (Fig. 1b). The boundary of each city cluster were deter-
mined using the urban cluster map. The surrounding rural zone was
defined as the areas within the ring zone around the urban cluster,
which was three times of the urban cluster areas based on the study
of Zhou et al. (2015a). The buffers were built based on ISA data. Given
the footprint effect of LST observation, we used the Kernel Density Esti-
mation (KDE)method to regionalize ISA, referring to the study of Li et al.
(2018b). The KDE calculation was conducted with a search radius of



Fig. 1. (a) The location and land-cover/land-use map of the JJJ region, and spatial patterns of (b) Impervious Surface Area (ISA), and (c) normalized kernel density estimation (KDE) and
buffers in Beijing, Tianjin, and Shijiazhuang, China. The black lines surrounding the cities in (a) indicate the boundaries of urban clusters and its surrounding rural zones. The black lines in
(c) indicate the buffers boundaries. The backgrounds in (b) and (c) show the ISA in 2015 and the derived buffers.
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10 km using the sp.kde function of library spatialEco (https://cran.r-
project.org/web/packages/spatialEco/index.html) on R3.4.3. The KDE
calculation results were further normalized to 0 to 1 (Fig. 1c). Based
on the normalized KDE results, each city was divided into 20 buffers
with a constant interval of 0.05. Then the LST difference between buffers
and the background buffer close to the rural zone was calculated as the
SUHI intensity. The background bufferwas the reference for SUHI inten-
sity calculation. To reduce the uncertainty of derived SUHI intensity, we
combined the first four buffers close to the rural zone frontier as the
background buffer. Each city, therefore, has 17 buffers with numbers
ranging from 1 (outside) to 17 (inside), and the SUHI in the reference
buffer was 0. To decrease the uncertainties in the derived SUHI, the
raw LST data with the coverage of valid pixels lower than 1/3 in the
urban cluster or the total areas of the urban cluster and rural zone
were excluded during the calculation. In addition, the pixels with
water and high elevation (100 m higher than the mean elevation of
urban pixels) were excluded from the calculation of SUHI.

2.3.2. Fitting the annual cycle of SUHI
We fitted the annual cycle of SUHI in each buffer using the ATC

model. The parameters in the ATC model were estimated using the
quantified SUHI in the first step. The ATC model fits the annual LST
cycle as a single sinusoidal function (Bechtel, 2012). The annual SUHI
cycle is the difference of the annual LST cycles in urban and rural areas
and also can be fitted using a single sinusoidal function (Huang et al.,
2016). The function of annual SUHI cycle was expressed as:

SUHI DOYð Þ ¼ SM þ SA � sin 2π∙DOY=365þ SPð Þ ð1Þ

where SM, SA, and SP represent themean, amplitude, and the phase shift
of the annual SUHI cycle. To better understand the physical meaning of
3

SP, it is converted to SP=−2π ∙ SP_DOY/365 + π/2, where SP_DOY repre-
sents the DOY when the annual SUHI cycle reaches its maximum.
Huang et al. (2017) found that the SP_DOY has rather minor urban-
rural variations. In this study,we set SP_DOY a constant parameter in each
city and calculated its value using the observed SUHI data in all the
buffers from MODIS data. Then we calculated the values of SM and SA
in each buffer based on the observed SUHI in the buffer. The parameters
in Eq. (1) was calculated using the nlsLM function of libraryminpack.lm
(https://cran.r-project.org/web/packages/minpack.lm/index.html) in
R3.4.3. We fitted the annual SUHI cycle in each buffer from 2003 to
2018. The derived dynamic of SUHI was evaluated against the observed
SUHI using two indicators, the correlation coefficient (r) and mean ab-
solute error (MAE).
2.3.3. Analyzing the response of SUHI to urban expansion
Weanalyzed the response of SUHI to urbanization in twoways. First,

we extracted the estimated ATC model parameters (SM and SA) and in-
vestigated their relationship with the urbanization indicator, ISA, across
the urban-rural gradient, given that these two parameters reflect the
mean and amplitude of the annual SUHI cycle. Second, we investigated
the spatiotemporal dynamic of the annual SUHI cycle, including the in-
terannual variations of the spatial patterns of SUHI in different seasons
and the spatial variations of annual SUHI cycle across the urban-rural
gradient. To better capture of the interannual trend of SUHI under ur-
banization, we calculated the moving average of annual SUHI cycle
over five years, when investigating its interannual dynamic. In addition,
to explore themechanism behind the spatiotemporal variation of SUHI,
we calculated the diurnal temperature range (DTR), the difference of
daytime and nighttime LST, at each buffer and its difference with that
at the background buffer (Δu-rDTR).

https://cran.r-project.org/web/packages/spatialEco/index.html
https://cran.r-project.org/web/packages/spatialEco/index.html
https://cran.r-project.org/web/packages/minpack.lm/index.html
Image of Fig. 1


Fig. 2. Comparison of annual SUHI cycles derived from the ATC model (red line) and observations (dots) in the (a) daytime and (b) nighttime in four selected buffers in 2010 in Beijing,
Tianjin, and Shijiazhuang, China.
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3. Results

3.1. The performance of the ATC model

Generally, the derived annual SUHI cycle from the ATCmodel agreed
with observations. Both of them showed the maximum values in sum-
mer daytime and winter nighttime (Fig. 2). The derived SUHI in the
buffers close to urban center showed higher correlations with observa-
tions than that in the buffers close to rural areas. The overall averaged
MAE of derived daily SUHI during the study period was 0.57 K for Bei-
jing, which is slightly larger than that 0.3 K in the study of Huang et al.
(2016). The reason for the larger bias in this study was that we calcu-
lated the spatial variation of SUHI at different buffers, while Huang
only calculated the mean SUHI intensity in the urban cluster. Among
all 13 cities in the JJJ region, the overall MAE of daily SUHI ranged
from 0.48 to 0.86 K (Table 1). Daytime SUHI had a larger bias than
nighttime SUHI.
Table 1
The mean absolute error (MAE) between derived and observed SUHI from 2003 to 2018 in 13

City BJ TJ SJZ BD CZ TS

Daily 0.57 0.72 0.86 0.66 0.73 0.68
Day 0.69 0.89 1.17 0.89 0.92 0.82
Night 0.48 0.58 0.59 0.49 0.59 0.55

Note: BJ, Bejing; TJ, Tianjin; SJZ, Shijiazhuang; BD, Baoding; CZ, Cangzhou; TS, Tangshan; HD,
Zhangjiakou.
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3.2. Spatial patterns of ATC parameters

The ATC model parameters, SM and SA, showed significant urban-
rural variations (Fig. 3). Both of them decreased from urban center to
rural areas, indicating the higher mean and amplitude of annual SUHI
cycle in the urban center. The spatial differences of SM were up to
1.7–2.3 K and 4.1–4.8 K in the daytime and nighttime, respectively,
and the spatial differences of SA were up to 3.3–3.5 K and 1.2–1.4 K.
The diurnal variations of SM and SA were opposite. SM was higher at
night, while SA was higher in the day, indicating the larger annual
mean SUHI at night and larger annual amplitude of SUHI during the
day. The reason of the larger annual mean SUHI at night is that the
nighttime SUHI was always positive, while the daytime SUHI was only
positive in summer, but negative in winter (Fig. 2). The larger annual
amplitude of daytime SUHI is related to the larger seasonal variation
of solar radiation, the major driving factor of daytime SUHI, compared
to that of stored heat, the major driving factor of nighttime SUHI. Both
cities in the JJJ region.

HD HS LF QHD XT CD ZJK

0.69 0.73 0.62 0.79 0.70 0.48 0.76
0.88 0.89 0.73 1.10 0.95 0.66 1.04
0.52 0.60 0.52 0.54 0.48 0.30 0.53

Handan; HS, Hengshui; LF, Langfang; QHD, Qinhuangdao; XT, Xingtai; CD, Chengde; ZJK,

Image of Fig. 2


Fig. 3. Spatial patterns of ATC model parameters (a,b) SM and (c,d) SA in Beijing, Tianjin, and Shijiazhuang, China. The values here are the mean during 2003–2018.
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themean SM and SA during 2003–2015were closely correlated with ISA
over urban-rural gradients (Fig. 4). In Beijing, the correlation coeffi-
cients between SM and SA and ISA were 0.91 and 0.91 for daytime and
Fig. 4. Variations of annual ATCmodel parameters (a) SM and (b) SA with the increase in the ISA
the average during 2003–2015.

5

0.92 and 0.91 for nighttime, respectively. Both SM and SA showed in-
creasing trends with the increase in ISA, indicating that urbanization is
an important influencing factor of annual SUHI cycle.
in Beijing, Tianjin, and Shijiazhuang, China. The values of SM, SA, and ISA in each buffer are

Image of Fig. 3
Image of Fig. 4
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3.3. Dynamics of SUHI patterns

The SUHI showed remarkable temporal (i.e., annual, seasonal, and
diurnal) variations (Fig. 5, Supplementary Figs. A.1 and A.2). In spring,
summer, and autumn, the daytime SUHI was positive, with the highest
intensity of 1.1, 5.0, and 2.8 K in the urban center of Beijing during the
study period. The interannual variations of daytime SUHI in these sea-
sons presented increasing trends in suburban buffers, but decreasing
trends in urban center. Daytime SUHI became negative in winter, with
the lowest density of −1.5 K in the urban center of Beijing. Moreover,
the interannual variation of SUHI spatial pattern in winter daytime pre-
sented decreasing trends from 2003 to 2018. On the contrary, nighttime
Fig. 5. Spatiotemporal patterns of derived SUHI in thewinter, spring, summer, and autumn in B
June, July, and August; Autumn: September, October, and November.

6

SUHI was always positive, with the highest intensity of 5.7 K in winter.
The interannual variation of nighttime SUHI presented slightly increas-
ing trends from 2003 to 2018 in both suburban and urban buffers, espe-
cially in winter.

3.4. Dynamics of annual SUHI cycle

The interannual variations of annual SUHI cycle varied among the
buffers (Fig. 6). Generally, the annual SUHI cycles in the suburban
buffers showed larger interannual variations than those in the buffers
close to the urban center and rural areas. This is mainly because the
suburban areas experienced more significant urbanization process,
eijing.Winter: December, January, and February; Spring:March, April, and May; Summer:

Image of Fig. 5


Fig. 6. Interannual dynamics of (a) ISA and derived annual SUHI cycle in the (b) daytime and (c) nighttime in four selected buffers in Beijing, Tianjin, and Shijiazhuang from 2003 to 2018.
The annual SUHI cycles in this figure are the moving average of five years.
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with larger interannual increases of ISA than the buffers in the cen-
tral and rural areas (Fig. 6a). Moreover, daytime SUHI showed
larger interannual variations of annual SUHI cycles than nighttime
SUHI, indicating a higher sensitivity of daytime SUHI to urbaniza-
tion. In addition, the interannual variation of summer daytime
SUHI in the central buffer areas showed decreasing trends in all
the three cities, in spite of the increase in ISA in these buffers.
The reasons will be discussed in the Section 4. On the contrary,
the nighttime SUHI did not show similar interannual trends with
the daytime SUHI in the urban center.
Fig. 7. Interannual dynamics of (a) spatial and (b) temporal patterns of DTR urban-rural differen
this figure are the moving average of five years.

7

3.5. Spatiotemporal dynamics of DTR

The urban-rural difference of diurnal temperature range (Δu-rDTR)
showed significant spatiotemporal variations (Fig. 7, Supplementary
Fig. A.3). Generally, the Δu-rDTR decreased from rural areas to urban
center, with negative values in winter, spring, and autumn, while it in-
creased from the rural areas to urban center, with positive values in
summer. The seasonal variation of Δu-rDTR indicated a lower daytime
SUHI than nighttime SUHI in most of the days in a year, except for sum-
mer days. The interannual dynamic of Δu-rDTR showed increasing
ce derived from the ATCmodel in Beijing from 2003 to 2018. The annualΔu-rDTR cycles in

Image of Fig. 6
Image of Fig. 7


Fig. 8. The relationship between the daytime ATCmodel parameters (a) SM and (b) SAwith the rural-urban difference of EVI. The rural buffer refers to the first four buffers close to the rural
zone frontier, and the urban buffer refers to the innermost buffer in the urban center. Both the model parameters and EVI in this figure are the moving averages of five years.
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trends in summer, but decreasing trends in winter. Thatmeans the day-
night difference of SUHI became larger in bothwinter and summer. Ad-
ditionally, the seasonal variation of Δu-rDTR was more significant in
urban center buffers with large ISA, while its interannual variation
was more significant in suburban areas, where the ISA showed a larger
interannual increase.

4. Discussion

SUHI is mainly influenced by the urban-rural differences in the sur-
face energy budget and the sensitivity of the surface to the absorbed
heat (Varquez and Kanda, 2018). The energy balance basis of SUHI has
been widely investigated (Oke, 1982; Christen and Vogt, 2004; Li
Fig. 9. Interannual variations of five years moving averaged EVI in (a) rural buffer, (b) urban b
buffers and moving average are same as those in Fig. 8.
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et al., 2019a) and in the study areas (Wang et al., 2007). To further un-
derstand the mechanism of SUHI in the JJJ region, we examined the
surface's sensitivity to absorbed heat through the discussion of DTR be-
cause DTR has a negative relationship with surface thermal inertia
(Carnahan and Larson, 1990).

In the JJJ regions, the negative Δu-rDTR in winter indicated the larger
thermal inertia in rural areas, while the positive Δu-rDTR in summer in-
dicated the larger thermal inertia in urban areas (Fig. 7). The seasonal
variation of the urban-rural difference in the thermal inertia wasmainly
controlled by the rural areas, which is covered by the vegetation (crops
& grassland, Fig. 1a) in the growing season, but becomes bare land in the
non-growing season. Among urban, vegetation, and bare land, vegeta-
tion has the lowest thermal inertia, while bare land has the highest
uffer, and (c) their difference in Beijing, Tianjin and Shijiazhuang from 2003 to 2018. The

Image of Fig. 8
Image of Fig. 9
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one (Wang et al., 2007). In the non-growing season, the urban-rural dif-
ference in the energy balance was small and the urban-rural difference
in the thermal inertia dominated SUHI. Due to the lower thermal inertia
in rural areas, its surface was heated faster in the daytime and cooled
faster at night, leading to a small and even negative daytime SUHI and
a large and positive nighttime SUHI. However, in the growing season,
vegetation covering in the rural areas could significantly increase the
urban-rural difference of evapotranspiration during the day, leading to
large daytime SUHI (Li et al., 2016, 2018d; Zhao et al., 2019). Mean-
while, larger thermal inertia in urban surface fastened surface heating
during the day and surface cooling at night, further contributing to the
increase in daytime SUHI and leading to the decrease in nighttime
SUHI in growing season (Huang et al., 2017). Although the urban-rural
difference of surface heat storage also increased in the growing season,
the decreased nighttime SUHI indicated the dominant role of the urban-
rural difference in the thermal inertia, instead of the urban-rural differ-
ence in the surface heat storage, on the seasonal variation of SUHI.

The positive correlations between the ATC model parameters and
ISA in Fig. 4 indicated that the interannual variation of SUHI wasmainly
controlled by the increased ISA. TheΔu-rDTR's increasing trends in sum-
mer and decreasing trends in winter indicated that increased ISA de-
creased surface thermal inertia in winter and increased thermal
inertia in summer in the newly urbanized areas. Meanwhile, the in-
creased ISA could decrease evapotranspiration. The decreased thermal
inertia in winter led to more negative daytime SUHI and the increase
in nighttime SUHI (Fig. 6). Meanwhile, in summer, the increased ther-
mal inertia and decreased evapotranspiration led to an increase in day-
time SUHI. However, the increased thermal inertia did not lead to a
decrease in nighttime SUHI. This may be because the urbanized imper-
vious surface also increased heat storage, which could offset the nega-
tive impact of increased thermal inertia on nighttime SUHI.

We also found that the summer daytime SUHI in the central areas
did not increase with urbanization, but showed decreasing trends in
all three cities in spite of the slow increase in ISA in these buffers, oppo-
site to the trends of SUHI in other buffers (Fig. 6). The interannual
change of vegetation could be the main underlying factor, which has
been reported by previous study (Gui et al., 2019). Vegetation in cities
could decrease SUHI by increasing evapotranspiration. We found that
the daytime SM showed a positive correlation with the urban-rural dif-
ference of EVI (Fig. 8). During the study period, the EVI in the urban cen-
ter generally showed increasing trends, while that in the rural area
showed slightly decreasing trends, resulting in the decreasing rural-
urban difference of EVI (Fig. 9). The decreasing difference in vegetation
between the central and rural buffers reduced the difference of evapo-
transpiration between them, leading to the decreased SUHI in the cen-
tral buffer. Moreover, although both ISA and EVI increased in the
central buffer, the decreased SUHI indicated that the impact of increased
vegetation exceeded the impact of increased ISA on daytime SUHI in the
summer. This implies that planting trees is an efficient way to mitigate
the daytime SUHI.

5. Conclusions

This study developed a framework to investigate the response of
SUHI to urban expansion in the JJJ region using the ATCmodel. We gen-
erated the annual SUHI cycle at the buffer level from 2003 to 2018 over
13major citis in the JJJ region and evaluated its accuracy. Thenwe inves-
tigated the relationship betweenATCmodel parameters and ISA and the
spatiotemporal dynamic of SUHI. Finally, we examined the underlying
mechanism through the comparisons of the interannual variations of
DTR and EVI across urban and rural gradients.

Results showed the derived SUHI from the ATC model generally
matched the observations. The model parameters (SM and SA) showed
significant urban-rural differences and positive correlations with ISA
spatially, indicating the mean and amplitude of annual SUHI cycle in-
creased with urban expansion. The spatiotemporal patterns of SUHI
9

showed different interannual dynamic across seasons and the time of
the day and over urban-rural gradients. The daytime SUHI was negative
in winter with decreasing interannual trends, but was positive in sum-
merwith increasing interannual trends. The nighttime SUHIwas always
positivewith the largest values inwinter and showed slightly increasing
interannual trends. Spatially, the interannual variation of SUHI mainly
occurred in the suburban buffers where showing the largest increase
in the ISA. Temporally, daytime SUHI was more sensitive to urban ex-
pansion than nighttime SUHI. The seasonal variation of SUHI was
mainly controlled by vegetation covering in rural areas through chang-
ing the thermal inertia and evapotranspiration, while the interannual
variation of SUHI was mainly controlled by urban expansion. In addi-
tion, urban greening in the city center could lead to the decrease in day-
time SHUI in summer.

Our study presented the variations of SUHI across spatial (e.g. urban
center and suburban areas) and temporal (i.e., annual, seasonal, and di-
urnal) scales and the underlying mechanism under urbanization. We
found that the fast urbanization was one of the most important driving
forces of the intensification in the SUHI. Future urbanization could fur-
ther strengthen SUHI and increase the heat risk in this region. Besides,
we found the positive effect of urban greening in mitigating SUIH in
summer. All thesefindings deepened our understanding of the response
of SUHI to urbanization and provided a scientific basis for the prediction
andmitigation of future heat risk for urban sustainability. This study val-
idated the reliability of the ATC model in studying SUHI's variation. The
relationships between the ATCmodel parameters and ISA can be poten-
tially used for predicting future SUHI.

Meanwhile, it is worth to note that the validity of the ATC model is
dependent on the assumption that the evolution of surface temperature
within an annual cycle is mainly driven by the solar declination
(Bechtel, 2012). The derived SUHI represents the climatology of annual
SUHI on an annual time scale. However, the real annual temperature
and SUHI cycle are complicated and also affected by several short-
term factors, such as the changes in the weather, snow/ice cover, vege-
tation phenology, irrigation, and soil moisture dynamics (Huang et al.,
2016). Future studies can further explore SUHI using the ATC model
with the consideration of these factors. Additionally, the mismatch in
the time series of SUHI and ISA due to the data availability may lead to
uncertainties in the analysis of SUHI dynamic after 2015. Nevertheless,
given the continuous urbanization in the study areas and the consistent
interannual trend of the SUHI before and after 2015, the caused uncer-
tainties in the conclusions should be rather minor.
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