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Abstract—This article investigates the global stabilization
problem of Takagi-Sugeno fuzzy memristor-based neural
networks with reaction—diffusion terms and distributed time-
varying delays. By using the Green formula and proposing fuzzy
feedback controllers, several algebraic criteria dependent on the
diffusion coefficients are established to guarantee the global expo-
nential stability of the addressed networks. Moreover, a simpler
stability criterion is obtained by designing an adaptive fuzzy
controller. The results derived in this article are generalized and
include some existing ones as special cases. Finally, the validity
of the theoretical results is verified by two examples.

Index Terms—Distributed delays, fuzzy memristor-based neu-
ral networks (NNs), reaction—diffusion, stabilization.

I. INTRODUCTION

EMRISTOR, first predicted by Chua in 1971 [1], has

found its ever-increasing practical values since it was
successfully invented by the HP laboratory in 2008 [2]. It
has been proved to be an ideal element to act as the neu-
ral synapse in circuits of neural networks (NNs), in view of
its superiorities of nanoscale dimension, unified logical oper-
ation and information storage, and memory characteristic [3].
Recently, the circuit as well as the model of memristor-
based NNs (MNNs) have been proposed to replace the
conventional NNs in applications, such as optimization prob-
lems [4]-[7], memristor-based learning [8]-[11], and signal
processing [12]-[16].
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As pointed out in [17], the dynamics research of MNNs
is essential and significant for their successful applications.
These days, the dynamical behaviors of MNNs have been
widely investigated, including stability [18]-[20], dissipativ-
ity [21]-[23], and synchronization [24]-[27]. Besides, the
stabilization of MNNs has also attracted increasing concern
and several excellent results have been reported [28]-[32].
Specifically, the exponential stabilization of MNNs was stud-
ied under various control approaches [28]-[30]. Then, the
Mittag—Leffler stabilization was analyzed for fractional-order
MNNs [31]. Later, Wang ef al. [32] extended the asymptotic
stabilization to finite-time stabilization for delayed MNNs.

The Takagi—Sugeno (T-S) fuzzy system, first introduced
in [33], had played a vital role in applications of modeling
and control [34]-[36]. Recently, the T-S fuzzy rules have
been applied to MNNs and lots of accomplishments have
been made. For instance, the fuzzy method was first adopted
in [37] to investigate the adaptive lag synchronization for
MNNs and an application was presented in pseudorandom
number generators. In [38], the exponential stabilization and
synchronization were studied for T-S fuzzy MNNs (FMNN5)
under intermittent control. In [39], the Lagrange stability was
analyzed for FMNNSs on time scales. Further, the stabilization
of FMNNs was fully addressed with bounded and unbounded
distributed time-varying delays in [40]. Then based on the
comparison strategy in [40], Sheng et al. [41] further studied
the Lagrange exponential stability and finite-time stabilization
for FMNNs with discrete and distributed time-varying delays.
In [42], the synchronization control problem of FMNNs
with distributed delays was fully discussed. Nevertheless, the
reaction—diffusion is not involved in the above-mentioned
results.

In fact, the diffusion phenomenon is unavoidable due to the
fact that dynamical behaviors of MNNs typically rely on the
evolution time and space of the system states. For instance,
due to the information transmission in a heterogeneous elec-
tromagnetic field, the circuits of MNNs appear as the effect
of the space-distributed structure [43]-[45], which is com-
monly presented as the reaction—diffusion terms [46]-[49].
Considering this fact, it is essential and critical to con-
sider the reaction—diffusion terms in qualitative analysis of
MNNs. By taking into account the reaction—diffusion terms,
Tu et al. [50] studied the synchronization of memristor-based
reaction—diffusion NNs (MRDNNSs) via utilizing the adap-
tive control method. In [51], the passivity was addressed for
delayed MRDNNSs and several conditions were derived in the

2168-2267 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authonzed licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 14,2021 at 19:49:42 UTC from IEEE Xplore. Restrictions apply.



WANG ef al.: GLOBAL STABILIZATION OF FMRDNNs

form of linear matrix inequalities. Further, the robust stabil-
ity of uncertain MRDNNSs with leakage delays was discussed
in [52]. It is worth noting that the distributed time delays are
neglected in the above results of MRDNNSs [50]-[52]. Due to
the parallel pathways with axon sized and lengths in circuits
of MNNSs, the distributed time delays are inevitable and it is of
great necessity to involve them in stability analysis of MNNs
or MRDNNSs [53].

From the above analysis, it is necessary and important to
investigate the dynamics for FMNNs considering both the
reaction—diffusion terms and distributed delays. However, up
to now, there is little work on this topic. Actually, by tak-
ing into account the fuzzy rules, the reaction—diffusion terms,
and the distributed delays, the considered fuzzy MRDNNSs
(FMRDNNSs) are viewed as a class of delayed fuzzy partial dif-
ferential systems. Thus, it is difficult to analyze the dynamical
behaviors for these kinds of complicated systems. Specifically,
it remains unsolved and challenging for the stability analysis
of FMRDNNs with distributed delays.

Motivated by the above discussions, this article aims
to explore the stabilization problem for FMNNs with the
reaction—diffusion terms and distributed delays. By virtue of
the Green formula and inequality technique, several algebraic
criteria are established to guarantee the global exponential sta-
bility of the addressed networks using designed fuzzy feedback
controllers. The main contributions are three-fold.

1) Since the fuzzy rules, reaction—diffusion terms, and dis-
tributed delays are all considered, the FMRDNNs in
this article complement and extend those without fuzzy
rules in [11] and [17]-[32], FMNNs without reaction—
diffusion terms [37]-[40] and MNNs without distributed
delays [11], [17], [19], [20], [22], [24]-{29], [32].

2) The derived algebraic criteria in this article can be eas-
ily checked due to the introduction of a large number
of parameters. They also show superiority over those
in [40], on account of the fact that the criteria in [40]
rely on the time and may bring constraint in practical
testification.

3) The obtained results in this article are general and
include existing ones in [24] and [54] as special cases.

The remainder of this article is given as follows. The pre-
liminaries, including the model formulation and the problem
description, are introduced in Section II. In Section III, the
main stabilization results of FMRDNNs are presented and
some discussions and comparisons with existing work are pro-
vided. Then, two numerical examples are shown in Section I'V.
Finally, Section V draws the conclusions.

II. PRELIMINARIES

In this article, the solutions of all systems are under-
stood in the sense of Filippov. Ry and R" denote the
set of all non-negative real numbers and the n-dimensional
Euclidean space, respectively. Define a set as A =
{1,2,...,A}, where A is a constant, and A turns out to
be N,Q,L,J, T when constant A is chosen as constants
nQ,LJ, and . A = {(z1,22,---,20) llzgl < Y4, q €
@} is bounded compact set with smooth boundary 3A
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and the measure mesA > 0. C([—u,0] x A, R") denotes
the Banach space of continuous functions, and define the
norm [0, )l = (f5SUp_,<p<0 2 pey lp(@,2)[*d2)"/"
for w(0,z) € C,t = 2. For any w(t,z) € R", define
Iwt, Dl = (fx X pt [wp (@, 7)|7dz)!/*. Define two sets
Qxp) = {pllxpl < Xl Q(xp) = {xp”xp| > Xp} with
constants xp > 0,p e N. apq = max{| | |a [} bpg =

max{|by,|, 1b5,1}, Epg = max{|cy,l, lc,,}-

A. Model

Consider the following FMRDNNSs with discrete and dis-
tributed delays.

Fuzzy Rule I: If () is B, ...,

THEN

Y
aw (t 2) 3 awp(t, ) <I=
o :Z:: %( 7 )_d”lw"“’m

and €;(t) is 2}

=

+ ) ap(wp(t, 2)fi (Wi (1, 2))
1

-
= |

-+

bk (Wp (1, 2)) gk (Wi (t — pi(1), 2))

=

= |

—

he (Wi (8, 2))de (1)

t
+ Cpk (wp (, Z)) f
t

k=1 —ok(®)

where pe N ke N, lel.z= (zl,zg,...,ZQ)T e A CRC
epg = 0 is the transmission diffusion parameters with the pth
neuron. The real value L is the number of fuzzy IF-THEN
rules, ¢ and E}, j € I are, respectively, the premise vari-
ables and fuzzy sets. wy(f, ) is the state variable at time ¢ and
space Z. pi(f) is the discrete delay and pi(f) is the distributed
delay. fi, gk, hk € R are the neuron activation functions and
Ji(0) = gr(0) = h(0) = 0. ﬂfd> > 0 is the self-feedback
coefficient, api(wp(t, 2)), pk(wp(t 2)), and cp(wp(t,2)) are
the memristor-based weights and take values as aﬁc, bp , and
i if Wp(t, 2) € Q(Wp(t,2)), or otherwise ., by, and ¢y if
wp(t, 2) € Q(wp(1, 2)).

Then, we present
system (1).

Assumption 1: The nonlinear functions f, gk, and hy are
continuous, and there exist positive constants Fy, Gi, and Hy
such that

the following assumptions for

eCxx) — fe )| < Frlxe — yil
|8k (k) — g | < Gie|xk — Ykl

| (xi) — hic(yi)| < Hi|xk — il (2)

for any x;,y; € R,k e N.

Assumption 2: The discrete delays p(f)(k < N)
are bounded, and there exist constants p; and p2 such
that

0 < () < p1, pr(t) < p2 < L. 3)
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Assumption 3: The distributed delays gr(H)(k € N) are
bounded and there exist constants g; and g> such that

0<or® <o1,0k(H) <02 <1 )

Then by the fuzzy blending, system (1) can be transferred
to the following differential system:

awp(t, 2)
at
L o
a aw,(t, 2) [
=) ne®) —(s p—) —d57wy(t,2)
+ Y apk(wp (1, 2)fe Wi (. 2))
k=1
+ ) bpk(wp(t. 2) gk Wi (t — pr(0), 2))
k=1
n t
+) cpk(wp(t.2)) f hk(Wk(9,Z))d9]
k=1 t—gk(1)
()
where
[T Ej(60)
yi(e(®) = (6)
Y ML Ej‘(ﬁf(f})
and E}(Ej(l)) is the grade of membership of ¢;(f) in Ej

Then, it follows that y;(e(f)) > 0( IL),Z‘;;] y(e(®) =
1. System has the initial conditions wp(t,z) = 0 for
(t,z2) € [—p,+00) x 3A, and wp(t,2) = wp(6,2)
for #,7) € [—w,0] x A, where = max{p1,01},
©0,2) = @10.2), 0.2, ..., 0u0,2)T e C is
bounded.

Remark 1: The FMRDNNs model
cle is general and it contains the
[11], [17], [19], [21], [23]-[25], [27]-[29], [32], and [42]
and MRDNNs in [50]-[53] as special cases. In addi-
tion, the FMRDNNs reduce to the conventional
RDNNs in [46]-[48] if the distributed delays are
unbounded and the fuzzy logics and memristors are not
involved.

in this arti-
MNNs in

B. Problem Description

Since the reaction—diffusion terms, fuzzy logics, and mem-
ristors are all involved in system (1), it is general and definitely
performs more complex dynamical behaviors compared with
most of the existing models. It then comes out the natural
question: how to guarantee the stability and stabilizability of
such kind of complicated systems. Suppose the trajectories of
system (1) or (5) do not converge to the origin, then we design
the following fuzzy controller:

Z Z Vi)MWt 2) ™
I=1 k=1

where Jx“” € R and l;;” <0,peNkeN,leL.

up(t, z) =
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Then together with (5) and (7), it follows that:

dwp(t, 2)
ot
L Qo
3 dw,(t, 2)
=) n(e®) —(s "—)
E ;% P 9z,

. d;bwp(f, )+ Z apk(wp(f, Z))fk(wk(fs 2)
k=1

+ Y bpr(Wp(t, 2)) Wi (t — pr(1), 2))
k=1

n t
+) cpk(wp(t.2) f hi (Wi (6, 2))d0
k=1 t—ok(f)

n
+Y aEw o) | (8)
k=1

Then, the global stabilization problem of system (1) can
be turned into the stability problem of system (8). Finally, a
useful lemma is presented as follows.

Lemma 1 [46]: Given A = {z = (21,22, ---,20)" ||z| <
T4, q € Q) with smooth boundary A, constant r > 2 and
function 7 (z) € C'(A) with 7(Z)[aan = 0, then for g €

?.TZ

fbr(z)rdzs f|rr()|f 2% oy (9)
A q

III. MAIN RESULTS

In this section, we establish the conditions to guarantee the
global stabilization of FMRDNNs under designed fuzzy con-
trollers (7) and (28). On the other hand, we also make some
comparisons between our results and those in two published
papers. For convenience, we first define functions

ap(v)

0
P =I=
Z_z —td,
g=1 q
T—1

o TUmpk =T Umpk T Wk rwmpk “Tmpk ++TKmpk
3 D3 e )
=1

=TTy 45,8
& rue iy Bip "G e
& kp P 1—p
+ &, "Hy 70107
-0

where ’gp >0,7>2, ‘jmpk-s f-’mpk, zz’ﬂmpka E\a—mpky ’émpka anfi ’}mpk
are non-negative constants with Zm_] Umpk = D pq Umpk =
Zm—l mek - Zm—l WOmpk = Zm—] Kmpk = Zm:l Kmpk = 1
formeT,p,kelN.

Then, the following two sections show the derived results
and comparisons, respectively.
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A. Global Stabilization Results of FMRDNNs

Theorem 1: Suppose that Assumptions 1-3 hold. Given
constant T > 2, system (1) is globally exponentially stabiliz-
able under controller (7), if there exist non-negative constants
Nmpksm € T,p,k € N, with Y7 | gmpt = 1, and constant
&, > 0 such that for any [ € LL

n T—
ap(O) -I—‘.'.’J\.q'} + Z Z |A;’g>|ﬂ?mpk
k=1,k#p m=1

+ Z Sk |A<‘> Ty _ (),
k=1 k;ép
Proof: Consider the following functions:

Z Z |l<l> T Ninpk

k 1,k#£p m=1

+ > g
k= lk;‘-—p
where 9, > 0 for p € N. From (11), we can see that ', () is
increasing with #, on [0, +00). Then, there exists ¢, such that
I'p(¢p) = 0 in light of I',(0) < 0 and limy,— 400 p(Pp) =
+00. Choose ¢ = minyen{gy}, then

(10)

Tp(9p) = Op + TA5l +ap(9

(an

Tp(@) = ¢ +Thy” @)+ ) D I
k=1,ks£p m=1
—~ &
+ Y =g <.
k=1,kzp P
Consider the Lyapunov—Krasovskii functional

V(1)

= f Zsp(wp(r, 2)
A

(12)

n Erérrpkcrérmkewpl .
T i M Sy
= 1—pm pi(0)

“TKT-"*Herkg‘PQI

pk
Z -0

0 t
X f
—ok(f) Jt+¢

where Wy (t,2) = €' |w,(t, 2)I".
Since

Wi(8, Z)dﬁ'dg) dz (13)

L, WA, 2)
f Z jwy(t, ) 2sz

B f a|wp(r I,

L Zn{em)

=1

Y]
] awp(t, 7)
x | Tw,(t, 2)|"2wy(t, 7) x E —(.9 p—)
et DI wp oz P4 8z,

— td5 wy(t, D)
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n
+ ) tapFilwy(t, )] wi e, 2)|
k=1

n
+ ) thpuGrlwy (8, )| Wit — pi(0). 2)|

k=1
+chpka|wp(r 9]k 1[ Wi (6, 2)|d6
k=1 t—ok(f)

+ Z TS Wp(t, 2w, Wit 2) | dz

(14)

Then based on the Green formula [55] and Lemma 1, it
follows:

awp (1,
f T Iwp (0, 2 2wy (1, z)z (p(;%)dz
q

T B 3 dlwy(t, 2)|2
:f =|wp(t, 2)|° ZZ[—(SPQ—)
A2 —_ azg azg
dwp(t,2)\*
— Zsm(;—zq) i|dZ
[
_ ] alwy(t, 2)|
= wy(t, 2)|*! —(s —)dz
AH P | ;azq M oz,

alw, (t e
= f T|w,(t, z)l‘_ldiv(sm—lwp( ’Z”) dz
A 324 g=1

alw,(t ¢
:'rf (|wp(x, z)|r_lquM) ds
A 92q g=1

a
—(r — 1)[ W (t, 2)|"~ 22 pq( p Z)') dz

Q

d(r — gy .
<> X5 [ mora (1s)
g=1 4
where div is the divergence operator and
alwp (1. 2)[\ ¢ alwp(t, 2)| Awp(t, )|
v =\, T )
g g=1 71 20

Considering that Y 7 | Umpk = Y 5y Umpk = L,p.k € N,

then

n

>tk Filwp(t, )" Wi 2. 2)|
k=1
n - +1 - ~ +\ ~
o Ulpk+U2pk+-+Vrpk Ulpk+U2pk+-+Vrpk
<D Tl Fy
k=1

—1
x [wp(t, )" wi(t, 2)

n -1

o TUmpk T Umpk
<)) @y w1, )

klm—

+Z“””’* ™ w1, 2)] (16)
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Then, similar to (16), the following three inequalities are
derived under Y, | Dmpk = Dy i Tmpk = Dy Kmpk =
Dot Kmpk = gy Mpk = 1,p, K €N:

n

D thpkGilwp (1, )7 Wi(t — pi(0), 2)|

k=1
n t—1
<3 > BTG w2
k=1 m=1
n
+) BTG it — (), DI an
k=1
n t
D wpiHilwp (1, 2)* f Wi (6, 2)]d6
k=1 t—gi(t)
n t—1
< 33 T o (0w 1, DI
k=1 m=1
" .,rifrp;( I:},Pk t -
+) 6 T H, f Wi (8, 2)|°d6 (18)
k=1 t—ok(f)

n

D s iwp(t, 2T 2wy (2, Wi, 2)
k=1

n t—1
I
Do DT w2

k=1,kstp m=1

I
< TAs 1w, (1, )|

n
+ Y AT et D))"
k=1,k#p

(19)

Then, we can obtain the upper right derivation of V(f) along
trajectories of system (8) that

+ @lwp (1, z)l’)dz

¢ 3wy (t, )|
D+V(I)EL;§pe@f(pT
[

p=1 k=1
“'CEJ' rw
bpk Tpk Gk TPk P!

X | ——— Wi (t,2)
1—p

— BTG PP Wit — pi(0), 2)

E.”(rpkH”}rpk £%el
pk k
T ——
l1—g

Tt
x | ox(t) Wi(8, 2)d0 + o (D Wi(t, 2)
t—oi(t)

0
- f Wit + g,z)dg) & (20)
—ak(t)
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Combining with (14)—20), it gives

DHV() < f ZZn(e(r))

p=1I=1

Q
4t — 1)epg
o\ o

q=1
n -1 ; .
<l> <l> o TUmpk T Umpk
—Td” AT Y ) @™ Ry
k=1 m=1
n -1
rwmpk rwmpk
225
k=1 m=1
n -1
TRk +4TK, k
+22 G H ™ e
k=1 m=1
n —1
DDl i
k=1,kstp m=1
n . . n
LTU 47)
| Doy, T Y AT
k=1 k=1,ks£p

n
x Wtz + [ 3t
A p=1
(Zbrm-"" erpfr x |wi(t — pr(0), 2)|°
t
ul'Kr k .”(r k
+ THT f
Z t—gk(f)
s

Wi (6, Z)I’dﬁ')dz

p=1 k=1
brwmkerrPkewpl
k k
x | B———Wi(t,2)
1—p
— b TG P Wit — pi(0), 2)
uri(rp;(errka (f)é’gagl
+ Wi(t, 2)

1—0;

- = f
_E;:rp;c H;Kr.vkeml f Wi(0, 2)do |dz
t—gi(1)

f Z Z Vi(ED)ET,((9)) Wy (t, 7)dz. 1)

p—l.l'l

Then, it follows from (12) and (21) that D*V(f) < 0, which
means for any f € R

f Y &W,(t.2)dz < V() < V(0)
T —
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then

£ L > e wp(t, )| dz
p=1

Twrpk G;wrpk £%P1

=\ Z W, (0, |7 + Z P G 7 =

JTKrpk 5, TKTpk
n C ™ Hk P evel

0
xf e |wi (0, z)|fd9+z rk
—p1 -0

0 0
x f f e w6, 2)[7d8dc |dz
elrvye

which yields that

n
f > e |wy(t.7)["dz
A
p=l1
'.'.'E{J'rkp rwr;(p
Gp e;opl

3
Efz Wy (0, 2)I° +Z R

<[
_ -0

0 0
xf f e’ |lw,(8,2)|"d6dg |dz
<

—n

n ,rxrkp rxrkp
H e¥e1
lwp(0, 2)|"d6 + Z —_

0,7)|"d 22
=¢ A :‘LIEI;J{OZI%( ol @2
where & = max,{£,},§ = min,(£,}, and ¢ = £/€ max,

(1+X5 l(b"""‘*’Gm‘*”ewm JA—p)+ 35, @ (“”“PH““P

e u?) /(1 — @)}
Then, from (22), one obtains

e, Dl < 6" o@Dl exp{ =21} @3)

which means system (8) is globally exponentially stable on
account of definition in [46]. The proof is completed. |

Remark 2: Theorem 1 presents the criteria for global sta-
bilization of FMRDNNs via the Green formula and some
inequality techniques. The criteria are in the algebraic form
and can be easily checked due to the introduction of a large
number of parameters. Besides, they are better compared to
those in [40] and [47], where the former ones rely on the time
and bring difficulties in verifying, and the latter ones adopt
many complicated matrices.

Remark 3: From (11), it is not hard to see that the cri-
teria related to the fuzzy interconnected control gains of
controller (7). To simplify the calculation, we introduce
another special case of the controller (7) and thus obtain
Corollaries 1 and 2.

If the fuzzy controller (7) reduces to the following form:

L
Up(t,2) =D V(DA wy(1,2)
I=1

(24)
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where )L;b < 0,p € N, I € L. Then, Corollary 1 is the direct
result of Theorem 1.

Corollary 1: Suppose that Assumptions 1-3 hold. Given
constant T > 2, system (1) is globally exponentially stabiliz-
able under controller (24), if there exists constant &, > 0 such
that forany pe N,/ e L

@ (0) + TAS> < 0. (25)

Corollary 2: Suppose that Assumptions 1 and 2 hold and
or(f) = 0. Given constant T > 2, system (1) is globally
exponentially stabilizable under controller (24), if there exist
non-negative constants &, > 0, Umpk, Umpk. Dmpk, Dmpk. M €

T, p, k € N, with 37 | Umpk = 2w Umpk = Dy Dmpk =
> m—1 @mpk = 1, such that for any / € LL
_4(t —D Z STPQ d<l> -I—‘.'.’l<l>
T — T
n —1 ; . ; .
w TUmpk T Umpk = T mpk T T
_|_ Z(apkw Fk i +bpk P Gk Pk)
k=1| m=1
Y T@rkp T Wrkp
§k v"'-"-"rkp ri"rkp kp GP
—\|a F, 0.
+ gp kp )2 + 1— 0 =<
(26)

By using Young’s inequality to handle the cross terms
in (14), Corollary 3 can be obtained.

Corollary 3: Suppose that Assumptions 1-3 hold. Given
constant T > 2, system (1) is globally exponentially stabiliz-
able under controller (24), if there exists constant £, > 0 such
thatforanypEN lelL

Epq <[> =<I=
Z T2~ td, " +Th,
g=1 q

+ Z[(r - 1)(5'ka}¢ + by Gy + Qlcpka)

. bipGp . tipHpo1
45 lipFp + 22 4 SepQL) |
& l—p; 1-e
@7

Remark 4: Under the linear feedback controller (7)
or (24), it is obvious that the conditions in Theorem 1 and
Corollaries 1-3 always hold if the control gains are chosen to
be large enough. Thus, to efficiently adjust the control gains
so that save control cost, we introduce another adaptive con-
trol approach in (28). Moreover, we will show that the criteria
under the proposed adaptive controller in Theorem 2 is more
simple than those in Theorem 1.

The adaptive controller is presented as follows:

L
=" vile@)rs" t, Dwp(t, 2)
=1

up(t, z)

x> (t.2)
at
where g;“ >0,peN,lelL.

=~ 2wyt 2 (28)
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Theorem 2: Suppose that Assumptions 1-3 hold. Given
constant T > 2, then system (1) is globally asymptotically
stabilizable under controller (28).

Proof: Consider the Lyapunov—Krasovskii functional

V() = fa Zsp[wp(r, 1k
p=1

N ; r;;j?) (5.2 + E;‘”)Z

¥ T@rpk ~TWTpk
t
Z Ch
1
.,r;(rp;(er,Pk

+Z"1_

X f f IWk(G,z)Irdﬁ'dg]dZ (29)
—ok(t) Jt+¢

,p € N,l €L are constants defined by

lwi(8, 2)|"do
t—pk(t)

where §<f>

ap(0) — rEp<.l'> + ﬁ;b =0

(30)
with B> > 0,pe N,/ L.
Then similar to the proof of Theorem 1, it follows:

DYV < - f ZZ V(e )EpB" wp(t, 2)|"dz
=1 I=1
<0 (31)
which means system (1) is globally asymptotically stabilizable
under controller (28). The proof is completed. |
Remark 5: In [50], the synchronization of MRDNNs with
discrete delays was studied under the adaptive controller. If
the distributed delays and fuzzy rules are not involved in
system (1), then [50, Th. 3.1] is the direct result of Theorem 2.
Remark 6: The results in this article are more general
compared to those in [50]-[53], where the stability and syn-
chronization of MRDNNs were widely discussed. On the one
hand, the distributed delays are neglected in [50]-[52] and the
fuzzy rules are not considered in [53]. On the other hand,
all conditions [50]-[53] are in terms of 2-norm while 7-norm
(r = 2) is adopted in this article.

B. Comparisons

In this part, to show the improvement of our results com-
pared with existing ones, we give the following comparisons.

If system (1) acts without reaction—diffusion terms, dis-
tributed delays, and fuzzy rules [24], that is

ép() = — dpep (D) + Y apk(ep()f(ex (1))

k=1
+Z

k(ep(D)8x(ex(t — pi(1))) (32)
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its stabilizability can be addressed under

Uy (f) = mpep(l) (33)

with the control gain 7, p € N, which leads to Corollary 4.
Corollary 4: Suppose that Assumptions 1 and 2 hold.
Given constant T > 1, system (32) is globally expo-
nentially stabilizable under controller (33), if there exist
constants m, < 0, & >0 and non-negative constants
Umpks Umpks Dmpk> @mpk.m € T, p, k € N, with 3 7 | Oppk =
D=1 Umpk = 3 et Dmpk = 3 _ppy @mpk = 1, such that

—(dp — 7p)

n . N
T Umpk T ka T T mpk ~T Dmpk
+ 2 : 2 :( i+ b G

m=1
YTy Tl
€k [ 1o kp T Utk bkp Gp
— F, 7"y 0. (34
+ E, Gp Fp T ” <0. (34

Remark 7: Zhang and Shen [24] studied the exponential syn-
chronization of MNNs with discrete delays. The advantages of
our results compared to those in [24] are two-fold.

1) MNNs in [24] do not involve the reaction—diffusion
terms, distributed delays, and fuzzy rules, while
system (1) in this article consider the three factors. To
this extent, our system is more general.

2) Note that Corollary 4 includes [24, Th. 1] as special
case. On the basis of condition (34), if we choose d, =
1, Uppk = (1 —2pk) / (T (x—1)), Upk = (t—Bpk)/(x (1 —
D). Bupe = (T — Cp)/(T(x — 1), e = (T —
i)pk);“(t(r —1)), I:H'Ep = mkpf‘r, D'{kp = £kaf‘7y E”rkp =
Cip /T, Wrkp = Dip/t,m € T, p, k € N, then Corollary 4
turns into [24, Th. 1].

If system (1) acts without memristors, reaction—diffusion

terms, distributed delays, and fuzzy rules, that is

&p(t) = —dpep(t) + ) _ apific(ex(r)
k=1

+ ) bpkgi(er(t — pi(1))) (39)

k=1

its stability can be solved and the result is given in Corollary 5.

Corollary 5: Suppose that Assumptions 1 and 2 hold. Given
constant T > 1, system (35) is globally exponentially stable,
if there exists constant &, > 0 such that for any p e N

n
—dpt + Y _(r — 1)(|apk|Fi + |bpk|Gr)
k 1

5k( |bkp|Gp)
+ 0.

Remark 8: If we choose T = 1 and t = 2, then Corollary 5
turns into [54, Ths. 4 and 5], respectively.

(36)

IV. NUMERICAL SIMULATIONS

Two examples are provided to show the effectiveness of the
results obtained in the previous section.
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w (£, 2)

Fig. 1.

Trajectories of states wq(f, z) and wo (¢, z) in system (37).

Example I: Consider the FMRDNNs with discrete and
distributed delays

3Wp (t,2)
at

_Zw(e(r))[gp ( 9 d;‘>wp(r,z)

+ Z apk (Wp(t, 2))fe Wi (2, 2))

k=1
2
+ ) bk (Wp(t, ) gk Wit — pr(0), 2)
k= l
+ Zc,,k wp(1, 2)) f hk(wk(g,z))dg]
k=1 1—egk(1)

(37

where p,l = 1,2,6; = &, = 0.1, z € A = [-5,5], df'> =
d<2> = 1,dl<2> = 1.2, d,fl} = 0.9, xn=x= 1, aj; = 1-3,

bn = 2.3, b2_2 = —2.5, c“ =06, cj; = 0.5, c;fz = 0.15,
¢, =0.18, ¢f; = =2, ¢y = 2.1, cgz =—0.1, c; = —0.2,

yi(w) = 1 — 0.1sin(w)”, p(w) = 0.lsin(w)4, the delays
pr(f) = exp(f)/(1 + exp(#)), or(f) = 1, and activation func-
tions fi(-) = gk(-) = hk(-) = tanh(-), k = 1, 2. It follows from
Assumptions 1-3 that Fj, = G, =H,=1,pp =0.25,p; =1,
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wy(t, z)
L | |

0.8 —

0.8 —

¥

0.2

us(t, z)

t{s)

Fig. 2. Trajectories of states wy(f,z) and wa(f,z) in system (37) under
controller (38).

02 = 0. Fig. 1 depicts the trajectories of the state vari-
ables wy (2, z) and wa(t, z) in system (37), which implies that
system (37) is unstable.

Then, design the controllers

2
=Y yie®)rsZwy(t, 2)

up(t, ) (38)
I=1
where the gains are chosen as A7!> = —7.5,A7%
~7.3,A51> = —9.8, and 152> = —9.7. And
2
Up(1,2) = Y Y€ (8, Wy (1, 2)
I=1
015" (1,2)
—L = w9 (39)

at
where (> = 5,p,1 = 1,2. Then, X1(1,2) = A{™>(t,2) and

M(.2) =257 (2. 1=1,2.
Choose 7 = 2,§, = l,ﬁlpk = Upk = Ulpk = Upk =
Dipk = Wk = Wipk = Wk = Kipk = Kpk = Klpk =

Kkypk = 0.5,p,k = 1,2, it is easy to check that the condi-
tions of Corollary 1 hold. Then, the results of Corollary 1
show that system (37) is globally exponentially stabilizable
via the fuzzy controller (38). Also the results of Theorem 2
show that the global stabilization result for system (37) under
controller (39). The trajectories of states variables wy (f, z) and
wa(t, z) under controllers (38) and (39) are shown in Figs. 2
and 3, respectively. From Figs. 2 and 3, we can see that under
controller (38) or (39), the states in system (37) converge to
zero as time goes to infinity. Finally, the trajectories of control
gains A1(f, z) and Aa(f, z) in adaptive controller (39) are given
in Fig. 4.
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ables wy (f, z) and wa(t, 2) in system (40), which implies that

system (40) is unstable.
Then, design the controllers

2
up(t,z) = Z VI(G(t)))“;bwp(t’ z) 41

=1

=2 z
t(s)
:j;'.
o 0 20 E 40 w ©
o 10 20 30 At s0 al t(s)
t(s)
Fig. 4. Trajectories of control gains Aj(f,z) and Ap(f,z) in adaptive
Fig. 3. Trajectories of states wq(f,z) and wy(f,z) in system (37) under controller (39).
controller (39).
Example 2: Consider the 2-D FMRDNNs with discrete
delays
wp(t,2) w
at 5
= 92w, (t, 7)
=> n(e(t))[sp# —d5Pw,(t,2)
=1
2
+ 3 ap(Wp(t, 2))fewi(t, 2))
k=1
2
+ ) bpk(wp(t, 2) g (t — pi(0), z))] (40)
k=1
where p, [ =1,2,61 =& =0.1,z€ A = [-5,5], df'> =1, £
5> =12, d51> = +1 s> =09, x = 0.5,+;.(2 =3, s
aj; =2, a; =138, aj;, = 0.1, a, = —0.2, a5; = -5,
ay = —49, aj, =3, a5, = 2.5, bf; = —1.5, b}, = —1.2,
"’g@ = —0.1, by, = —0.08, bj;, = —0.2, b;; = —0.19,
— - — — ; 2 t(s)
by, = —2.5? 5222 = —24, yy(w) = 1 — 0.1sin(w)",
y2(w) = 0.1sin(w)”, the delay pr(f) = exp(n)/(1 + exp(7)), Fig. 5. Trajectories of states wy(f, z) and wo(f, 7) in system (40).
and activation functions fr(-) = gk(-) = tanh(-),k = 1,2. It
follows from Assumptions 1-3 that Fy = Gy = 1, p» = 0.25,
and g, = 1. Fig. 5 depicts the trajectories of the state vari- yhere the gains are chosen as A7!> = —5.6, A7

—5.4,251> = —7.7, and ;%> = —7.8. And

2
up(1,2) = Y yie®)r;" (1, Dwp(t, 2),
=1

N5 (1,2) B
at -

—£7 > w2, 2) 42)
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u‘l{t: .Z}

t{s)

Fig. 6. Trajectories of states wq(f,z) and wy(f,z) in system (40) under
controller (41).

wy(t,z)

t(s)

0.8 —

o 10 20 30 40 &0 e

t{s)

Fig. 7. Trajectories of states wq(f,z) and wy(f,z) in system (40) under
controller (42).

where ¢> = 5,p,1 = 1,2. Then, A1(1,2) = A{™>(t,2) and
M) =rA . 1=1,2.

Choose 7 = 2,§, = 1, Ulpk Uzpk Ulpk Uzpk =
Dipk = Wpk = Wipk = wopk = 0.5,p,k = 1,2, it is easy
to check that the conditions of Corollary 2 hold. Then, the
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1.2
1.4
1.6 —
18
o
i
1
2-
=
E e
5 -
-8 — 5
T =
o 10 20 30 40 50 e
t(s)
Fig. 8. Trajectories of control gains Aj(f,z) and Ap(f,z) in adaptive

controller (42).

results of Corollary 2 show that system (40) is globally expo-
nentially stabilizable via the fuzzy controller (41). Also the
results of Theorem 2 show that the global stabilization result
for system (40) under controller (42). The trajectories of states
variables wi (¢, z) and w2(%, z) under controllers (41) and (42)
are shown in Figs. 6 and 7, respectively. From Figs. 6 and 7,
we can see that under controller (41) or (42), the states in
system (40) converge to zero as time goes to infinity. Finally,
the trajectories of control gains A1 (f, z) and A2 (f, z) in adaptive
controller (42) are given in Fig. 8.

V. CONCLUSION

The global stabilizability problem has been discussed for
FMRDNNs by adopting the fuzzy set theory, Lyapunov sta-
bility theory, and Green formula. Under some inequality
techniques, and designed fuzzy controllers, several easily ver-
ified criteria have been derived. It is noted that the obtained
results are general and include some existing ones as special
cases. Finally, two examples have been carried out to show
the effectiveness of the presented results.

Since intermittent feedback control methods can save
control cost, future work will focus on the stabilization
and synchronization problems of FMRDNNs via intermit-
tent control. Moreover, the finite-time or fixed-time stabi-
lization and synchronization problems of FMRDNNs with
stochastic disturbances will also be considered in the
future.
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