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Abstract—Partial domain adaptation (PDA) aims to transfer
knowledge from a label-rich source domain to a label-scarce
target domain based on an assumption that the source label
space subsumes the target label space. The major challenge is
to promote positive transfer in the shared label space and cir-
cumvent negative transfer caused by the large mismatch across
different label spaces. In this article, we propose a dual align-
ment approach for PDA (DAPDA), including three components:
1) a feature extractor extracts source and target features by
the Siamese network; 2) a reweighting network produces “hard”
labels, class-level weights for source features and “soft” labels,
instance-level weights for target features; 3) a dual alignment
network aligns intra domain and interdomain distributions.
Specifically, the intra domain alignment aims to minimize the
intraclass variances to enhance the intraclass compactness in
both domains, and interdomain alignment attempts to reduce
the discrepancies across domains by domain-wise and class-wise
adaptations. The negative transfer can be alleviated by down-
weighting source features with nonshared labels. The positive
transfer can be enhanced by upweighting source features with
shared labels. The adaptation can be achieved by minimizing
the discrepancies based on class-weighted source data with hard
labels and instance-weighed target data with soft labels. The
effectiveness of our method has been demonstrated by outper-
forming state-of-the-art PDA methods on several benchmark
datasets.

Index Terms—Dual alignment, partial domain adaptation
(PDA), reweighting network, Siamese network.

I. INTRODUCTION

DEEP neural networks significantly improve classification
accuracy, which are trained via representation learn-

ing on large-scale labeled training data and tested on the
data with similar distribution. However, acquiring numerous
labeled training data is a time consuming and expensive
task for various applications [1], [2]. Hence, in order to
alleviate the labeling time and cost, domain adaptation is
proposed to address this problem by leveraging label-rich data
(i.e., source domain) to related label-scarce data (i.e., target
domain) [3], [4].
Most of the existing domain adaptation methods generally

assume source and target domains are related by sharing iden-
tical label space but separated by different data distributions
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(i.e., distribution shift), resulting in weak generalization abil-
ity of models on target data [5], [6]. They focus on matching
marginal distributions since the differences might seem small
due to the same label space [7]. One effective strategy is
to estimate important weights of source samples related to
target samples such that their shared similar distribution can
be obtained [8]. Another successful strategy bridges differ-
ent domains by learning domain-invariant features to reduce
data distribution divergence [9], [10]. Recent studies [11], [12]
have shown that more transferable representative features can
be learned by deep neural networks [13], [14]. Extracting
domain-invariant representations by embedding deep repre-
sentation learning in the pipeline of domain adaptation has
achieved certain latest advances [15], [16].
Partial domain adaptation (PDA), as a more practical and

challenging problem, assumes the target label space is sub-
sumed into the source label space. In an unsupervised sce-
nario, the target domain only has non-labeled data and the
shared label space across domains is unknown. Thus, PDA
has another technical challenge: how to alleviate the nega-
tive transfer caused by the outlier source classes. Recently,
there are four related methods, including the importance
weighted adversarial nets (IWANs) [17], selective adversar-
ial network (SAN) [18], partial adversarial domain adaptation
(PADA) [19], and example transfer network (ETN) [20].
They had some success in addressing the PDA by weighing
each sample in the domain-adversarial networks and matching
either marginal or conditional distributions to align the source
domain as well as the target domain. However, they do not
explore the role of each sample, ignore the joint distributions,
and do not consider latent structures underlying distributions.
In this article, we propose reweighting all source and target
samples and then match the marginal distributions together
with the conditional distributions, which can better determine
the outlier source classes and align source and target domains.
A dual alignment approach for PDA (DAPDA) is presented,

which improves the previous works [17]–[20] by jointly
exploring the contribution of each sample, matching joint
distributions, and learning latent structures underlying distri-
butions. Our proposed DAPDA method consists of a feature
extractor, a reweighting network, and a dual alignment network
(shown in Fig. 1). The feature extractor M implemented by
the Siamese network embeds input samples from source and
target domains into latent feature representations. Therein,
the Siamese network has two identical subnetworks, where
the weights θg are shared. This special characteristic of the
Siamese network makes it possible to discover the discrepan-
cies between the source and target domains. The discrepancies
will be minimized during the training process such that the
data from the source and target domains can be mapped
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Fig. 1. Framework of our proposed DAPDA method.

into the same latent space, that is, an intermediate domain.
With the features extracted by the Siamese network (gs and
gt), we train a reweighting network Cy with labeled source
data. Then, the trained reweighting network is used to gener-
ate hard labels Ys, class-level weights η for source features
and soft labels ̂Yt, and instance-level weights φ for target
features. Note that DAPDA improves the reweighting qual-
ity over ETN [20] by further learning the contributions of
target samples to the domain alignment. The dual alignment
network aims to match intradomain and inter domain distri-
butions based on the Wasserstein distance, which is a metric
measuring the difference between distributions. Specifically,
intradomain alignments (Ds

intra and Dt
intra) would like to mini-

mize the intra class distances in both source domain and target
domain, and interdomain alignments (Dd

inter and Dc
inter) attempt

to reduce the discrepancies across domains and that within
the same classes from different domains. For our proposed
DAPDA method, given source and target domains, we match
joint distributions to obtain an intermediate domain, where the
learned features from both domains would be class discrimina-
tive and domain invariant. In such a way, the negative transfer
can be alleviated by class-wisely downweighting source fea-
tures with nonshared labels; positive transfer can be enhanced
by class-wisely upweighting source features with shared labels
as well as simultaneously aligning intradomain and inter
domain distributions; domain-invariant feature representations
can be learned through the Siamese network in the shared
label space.
The main contributions are highlighted as follows.
1) We design a reweighting network in DAPDA to give

class-level weights to source features and instance-level
weights as well as soft labels to target features. The
outlier source classes can be downweighted based on the
low class-level weights. The more the target instances
are similar to the source domain, the higher the instance-
level weights they can have. With each iteration of our
proposed method, the errors introduced from wrongly
predicted target labels can be reduced.

2) We propose a dual alignment network in DAPDA to
match joint distributions between domains. It mini-
mizes the intra class variances in the source domain
based on labeled source data, the intraclass variances
in the target domain based on the weighted target data

with soft labels, the distances across domains, and
the discrepancies within the same class from different
domains.

3) DAPDA combines both the domain-shared and domain-
specific information to learn domain-invariant and class-
discriminative feature representations. The proposed
model outperforms the existing PDA approaches. Good
adaptation is achieved in simulations.

The remainder of this article is organized as follows.
Section II reviews background on domain adaptation and dis-
crepancy metrics. In Section III, we give the details of the
proposed method. Section IV presents the experiments on
real-world datasets. In Section V, we provide the conclusion.

II. RELATED WORK

Supervised learning has superiority in representation learn-
ing. However, the large labeling time and cost hinders its
development [21]–[23]. Unsupervised learning can discover
the hidden patterns without labels [24], [25]. Reinforcement
learning performs a certain goal by interacting with a dynamic
environment [26], [27]. In this article, we aim to use unsuper-
vised learning techniques to find the shared space between
source and target domains.

A. Domain Adaptation

Recent studies focus on transferring feature representations
learned by deep neural networks from a labeled source domain
to an unlabeled target domain. One effective strategy is to
map the features from two different domains into a common
latent space, in which the corresponding feature distributions
are close [28]. The maximum mean discrepancy (MMD) [29]
has been used in several approaches for this purpose. It can
measure the divergence between two distribution means in
reproducing kernel Hilbert space (RKHS). In residual transfer
network (RTN) [30], the MMD criterion is used to match dis-
tributions for feature adaptation, where the features are fused
by the output of multiple layers with the tensor product.
An adversarial objective is also used to minimize domain

discrepancy. Tzeng et al. [31] presented a generalized frame-
work, adversarial discriminative domain adaptation (ADDA),
including a domain discriminator, target weight sharing, and
an adversarial loss.
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Another class of divergences between two data distributions
is optimal transport (OT) [32], [33], where the Wasserstein dis-
tance induced by OT has been successfully applied to domain
adaptation due to its generalization [34]–[36]. Shen et al. [14]
proposed the Wasserstein distance guided representation learn-
ing (WDGRL) to learn domain-invariant feature represen-
tations by evaluating and minimizing improved Wasserstein
distance across domains. However, all these methods aim to
match marginal distributions in the identical label space.
For PDA problem, four existing methods are IWAN [17],

SAN [18], PADA [19], and ETN [20]. They address the PDA
by weighing each sample in the domain-adversarial networks
and matching either marginal or conditional distributions to
align the source domain as well as the target domain.
Specifically, IWAN trains the first domain classifier to

reweight source domain samples, and matches marginal dis-
tributions via a feature extractor as well as the second domain
classifier in an adversarial manner. Our proposed method
differs from this article.
1) For the source domain, the class-level weights are not

considered. It may raise the problem of not completely
selecting out the outlier source samples, resulting in
performance degradation. In contrast, we weight the
source domain samples with the average class proba-
bilities over all target samples, which are given by the
reweighting network, such that domain-invariant features
in the shared label space can be learned.

2) For the target domain, the instance-level weights are not
taken into account. The shared-label source samples may
be forcefully aligned to the noise target samples. Our
DAPDA method estimates the instance-level weights
to target samples reducing the negative effect of noise
target samples in the dual alignment network.

3) Conditional distributions are also not considered in
IWAN. Instead, we not only finely grained align
source and target domains by category to capture latent
structures underlying conditional distributions but also
enhance the intraclass compactness in both domains by
minimizing the intra class variances.

The other three works are proposed by Cao et al. SAN
matches conditional distributions across domains by training
multiple domain classifiers and down-weighting outlier source
classes with both class-level and instance-level weights. PADA
and ETN focus on matching marginal contributions by train-
ing one whole domain classifier and down-weighing source
outlier classes only with source sample weights, where ETN
can automatically obtain source sample weights based on
their similarities to the target domain and use the obtained
weights in the source classifier as well as domain-adversarial
network.
Our proposed method is different from these three works.
1) We match joint distributions, starting with the

interdomain alignment and then capturing latent struc-
tures by the intradomain alignment, instead of only
matching either marginal or conditional contributions.
Specifically, the inter domain alignment, including
domain-wise and class-wise alignments contributes to
matching both domains in all aspect view.

2) We use both class- and instance-level weights and hence
are capable of selecting out outlier source samples as
well as dealing with imbalanced, noise target data. Since
if class-level weights are not applied, outlier source sam-
ples may not be picked out completely leading to certain
negative transfer. In addition, if instance-level weights
are not applied, the target samples in negative class (i.e.,
the class with less samples) may not be classified well
for the imbalanced issue; the noise target samples will be
forcefully aligned to source samples for the noise issue.
However, instance-level weights are not considered in
PADA and ETN.

3) We assign target samples with soft labels and instance-
level weights according to maximum class probabilities
of softmax output offered by the reweighting network.
Then, the distribution discrepancy for each class can
be measured by the Wasserstein distance between the
weighted source and target features. While SAN does
not assign labels to target samples and enables all tar-
get samples to participate in the domain classification in
each domain classifier, which makes SAN hardly scal-
able to a large source data and increases computational
complexity.

B. Discrepancy Metric

In this article, we use the Wasserstein distance as the dis-
crepancy metric of distributions, which is also known as
the Kantorovich–Monge–Rubinstein metric on a given metric
space M and arises from the idea of OT.
Let X ∼ P and Y ∼ Q. We assume that X,Y ∈ R

d. The
Wasserstein distance of order σ between two Borel probability
distribution measures P and Q on M is defined as

Wσ (P,Q) =
(

inf
μ∈�(P,Q)

∫

τ(x, y)σ dμ(x, y)

)1/σ

= inf
μ∈�(P,Q)

(

Ex∼P,y∼Q τ(x, y)σ
)1/σ (1)

where σ ≥ 1; P, Q ∈ {P :
∫

τ(x, y)σ d P(x) < ∞ ∀y ∈
M}; �(P,Q) denotes all joint distributions μ for (X,Y) with
marginal distributions P and Q; τ is a distance and τ(x, y)σ is
the corresponding unit cost function; μ(x, y) can be viewed as
a joint probability measure in �(P,Q), and indicates that how
much “mass” would be transported from a random location x
to another one y on M such that P can be transformed into Q.
From the above, given a unit cost τ(x, y)σ , we can effectively
transform P into Q at the minimum expected transport cost
Wσ (P,Q).

When M is separable and σ = 1, (1) is also called Earth-
mover distance [37]. It can be written as follows:

W1(P,Q) = sup
‖f‖L≤1

Ex∼P

[

f (x)
]− Ey∼Q

[

f (y)
]

(2)

where f denotes all maps from R
d to R; τ(x, y) ≥ |f (x) −

f (y)| for all x, y; the Lipschitz seminorm is thus defined as
‖f‖L = sup|f (x)− f (y)|/τ(x, y). To enforce the Lipschitz con-
straint, Arjovsky et al. [36] proposed to use clipped weights
within a compact space [−c, c] after updating gradient. While
Gulrajani et al. [38] pointed out the strategy of weight clipping
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TABLE I
MAIN NOTATIONS AND DEFINITIONS IN THE PROPOSED METHOD

would induce the issues of gradient vanishing or exploding
without carefully tuning the threshold c. Thus, they use gradi-
ent penalty to enforce a soft constraint on the gradient norm
for random samples z ∼ Z

W1(P,Q) = sup
‖f‖L≤1

Ex∼P

[

f (x)
]− Ey∼Q

[

f (y)
]

+ λEz∼Z

[

(‖∇z f (z)‖2 − 1)2
]

(3)

where z is sampled uniformly along the straight lines between
the pairs of points x and y; λ is a balancing coefficient.
The gradients are penalized at z. For simplicity, WD is the
Wasserstein distance of order 1 in this article.

III. PROPOSED METHOD

For the problem of PDA in unsupervised scenario [17]–[20],
we are given a sufficient labeled source dataset (Xs,Ys) =
{(xis, yis)}nsi=1 with ns samples and known class set Ys from
source domain Ds, and an unlabeled target dataset (Xt,Yt) =
{xjt, yjt}ntj=1 with nt samples and unknown class set Yt from tar-
get domain Dt. Ds and Dt share identical feature space but the
label space of Dt is a subspace of that of Ds, that is, Ct ⊆ Cs.
Cs can be splitted into source domain-specific (outlier) label
space and source domain-invariant label space. In addition, Ds

and Dt are, respectively, sampled from joint probability distri-
butions P(Xs,Ys) and Q(Xt,Yt), where P(Xs,Ys) �= Q(Xt,Yt),
furthermore, P(Xs) �= Q(Xt) and P(Xs|Ys) �= Q(Xt|Yt). We
assume Ds have total K known classes |Cs| = K, and |Ct| is
unknown but |Ct| ≤ |Cs|. To describe our proposed method
better, Table I shows the summary of main notations used in
this article.
Our proposed DAPDA method attempts to use a feature

extractor M, a reweighting network Cy, and a dual alignment
network H to learn domain-invariant and class-discriminative
feature representations as well as reduce joint distribution gaps
across domains, such that the target risk Pr(x,y)∼Q[Cy(M(xt)) �=

yt] in the intermediate domain can be minimized based on the
intra and interdomain alignments.

A. Feature Extractor

Siamese network, as the feature extractor, is used to extract
domain-invariant features g, including two identical subnet-
works: one for Ds and the other for Dt. Identical here indicates
both subnetworks have the same parameters and weights. In
the meantime, parameter updating is mirrored across them.
Siamese network has superiority since: 1) fewer parameters
are to be trained which in turn means less data are required
and less tendency is overfitted and 2) similar model is used
to process similar inputs if the inputs are of the same distri-
bution, making feature representations with similar semantics
and easier to compare. These special characteristics of the
Siamese network make it possible to discover the discrepancy
between source and target domains. This discrepancy will be
minimized during the training process such that the data from
the source domain and target domain can be mapped into the
same latent space [18], [19]. Through the Siamese network,
source features gs = M(xs) and target features gt = M(xt)
are obtained, where each sample is mapped from an m- to
a d-dimensional representation with the same parameter θg.
θg can be optimized to enable the Siamese network to learn
domain-invariant feature representations by feature mapping
M, such that positive transfer can be promoted and negative
transfer can be alleviated.

B. Reweighting Network

With the extracted source and target features from the
Siamese network, the reweighting network trained with labeled
source feature representations gs can be applied to target fea-
ture representations gt to predict their labels. Furthermore, the
reweighting layer is added to give class-level weights to source
features and instance-level weights to target features.
First, we train Cy to classify the source samples using the

following supervised loss function [14], [18]:

Lc(xs, ys) = 1

ns

ns
∑

i=1

L
(

Cy
(

gis
)

, yis
)

(4)

where L is the cross-entropy loss function. By minimizing
softmax cross entropy to, respectively, learn the parameters θc
of Cy, the objective function can be attained

min
θc

Lc. (5)

Second, for source samples at the reweighting layer, we
up-weight source samples in the shared label space and down-
weight source samples in the nonshared label space. We call
the class in the shared label space as shared class and the class
in the nonshared label space as outlier class. In our proposed
DAPDA method, we use Cy to determine whether a class is a
shared one or not. Especially, we apply Cy to the target data
Xt to obtain the predicted, that is, soft target labels ̂Yt

̂Yt = Cy(gt) (6)
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where gt = M(xt) with parameter θg. In the meanwhile, Cy

also gives a class probability distribution ̂qjt over source label
space Cs for the jth target sample xjt. Thus, the distribution
matrix of target data q̂t can be obtained as follows:

q̂t =

⎡

⎢

⎢

⎢

⎢

⎣

̂q1t
̂q2t
...
̂qntt

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

̂q1t,c1
̂q1t,c2 · · · ̂q1t,cK

̂q2t,c1
̂q2t,c2 · · · ̂q2t,cK

...
...

. . .
...

̂qntt,c1
̂qntt,c2 · · · ̂qntt,cK

⎤

⎥

⎥

⎥

⎥

⎦

(7)

where ̂qjt represents the probability of assigning xjt to each of K
classes and j = 1, 2, . . . , nt. There should be high probabilities
of assigning target samples to the source shared classes. On the
contrary, there should be low probabilities of assigning target
samples to the source outlier classes. In order to identify the
outlier classes, we average the class probabilities q̂t over all
target samples to obtain the source class-level weights. The
class with high weight is likely to be shared class while the
class with low weight is likely to be outlier class. We then
normalize these weights as follows:

ηck =
1

nt

∑nt
j=1
̂

qjt,ck

1

nt

∑

ck∈Cs
∑nt

j=1
̂

qjt,ck

(8)

where ηck is normalized source kth source class weight. η =
{ηc1, ηc2 , . . . , ηcK } represent source class-level weights.

Third, for target samples at the reweighting layer, we assign
a soft label to each target feature gjt and weight it with its

corresponding maximum probability in ̂qjt. That is to say, the

jth target instance has the soft label ̂yjt ∈ Cs and the weight

φj = max
(

̂

qjt
)

. (9)

The target instance-level weights are denoted as φ = {φj}ntj=1.
The higher the weight of the target feature, the more likely its
soft label is to be true. If each target sample is labeled with one
specific class (hard label) and weighted by a constant (i.e., 1),
it may raise the problem of false alignment, since the reweight-
ing network may make a mistake predicting some samples due
to large domain shift. Especially, when some target samples lie
in the overlapping area of two classes of distributions, assign-
ing hard labels to these samples and weighting them by a
constant would destroy target data structures.
Although the obtained source class-level weights in (8) and

target instance-level weights in (9) can contribute to transferring
knowledge from shared source classes and alleviating the neg-
ative impact of outlier source classes, these weights highly rely
on the probabilities q̂t. Hence, inspired by [18], [20], and [39],
we employ the entropy minimization principle to refineCy. This
principle encourages low-density separation between classes
such that Cy can improve itself to better evaluate target unla-
beled instances and achieve more accurate probabilities q̂t with
minimal prediction uncertainty. For each target instance, it can
be implemented by minimizing the entropy loss

H
(

Cy

(

gjt
))

= −
K
∑

k=1

̂qjt,ck log
̂qjt,ck . (10)

Thus, plugging (10) into (4), we can have the following loss
function to train Cy instead of (4):

Lc(xs, ys, xt) = 1

ns

ns
∑

i=1

L
(

Cy
(

gis
)

, yis
)+ 1

nt

nt
∑

j=1

H
(

Cy

(

gjt
))

.

(11)

C. Dual Alignment Network

With the reweighted source and target features from the
reweighting network, source outlier samples would be down-
weighted and source shared samples would be upweighted.
The dual alignment network aims to match joint distributions
across domains. The intra domain alignment attempts to mini-
mize the distance between each instance and its corresponding
intraclass centroid for source and target domains, respectively.
The inter domain alignment includes domain-wise alignment
and class-wise alignment.
For intradomain alignment, our goal is to make the learned

features in the intermediate domain preserve the intrinsic data
structure and the class constraints. That is to say, the features
with the same label should be close to the corresponding clus-
ter centroid for both domains. To develop an effective loss
term, we first need to determine the centroids for all source
and target classes, respectively. Then, for source domain, the
loss using the hard labels can be formulated as

Ls
intra =

K
∑

k=1

1

nks

∑

yis=ck

∥

∥

∥ηckg
i
s − Ok

s

∥

∥

∥

2
(12)

where

Ok
s = 1

nks

∑

yis=ck

ηckg
i
s. (13)

Notably, Ok
s is the cluster centroid of source class ck calcu-

lated by mean value, and 1/nks , as the penalty coefficient, is
associated on the distances to balance the effects of different
classes. If this coefficient is not involved, the classes over-
represented by enough training instances would play a more
important role than that under-represented by only a few. The
raised imbalance problem usually results in the degradation
of transfer performance on the target domain. Therefore, we
attempt to address this problem when the source and target
data are imbalanced. For the target domain, the loss using the
soft labels can be obtained by

Lt
intra =

K
∑

k=1

1
̂nkt

∑

̂yit=ck

∥

∥

∥φi
̂git −̂Ok

t

∥

∥

∥

2
(14)

where

̂Ok
t = 1

̂nkt

∑

̂yit=ck

φi
̂git. (15)

For the source domain, we aim to minimize the discrepan-
cies between weighted instances and the centroid in the same
class for all classes, which can make the classes discriminative
and alleviate the effects of source-specific instances. Similar to
the source domain, we embed the instance-level weights such

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 14,2021 at 19:48:15 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

that the target instances with high weights would have more
important contributions to enhance the intra class compactness
and the errors introduced from wrongly predicted target labels
can be reduced. The intradomain alignment loss term of both
domains can be denoted as

Lintra = Ls
intra + Lt

intra. (16)

Clearly, by minimizing Lintra, the instances with the same label
would form compact clusters for both the source and target
domains.
For inter domain alignment, the domain-wise alignment

network maps a d-dimensional representation to a real number
with parameter θdw, that is, hdw: Rd → R. Given gs = M(xs)
and gt = M(xt), the WD with gradient penalty weighted by η

between two representation distributions, that is, Pgs and Qgt
can be calculated using (3)

W1
(

Pgs ,Qgt

) = sup
‖hdw‖≤1

Ex∼Pgs [Fs] − Ex∼Qgt
[Ft]

+ λEzg∼Z

[

(

∥

∥∇zgFz
∥

∥

2
− 1
)2
]

(17)

where Fs = hdw(η gs);Ft = hdw(φgt);Fz = hdw(zd); source
sample xis with label ck have a corresponding class-level weight
ηck ; and zd are random feature representations sampled along
the straight line between pairs of gs and gt. If the parameter
of the domain-wise alignment network θhg is 1-Lipschitz, the
WD can be estimated by maximizing the global alignment loss
Ldw with parameter θdw and balancing coefficient λdw

Ldw(xs, xt) = 1

ns

∑

xs∈Ds

hdw(η gs) − 1

nt

∑

xt∈Dt

hdw(φgt)

+ λdw

(

∥

∥∇zghdw
(

zg
)∥

∥

2
− 1
)2

(18)

where λ is a balancing coefficient.
However, reducing the discrepancy at the domain level can-

not guarantee that the same classes from different domains are
pulled close together [18]. To address this problem, it would
be necessary to do the class-wise alignment. The class-wise
alignment network focuses on matching conditional distri-
butions to further explore diverse structures hidden in class
characteristics. We have source feature representations with
class-level weights and hard labels, as well as target feature
representations with instance-level weights and soft labels.
If the parameter of the class-wise alignment network θcw is
1-Lipschitz, the WD can be estimated by maximizing the
class-wise alignment loss Lcw with parameter θcw = {θkcw}Kk=1
and balancing coefficients {λkcw}Kk=1

Lcw(xs, xt) =
K
∑

k=1

⎧

⎪

⎨

⎪

⎩

1

nks

∑

xs∈Ds
k

hkcw
(

ηck g
k
s

)

− 1
̂nkt

∑

xt∈̂Dt
k

hkcw
(

̂φk̂gkt
)

+ λkcw

(

‖∇zkc
hkcw
(

zkc
)

‖2 − 1
)2

⎫

⎪

⎬

⎪

⎭

(19)

where nks is the number of source instances with hard label k;
Ds
k indicates all the source instances with hard label k; ̂nkt is the

Algorithm 1 Dual Alignment for PDA
Require: source data (Xs,Ys), target data Xt, K source classes

ck ∈ Cs, k = 1, . . . ,K, the minibatch size m, train-
ing step of reweighting network T , training step of dual
alignment networks A, balancing coefficients α = 1 and
β = 1, learning rate for reweighting network and Siamese
network γ1, learning rate for dual alignment networks γ2.

1: Initialize Siamese network, reweighting network, and dual
alignment network with random parameters θg, θc, and
θinter

2: repeat
3: Sample minibatch {(xis, yis)}mi=1 from (Xs,Ys)
4: Sample minibatch {xit}mi=1 from Xt

5: for t = 1, 2, . . . ,T do
6: θc ← θc − γ1∇θcLc

7: end for
8: for a = 1, 2, . . . ,A do
9: gs ← M(xs), gt ← M(xt), (ŷt, q̂t) ← C(gt)

10: Sample zg as the random representations between
pairs of gs and gt

11: θinter ← θinter + γ2∇θinterLinter

12: end for
13: θg ← θg − γ1∇θg [Lc + αLintra + βLinter]
14: until θc, θg, and θinter converge

number of target instances with soft label k; ̂Dt
k represents all

the target instances with soft label k; ̂gkt includes the target fea-
tures with soft label k and their corresponding instance-level
weights ̂φk; zkc are random feature representations sampled
along the straight line between pairs of gks and ̂gkt .
We denote the loss term for the interdomain alignment as

Linter = Ldw + Lcw with the parameters θinter = {θdw, θcw}.
The alignment can be achieved by solving the problem

max
θinter

Linter (20)

where balancing coefficients λdw and {λkcw}Kk=1 should be set
to 0 at the end of each iteration of optimizing the maximum.
It is because the gradient penalty ought not to guide other
learning procedures.

D. Overall Objective

The overall objective of our proposed DAPDA method is
as follows:

min
θg,θc

{

Lc + αLintra + β max
θinter

Linter

}

(21)

where α and β are two balancing coefficients. Algorithm 1
shows the detailed training and testing procedures of our
proposed method. The overall objective can be achieved by
the standard backpropagation training approach with a two-
step iteration. We first train the reweighting network, which
can be optimized through minimizing the classification loss
with labeled source samples. Second, we apply the trained
classifier to predict soft labels of target data such that out-
lier source samples can be downweighted as well as the
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Fig. 2. Illustration of several image examples for (a) Office-31 dataset [40], (b) Office-Caltech dataset [41], and (c) Office-Home dataset [42].

soft labels and instance weights for target samples can be
obtained. Then, the inter domain alignment network can be
optimized by maximizing the estimators of WDs with gradient
penalty via gradient ascent. After this iteration, the balanc-
ing coefficients in θinter are set to 0. The Siamese network is
finally updated by the combination of the minimized classi-
fication loss, the minimized intradomain alignment loss, and
the maximized estimated WDs. The learned feature represen-
tations can be domain invariant and class discriminative based
on dual alignment.

IV. EXPERIMENTS

A. Experimental Settings

Datasets: Our proposed DAPDA method is evaluated on
three widely used real-world datasets: 1) Office-31 [40];
2) Office-Caltech [41]; and 3) Office-Home [42]. Fig. 2 shows
several image examples for these three datasets.
We first validate DAPDA on the Office-31 dataset, which

is a standard benchmark for domain adaptation and com-
posed of 4652 images and 31 classes. Three distinct domains
are involved: 1) Amazon (A); 2) Webcam (W); and 3)
DSLR (D), which include images downloaded from ama-
zon.com, taken with Web camera, and picked up by digital
SLR camera, respectively. We follow the experimental set-
tings of [17] and [19], taking one domain with 31 classes
as the source domain and another domain with ten classes
(which are shared by Office-31 and Caltech-256) as the target
domain to enable adaptation. Hence, six transfer tasks across
three domains are conducted: A31 → W10, A31 → D10,
D31 → A10, D31 → W10, W31 → A10, and W31 → D10.
Second, we validate DAPDA on the Office-Caltech dataset

released by [41], which consists of ten common classes shared
by Office-31 and Caltech-256 datasets. The experimental set-
tings of [17] are also applied, taking one domain with ten
classes as the source domain and another domain with the
first five classes as target domain to enable adaptation. For
the partial adaptation of Office-Caltech, we perform 12 tasks
across four domains: A10 → C5, A10 → D5, A10 → W5,
C10 → A5, C10 → D5, C10 → W5, D10 → A5, D10 → C5,
D10 → W5, W10 → A5, W10 → C5, and W10 → D5,
in which the numbers of image samples from Amazon (A),
Caltech (C), DSLR (D), and Webcam (W) are 958, 1123,
157, and 295, respectively. Thereinto, A, D, and W domains

are from Office-31, and C domain comes from Caltech-256. In
addition, we further conduct experiments on the Office-Caltech
dataset in the standard full protocol.
To evaluate it on a large-scale dataset, we design several

transfer tasks on the Office-Home dataset, which contains
15 500 images crawled via a few search engines and online
image directories. This dataset has four domains: 1) Artistic
(Ar); 2) Clipart (Cl); 3) Product (Pr); and 4) Real-World (Rw)
images, where each domain includes images from 65 object
classes. In each transfer task, one domain with all 65 classes
can be considered as the source domain, and another domain
with the first 25 classes can be taken as the target domain.
Thus, for the partial adaptation of Office-Home, 12 trans-
fer tasks can be performed: Ar65 → Pr25, Ar65 → Cl25,
Ar65 → Rw25, Cl65 →Pr25, Cl65 → Ar25, Cl65 → Rw25,
Pr65 → Ar25, Pr65 → Cl25, Pr65 →Rw25, Rw65 →Pr25,
Rw65 →Ar25, and Rw65 → Cl25.

Benchmark Methods: For PDA, we compare our proposed
DAPDA with the baseline that fine-tuning the CNN (e.g.,
AlexNet [43] and ResNet-50 [44]), and several deep domain
adaptation methods: WDGRL [14], ADDA [31], Reverse
Gradient (RevGrad) [28], RTN [30], IWANs [17], SAN [18],
domain adversarial neural network (DANN) [45], deep adapta-
tion network (DAN) [13], joint adaptation network (JAN) [46],
PADA [19], and ETN [20].
As we all know, in the dual alignment network, the proposed

DAPDA with the intra domain alignment only and without the
interdomain alignment would perform worse than vice-versa
since the distribution gap is not reduced. Moreover, we also
would like to explore the effect of the entropy minimization
principle for DAPDA. Therefore, to further demonstrate the
effectiveness of DAPDA with respect to the inter domain align-
ment and the entropy minimization principle, three variants are
evaluated by ablation study: 1) DAPDA-CW is the variant with
the entropy minimization principle and class-wise alignment
only, and without domain-wise alignment; 2) DAPDA-DW
is the variant with the entropy minimization principle and
domain-wise alignment only, and without class-wise align-
ment; and 3) DAPDA-N-EN is the variant with class-wise and
domain-wise alignments, without the entropy minimization
principle.
For full-domain adaptation, the compared methods are

DANN, DAN, WDGRL, and distribution matching machines
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TABLE II
AVERAGE ACCURACY (%) OF PDA TASKS ON THE OFFICE-31 DATASET (ALEXNET)

TABLE III
AVERAGE ACCURACY (%) OF PDA TASKS ON THE OFFICE-CALTECH DATASET (ALEXNET)

(DMM) [47], our proposed method with the metric of MMD
(Ours-MMD) [29], our proposed method with the metric of
correlation alignment (Ours-CORAL) [48], in which Ours-
MMD indicates the DAPDA with the MMD metric and Ours-
CORAL represents the DAPDA with the metric in CORAL
(i.e., the second-order statistics).
Implementation Details: Following the standard protocols,

we use all labeled source data and unlabeled target data
for unsupervised domain adaptation. All our models are
implemented using TensorFlow and trained by Adam opti-
mizer. For a fair comparison, we fine-tune the AlexNet
and ResNet-50, respectively, which are both pretrained on
the ImageNet dataset similar to previous domain adaptation
approaches [17], [19]. For DAPDA, we fine-tune the two
subnetworks of the Siamese network, which is the standard
multiplayer perceptron network designed with two hidden lay-
ers of 500 and 100 nodes for all datasets. The reweighting
network is built with one hidden layer of 100 nodes, relu acti-
vation function, and softmax output function. Our interdomain
alignment network is designed with a hidden layer of 100
nodes. The training steps of reweighting network T and dual
alignment networks A are 10 and 5, respectively. The learn-
ing rates γ1 and γ2 are 10−4. The gradients are penalized
at source, target, and random representations. The balancing
coefficients of gradient penalty λdw and {λkcw}Kk=1 are all set to
10 as suggested in [38].
For each method, the batch size of each domain is set to

be 64, and a fixed learning rate is 10−4. We report the aver-
age classification accuracy results of each transfer task over

three random experiments. The values of hyperparameters are
selected based on their original papers.

B. Results

Tables II–V show the average results of the compared and
our proposed methods for PDA, where the results of IWAN,
SAN, PADA, and ETN are copied directly from their corre-
sponding original papers. The best results are marked in bold.
To a large extent, our proposed DAPDA method performs bet-
ter than previous domain adaptation methods, such as AlexNet,
WDGRL, ADDA, RevGrad, and RTN. Furthermore, it can be
comparable to some state-of-the-art PDA approaches, such as
IWAN, SAN, PADA, and ETN on most datasets.
Table II shows the detailed comparison results of these

methods using AlexNet as the baseline on the Office-31
dataset. Our proposed DAPDA method outperforms all the
other methods. Specifically, the average classification accu-
racy of DAPDA is 94.99%, and DAPDA achieves significant
performance enhancements of 7.72% and 13.45% compared
to the best PDA method IWAN as well as the best full
domain adaptation method ADDA, respectively. We note that
the PDA methods perform better than the full-domain adap-
tation methods. The average results of our proposed two
variants of DAPDA also are better than most of the compared
methods. DAPDA-CW has a slightly better performance than
DAPDA-DW since the local characteristics associated with the
categories of the Office-31 dataset can greatly contribute to
distribution alignment.
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TABLE IV
AVERAGE ACCURACY (%) OF PDA TASKS ON THE OFFICE-31 DATASET (RESNET-50)

TABLE V
AVERAGE ACCURACY (%) OF PDA TASKS ON THE OFFICE-HOME DATASET (RESNET-50)

Similar to Table II, Table III shows the average classifi-
cation accuracies of several methods using AlexNet as the
baseline for 12 partial transfer tasks on the Office-Caltech
dataset. DAPDA achieves better performance than most com-
pared methods in 10 out of 12 partial transfer tasks, and it
also achieves the second highest accuracy in the remaining
two tasks. It can be noted that the performance of the baseline
is better than the full-domain adaptation methods, including
WDGRL, RevGrad, and RTN. This phenomenon indicates the
importance of picking out the source outlier classes such that
the errors of misalignment can be alleviated.
In Table IV, we use the ResNet-50 as the baseline on the

Office-31 dataset. DAPDA performs slightly worse than ETN
but better than the other methods in the average accuracy. No
notable degradation is observed compared to state-of-the-art
methods. It can be noted that the worst performing method is
WDGRL shown in these three tables. That is because WDGRL
first aligns the distributions of source and target domains based
on the WD criterion and then predicts the labels of target
samples, which is not suitable for partial adaptation problem.
Starting with alignment without considering the influence of
source outliers could easily cause domain confusion and faulty
alignment. This also happens to RevGrad based on adversar-
ial nets and RTN based on the MMD metric. WDGRL and
RevGrad perform worse than standard AlexNet since negative
transfer caused by source outliers is not considered. They try
to match source and target domains, including matching the
source outliers and target data to predict labels of target sam-
ples in outlier classes as much as possible. ADDA, IWAN,

SAN, PADA, and ETN are all adversarial nets-based meth-
ods, playing minimax game between feature extractors and
domain classifiers by the GRL layer. ADDA is an unweighted
version of IWAN and thus performs worse than IWAN in
detecting source outlier samples. IWAN and PADA focus on
selecting out outliers with class-level weights but both of them
match different domains without considering latent structures
hidden in each class. While SAN uses separate domain clas-
sifier for each class to explore the latent structures ignoring
intra class compactness. ETN performs well by embedding
the source sample weights in the source classifier and the
domain-adversarial network.
The average classification accuracies of DAPDA and other

comparisons on the Office-Home dataset are listed in Table V.
It is worth noting that DAPDA obtains the best performance in
9 out of 12 transfer tasks. We observe that DAPDA enhances
the average performance by huge margins not only on Office-
Caltech and Office-31 datasets both with small domain gaps
but also on Office-Home with large domain gaps. The dual
alignment strategy makes DAPDA generalize well on the
unlabeled target data.
To further illustrate the effectiveness of our proposed

DAPDA, as an example, we visualize the learned feature rep-
resentations using AlexNet as the baseline in A10→C5 task
on the Office-Caltech dataset in Table II. In Figs. 3 and 4,
the ten classes are labeled as 0–9 and five shared classes are
0–5 classes. In Fig. 3, the blue dots indicate source samples
in shared classes and the green dots represent source samples
in source outlier classes. The orange dots belong to target
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Fig. 3. t-SNE visualization of learned features of compared and proposed
methods for A10→C5 task on the Office-Caltech dataset. The blue, green,
and orange dots represent the source shared samples, source outlier samples,
and target samples. The orange dots are expected to be aligned with the blue
dots. (a) AlexNet. (b) RTN. (c) IWAN. (d) DAPDA-CW. (e) DAPDA-DW.
(f) DAPDA.

Fig. 4. t-SNE visualization of learned features of compared and proposed
methods for A10→C5 task on the Office-Caltech dataset. Each color rep-
resents a class. The dots with the same color are expected to be aligned.
(a) AlexNet. (b) RTN. (c) IWAN. (d) DAPDA-CW. (e) DAPDA-DW.
(f) DAPDA.

domain. The adaptation is achieved if the orange dots are
scarcely aligned with green dots but well aligned with blue
dots. In Fig. 4, the dots with the same color belong to the same
class for both domains. The alignment is performed effec-
tively if intra class dots have the same color and interclass dots
have different colors. To preserve the target domain structure,
RTN and IWAN both use target domain entropy minimization
strategy to encourage low-density separation among classes.
Figs. 3(b) and (c) and 4(b) and (c) show the target samples
are not spread to all classes but RTN cannot effectively ensure

Fig. 5. Parameter sensitivity on the task W31 → A10, A10 → C5,
Ar65 → Pr25, and Pr65 → Cl25. (a) Parameter α. (b) Parameter β.

Fig. 6. For task A10 → C5. (a) Loss and accuracy values with respect to
the number of iterations (x10). (b) Loss values with respect to the number of
iterations (x10).

the intraclass compactness and IWAN misses more source
outlier samples. The variants of our proposed methods only
consider one style of alignment, that is, DAPDA-CW focuses
on class-wise alignment shown in Figs. 3(d) and 4(d) and
DAPDA-DW focuses on the domain-wise alignment shown in
Figs. 3(e) and 4(e). Figs. 3(f) and 4(f) verify that our proposed
DAPDA method selects out most source outlier samples and
simultaneously ensures the interclass separation as well as
intra class compactness.
For parameter sensitivity, there are two tunable parameters:

1) α and 2) β, where α controls the balance between the intra
domain loss and the other losses, and β controls the balance
between the inter domain loss and the other losses. We have
conducted parameter sensitivity analysis on four transfer tasks:
1) W31 → A10; 2) A10 → C5; 3) Ar65 → Pr25; and 4)
Pr65 → Cl25. From Fig. 5, it can be seen that DAPDA could
achieve good performance under a range of parameter values.
First, we run DAPDA as α varies from 0.001 to 10 when
β = 1. From Fig. 5(a), we can observe that the small α values
would contribute to improving the accuracy and the too large
α values would degrade the performance. That is because it
will weaken the effects of interdomain loss term. Next, from
Fig. 5(b), we evaluate DAPDA by varying β from 0.001 to
10 with α fixed to 1. It can be observed that small β val-
ues would result in poor performance but reasonable β values
would enhance the accuracy. Note that DAPDA is more sensi-
tive to β than α, and this guides us to determine α ∈ [0.01 5]
and β ∈ [0.1 5]. In the experiments, we empirically set
α = β = 1.
For convergence analysis, we give an example on the trans-

fer task A10 → C5. Fig. 6(a) shows the changing trends of
interdomain loss, intra domain loss, and the accuracy of soft
labels with respect to the number of iterations. Our proposed
DAPDA method converges fast on the test target data. We also
plot the changing trend of the classifier loss, interdomain loss,
intradomain loss, and the total loss with respect to the number
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TABLE VI
AVERAGE ACCURACY (%) OF FULL-DOMAIN ADAPTATION TASKS ON THE OFFICE-CALTECH DATASET (ALEXNET)

(a) (b)

(c) (d)

Fig. 7. For the task A31 → W10, histograms of class weights learned by
(a) ResNet-50, (b) DANN, (c) PADA, and (d) DAPDA.

of iterations in Fig. 6(b). As we can see, DAPDA converges
to the lowest test error within 80 iterations.
To demonstrate if the trained classifier Cy can correctly

reweight source classes according to whether they are in the
shared label space, we give an example in Fig. 7 of this
response. It shows the histograms of class weights learned
using ResNet-50, DANN, PADA, and DAPDA on the task
A31 → W10. The blue bins indicate source outlier classes,
and the orange bins represent source shared classes in the
shared label space. From Fig. 7(a) and (b), note that ResNet-
50 and DANN can hardly select out outlier classes since there
is not a sharp distinction between weights for outlier classes
and that for shared classes. As shown in Fig. 7(c), we know
that PADA can better distinguish the source outlier and shared
classes. However, some weights for the shared classes are still
below 0.5, such as Classes 10, 16, and 19. In the meanwhile,
some outlier weights are higher than expected, such as Classes
1, 7, 8, and 31. To compare these methods, Fig. 7(d) shows the

mean value of learned weights, that is, {(1/nt)∑nt
j=1
̂

qjt,ck}Kk=1,
which are the source class-level weights before normalization
in DAPDA. We can note that the weights for the shared classes
are almost up to 1 and the weights for the outlier classes are
close to 0. The low weights for source outlier classes can
greatly alleviate the raised negative transfer.
To evaluate the influence of the number of shared classes

on performance, we also conduct the experiments to com-
pare classification accuracies by varying the number of target
classes. Fig. 8 shows that our proposed three methods outper-
form the AlexNet and IWAN to a large extent on A31→W10

Fig. 8. Accuracy curve of varying the number of target classes for
A31→W10 task using AlexNet as the baseline in Table II.

Fig. 9. t-SNE visualization of learned features of compared and proposed
methods for A→C task on the Office-Caltech dataset. The blue and orange
dots represent source and target samples, respectively. The orange dots are
expected to be aligned with the blue dots. (a) DANN. (b) Ours-MMD. (c)
Ours-CORAL. (d) DAPDA.

transfer task using AlexNet as the baseline. As the number
of target classes get smaller, the performances have relatively
better improvements. Our proposed DAPDA method shows an
“even” best performance.
To verify our proposed DAPDA on the full-domain adapta-

tion setting, we further conduct experiments on the Office-
Caltech dataset. The average classification accuracies are
shown in Table VI, which manifests that DAPDA still has
superiority in the standard full protocol. That is because we
design DAPDA to not only align the source and target domains
as much as possible but also explore the class-invariant
information in the shared label space of both domains. The
results also show that DAPDA outperforms the Ours-MMD
and Ours-CORAL such that the effectiveness of WD can be
demonstrated. Moreover, we visualize the learned feature rep-
resentations of several methods for A→C transfer task in
Table VI. From Figs. 9 and 10, it can be observed that DAPDA
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Fig. 10. t-SNE visualization of learned features of compared and proposed
methods for A→C task on the Office-Caltech dataset. Each color represents
a class. The dots with the same color are expected to be aligned. (a) DANN.
(b) Ours-MMD. (c) Ours-CORAL. (d) DAPDA.

better aligns source and target domains than other compared
methods.

V. CONCLUSION

In this article, we proposed a novel DAPDA. DAPDA can
effectively select out source outlier samples and learn domain-
invariant feature representations to explore latent structures
under different data distributions across domains. The data
distributions can be aligned as domain-wise and class-wise
manners. The domain discrepancy can be effectively reduced
using the metric of Wasserstein distance with the gradient
penalty. The experimental results on some datasets demon-
strate that DAPDA outperforms several state-of-the-art PDA
methods. From feature visualization results, the great learning
capability of DAPDA is manifested in capturing domain-
invariant and target-discriminative representations. From the
accuracy curve result, DAPDA shows even high performance.
For future work, we will integrate DAPDA into existing
domain adaptation frameworks, and investigate architectures
for tasks in more complex scenarios.
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