

Global Stabilization of Fuzzy Memristor-Based Reaction–Diffusion Neural Networks

Leimin Wang[✉], Member, IEEE, Haibo He[✉], Fellow, IEEE, Zhigang Zeng[✉], Senior Member, IEEE, and Cheng Hu[✉], Member, IEEE

Abstract—This article investigates the global stabilization problem of Takagi–Sugeno fuzzy memristor-based neural networks with reaction–diffusion terms and distributed time-varying delays. By using the Green formula and proposing fuzzy feedback controllers, several algebraic criteria dependent on the diffusion coefficients are established to guarantee the global exponential stability of the addressed networks. Moreover, a simpler stability criterion is obtained by designing an adaptive fuzzy controller. The results derived in this article are generalized and include some existing ones as special cases. Finally, the validity of the theoretical results is verified by two examples.

Index Terms—Distributed delays, fuzzy memristor-based neural networks (NNs), reaction–diffusion, stabilization.

I. INTRODUCTION

MEMRISTOR, first predicted by Chua in 1971 [1], has found its ever-increasing practical values since it was successfully invented by the HP laboratory in 2008 [2]. It has been proved to be an ideal element to act as the neural synapse in circuits of neural networks (NNs), in view of its superiorities of nanoscale dimension, unified logical operation and information storage, and memory characteristic [3]. Recently, the circuit as well as the model of memristor-based NNs (MNNs) have been proposed to replace the conventional NNs in applications, such as optimization problems [4]–[7], memristor-based learning [8]–[11], and signal processing [12]–[16].

Manuscript received May 21, 2019; revised August 23, 2019; accepted October 13, 2019. Date of publication November 13, 2019; date of current version October 26, 2020. This work was supported in part by the National Natural Science Foundation of China under Grant 61703377, in part by the State Scholarship Fund of China Scholarship Council under Grant 201806415020, and in part by the National Science Foundation under Grant ECCS 1917275. This article was recommended by Associate Editor T. Huang. (Corresponding author: Haibo He.)

L. Wang is with the School of Automation, China University of Geosciences, Wuhan 430074, China, and also with the Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, China University of Geosciences, Wuhan 430074, China (e-mail: wangleimin@cug.edu.cn).

H. He is with the Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 02881 USA (e-mail: he@ele.uri.edu).

Z. Zeng is with the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China (e-mail: zgeng@hust.edu.cn).

C. Hu is with the College of Mathematics and System Sciences, Xinjiang University, Xinjiang 830046, China (e-mail: wacheng2003@163.com).

Color versions of one or more of the figures in this article are available online at <http://ieeexplore.ieee.org>.

Digital Object Identifier 10.1109/TCYB.2019.2949468

As pointed out in [17], the dynamics research of MNNs is essential and significant for their successful applications. These days, the dynamical behaviors of MNNs have been widely investigated, including stability [18]–[20], dissipativity [21]–[23], and synchronization [24]–[27]. Besides, the stabilization of MNNs has also attracted increasing concern and several excellent results have been reported [28]–[32]. Specifically, the exponential stabilization of MNNs was studied under various control approaches [28]–[30]. Then, the Mittag–Leffler stabilization was analyzed for fractional-order MNNs [31]. Later, Wang *et al.* [32] extended the asymptotic stabilization to finite-time stabilization for delayed MNNs.

The Takagi–Sugeno (T–S) fuzzy system, first introduced in [33], had played a vital role in applications of modeling and control [34]–[36]. Recently, the T–S fuzzy rules have been applied to MNNs and lots of accomplishments have been made. For instance, the fuzzy method was first adopted in [37] to investigate the adaptive lag synchronization for MNNs and an application was presented in pseudorandom number generators. In [38], the exponential stabilization and synchronization were studied for T–S fuzzy MNNs (FMNNs) under intermittent control. In [39], the Lagrange stability was analyzed for FMNNs on time scales. Further, the stabilization of FMNNs was fully addressed with bounded and unbounded distributed time-varying delays in [40]. Then based on the comparison strategy in [40], Sheng *et al.* [41] further studied the Lagrange exponential stability and finite-time stabilization for FMNNs with discrete and distributed time-varying delays. In [42], the synchronization control problem of FMNNs with distributed delays was fully discussed. Nevertheless, the reaction–diffusion is not involved in the above-mentioned results.

In fact, the diffusion phenomenon is unavoidable due to the fact that dynamical behaviors of MNNs typically rely on the evolution time and space of the system states. For instance, due to the information transmission in a heterogeneous electromagnetic field, the circuits of MNNs appear as the effect of the space-distributed structure [43]–[45], which is commonly presented as the reaction–diffusion terms [46]–[49]. Considering this fact, it is essential and critical to consider the reaction–diffusion terms in qualitative analysis of MNNs. By taking into account the reaction–diffusion terms, Tu *et al.* [50] studied the synchronization of memristor-based reaction–diffusion NNs (MRDNNs) via utilizing the adaptive control method. In [51], the passivity was addressed for delayed MRDNNs and several conditions were derived in the

form of linear matrix inequalities. Further, the robust stability of uncertain MRDNNs with leakage delays was discussed in [52]. It is worth noting that the distributed time delays are neglected in the above results of MRDNNs [50]–[52]. Due to the parallel pathways with axon sized and lengths in circuits of MNNs, the distributed time delays are inevitable and it is of great necessity to involve them in stability analysis of MNNs or MRDNNs [53].

From the above analysis, it is necessary and important to investigate the dynamics for FMNNs considering both the reaction–diffusion terms and distributed delays. However, up to now, there is little work on this topic. Actually, by taking into account the fuzzy rules, the reaction–diffusion terms, and the distributed delays, the considered fuzzy MRDNNs (FMRDNNs) are viewed as a class of delayed fuzzy partial differential systems. Thus, it is difficult to analyze the dynamical behaviors for these kinds of complicated systems. Specifically, it remains unsolved and challenging for the stability analysis of FMRDNNs with distributed delays.

Motivated by the above discussions, this article aims to explore the stabilization problem for FMNNs with the reaction–diffusion terms and distributed delays. By virtue of the Green formula and inequality technique, several algebraic criteria are established to guarantee the global exponential stability of the addressed networks using designed fuzzy feedback controllers. The main contributions are three-fold.

- 1) Since the fuzzy rules, reaction–diffusion terms, and distributed delays are all considered, the FMRDNNs in this article complement and extend those without fuzzy rules in [11] and [17]–[32], FMNNs without reaction–diffusion terms [37]–[40] and MNNs without distributed delays [11], [17], [19], [20], [22], [24]–[29], [32].
- 2) The derived algebraic criteria in this article can be easily checked due to the introduction of a large number of parameters. They also show superiority over those in [40], on account of the fact that the criteria in [40] rely on the time and may bring constraint in practical testification.
- 3) The obtained results in this article are general and include existing ones in [24] and [54] as special cases.

The remainder of this article is given as follows. The preliminaries, including the model formulation and the problem description, are introduced in Section II. In Section III, the main stabilization results of FMRDNNs are presented and some discussions and comparisons with existing work are provided. Then, two numerical examples are shown in Section IV. Finally, Section V draws the conclusions.

II. PRELIMINARIES

In this article, the solutions of all systems are understood in the sense of Filippov. \mathcal{R}_+ and \mathcal{R}^n denote the set of all non-negative real numbers and the n -dimensional Euclidean space, respectively. Define a set as $\mathbb{A} = \{1, 2, \dots, A\}$, where A is a constant, and \mathbb{A} turns out to be $\mathbb{N}, \mathbb{Q}, \mathbb{L}, \mathbb{J}, \mathbb{T}$ when constant A is chosen as constants n, Q, L, J , and τ . $\Delta = \{(z_1, z_2, \dots, z_Q)^T \mid |z_q| < \Upsilon_q, q \in \mathbb{Q}\}$ is bounded compact set with smooth boundary $\partial\Delta$

and the measure $\text{mes}\Delta > 0$. $\mathcal{C}([-\mu, 0] \times \Delta, \mathcal{R}^n)$ denotes the Banach space of continuous functions, and define the norm $\|\omega(\theta, z)\|_\tau = (\int_{\Delta} \sup_{-\mu \leq \theta \leq 0} \sum_{p=1}^n |\omega_p(\theta, z)|^\tau dz)^{1/\tau}$ for $\omega(\theta, z) \in \mathcal{C}$, $\tau \geq 2$. For any $w(t, z) \in \mathcal{R}^n$, define $\|w(t, z)\|_\tau = (\int_{\Delta} \sum_{p=1}^n |w_p(t, z)|^\tau dz)^{1/\tau}$. Define two sets $\Omega(x_p) = \{x_p \mid |x_p| \leq \chi_p\}$, $\bar{\Omega}(x_p) = \{x_p \mid |x_p| > \chi_p\}$ with constants $\chi_p > 0, p \in \mathbb{N}$. $\check{a}_{pq} = \max\{|a_{pq}^+|, |a_{pq}^-|\}$, $\check{b}_{pq} = \max\{|b_{pq}^+|, |b_{pq}^-|\}$, $\check{c}_{pq} = \max\{|c_{pq}^+|, |c_{pq}^-|\}$.

A. Model

Consider the following FMRDNNs with discrete and distributed delays.

Fuzzy Rule l: If $\epsilon_1(t)$ is Ξ_1^l , ..., and $\epsilon_J(t)$ is Ξ_J^l THEN

$$\begin{aligned} \frac{\partial w_p(t, z)}{\partial t} = & \sum_{q=1}^Q \frac{\partial}{\partial z_q} \left(\varepsilon_{pq} \frac{\partial w_p(t, z)}{\partial z_q} \right) - d_p^{<l>} w_p(t, z) \\ & + \sum_{k=1}^n a_{pk}(w_p(t, z)) f_k(w_k(t, z)) \\ & + \sum_{k=1}^n b_{pk}(w_p(t, z)) g_k(w_k(t - \rho_k(t), z)) \\ & + \sum_{k=1}^n c_{pk}(w_p(t, z)) \int_{t - \varrho_k(t)}^t h_k(w_k(\theta, z)) d\theta \quad (1) \end{aligned}$$

where $p \in \mathbb{N}, k \in \mathbb{N}, l \in \mathbb{L}$. $z = (z_1, z_2, \dots, z_Q)^T \in \Delta \subset \mathcal{R}^Q$. $\varepsilon_{pq} \geq 0$ is the transmission diffusion parameters with the p th neuron. The real value L is the number of fuzzy IF-THEN rules, ϵ_j and $\Xi_j^l, j \in \mathbb{J}$ are, respectively, the premise variables and fuzzy sets. $w_p(t, z)$ is the state variable at time t and space z . $\rho_k(t)$ is the discrete delay and $\varrho_k(t)$ is the distributed delay. $f_k, g_k, h_k \in \mathcal{R}$ are the neuron activation functions and $f_k(0) = g_k(0) = h_k(0) = 0$. $d_p^{<l>} > 0$ is the self-feedback coefficient, $a_{pk}(w_p(t, z))$, $b_{pk}(w_p(t, z))$, and $c_{pk}(w_p(t, z))$ are the memristor-based weights and take values as $a_{pk}^+, b_{pk}^+,$ and c_{pk}^+ if $w_p(t, z) \in \Omega(w_p(t, z))$, or otherwise a_{pk}^-, b_{pk}^- , and c_{pk}^- if $w_p(t, z) \in \bar{\Omega}(w_p(t, z))$.

Then, we present the following assumptions for system (1).

Assumption 1: The nonlinear functions f_k, g_k , and h_k are continuous, and there exist positive constants F_k, G_k , and H_k such that

$$\begin{aligned} |f_k(x_k) - f_k(y_k)| &\leq F_k |x_k - y_k| \\ |g_k(x_k) - g_k(y_k)| &\leq G_k |x_k - y_k| \\ |h_k(x_k) - h_k(y_k)| &\leq H_k |x_k - y_k| \quad (2) \end{aligned}$$

for any $x_k, y_k \in \mathcal{R}, k \in \mathbb{N}$.

Assumption 2: The discrete delays $\rho_k(t), k \in \mathbb{N}$ are bounded, and there exist constants ρ_1 and ρ_2 such that

$$0 \leq \rho_k(t) \leq \rho_1, \dot{\rho}_k(t) \leq \rho_2 < 1. \quad (3)$$

Assumption 3: The distributed delays $\varrho_k(t)(k \in \mathbb{N})$ are bounded and there exist constants ϱ_1 and ϱ_2 such that

$$0 \leq \varrho_k(t) \leq \varrho_1, \dot{\varrho}_k(t) \leq \varrho_2 < 1. \quad (4)$$

Then by the fuzzy blending, system (1) can be transferred to the following differential system:

$$\begin{aligned} \frac{\partial w_p(t, z)}{\partial t} &= \sum_{l=1}^L \gamma_l(\epsilon(t)) \left[\sum_{q=1}^Q \frac{\partial}{\partial z_q} \left(\varepsilon_{pq} \frac{\partial w_p(t, z)}{\partial z_q} \right) - d_p^{<l>} w_p(t, z) \right. \\ &\quad + \sum_{k=1}^n a_{pk}(w_p(t, z)) f_k(w_k(t, z)) \\ &\quad + \sum_{k=1}^n b_{pk}(w_p(t, z)) g_k(w_k(t - \rho_k(t), z)) \\ &\quad \left. + \sum_{k=1}^n c_{pk}(w_p(t, z)) \int_{t-\varrho_k(t)}^t h_k(w_k(\theta, z)) d\theta \right] \end{aligned} \quad (5)$$

where

$$\gamma_l(\epsilon(t)) = \frac{\prod_{j=1}^J \Xi_j^l(\epsilon_j(t))}{\sum_{l=1}^L \prod_{j=1}^J \Xi_j^l(\epsilon_j(t))} \quad (6)$$

and $\Xi_j^l(\epsilon_j(t))$ is the grade of membership of $\epsilon_j(t)$ in Ξ_j^l . Then, it follows that $\gamma_l(\epsilon(t)) \geq 0(l \in \mathbb{L})$, $\sum_{l=1}^L \gamma_l(\epsilon(t)) = 1$. System has the initial conditions $w_p(t, z) = 0$ for $(t, z) \in [-\mu, +\infty) \times \partial\Delta$, and $w_p(t, z) = \omega_p(\theta, z)$ for $(\theta, z) \in [-\mu, 0] \times \Delta$, where $\mu = \max\{\rho_1, \varrho_1\}$, $\omega(\theta, z) = (\omega_1(\theta, z), \omega_2(\theta, z), \dots, \omega_n(\theta, z))^T \in \mathcal{C}$ is bounded.

Remark 1: The FMRDNNs model in this article is general and it contains the MNNs in [11], [17], [19], [21], [23]–[25], [27]–[29], [32], and [42] and MRDNNs in [50]–[53] as special cases. In addition, the FMRDNNs reduce to the conventional RDNNs in [46]–[48] if the distributed delays are unbounded and the fuzzy logics and memristors are not involved.

B. Problem Description

Since the reaction–diffusion terms, fuzzy logics, and memristors are all involved in system (1), it is general and definitely performs more complex dynamical behaviors compared with most of the existing models. It then comes out the natural question: how to guarantee the stability and stabilizability of such kind of complicated systems. Suppose the trajectories of system (1) or (5) do not converge to the origin, then we design the following fuzzy controller:

$$u_p(t, z) = \sum_{l=1}^L \sum_{k=1}^n \gamma_l(\epsilon(t)) \lambda_{pk}^{<l>} w_k(t, z) \quad (7)$$

where $\lambda_{pk}^{<l>} \in \mathcal{R}$ and $\lambda_{pk}^{<l>} < 0, p \in \mathbb{N}, k \in \mathbb{N}, l \in \mathbb{L}$.

Then together with (5) and (7), it follows that:

$$\begin{aligned} \frac{\partial w_p(t, z)}{\partial t} &= \sum_{l=1}^L \gamma_l(\epsilon(t)) \left[\sum_{q=1}^Q \frac{\partial}{\partial z_q} \left(\varepsilon_{pq} \frac{\partial w_p(t, z)}{\partial z_q} \right) \right. \\ &\quad - d_p^{<l>} w_p(t, z) + \sum_{k=1}^n a_{pk}(w_p(t, z)) f_k(w_k(t, z)) \\ &\quad + \sum_{k=1}^n b_{pk}(w_p(t, z)) g_k(w_k(t - \rho_k(t), z)) \\ &\quad + \sum_{k=1}^n c_{pk}(w_p(t, z)) \int_{t-\varrho_k(t)}^t h_k(w_k(\theta, z)) d\theta \\ &\quad \left. + \sum_{k=1}^n \lambda_{pk}^{<l>} w_k(t, z) \right]. \end{aligned} \quad (8)$$

Then, the global stabilization problem of system (1) can be turned into the stability problem of system (8). Finally, a useful lemma is presented as follows.

Lemma 1 [46]: Given $\Delta = \{z = (z_1, z_2, \dots, z_Q)^T \mid |z_q| < \Upsilon_q, q \in \mathbb{Q}\}$ with smooth boundary $\partial\Delta$, constant $\tau \geq 2$ and function $\pi(z) \in \mathcal{C}^1(\Delta)$ with $\pi(z)|_{\partial\Delta} = 0$, then for $q \in \mathbb{Q}$

$$\int_{\Delta} |\pi(z)|^{\tau} dz \leq \frac{\tau^2 \Upsilon_q^2}{4} \int_{\Delta} |\pi(z)|^{\tau-2} \left| \frac{\partial \pi}{\partial z_q} \right|^2 dz. \quad (9)$$

III. MAIN RESULTS

In this section, we establish the conditions to guarantee the global stabilization of FMRDNNs under designed fuzzy controllers (7) and (28). On the other hand, we also make some comparisons between our results and those in two published papers. For convenience, we first define functions

$$\begin{aligned} \alpha_p(v) &= -\frac{4(\tau-1)}{\tau} \sum_{q=1}^Q \frac{\varepsilon_{pq}}{\Upsilon_q^2} - \tau d_p^{<l>} \\ &\quad + \sum_{k=1}^n \left[\sum_{m=1}^{\tau-1} \left(\check{a}_{pk}^{\tau \dot{v}_{mpk}} F_k^{\tau \dot{v}_{mpk}} + \check{b}_{pk}^{\tau \dot{w}_{mpk}} G_k^{\tau \dot{w}_{mpk}} + \check{c}_{pk}^{\tau \dot{k}_{mpk}} H_k^{\tau \dot{k}_{mpk}} \varrho_1 \right) \right. \\ &\quad + \frac{\xi_k}{\xi_p} \left(\check{a}_{kp}^{\tau \dot{v}_{\tau kp}} F_p^{\tau \dot{v}_{\tau kp}} + \frac{\check{b}_{kp}^{\tau \dot{w}_{\tau kp}} G_p^{\tau \dot{w}_{\tau kp}} e^{v\rho_1}}{1-\rho_2} \right. \\ &\quad \left. \left. + \frac{\check{c}_{kp}^{\tau \dot{k}_{\tau kp}} H_p^{\tau \dot{k}_{\tau kp}} \varrho_1 e^{v\rho_1}}{1-\varrho_2} \right) \right] \end{aligned}$$

where $\xi_p > 0, \tau \geq 2, \dot{v}_{mpk}, \dot{w}_{mpk}, \dot{k}_{mpk}$, and \dot{k}_{mpk} are non-negative constants with $\sum_{m=1}^{\tau} \dot{v}_{mpk} = \sum_{m=1}^{\tau} \dot{w}_{mpk} = \sum_{m=1}^{\tau} \dot{k}_{mpk} = \sum_{m=1}^{\tau} \dot{k}_{\tau kp} = 1$ for $m \in \mathbb{T}, p, k \in \mathbb{N}$.

Then, the following two sections show the derived results and comparisons, respectively.

A. Global Stabilization Results of FMRDNNs

Theorem 1: Suppose that Assumptions 1–3 hold. Given constant $\tau \geq 2$, system (1) is globally exponentially stabilizable under controller (7), if there exist non-negative constants η_{mpk} , $m \in \mathbb{T}$, $p, k \in \mathbb{N}$, with $\sum_{m=1}^{\tau} \eta_{mpk} = 1$, and constant $\xi_p > 0$ such that for any $l \in \mathbb{L}$

$$\begin{aligned} \alpha_p(0) + \tau \lambda_{pp}^{<l>} + \sum_{k=1, k \neq p}^n \sum_{m=1}^{\tau-1} |\lambda_{pk}^{<l>}|^{\tau \eta_{mpk}} \\ + \sum_{k=1, k \neq p}^n \frac{\xi_k}{\xi_p} |\lambda_{kp}^{<l>}|^{\tau \eta_{tkp}} < 0. \end{aligned} \quad (10)$$

Proof: Consider the following functions:

$$\begin{aligned} \Gamma_p(\vartheta_p) = \vartheta_p + \tau \lambda_{pp}^{<l>} + \alpha_p(\vartheta_p) + \sum_{k=1, k \neq p}^n \sum_{m=1}^{\tau-1} |\lambda_{pk}^{<l>}|^{\tau \eta_{mpk}} \\ + \sum_{k=1, k \neq p}^n \frac{\xi_k}{\xi_p} |\lambda_{kp}^{<l>}|^{\tau \eta_{tkp}} \end{aligned} \quad (11)$$

where $\vartheta_p \geq 0$ for $p \in \mathbb{N}$. From (11), we can see that $\Gamma_p(\vartheta_p)$ is increasing with ϑ_p on $[0, +\infty)$. Then, there exists φ_p such that $\Gamma_p(\varphi_p) = 0$ in light of $\Gamma_p(0) < 0$ and $\lim_{\vartheta_p \rightarrow +\infty} \Gamma_p(\vartheta_p) = +\infty$. Choose $\varphi = \min_{p \in \mathbb{N}} \{\varphi_p\}$, then

$$\begin{aligned} \Gamma_p(\varphi) = \varphi + \tau \lambda_{pp}^{<l>} + \alpha_p(\varphi) + \sum_{k=1, k \neq p}^n \sum_{m=1}^{\tau-1} |\lambda_{pk}^{<l>}|^{\tau \eta_{mpk}} \\ + \sum_{k=1, k \neq p}^n \frac{\xi_k}{\xi_p} |\lambda_{kp}^{<l>}|^{\tau \eta_{tkp}} \leq 0. \end{aligned} \quad (12)$$

Consider the Lyapunov–Krasovskii functional

$$\begin{aligned} V(t) &= \int_{\Delta} \sum_{p=1}^n \xi_p \left(W_p(t, z) \right. \\ &\quad \left. + \sum_{k=1}^n \frac{\check{b}_{pk}^{\tau \check{w}_{\tau pk}} G_k^{\tau \check{w}_{\tau pk}} e^{\varphi \rho_1}}{1 - \rho_2} \int_{t - \rho_k(t)}^t W_k(\theta, z) d\theta \right. \\ &\quad \left. + \sum_{k=1}^n \frac{\check{c}_{pk}^{\tau \check{k}_{\tau pk}} H_k^{\tau \check{k}_{\tau pk}} e^{\varphi \varrho_1}}{1 - \varrho_2} \right. \\ &\quad \left. \times \int_{-\varrho_k(t)}^0 \int_{t+\varsigma}^t W_k(\theta, z) d\theta d\varsigma \right) dz \end{aligned} \quad (13)$$

where $W_p(t, z) = e^{\varphi t} |w_p(t, z)|^{\tau}$.

Since

$$\begin{aligned} &\int_{\Delta} \frac{\tau}{2} |w_p(t, z)|^{\tau-2} \frac{\partial w_p^2(t, z)}{\partial t} dz \\ &= \int_{\Delta} \frac{\partial |w_p(t, z)|^{\tau}}{\partial t} dz \\ &\leq \int_{\Delta} \sum_{l=1}^L \gamma_l(\epsilon(l)) \\ &\quad \times \left[\tau |w_p(t, z)|^{\tau-2} w_p(t, z) \times \sum_{q=1}^Q \frac{\partial}{\partial z_q} \left(\varepsilon_{pq} \frac{\partial w_p(t, z)}{\partial z_q} \right) \right. \\ &\quad \left. - \tau d_p^{<l>} |w_p(t, z)|^{\tau} \right] \end{aligned}$$

$$\begin{aligned} &+ \sum_{k=1}^n \tau \check{a}_{pk} F_k |w_p(t, z)|^{\tau-1} |w_k(t, z)| \\ &+ \sum_{k=1}^n \tau \check{b}_{pk} G_k |w_p(t, z)|^{\tau-1} |w_k(t - \rho_k(t), z)| \\ &+ \sum_{k=1}^n \tau \check{c}_{pk} H_k |w_p(t, z)|^{\tau-1} \int_{t - \varrho_k(t)}^t |w_k(\theta, z)| d\theta \\ &+ \sum_{k=1}^n \tau \lambda_{pk}^{<l>} |w_p(t, z)|^{\tau-2} w_p(t, z) w_k(t, z) \end{aligned} dz. \quad (14)$$

Then based on the Green formula [55] and Lemma 1, it follows:

$$\begin{aligned} &\int_{\Delta} \tau |w_p(t, z)|^{\tau-2} w_p(t, z) \sum_{q=1}^Q \frac{\partial}{\partial z_q} \left(\varepsilon_{pq} \frac{\partial w_p(t, z)}{\partial z_q} \right) dz \\ &= \int_{\Delta} \frac{\tau}{2} |w_p(t, z)|^{\tau-2} \sum_{q=1}^Q \left[\frac{\partial}{\partial z_q} \left(\varepsilon_{pq} \frac{\partial |w_p(t, z)|^2}{\partial z_q} \right) \right. \\ &\quad \left. - 2 \varepsilon_{pq} \left(\frac{\partial w_p(t, z)}{\partial z_q} \right)^2 \right] dz \\ &= \int_{\Delta} \tau |w_p(t, z)|^{\tau-1} \sum_{q=1}^Q \frac{\partial}{\partial z_q} \left(\varepsilon_{pq} \frac{\partial |w_p(t, z)|}{\partial z_q} \right) dz \\ &= \int_{\Delta} \tau |w_p(t, z)|^{\tau-1} \operatorname{div} \left(\varepsilon_{pq} \frac{\partial |w_p(t, z)|}{\partial z_q} \right)_{q=1}^Q dz \\ &= \tau \int_{\partial \Delta} \left(|w_p(t, z)|^{\tau-1} \varepsilon_{pq} \frac{\partial |w_p(t, z)|}{\partial z_q} \right)_{q=1}^Q dS \\ &\quad - \tau(\tau - 1) \int_{\Delta} |w_p(t, z)|^{\tau-2} \sum_{q=1}^Q \varepsilon_{pq} \left(\frac{\partial |w_p(t, z)|}{\partial z_q} \right)^2 dz \\ &\leq - \sum_{q=1}^Q \frac{4(\tau - 1) \varepsilon_{pq}}{\tau \Upsilon_q^2} \int_{\Delta} |w_p(t, z)|^{\tau} dz \end{aligned} \quad (15)$$

where div is the divergence operator and

$$\left(\varepsilon_{pq} \frac{\partial |w_p(t, z)|}{\partial z_q} \right)_{q=1}^Q = \left(\varepsilon_{p1} \frac{\partial |w_p(t, z)|}{\partial z_1}, \dots, \varepsilon_{pQ} \frac{\partial |w_p(t, z)|}{\partial z_Q} \right).$$

Considering that $\sum_{m=1}^{\tau} \check{v}_{mpk} = \sum_{m=1}^{\tau} \check{v}_{mpk} = 1$, $p, k \in \mathbb{N}$, then

$$\begin{aligned} &\sum_{k=1}^n \tau \check{a}_{pk} F_k |w_p(t, z)|^{\tau-1} |w_k(t, z)| \\ &\leq \sum_{k=1}^n \tau \check{a}_{pk}^{\check{v}_{1pk} + \check{v}_{2pk} + \dots + \check{v}_{\tau pk}} F_k^{\check{v}_{1pk} + \check{v}_{2pk} + \dots + \check{v}_{\tau pk}} \\ &\quad \times |w_p(t, z)|^{\tau-1} |w_k(t, z)| \\ &\leq \sum_{k=1}^n \sum_{m=1}^{\tau-1} \check{a}_{pk}^{\tau \check{v}_{mpk}} F_k^{\tau \check{v}_{mpk}} |w_p(t, z)|^{\tau} \\ &\quad + \sum_{k=1}^n \check{a}_{pk}^{\tau \check{v}_{\tau pk}} F_k^{\tau \check{v}_{\tau pk}} |w_k(t, z)|^{\tau}. \end{aligned} \quad (16)$$

Then, similar to (16), the following three inequalities are derived under $\sum_{m=1}^{\tau} \dot{\bar{w}}_{mpk} = \sum_{m=1}^{\tau} \bar{w}_{mpk} = \sum_{m=1}^{\tau} \dot{k}_{mpk} = \sum_{m=1}^{\tau} \bar{k}_{mpk} = \sum_{m=1}^{\tau} \eta_{mpk} = 1, p, k \in \mathbb{N}$:

$$\begin{aligned} & \sum_{k=1}^n \tau \check{b}_{pk} G_k |w_p(t, z)|^{\tau-1} |w_k(t - \rho_k(t), z)| \\ & \leq \sum_{k=1}^n \sum_{m=1}^{\tau-1} \check{b}_{pk}^{\tau \dot{w}_{mpk}} G_k^{\tau \bar{w}_{mpk}} |w_p(t, z)|^{\tau} \\ & \quad + \sum_{k=1}^n \check{b}_{pk}^{\tau \dot{w}_{\tau pk}} G_k^{\tau \bar{w}_{\tau pk}} |w_k(t - \rho_k(t), z)|^{\tau} \end{aligned} \quad (17)$$

$$\begin{aligned} & \sum_{k=1}^n \tau \check{c}_{pk} H_k |w_p(t, z)|^{\tau-1} \int_{t-\varrho_k(t)}^t |w_k(\theta, z)| d\theta \\ & \leq \sum_{k=1}^n \sum_{m=1}^{\tau-1} \check{c}_{pk}^{\tau \dot{k}_{mpk}} H_k^{\tau \bar{k}_{mpk}} \varrho_k(t) |w_p(t, z)|^{\tau} \\ & \quad + \sum_{k=1}^n \check{c}_{pk}^{\tau \dot{k}_{\tau pk}} H_k^{\tau \bar{k}_{\tau pk}} \int_{t-\varrho_k(t)}^t |w_k(\theta, z)|^{\tau} d\theta \end{aligned} \quad (18)$$

$$\begin{aligned} & \sum_{k=1}^n \tau \lambda_{pk}^{<l>} |w_p(t, z)|^{\tau-2} w_p(t, z) w_k(t, z) \\ & \leq \tau \lambda_{pp}^{<l>} |w_p(t, z)|^{\tau} + \sum_{k=1, k \neq p}^n \sum_{m=1}^{\tau-1} |\lambda_{pk}^{<l>}|^{\tau \eta_{mpk}} |w_p(t, z)|^{\tau} \\ & \quad + \sum_{k=1, k \neq p}^n |\lambda_{pk}^{<l>}|^{\tau \eta_{\tau pk}} |w_k(t, z)|^{\tau}. \end{aligned} \quad (19)$$

Then, we can obtain the upper right derivation of $V(t)$ along trajectories of system (8) that

$$\begin{aligned} D^+ V(t) & \leq \int_{\Delta} \sum_{p=1}^n \xi_p e^{\varphi t} \left(\frac{\partial |w_p(t, z)|^{\tau}}{\partial t} + \varphi |w_p(t, z)|^{\tau} \right) dz \\ & \quad + \int_{\Delta} \sum_{p=1}^n \sum_{k=1}^n \xi_p \\ & \quad \times \left[\frac{\check{b}_{pk}^{\tau \dot{w}_{\tau pk}} G_k^{\tau \bar{w}_{\tau pk}} e^{\varphi \rho_1}}{1 - \rho_2} W_k(t, z) \right. \\ & \quad - \check{b}_{pk}^{\tau \dot{w}_{\tau pk}} G_k^{\tau \bar{w}_{\tau pk}} e^{\varphi \rho_1} W_k(t - \rho_k(t), z) \\ & \quad + \frac{\check{c}_{pk}^{\tau \dot{k}_{\tau pk}} H_k^{\tau \bar{k}_{\tau pk}} e^{\varphi \varrho_1}}{1 - \varrho_2} \\ & \quad \times \left(\dot{\varrho}_k(t) \int_{t-\varrho_k(t)}^t W_k(\theta, z) d\theta + \varrho_k(t) W_k(t, z) \right. \\ & \quad \left. \left. - \int_{-\varrho_k(t)}^0 W_k(t + \varsigma, z) d\varsigma \right) \right] dz. \end{aligned} \quad (20)$$

Combining with (14)–(20), it gives

$$\begin{aligned} D^+ V(t) & \leq \int_{\Delta} \sum_{p=1}^n \sum_{l=1}^L \gamma_l(\epsilon(t)) \\ & \quad \times \left[\xi_p \left(\varphi - \sum_{q=1}^Q \frac{4(\tau-1)\bar{\epsilon}_{pq}}{\tau \Upsilon_q^2} \right. \right. \\ & \quad \left. \left. - \tau d_p^{<l>} + \tau \lambda_{pp}^{<l>} + \sum_{k=1}^n \sum_{m=1}^{\tau-1} \check{a}_{pk}^{\tau \dot{u}_{mpk}} F_k^{\tau \bar{u}_{mpk}} \right. \right. \\ & \quad \left. \left. + \sum_{k=1}^n \sum_{m=1}^{\tau-1} \check{b}_{pk}^{\tau \dot{w}_{mpk}} G_k^{\tau \bar{w}_{mpk}} \right. \right. \\ & \quad \left. \left. + \sum_{k=1}^n \sum_{m=1}^{\tau-1} \check{c}_{pk}^{\tau \dot{k}_{mpk}} H_k^{\tau \bar{k}_{mpk}} \varrho_1 \right. \right. \\ & \quad \left. \left. + \sum_{k=1, k \neq p}^n \sum_{m=1}^{\tau-1} |\lambda_{pk}^{<l>}|^{\tau \eta_{mpk}} \right. \right. \\ & \quad \left. \left. + \xi_k \left(\sum_{k=1}^n \check{a}_{kp}^{\tau \dot{u}_{\tau kp}} F_p^{\tau \bar{u}_{\tau kp}} + \sum_{k=1, k \neq p}^n |\lambda_{kp}^{<l>}|^{\tau \eta_{\tau kp}} \right) \right) \right] \\ & \quad \times W_p(t, z) dz + \int_{\Delta} \sum_{p=1}^n \xi_p e^{\varphi t} \\ & \quad \times \left(\sum_{k=1}^n \check{b}_{pk}^{\tau \dot{w}_{\tau pk}} G_k^{\tau \bar{w}_{\tau pk}} \times |w_k(t - \rho_k(t), z)|^{\tau} \right. \\ & \quad \left. + \sum_{k=1}^n \check{c}_{pk}^{\tau \dot{k}_{\tau pk}} H_k^{\tau \bar{k}_{\tau pk}} \int_{t-\varrho_k(t)}^t |w_k(\theta, z)|^{\tau} d\theta \right) dz \\ & \quad + \int_{\Delta} \sum_{p=1}^n \sum_{k=1}^n \xi_p \\ & \quad \times \left[\frac{\check{b}_{pk}^{\tau \dot{w}_{\tau pk}} G_k^{\tau \bar{w}_{\tau pk}} e^{\varphi \rho_1}}{1 - \rho_2} W_k(t, z) \right. \\ & \quad - \check{b}_{pk}^{\tau \dot{w}_{\tau pk}} G_k^{\tau \bar{w}_{\tau pk}} e^{\varphi \rho_1} W_k(t - \rho_k(t), z) \\ & \quad + \frac{\check{c}_{pk}^{\tau \dot{k}_{\tau pk}} H_k^{\tau \bar{k}_{\tau pk}} \varrho_k(t) e^{\varphi \varrho_1}}{1 - \varrho_2} W_k(t, z) \\ & \quad \left. - \check{c}_{pk}^{\tau \dot{k}_{\tau pk}} H_k^{\tau \bar{k}_{\tau pk}} e^{\varphi \varrho_1} \int_{t-\varrho_k(t)}^t W_k(\theta, z) d\theta \right] dz \\ & \leq \int_{\Delta} \sum_{p=1}^n \sum_{l=1}^L \gamma_l(\epsilon(t)) \xi_p \Gamma_p((\varphi)) W_p(t, z) dz. \end{aligned} \quad (21)$$

Then, it follows from (12) and (21) that $D^+ V(t) \leq 0$, which means for any $t \in \mathcal{R}_+$

$$\int_{\Delta} \sum_{p=1}^n \xi_p W_p(t, z) dz \leq V(t) \leq V(0)$$

then

$$\begin{aligned} & \xi \int_{\Delta} \sum_{p=1}^n e^{\varphi t} |w_p(t, z)|^\tau dz \\ & \leq \bar{\xi} \int_{\Delta} \sum_{p=1}^n \left[|w_p(0, z)|^\tau + \sum_{k=1}^n \frac{\check{b}_{pk}^{\tau \check{w}_{\tau kp}} G_k^{\tau \check{w}_{\tau kp}} e^{\varphi \rho_1}}{1 - \rho_2} \right. \\ & \quad \times \int_{-\rho_1}^0 e^{\varphi \theta} |w_k(\theta, z)|^\tau d\theta + \sum_{k=1}^n \frac{\check{c}_{pk}^{\tau \check{k}_{\tau kp}} H_k^{\tau \check{k}_{\tau kp}} e^{\varphi \varrho_1}}{1 - \varrho_2} \\ & \quad \times \left. \int_{-\varrho_1}^0 \int_{\varsigma}^0 e^{\varphi \theta} |w_k(\theta, z)|^\tau d\theta d\varsigma \right] dz \end{aligned}$$

which yields that

$$\begin{aligned} & \int_{\Delta} \sum_{p=1}^n e^{\varphi t} |w_p(t, z)|^\tau dz \\ & \leq \bar{\xi} \int_{\Delta} \sum_{p=1}^n \left[|w_p(0, z)|^\tau + \sum_{k=1}^n \frac{\check{b}_{kp}^{\tau \check{w}_{\tau kp}} G_p^{\tau \check{w}_{\tau kp}} e^{\varphi \rho_1}}{1 - \rho_2} \right. \\ & \quad \times \int_{-\mu}^0 |w_p(\theta, z)|^\tau d\theta + \sum_{k=1}^n \frac{\check{c}_{kp}^{\tau \check{k}_{\tau kp}} H_p^{\tau \check{k}_{\tau kp}} e^{\varphi \varrho_1}}{1 - \varrho_2} \\ & \quad \times \left. \int_{-\mu}^0 \int_{\varsigma}^0 e^{\varphi \theta} |w_p(\theta, z)|^\tau d\theta d\varsigma \right] dz \\ & \leq \phi \int_{\Delta} \sup_{-\mu \leq \theta \leq 0} \sum_{p=1}^n |\omega_p(\theta, z)|^\tau dz \end{aligned} \quad (22)$$

where $\bar{\xi} = \max_p \{\xi_p\}$, $\underline{\xi} = \min_p \{\xi_p\}$, and $\phi = \bar{\xi}/\underline{\xi} \max_p \{1 + \sum_{k=1}^n (\check{b}_{kp}^{\tau \check{w}_{\tau kp}} G_p^{\tau \check{w}_{\tau kp}} e^{\varphi \mu} \mu) / (1 - \rho_2) + \sum_{k=1}^n (\check{c}_{kp}^{\tau \check{k}_{\tau kp}} H_p^{\tau \check{k}_{\tau kp}} e^{\varphi \mu} \mu^2) / (1 - \varrho_2)\}$.

Then, from (22), one obtains

$$\|w(t, z)\|_\tau \leq \phi^{1/\tau} \|\omega(\theta, z)\|_\tau \exp\left\{-\frac{\varphi}{\tau} t\right\} \quad (23)$$

which means system (8) is globally exponentially stable on account of definition in [46]. The proof is completed. ■

Remark 2: Theorem 1 presents the criteria for global stabilization of FMRDNNs via the Green formula and some inequality techniques. The criteria are in the algebraic form and can be easily checked due to the introduction of a large number of parameters. Besides, they are better compared to those in [40] and [47], where the former ones rely on the time and bring difficulties in verifying, and the latter ones adopt many complicated matrices.

Remark 3: From (11), it is not hard to see that the criteria related to the fuzzy interconnected control gains of controller (7). To simplify the calculation, we introduce another special case of the controller (7) and thus obtain Corollaries 1 and 2.

If the fuzzy controller (7) reduces to the following form:

$$u_p(t, z) = \sum_{l=1}^L \gamma_l(\epsilon(t)) \lambda_p^{<l>} w_p(t, z) \quad (24)$$

where $\lambda_p^{<l>} < 0$, $p \in \mathbb{N}$, $l \in \mathbb{L}$. Then, Corollary 1 is the direct result of Theorem 1.

Corollary 1: Suppose that Assumptions 1–3 hold. Given constant $\tau \geq 2$, system (1) is globally exponentially stabilizable under controller (24), if there exists constant $\xi_p > 0$ such that for any $p \in \mathbb{N}$, $l \in \mathbb{L}$

$$\alpha_p(0) + \tau \lambda_p^{<l>} < 0. \quad (25)$$

Corollary 2: Suppose that Assumptions 1 and 2 hold and $\varrho_k(t) = 0$. Given constant $\tau \geq 2$, system (1) is globally exponentially stabilizable under controller (24), if there exist non-negative constants $\xi_p > 0$, \check{v}_{mpk} , \check{v}_{mpk} , \check{w}_{mpk} , \check{w}_{mpk} , $m \in \mathbb{T}$, $p, k \in \mathbb{N}$, with $\sum_{m=1}^{\tau} \check{v}_{mpk} = \sum_{m=1}^{\tau} \check{v}_{mpk} = \sum_{m=1}^{\tau} \check{w}_{mpk} = \sum_{m=1}^{\tau} \check{w}_{mpk} = 1$, such that for any $l \in \mathbb{L}$

$$\begin{aligned} & -\frac{4(\tau - 1)}{\tau} \sum_{q=1}^Q \frac{\varepsilon_{pq}}{\Upsilon_q^2} - \tau d_p^{<l>} + \tau \lambda_p^{<l>} \\ & + \sum_{k=1}^n \left[\sum_{m=1}^{\tau-1} \left(\check{a}_{pk}^{\tau \check{v}_{mpk}} F_k^{\tau \check{v}_{mpk}} + \check{b}_{pk}^{\tau \check{w}_{mpk}} G_k^{\tau \check{w}_{mpk}} \right) \right. \\ & \quad \left. + \frac{\xi_k}{\xi_p} \left(\check{a}_{kp}^{\tau \check{v}_{\tau kp}} F_p^{\tau \check{v}_{\tau kp}} + \frac{\check{b}_{kp}^{\tau \check{w}_{\tau kp}} G_p^{\tau \check{w}_{\tau kp}}}{1 - \rho_2} \right) \right] < 0. \end{aligned} \quad (26)$$

By using Young's inequality to handle the cross terms in (14), Corollary 3 can be obtained.

Corollary 3: Suppose that Assumptions 1–3 hold. Given constant $\tau \geq 2$, system (1) is globally exponentially stabilizable under controller (24), if there exists constant $\xi_p > 0$ such that for any $p \in \mathbb{N}$, $l \in \mathbb{L}$

$$\begin{aligned} & -\frac{4(\tau - 1)}{\tau} \sum_{q=1}^Q \frac{\varepsilon_{pq}}{\Upsilon_q^2} - \tau d_p^{<l>} + \tau \lambda_p^{<l>} \\ & + \sum_{k=1}^n \left[(\tau - 1) \left(\check{a}_{pk} F_k + \check{b}_{pk} G_k + \varrho_1 \check{c}_{pk} H_k \right) \right. \\ & \quad \left. + \frac{\xi_k}{\xi_p} \left(\check{a}_{kp} F_p + \frac{\check{b}_{kp} G_p}{1 - \rho_2} + \frac{\check{c}_{kp} H_p \varrho_1}{1 - \varrho_2} \right) \right] < 0. \end{aligned} \quad (27)$$

Remark 4: Under the linear feedback controller (7) or (24), it is obvious that the conditions in Theorem 1 and Corollaries 1–3 always hold if the control gains are chosen to be large enough. Thus, to efficiently adjust the control gains so that save control cost, we introduce another adaptive control approach in (28). Moreover, we will show that the criteria under the proposed adaptive controller in Theorem 2 is more simple than those in Theorem 1.

The adaptive controller is presented as follows:

$$\begin{aligned} u_p(t, z) &= \sum_{l=1}^L \gamma_l(\epsilon(t)) \lambda_p^{<l>} (t, z) w_p(t, z) \\ \frac{\partial \lambda_p^{<l>} (t, z)}{\partial t} &= -\zeta_p^{<l>} |w_p(t, z)|^\tau \end{aligned} \quad (28)$$

where $\zeta_p^{<l>} > 0$, $p \in \mathbb{N}$, $l \in \mathbb{L}$.

Theorem 2: Suppose that Assumptions 1–3 hold. Given constant $\tau \geq 2$, then system (1) is globally asymptotically stabilizable under controller (28).

Proof: Consider the Lyapunov–Krasovskii functional

$$V(t) = \int_{\Delta} \sum_{p=1}^n \xi_p \left[|w_p(t, z)|^\tau + \sum_{l=1}^L \frac{\tau \gamma_l(\epsilon(t))}{2 \zeta_p^{<l>}} \left(\lambda_p^{<l>} (t, z) + \tilde{\zeta}_p^{<l>} \right)^2 + \sum_{k=1}^n \frac{\check{b}_{pk}^{\tau \check{w}_{\tau pk}} G_k^{\tau \check{w}_{\tau pk}}}{1 - \rho_2} \int_{t-\rho_k(t)}^t |w_k(\theta, z)|^\tau d\theta + \sum_{k=1}^n \frac{\check{c}_{pk}^{\tau \check{k}_{\tau pk}} H_k^{\tau \check{k}_{\tau pk}}}{1 - \rho_2} \times \int_{-\rho_k(t)}^0 \int_{t+\varsigma}^t |w_k(\theta, z)|^\tau d\theta d\varsigma \right] dz \quad (29)$$

where $\tilde{\zeta}_p^{<l>} , p \in \mathbb{N}, l \in \mathbb{L}$ are constants defined by

$$\alpha_p(0) - \tau \tilde{\zeta}_p^{<l>} + \beta_p^{<l>} = 0 \quad (30)$$

with $\beta_p^{<l>} > 0, p \in \mathbb{N}, l \in \mathbb{L}$.

Then similar to the proof of Theorem 1, it follows:

$$D^+ V(t) \leq - \int_{\Delta} \sum_{p=1}^n \sum_{l=1}^L \gamma_l(\epsilon(t)) \xi_p \beta_p^{<l>} |w_p(t, z)|^\tau dz \leq 0 \quad (31)$$

which means system (1) is globally asymptotically stabilizable under controller (28). The proof is completed. ■

Remark 5: In [50], the synchronization of MRDNNs with discrete delays was studied under the adaptive controller. If the distributed delays and fuzzy rules are not involved in system (1), then [50, Th. 3.1] is the direct result of Theorem 2.

Remark 6: The results in this article are more general compared to those in [50]–[53], where the stability and synchronization of MRDNNs were widely discussed. On the one hand, the distributed delays are neglected in [50]–[52] and the fuzzy rules are not considered in [53]. On the other hand, all conditions [50]–[53] are in terms of 2-norm while τ -norm ($\tau \geq 2$) is adopted in this article.

B. Comparisons

In this part, to show the improvement of our results compared with existing ones, we give the following comparisons.

If system (1) acts without reaction–diffusion terms, distributed delays, and fuzzy rules [24], that is

$$\dot{e}_p(t) = -d_p e_p(t) + \sum_{k=1}^n a_{pk}(e_p(t)) f_k(e_k(t)) + \sum_{k=1}^n b_{pk}(e_p(t)) g_k(e_k(t - \rho_k(t))) \quad (32)$$

its stabilizability can be addressed under

$$u_p(t) = \pi_p e_p(t) \quad (33)$$

with the control gain $\pi_p, p \in \mathbb{N}$, which leads to Corollary 4.

Corollary 4: Suppose that Assumptions 1 and 2 hold. Given constant $\tau > 1$, system (32) is globally exponentially stabilizable under controller (33), if there exist constants $\pi_p < 0$, $\xi_p > 0$ and non-negative constants $\check{v}_{mpk}, \check{w}_{mpk}, \check{\varpi}_{mpk}, \check{\vartheta}_{mpk}, m \in \mathbb{T}, p, k \in \mathbb{N}$, with $\sum_{m=1}^{\tau} \check{v}_{mpk} = \sum_{m=1}^{\tau} \check{w}_{mpk} = \sum_{m=1}^{\tau} \check{\varpi}_{mpk} = \sum_{m=1}^{\tau} \check{\vartheta}_{mpk} = 1$, such that

$$-\tau(d_p - \pi_p) + \sum_{k=1}^n \left[\sum_{m=1}^{\tau-1} \left(\check{a}_{pk}^{\tau \check{v}_{mpk}} F_k^{\tau \check{v}_{mpk}} + \check{b}_{pk}^{\tau \check{w}_{mpk}} G_k^{\tau \check{w}_{mpk}} \right) + \frac{\xi_k}{\xi_p} \left(\check{a}_{kp}^{\tau \check{v}_{\tau kp}} F_p^{\tau \check{v}_{\tau kp}} + \frac{\check{b}_{kp}^{\tau \check{w}_{\tau kp}} G_p^{\tau \check{w}_{\tau kp}}}{1 - \rho_2} \right) \right] < 0. \quad (34)$$

Remark 7: Zhang and Shen [24] studied the exponential synchronization of MNNs with discrete delays. The advantages of our results compared to those in [24] are two-fold.

- 1) MNNs in [24] do not involve the reaction–diffusion terms, distributed delays, and fuzzy rules, while system (1) in this article consider the three factors. To this extent, our system is more general.
- 2) Note that Corollary 4 includes [24, Th. 1] as special case. On the basis of condition (34), if we choose $d_p = 1$, $\check{v}_{mpk} = (\tau - \mathfrak{A}_{pk})/(\tau(\tau-1))$, $\check{w}_{mpk} = (\tau - \mathfrak{B}_{pk})/(\tau(\tau-1))$, $\check{\varpi}_{mpk} = (\tau - \mathfrak{C}_{pk})/(\tau(\tau-1))$, $\check{\vartheta}_{mpk} = (\tau - \mathfrak{D}_{pk})/(\tau(\tau-1))$, $\check{v}_{\tau kp} = \mathfrak{A}_{kp}/\tau$, $\check{w}_{\tau kp} = \mathfrak{B}_{kp}/\tau$, $\check{\varpi}_{\tau kp} = \mathfrak{C}_{kp}/\tau$, $\check{\vartheta}_{\tau kp} = \mathfrak{D}_{kp}/\tau$, $m \in \mathbb{T}, p, k \in \mathbb{N}$, then Corollary 4 turns into [24, Th. 1].

If system (1) acts without memristors, reaction–diffusion terms, distributed delays, and fuzzy rules, that is

$$\dot{e}_p(t) = -d_p e_p(t) + \sum_{k=1}^n a_{pk} f_k(e_k(t)) + \sum_{k=1}^n b_{pk} g_k(e_k(t - \rho_k(t))) \quad (35)$$

its stability can be solved and the result is given in Corollary 5.

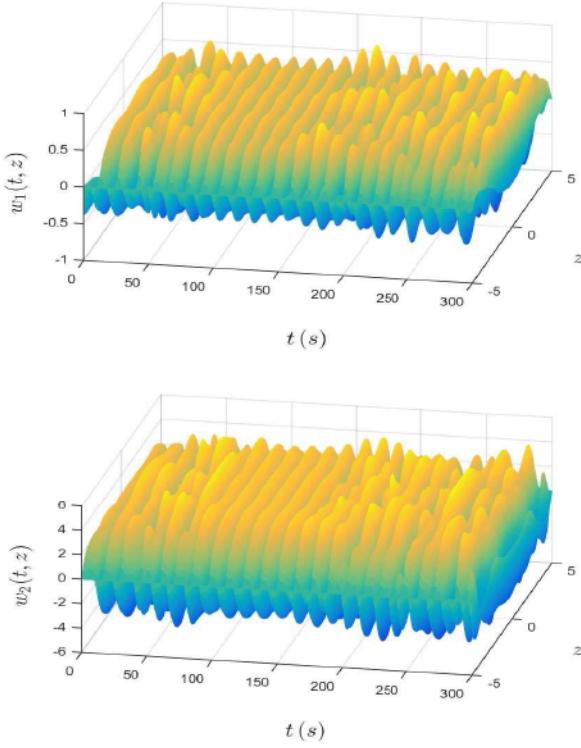
Corollary 5: Suppose that Assumptions 1 and 2 hold. Given constant $\tau \geq 1$, system (35) is globally exponentially stable, if there exists constant $\xi_p > 0$ such that for any $p \in \mathbb{N}$

$$-d_p \tau + \sum_{k=1}^n (\tau - 1) (|a_{pk}| F_k + |b_{pk}| G_k) + \sum_{k=1}^n \frac{\xi_k}{\xi_p} \left(|a_{kp}| F_p + \frac{|b_{kp}| G_p}{1 - \rho_2} \right) < 0. \quad (36)$$

Remark 8: If we choose $\tau = 1$ and $\tau = 2$, then Corollary 5 turns into [54, Ths. 4 and 5], respectively.

IV. NUMERICAL SIMULATIONS

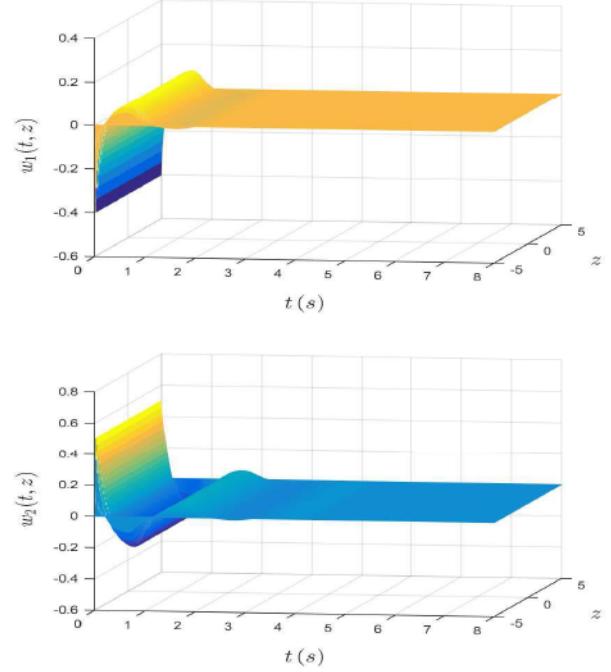
Two examples are provided to show the effectiveness of the results obtained in the previous section.

Fig. 1. Trajectories of states $w_1(t, z)$ and $w_2(t, z)$ in system (37).

Example 1: Consider the FMRDNNs with discrete and distributed delays

$$\begin{aligned} \frac{\partial w_p(t, z)}{\partial t} &= \sum_{l=1}^2 \gamma_l(\epsilon(t)) \left[\varepsilon_p \frac{\partial^2 w_p(t, z)}{\partial z^2} - d_p^{<l>} w_p(t, z) \right. \\ &\quad + \sum_{k=1}^2 a_{pk}(w_p(t, z)) f_k(w_k(t, z)) \\ &\quad + \sum_{k=1}^2 b_{pk}(w_p(t, z)) g_k(w_k(t - \rho_k(t), z)) \\ &\quad \left. + \sum_{k=1}^2 c_{pk}(w_p(t, z)) \int_{t-\varrho_k(t)}^t h_k(w_k(\theta, z)) d\theta \right] \end{aligned} \quad (37)$$

where $p, l = 1, 2$, $\varepsilon_1 = \varepsilon_2 = 0.1$, $z \in \Delta = [-5, 5]$, $d_1^{<1>} = d_2^{<2>} = 1$, $d_1^{<2>} = 1.2$, $d_2^{<1>} = 0.9$, $\chi_1 = \chi_2 = 1$, $a_{11}^+ = 1.8$, $a_{11}^- = 1.7$, $a_{12}^+ = -0.15$, $a_{12}^- = -0.2$, $a_{21}^+ = -5.2$, $a_{21}^- = -4.8$, $a_{22}^+ = 3.5$, $a_{22}^- = 2.8$, $b_{11}^+ = -1.7$, $b_{11}^- = -1.5$, $b_{12}^+ = -0.12$, $b_{12}^- = -0.1$, $b_{21}^+ = -0.25$, $b_{21}^- = -0.2$, $b_{22}^+ = -2.3$, $b_{22}^- = -2.5$, $c_{11}^+ = 0.6$, $c_{11}^- = 0.5$, $c_{12}^+ = 0.15$, $c_{12}^- = 0.18$, $c_{21}^+ = -2$, $c_{21}^- = -2.1$, $c_{22}^+ = -0.1$, $c_{22}^- = -0.2$, $\gamma_1(w) = 1 - 0.1 \sin(w)^4$, $\gamma_2(w) = 0.1 \sin(w)^4$, the delays $\rho_k(t) = \exp(t)/(1 + \exp(t))$, $\varrho_k(t) = 1$, and activation functions $f_k(\cdot) = g_k(\cdot) = h_k(\cdot) = \tanh(\cdot)$, $k = 1, 2$. It follows from Assumptions 1–3 that $F_k = G_k = H_k = 1$, $\rho_2 = 0.25$, $\varrho_1 = 1$,

Fig. 2. Trajectories of states $w_1(t, z)$ and $w_2(t, z)$ in system (37) under controller (38).

$\varrho_2 = 0$. Fig. 1 depicts the trajectories of the state variables $w_1(t, z)$ and $w_2(t, z)$ in system (37), which implies that system (37) is unstable.

Then, design the controllers

$$u_p(t, z) = \sum_{l=1}^2 \gamma_l(\epsilon(t)) \lambda_p^{<l>} w_p(t, z) \quad (38)$$

where the gains are chosen as $\lambda_1^{<1>} = -7.5$, $\lambda_1^{<2>} = -7.3$, $\lambda_2^{<1>} = -9.8$, and $\lambda_2^{<2>} = -9.7$. And

$$\begin{aligned} u_p(t, z) &= \sum_{l=1}^2 \gamma_l(\epsilon(t)) \lambda_p^{<l>} (t, z) w_p(t, z) \\ \frac{\partial \lambda_p^{<l>} (t, z)}{\partial t} &= -\zeta_p^{<l>} |w_p(t, z)|^2 \end{aligned} \quad (39)$$

where $\zeta_p^{<l>} = 5$, $p, l = 1, 2$. Then, $\lambda_1(t, z) = \lambda_1^{<1>} (t, z)$ and $\lambda_2(t, z) = \lambda_2^{<1>} (t, z)$, $l = 1, 2$.

Choose $\tau = 2$, $\xi_p = 1$, $\dot{\nu}_{1pk} = \dot{\nu}_{2pk} = \dot{\nu}_{1pk} = \dot{\nu}_{2pk} = \dot{\varpi}_{1pk} = \dot{\varpi}_{2pk} = \dot{\varpi}_{1pk} = \dot{\varpi}_{2pk} = \dot{\kappa}_{1pk} = \dot{\kappa}_{2pk} = 0.5$, $p, k = 1, 2$, it is easy to check that the conditions of Corollary 1 hold. Then, the results of Corollary 1 show that system (37) is globally exponentially stabilizable via the fuzzy controller (38). Also the results of Theorem 2 show that the global stabilization result for system (37) under controller (39). The trajectories of states variables $w_1(t, z)$ and $w_2(t, z)$ under controllers (38) and (39) are shown in Figs. 2 and 3, respectively. From Figs. 2 and 3, we can see that under controller (38) or (39), the states in system (37) converge to zero as time goes to infinity. Finally, the trajectories of control gains $\lambda_1(t, z)$ and $\lambda_2(t, z)$ in adaptive controller (39) are given in Fig. 4.

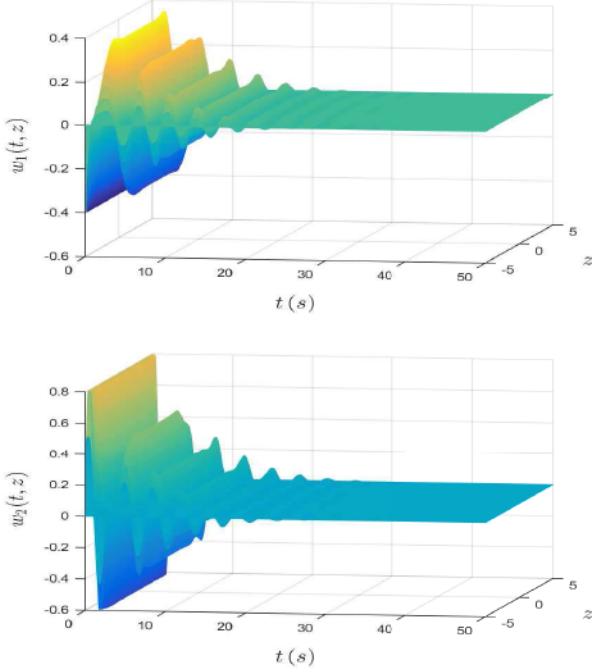


Fig. 3. Trajectories of states $w_1(t, z)$ and $w_2(t, z)$ in system (37) under controller (39).

Example 2: Consider the 2-D FMRDNNs with discrete delays

$$\begin{aligned} \frac{\partial w_p(t, z)}{\partial t} &= \sum_{l=1}^2 \gamma_l(\epsilon(t)) \left[\epsilon_p \frac{\partial^2 w_p(t, z)}{\partial z^2} - d_p^{<l>} w_p(t, z) \right. \\ &\quad + \sum_{k=1}^2 a_{pk}(w_p(t, z)) f_k(w_k(t, z)) \\ &\quad \left. + \sum_{k=1}^2 b_{pk}(w_p(t, z)) g_k(w_k(t - \rho_k(t), z)) \right] \quad (40) \end{aligned}$$

where $p, l = 1, 2$, $\epsilon_1 = \epsilon_2 = 0.1$, $z \in \Delta = [-5, 5]$, $d_1^{<1>} = 1$, $d_1^{<2>} = 1.2$, $d_2^{<1>} = 1$, $d_2^{<2>} = 0.9$, $\chi_1 = 0.5$, $\chi_2 = 3$, $a_{11}^+ = 2$, $a_{11}^- = 1.8$, $a_{12}^+ = -0.1$, $a_{12}^- = -0.2$, $a_{21}^+ = -5$, $a_{21}^- = -4.9$, $a_{22}^+ = 3$, $a_{22}^- = 2.5$, $b_{11}^+ = -1.5$, $b_{11}^- = -1.2$, $b_{12}^+ = -0.1$, $b_{12}^- = -0.08$, $b_{21}^+ = -0.2$, $b_{21}^- = -0.19$, $b_{22}^+ = -2.5$, $b_{22}^- = -2.4$, $\gamma_1(w) = 1 - 0.1 \sin(w)^2$, $\gamma_2(w) = 0.1 \sin(w)^2$, the delay $\rho_k(t) = \exp(t)/(1 + \exp(t))$, and activation functions $f_k(\cdot) = g_k(\cdot) = \tanh(\cdot)$, $k = 1, 2$. It follows from Assumptions 1–3 that $F_k = G_k = 1$, $\rho_2 = 0.25$, and $\varrho_1 = 1$. Fig. 5 depicts the trajectories of the state variables $w_1(t, z)$ and $w_2(t, z)$ in system (40), which implies that system (40) is unstable.

Then, design the controllers

$$u_p(t, z) = \sum_{l=1}^2 \gamma_l(\epsilon(t)) \lambda_p^{<l>} w_p(t, z) \quad (41)$$

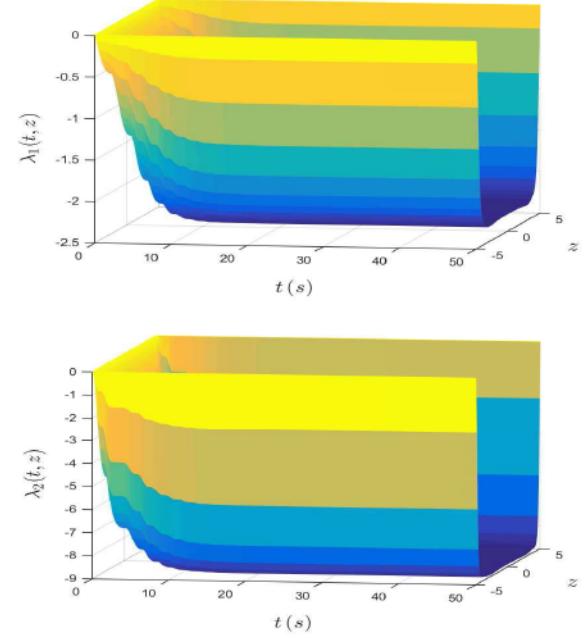


Fig. 4. Trajectories of control gains $\lambda_1(t, z)$ and $\lambda_2(t, z)$ in adaptive controller (39).

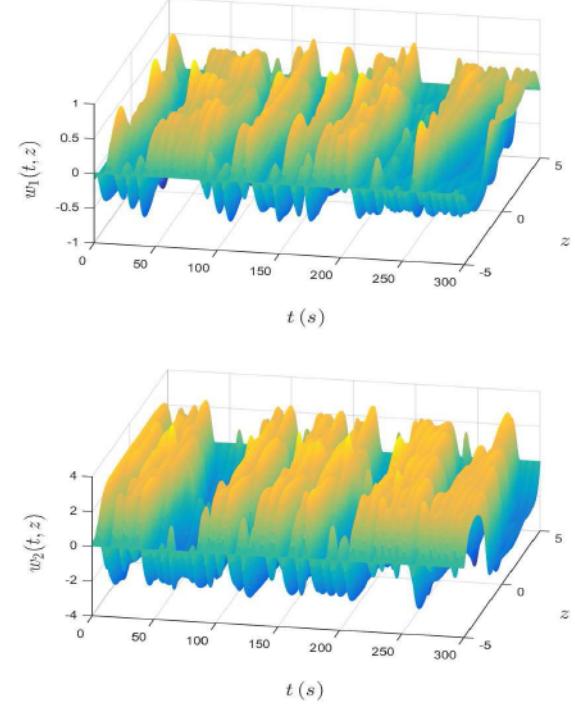


Fig. 5. Trajectories of states $w_1(t, z)$ and $w_2(t, z)$ in system (40).

where the gains are chosen as $\lambda_1^{<1>} = -5.6$, $\lambda_1^{<2>} = -5.4$, $\lambda_2^{<1>} = -7.7$, and $\lambda_2^{<2>} = -7.8$. And

$$\begin{aligned} u_p(t, z) &= \sum_{l=1}^2 \gamma_l(\epsilon(t)) \lambda_p^{<l>} w_p(t, z), \\ \frac{\partial \lambda_p^{<l>}(t, z)}{\partial t} &= -\zeta_p^{<l>} |w_p(t, z)|^2 \end{aligned} \quad (42)$$

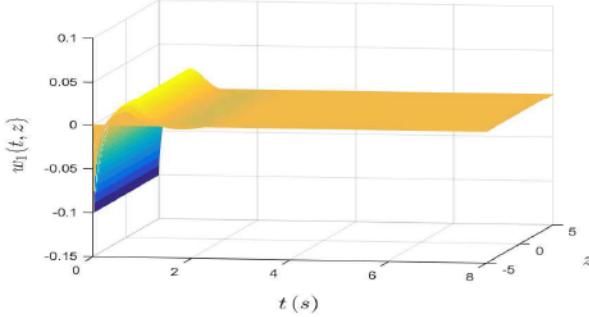
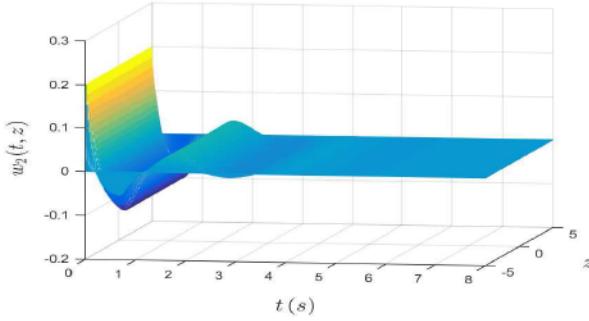


Fig. 6. Trajectories of states $w_1(t, z)$ and $w_2(t, z)$ in system (40) under controller (41).

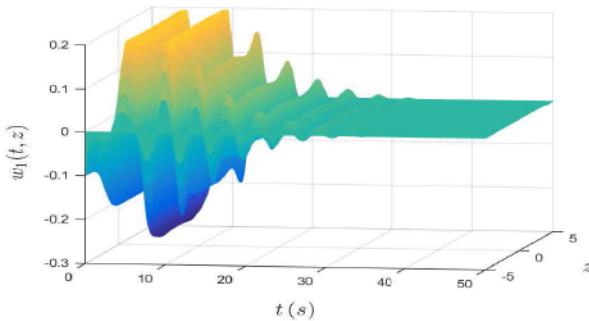
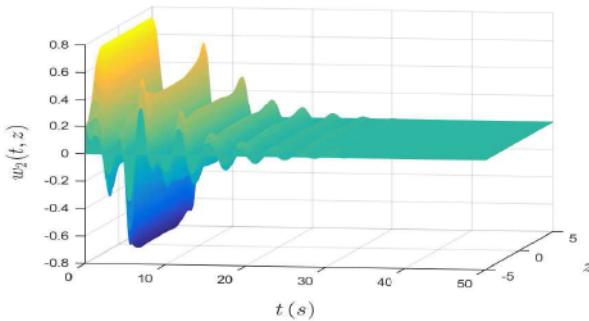


Fig. 7. Trajectories of states $w_1(t, z)$ and $w_2(t, z)$ in system (40) under controller (42).

where $\zeta_p^{<l>} = 5$, $p, l = 1, 2$. Then, $\lambda_1(t, z) = \lambda_1^{<l>}(t, z)$ and $\lambda_2(t, z) = \lambda_2^{<l>}(t, z)$, $l = 1, 2$.

Choose $\tau = 2$, $\xi_p = 1$, $\dot{v}_{1pk} = \dot{v}_{2pk} = \dot{v}_{1pk} = \dot{v}_{2pk} = \dot{w}_{1pk} = \dot{w}_{2pk} = \dot{w}_{1pk} = \dot{w}_{2pk} = 0.5$, $p, k = 1, 2$, it is easy to check that the conditions of Corollary 2 hold. Then, the

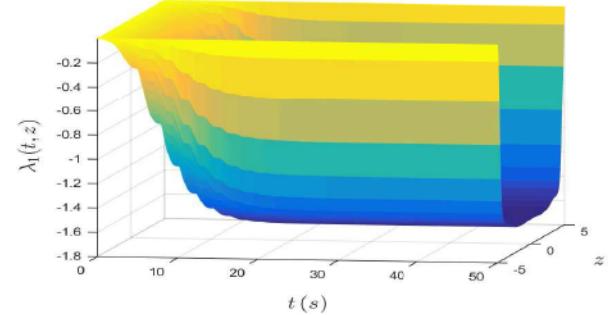
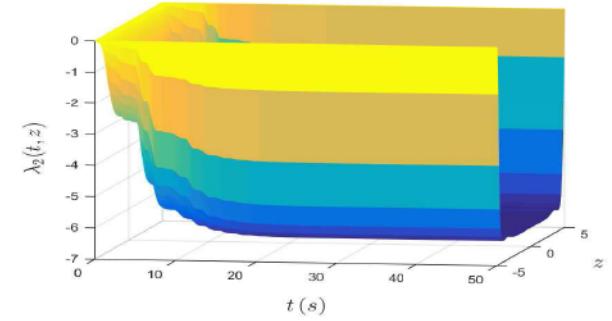


Fig. 8. Trajectories of control gains $\lambda_1(t, z)$ and $\lambda_2(t, z)$ in adaptive controller (42).

results of Corollary 2 show that system (40) is globally exponentially stabilizable via the fuzzy controller (41). Also the results of Theorem 2 show that the global stabilization result for system (40) under controller (42). The trajectories of states variables $w_1(t, z)$ and $w_2(t, z)$ under controllers (41) and (42) are shown in Figs. 6 and 7, respectively. From Figs. 6 and 7, we can see that under controller (41) or (42), the states in system (40) converge to zero as time goes to infinity. Finally, the trajectories of control gains $\lambda_1(t, z)$ and $\lambda_2(t, z)$ in adaptive controller (42) are given in Fig. 8.

V. CONCLUSION

The global stabilizability problem has been discussed for FMRDNNs by adopting the fuzzy set theory, Lyapunov stability theory, and Green formula. Under some inequality techniques, and designed fuzzy controllers, several easily verified criteria have been derived. It is noted that the obtained results are general and include some existing ones as special cases. Finally, two examples have been carried out to show the effectiveness of the presented results.

Since intermittent feedback control methods can save control cost, future work will focus on the stabilization and synchronization problems of FMRDNNs via intermittent control. Moreover, the finite-time or fixed-time stabilization and synchronization problems of FMRDNNs with stochastic disturbances will also be considered in the future.

REFERENCES

- [1] L. O. Chua, "Memristor-the missing circuit element," *IEEE Trans. Circuit Theory*, vol. CT-18, no. 5, pp. 507–519, Sep. 1971.

[2] D. B. Strukov, G. S. Snider, G. R. Stewart, and R. S. Williams, "The missing memristor found," *Nature*, vol. 453, no. 7191, pp. 80–83, 2008.

[3] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, "Nanoscale memristor device as synapse in neuromorphic systems," *Nano Lett.*, vol. 10, no. 4, pp. 1297–1301, Mar. 2010.

[4] L. Wang, H. He, Z. Zeng, and M.-F. Ge, "Model-independent formation tracking of multiple Euler–Lagrange systems via bounded inputs," *IEEE Trans. Cybern.*, to be published, doi: [10.1109/TCYB.2019.2938398](https://doi.org/10.1109/TCYB.2019.2938398).

[5] C.-K. Zhang, Y. He, L. Jiang, Q.-G. Wang, and M. Wu, "Stability analysis of discrete-time neural networks with time-varying delay via an extended reciprocally convex matrix inequality," *IEEE Trans. Cybern.*, vol. 47, no. 10, pp. 3040–3049, Oct. 2017.

[6] X. Wan, Z. Wang, Q.-L. Han, and M. Wu, "A recursive approach to quantized H_∞ state estimation for genetic regulatory networks under stochastic communication protocols," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 9, pp. 2840–2852, Sep. 2019.

[7] L. Wang, T. Dong, and M.-F. Ge, "Finite-time synchronization of memristor chaotic systems and its application in image encryption," *Appl. Math. Comput.*, vol. 347, pp. 293–305, Apr. 2019.

[8] S. Wen *et al.*, "Memristive LSTM network for sentiment analysis," *IEEE Trans. Syst., Man, Cybern., Syst.*, to be published, doi: [10.1109/TSMC.2019.2906098](https://doi.org/10.1109/TSMC.2019.2906098).

[9] S. Wen, S. Xiao, Y. Yang, Z. Yan, Z. Zeng, and T. Huang, "Adjusting learning rate of memristor-based multilayer neural networks via fuzzy method," *IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.*, vol. 38, no. 6, pp. 1084–1094, Jun. 2019.

[10] S. P. Adhikari, C. Yang, H. Kim, and L. O. Chua, "Memristor bridge synapse-based neural network and its learning," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 23, no. 9, pp. 1426–1435, Sep. 2012.

[11] L. Wang, Z. Zeng, and M.-F. Ge, "A disturbance rejection framework for finite-time and fixed-time stabilization of delayed memristive neural networks," *IEEE Trans. Syst., Man, Cybern., Syst.*, to be published, doi: [10.1109/TSMC.2018.2888867](https://doi.org/10.1109/TSMC.2018.2888867).

[12] S. Wen, R. Hu, Y. Yang, T. Huang, Z. Zeng, and Y.-D. Song, "Memristor-based echo state network with online least mean square," *IEEE Trans. Syst., Man, Cybern., Syst.*, vol. 49, no. 9, pp. 1787–1796, Sep. 2019.

[13] S. Duan, X. Hu, Z. Dong, L. Wang, and P. Mazumder, "Memristor-based cellular nonlinear/neural network: Design, analysis, and applications," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 26, no. 6, pp. 1202–1213, Jun. 2015.

[14] W.-J. Lin, Y. He, C.-K. Zhang, M. Wu, and J. Shen, "Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 8, pp. 2528–2537, Aug. 2019.

[15] C. Hu, J. Yu, Z. Chen, H. Jiang, and T. Huang, "Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks," *Neural Netw.*, vol. 89, pp. 74–83, May 2017.

[16] M.-F. Ge, Z.-W. Liu, G. Wen, X. Yu, and T. Huang, "Hierarchical controller-estimator for coordination of networked Euler–Lagrange systems," *IEEE Trans. Cybern.*, to be published, doi: [10.1109/TCYB.2019.2914861](https://doi.org/10.1109/TCYB.2019.2914861).

[17] A. Wu, S. Wen, and Z. Zeng, "Synchronization control of a class of memristor-based recurrent neural networks," *Inf. Sci.*, vol. 183, no. 1, pp. 106–116, Jan. 2012.

[18] L. Wang, M.-F. Ge, J. Hu, and G. Zhang, "Global stability and stabilization for inertial memristive neural networks with unbounded distributed delays," *Nonlinear Dyn.*, vol. 95, no. 2, pp. 943–955, Jan. 2019.

[19] G. Bao, Z. Zeng, and Y. Shen, "Region stability analysis and tracking control of memristive recurrent neural network," *Neural Netw.*, vol. 98, pp. 51–58, Feb. 2018.

[20] M. Di Marco, M. Forti, and L. Pancioni, "New conditions for global asymptotic stability of memristor neural networks," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 5, pp. 1822–1834, May 2018.

[21] G. Zhang, Z. Zeng, and J. Hu, "New results on global exponential dissipativity analysis of memristive inertial neural networks with distributed time-varying delays," *Neural Netw.*, vol. 97, pp. 183–191, Jan. 2018.

[22] Z. Guo, J. Wang, and Z. Yan, "Passivity and passification of memristor-based recurrent neural networks with time-varying delays," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 25, no. 11, pp. 2099–2109, Nov. 2014.

[23] A. Wu and Z. Zeng, "Lagrange stability of memristive neural networks with discrete and distributed delays," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 25, no. 4, pp. 690–703, Apr. 2014.

[24] G. Zhang and Y. Shen, "New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 24, no. 10, pp. 1701–1707, Oct. 2013.

[25] H. Shen, T. Wang, J. Cao, G. Lu, Y. Song, and T. Huang, "Nonfragile dissipative synchronization for Markovian memristive neural networks: A gain-scheduled control scheme," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 30, no. 6, pp. 1841–1853, Jun. 2019.

[26] D. Liu, S. Zhu, and K. Sun, "Global anti-synchronization of complex-valued memristive neural networks with time delays," *IEEE Trans. Cybern.*, vol. 49, no. 5, pp. 1735–1747, May 2019.

[27] L. Wang, Y. Shen, Q. Yin, and G. Zhang, "Adaptive synchronization of memristor-based neural networks with time-varying delays," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 26, no. 9, pp. 2033–2042, Sep. 2015.

[28] G. Zhang and Y. Shen, "Exponential stabilization of memristor-based chaotic neural networks with time-varying delays via intermittent control," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 26, no. 7, pp. 1431–1441, Jul. 2015.

[29] S. Ding, Z. Wang, N. Rong, and H. Zhang, "Exponential stabilization of memristive neural networks via saturating sampled-data control," *IEEE Trans. Cybern.*, vol. 47, no. 10, pp. 3027–3039, Oct. 2017.

[30] L. Wang, Z. Zeng, M. Ge, and J. Hu, "Global stabilization analysis of inertial memristive recurrent neural networks with discrete and distributed delays," *Neural Netw.*, vol. 105, pp. 65–74, Sep. 2018.

[31] A. Wu and Z. Zeng, "Global Mittag–Leffler stabilization of fractional-order memristive neural networks," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 1, pp. 206–217, Jan. 2017.

[32] L. Wang, Y. Shen, and G. Zhang, "Finite-time stabilization and adaptive control of memristor-based delayed neural networks," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 28, no. 11, pp. 2648–2659, Nov. 2017.

[33] T. Takagi and M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," *IEEE Trans. Syst., Man, Cybern.*, vol. SMC-15, no. 1, pp. 116–132, Jan./Feb. 1985.

[34] N. Rong, Z. Wang, and H. Zhang, "Finite-time stabilization for discontinuous interconnected delayed systems via interval type-2 T-S fuzzy model approach," *IEEE Trans. Fuzzy Syst.*, vol. 27, no. 2, pp. 249–261, Feb. 2019.

[35] Y. Liu and S. M. Lee, "Stability and stabilization of Takagi–Sugeno fuzzy systems via sampled-data and state quantized controller," *IEEE Trans. Fuzzy Syst.*, vol. 24, no. 3, pp. 635–644, Jun. 2016.

[36] H. Shen, F. Li, H. Yan, H. R. Karimi, and H.-K. Lam, "Finite-time event-triggered H_∞ control for T-S fuzzy Markov jump systems," *IEEE Trans. Fuzzy Syst.*, vol. 26, no. 5, pp. 3122–3135, Oct. 2018.

[37] S. Wen, Z. Zeng, T. Huang, and Y. Zhang, "Exponential adaptive lag synchronization of memristive neural networks via fuzzy method and applications in pseudorandom number generators," *IEEE Trans. Fuzzy Syst.*, vol. 22, no. 6, pp. 1704–1713, Dec. 2014.

[38] S. Yang, C. Li, and T. Huang, "Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control," *Neural Netw.*, vol. 75, pp. 162–172, Mar. 2016.

[39] Q. Xiao and Z. Zeng, "Lagrange stability for T-S fuzzy memristive neural networks with time-varying delays on time scales," *IEEE Trans. Fuzzy Syst.*, vol. 26, no. 3, pp. 1091–1103, Jun. 2018.

[40] Y. Sheng, H. Zhang, and Z. Zeng, "Stabilization of fuzzy memristive neural networks with mixed time delays," *IEEE Trans. Fuzzy Syst.*, vol. 26, no. 5, pp. 2591–2606, Oct. 2018.

[41] Y. Sheng, F. L. Lewis, Z. Zeng, and T. Huang, "Lagrange stability and finite-time stabilization of fuzzy memristive neural networks with hybrid time-varying delays," *IEEE Trans. Cybern.*, to be published, doi: [10.1109/TCYB.2019.2912890](https://doi.org/10.1109/TCYB.2019.2912890).

[42] L. Wang, H. He, and Z. Zeng, "Global synchronization of fuzzy memristive neural networks with discrete and distributed delays," *IEEE Trans. Fuzzy Syst.*, to be published, doi: [10.1109/TFUZZ.2019.2930032](https://doi.org/10.1109/TFUZZ.2019.2930032).

[43] J.-L. Wang, Z. Qin, H.-N. Wu, T. Huang, and P.-C. Wei, "Analysis and pinning control for output synchronization and H_∞ output synchronization of multiweighted complex networks," *IEEE Trans. Cybern.*, vol. 49, no. 4, pp. 1314–1326, Apr. 2019.

[44] J.-L. Wang, M. Xu, H.-N. Wu, and T. Huang, "Passivity analysis and pinning control of multi-weighted complex dynamical networks," *IEEE Trans. Netw. Sci. Eng.*, vol. 6, no. 1, pp. 60–73, Jan.–Mar. 2019.

[45] J.-L. Wang, H.-N. Wu, T. Huang, S.-Y. Ren, and J. Wu, "Passivity and output synchronization of complex dynamical networks with fixed and adaptive coupling strength," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. 2, pp. 364–376, Feb. 2018.

[46] C. Hu, H. Jiang, and Z. Teng, "Impulsive control and synchronization for delayed neural networks with reaction–diffusion terms," *IEEE Trans. Neural Netw.*, vol. 21, no. 1, pp. 67–81, Jan. 2010.

- [47] W.-H. Chen, S. Luo, and W. X. Zheng, "Impulsive synchronization of reaction-diffusion neural networks with mixed delays and its application to image encryption," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 27, no. 12, pp. 2696–2710, Dec. 2016.
- [48] H. Zhang, Z. Zeng, and Q.-L. Han, "Synchronization of multiple reaction-diffusion neural networks with heterogeneous and unbounded time-varying delays," *IEEE Trans. Cybern.*, vol. 49, no. 8, pp. 2980–2991, Aug. 2019.
- [49] Y. Lv, C. Hu, J. Yu, H. Jiang, and T. Huang, "Edge-based fractional-order adaptive strategies for synchronization of fractional-order coupled networks with reaction-diffusion terms," *IEEE Trans. Cybern.*, to be published, doi: [10.1109/TCYB.2018.2879935](https://doi.org/10.1109/TCYB.2018.2879935).
- [50] Z. Tu, N. Ding, L. Li, Y. Feng, L. Zou, and W. Zhang, "Adaptive synchronization of memristive neural networks with time-varying delays and reaction-diffusion term," *Appl. Math. Comput.*, vol. 311, pp. 118–128, Oct. 2017.
- [51] Y. Cao, Y. Cao, S. Wen, T. Huang, and Z. Zeng, "Passivity analysis of delayed reaction-diffusion memristor-based neural networks," *Neural Netw.*, vol. 109, pp. 159–167, Jan. 2019.
- [52] R. Li and J. Cao, "Stability analysis of reaction-diffusion uncertain memristive neural networks with time-varying delays and leakage term," *Appl. Math. Comput.*, vol. 278, pp. 54–69, Mar. 2016.
- [53] H. Wu, X. Zhang, R. Li, and R. Yao, "Adaptive anti-synchronization and H_{∞} anti-synchronization for memristive neural networks with mixed time delays and reaction-diffusion terms," *Neurocomputing*, vol. 168, pp. 726–740, Nov. 2015.
- [54] J. Cao and J. Wang, "Global asymptotic stability of a general class of recurrent neural networks with time-varying delays," *IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.*, vol. 50, no. 1, pp. 34–44, Jan. 2003.
- [55] L. C. Evans, *Partial Differential Equations*, Providence, RI, USA: Amer. Math. Soc., 1998.

Leimin Wang (M'18) received the B.S. degree in mathematics and applied mathematics from the South Central University for Nationalities, Wuhan, China, in 2011, and the Ph.D. degree in control science and engineering from the Huazhong University of Science and Technology, Wuhan, China, in 2016. He is currently an Associate Professor with the School of Automation, China University of Geosciences, Wuhan, where he is also with the Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems. His current research interests include neural networks, memristive systems, and finite-time control.

Haibo He (SM'11–F'18) received the B.S. and M.S. degrees in electrical engineering from the Huazhong University of Science and Technology, Wuhan, China, in 1999 and 2002, respectively, and the Ph.D. degree in electrical engineering from Ohio University, Athens, OH, USA, in 2006.

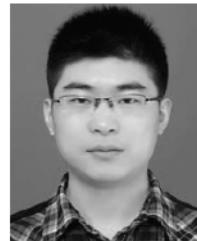
He is currently the Robert Haas Endowed Chair Professor with the Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI, USA. He has published one sole-authored research book (Wiley), edited one book (Wiley-IEEE), and six conference proceedings (Springer), and authored and coauthored over 300 peer-reviewed journals and conference papers. His current research interests include computational intelligence, machine learning, data mining, and various applications.

Dr. He was a recipient of the IEEE International Conference on Communications Best Paper Award in 2014, the IEEE CIS Outstanding Early Career Award in 2014, and the National Science Foundation CAREER Award in 2011. He was the General Chair of the IEEE Symposium Series on Computational Intelligence in 2014. He is currently the Editor-in-Chief of the *IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS*.

Zhigang Zeng (SM'07) received the Ph.D. degree in systems analysis and integration from the Huazhong University of Science and Technology, Wuhan, China, in 2003.

He is currently a Professor with the School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, where he is also with the Key Laboratory of Image Processing and Intelligent Control of the Education Ministry of China. He has published over 100 international journal papers. His current research interests include theory of functional differential equations and differential equations with discontinuous right-hand sides, and their applications to dynamics of neural networks, memristive systems, and control systems.

Prof. Zeng was an Associate Editor of the *IEEE TRANSACTIONS ON NEURAL NETWORKS* from 2010 to 2011. He has been an Associate Editor of the *IEEE TRANSACTIONS ON CYBERNETICS* since 2014, and the *IEEE TRANSACTIONS ON FUZZY SYSTEMS* since 2016, and an Editorial Board Member of *Neural Networks* since 2012, *Cognitive Computation* since 2010, and *Applied Soft Computing* since 2013.



Cheng Hu (M'19) received the B.S. degree in mathematics and applied mathematics from the College of Science, Southwest University of Science and Technology, Mianyang, China, in 2006, and the M.S. degree in operations research and control theory and the Ph.D. degree in applied mathematics from Xinjiang University, Xinjiang, China, in 2009 and 2012, respectively.

He is currently an Associate Professor with the College of Mathematics and System Sciences, Xinjiang University. His current research interests include nonlinear complex systems, neural networks, and control theory.