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Abstract—This article addresses two kinds of formation track-
ing problems, namely: 1) the practical formation tracking (PFT)
problem and 2) the zero-error formation tracking (ZEFT)
problem for multiple Euler–Lagrange systems with input distur-
bances and unknown models. In these problems, the bounded
input constraint, which can be possibly caused by actuator
saturation and power limitations, is taken into consideration.
Then, the two classes of model-independent distributed control
approaches, in which the prior information (i.e., the structures
and features) of the system model is not used, are proposed cor-
respondingly. Based on the nonsmooth analysis and Lyapunov
stability theory, several novel criteria for achieving PFT and
ZEFT of multiple Euler–Lagrange systems are derived. Finally,
numerical simulations and comparisons are presented to verify
the validity and effectiveness of the proposed control approaches.

Index Terms—Actuator saturation, formation tracking, input
disturbance, multiple Euler–Lagrange systems.

I. INTRODUCTION

THE FORMATION tracking problem, as a critical topic
in cooperative control of multiagent systems, has shown

significant value and drawn increasing attention in past
decades due to its widespread applications in unmanned
vehicles [1]–[5], networked systems [6]–[10], and robotic
teams [11]–[14]. Besides, the distributed control approach
has been widely adopted in dealing with the formation
tracking problems [15]–[21], due to its lower communication
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cost compared with the centralized one. For instance,
Zuo et al. [15] proposed the distributed control approach to
realize the output formation tracking of the heterogeneous lin-
ear multiagent systems. In [16], the distributed time-varying
formation tracking problem was addressed for second-order
multiagent systems with switching topology. Then, the dis-
tributed sliding-mode control was designed for the finite-time
formation tracking in [17]. Moreover, Yu et al. [18], [19]
extended the formation tracking control problem to nonlinear
multiagent systems and obtained several practical formation
tracking (PFT) results. In [20], the formation robust tracking
problem was studied for multiagent systems with parameter
uncertainties and external disturbances. Chen and Ren [21] dis-
cussed the inherent connection between the dynamic region-
following formation control and distributed average tracking,
and they also made an attempt on the applications of dis-
tributed average tracking algorithms to achieve distributed
control.
On the other hand, increasing research attention has focused

on the multiagent systems whose dynamic behaviors are
described as nonlinear dynamics [22], [23], specifically, the
Euler–Lagrange systems [24]–[27]. Such nonlinear Euler–
Lagrange systems can be used to represent a broad class
of engineering systems, including autonomous vehicles [28];
aerospace systems [29], [30]; and mobile robots [31]–[33],
due to their unique dynamic characteristics. It thus leads to
the generation of some recent research that concentrates on
multiple Euler–Lagrange systems employing the distributed
control approaches [34]–[38]. Especially, it is of great impor-
tance and significance to consider multiple Euler–Lagrange
systems instead of the traditional linear or nonlinear multiagent
systems in dealing with the formation tracking problems [39].
It is worth mentioning that the distributed control

approaches in [40]–[44] are designed based on the system
models with normal or estimated dynamic parameters, that
is, the prior structures and features of the system models are
required. In this manner, the designed control approaches are
called model-based control [45]. However, such model-based
control cannot be constructed and established, in the case that
the model information, that can be directly employed in con-
trol design, is limited [46], [47]. Then, the model-independent
control approach has been a better choice compared with the
model-based one in such a case [48], [49]. Therefore, design-
ing model-independent control for solving the coordination
problems has become a popular topic recently. For instance,
our previous work [50] designed some model-independent
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distributed proportional–derivative-like control approaches to
deal with the target tracking problem of the networked
Euler–Lagrange systems without using model information.
However, only practical stability can be achieved for the con-
sidered closed-loop system, which thus motivates the study on
the zero-error tracking problem of multiple Euler–Lagrange
systems in this article.
In addition to considering the model-independent control

approach, another important topic in the control area is to
develop control algorithms with bounded input. That is mainly
due to the inevitable actuator saturation and power limitations
in engineering applications [51]. Besides, designing control
algorithms with bounded inputs for stabilizing multiple Euler–
Lagrange systems has become extraordinarily difficult, on
account of the fact that there are generally a large num-
ber of agents in their applications [52]. In light of such a
critical impact of the bounded input (i.e., input saturation)
constraints, great efforts have been made to the coopera-
tive tracking problem subjected to such constraints [53]–[57].
However, the control algorithms presented in [52]–[56] can
only drive the systems to reach PFT. More important, the input
disturbances, which are inevitable in practical applications,
have not been taken into consideration in the aforementioned
literature [51]–[57]. Thus, developing control approaches for
multiple Euler–Lagrange systems under input disturbances and
bounded input constraints, to solve both the PFT problem and
zero-error formation tracking (ZEFT) problem under a uniform
framework, are still unaccomplished.
Motivated by the above discussions, this article proposes

two kinds of model-independent control approaches with the
consideration of input disturbances and bounded input con-
straints to overcome the challenging problems of both the PFT
and ZEFT for multiple Euler–Lagrange systems. The main
contributions are three-fold.
1) Different from the model-based control approaches

investigated in [40]–[44] that require prior information
of structures and features of the system models, the
presented distributed control approaches are model inde-
pendent, which can be employed to deal with the control
systems with limited model information and provide
theoretical guidance for such problems.

2) In [16], [18]–[20], [39], and [49], the formation tracking
problem was addressed without considering the input
disturbances and bounded input constraints. Since these
constraints are inevitable in some practical applications,
it is of great significance to study the formation tracking
problem with such constraints. Thus, in this article, the
formation tracking problem of multiple Euler–Lagrange
systems with such constraints is successfully solved by
using the presented model-independent control.

3) Compared with the study in [18], [19], and [50] where
only the PFT problem was solved under distributed
control, we present a uniform framework for solving
both the PFT problem and ZEFT problem for multiple
Euler–Lagrange systems.

Notation: R, R+, Rn, and Rn×n denote the set of real num-
bers, positive real numbers, the n× 1 real column vector, and
n × n real matrix, respectively. 1n = col(1, 1, . . . , 1) ∈ Rn is
the identity vector and In is the n×n identity matrix. sign(·) is

the signum function. For a vector ω = col(ω1,ω2, . . . ,ωn) ∈
Rn, ‖ω‖ = (

∑n
i=1 |ωi|2)1/2 denotes the Euclidean norm and

‖ω‖1 = ∑n
i=1 |ωi|, ‖ω‖∞ = maxi |ωi|. For a matrix C ∈

Rn×n, the norm ‖C‖ =
√

λmax(CTC), where λmax(·) denotes
the maximum eigenvalue. tanh(·), sech(·), and cosh(·) denote
the hyperbolic tangent, secant, and cosine functions, respec-
tively, and tanh(ω) = col(tanh(ω1), . . . , tanh(ωn)), cosh(ω) =
col(cosh(ω1), . . . , cosh(ωn)). sign(·) denotes the standard
signum function.

II. PRELIMINARIES

A. Graph Theory

Throughout this article, we consider a weighted directed
robotic network G = (V ,E ,A ) with a set of N robots, a
set of nodes V = {v1, v2, . . . , vN}, a set of directed edges
E = {(vi, vj) : vi, vj ∈ V } ⊆ V × V , and a weighted
adjacency matrix A = [aij] ∈ RN×N . A directed edge E ij
in the robotic network is denoted by the ordered pair of
robots (vi, vj), where vi and vj are called the terminal and
initial robots, respectively, which means that robot vi can
receive information from robot vj. If there is a directed edge
(vi, vj) ∈ E , then aij > 0; otherwise, aij = 0. Besides, self-
loop is not allowed, that is, aii = 0. The target of the directed
robotic network is denoted by robot 0 and the interaction
between the robots and target is represented by a matrix
B = diag{a10, a20, . . . , aN0},Ni = {j ∈ N : (vi, vj) ∈ E , j '= i}
is a set of neighbors of robot i, and N = {0, 1, 2, . . . ,N}.
# = {ζ1, . . . , ζN} denotes a set of formation patterns at time t,
where ζi is the desired position of robot vi. L = [lij] ∈ RN×N

is the Laplacian matrix of the graph and it is defined by
L = diag(A1N)−A, that is, lii =

∑N
j=1,j'=i aij, lij = −aij, i '= j.

For a connected graph, the Laplacian matrix L has a simple
zero eigenvalue with the associated eigenvector 1NL = 0.

B. Problem Formulation

The dynamics of the ith subsystem under input disturbances
are given as [58]

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Diq̇i + gi(qi) = ui + κi (1)

where i ∈ N = {1, 2, . . . ,N}; t ∈ T = [t0,∞); t0 ≥ 0 is the
initial time; and qi(t) ∈ Rn, q̇i(t) ∈ Rn, and q̈i(t) ∈ Rn denote
the link position, velocity, and acceleration, which are sim-
plified as qi, q̇i, and q̈i. Mi(qi),Ci(qi, q̇i) ∈ Rn×n denote the
inertia matrix and the centrifugal–Coriolis matrix, respectively.
gi(qi) ∈ Rn is the gravity vector. Di ∈ Rn×n represents the
matrix composed of the damping friction coefficients. κi ∈ Rn

denotes the input disturbance. ui is torque control.
The time-varying moving target for the multirobot system

(1) is given as ẏ0 = z0, ż0 = f (t, z0), where f : T ×Rn → Rn

is the nonlinear dynamics of the target.
Then, we present the following assumptions for system (1).
Assumption 1: The directed robotic network G has a

directed spanning tree.
Assumption 2: The vectors z0, ż0 ∈ Rn are bounded, that is,

there exist constants α1,α2, η1, and η2 ∈ R+ such that

sup
t∈T

‖z0‖ ≤ α1, sup
t∈T

‖ż0‖ ≤ α2

sup
t∈T

‖z0‖∞ ≤ η1, sup
t∈T

‖ż0‖∞ ≤ η2.
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TABLE I
CONTROL PROCESS OF THE SATURATED CONTROL INPUTS (3) AND (26)

Assumption 3: System (1) is subjected to input constraints,
that is, there exists a positive constant ui,max without reference
to model parameters, such that supt∈T ‖ui‖∞ ≤ ui,max.
Assumption 4: The input disturbance term is bounded, that

is, there exists a positive constant πκi, such that ‖κi‖ ≤ πκi.
Control Objective: Design a controller to control a group of

robotic agents initialized on random bounded positions to track
the target in formation, that is, design control approaches to
achieve the PFT and ZEFT for the considered multiple Euler–
Lagrange systems in the sense of Definitions 1 and 2.
Definition 1: The PFT for system (1) is achieved, if for

∀i ∈ N
{

lim
t→∞ ‖ tanh(qi(t) − y0(t) − ζi)‖ ≤ ε1

lim
t→∞ ‖q̇i(t) − z0(t)‖ ≤ ε2

where ζi is a constant vector at time t, ε1 > 0, ε2 > 0.
Definition 2: The ZEFT for system (1) is achieved, if for

∀i ∈ N
{

lim
t→∞ ‖qi(t) − y0(t) − ζi‖ = 0

lim
t→∞ ‖q̇i(t) − z0(t)‖ = 0.

Moreover, for all i ∈ N , the following properties [58] are
summarized for system (1).
Property 1: The matrix Di is diagonal positive definite.
Property 2: The matrix Mi(qi) is symmetric positive

definite.
Property 3: Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric, that is,

ξT(Ṁi(qi) − 2Ci(qi, q̇i))ξ = 0,∀qi, q̇i, ξ ∈ Rn.
Property 4: The dynamic items of system (1) are bounded,

that is, 0 < πmi ≤ ‖Mi(qi)‖ ≤ πMi, 0 < πci‖q̇i‖2 ≤
‖Ci(qi, q̇i)q̇i‖ ≤ πCi‖q̇i‖2, 0 < πdi ≤ ‖Di‖ ≤ πDi, ‖gi(qi)‖ ≤
πgi, and ∀qi, q̇i ∈ Rn, where πmi,πMi,πci,πCi,πDi,πgi are
positive constants.
Finally, we give the following lemmas.
Lemma 1 [59]: If τ1, τ2, . . . , τn ≥ 0 and 0 < µ1 < µ2, then

(
n∑

i=1

τ
µ1
i

)1/µ1

≥
(

n∑

i=1

τ
µ2
i

)1/µ2

. (2)

Lemma 2 [60]: If function W(t) : [0,∞) → R is uniformly
continuous and limt→∞

∫ t
0 W(ε)dε is finite, then W(t) → 0

as t → ∞.

III. MAIN RESULTS

In this section, we establish several conditions ensuring both
the PFT and ZEFT for multiple Euler–Lagrange systems under
two designed distributed and bounded control inputs. The con-
trol process of two bounded control inputs is displayed in
Table I.

A. PFT Problem

For the PFT problem of system (1), the model-independent
distributed control input is designed as follows:

ui = β1i tanh(yi − qi)+ β2i tanh(zi − q̇i) (3)

for ∀i ∈ N , where β1i and β2i are positive constants. The
estimated states yi and zi are given as

ẏi = −η1sign




∑

j∈Ni

aij
(
yi − ζi − yj + ζj

)


 (4)

żi = −η2sign




∑

j∈Ni

aij
(
zi − zj

)


. (5)

Then, the input is bounded by supt∈T ‖ui‖∞ ≤ β1i+β2i, which
means that the actuator saturation constraints can be fulfilled
by choosing the control gains such that

β1i + β2i ≤ ui,max. (6)

Then, we define the estimated errors as

ȳi = yi − y0 − ζi, z̄i = zi − z0

and the target tracking errors

ei = qi − y0 − ζi, ėi = q̇i − z0.

Remark 1: The bounded input constraints are considered in
designing the control (3). With the introduction of the specific
function tanh, it gives rise to the fact that the saturation upper
bound is independent on the number of agents’ neighbors.
It shows that the presented control algorithm has advantages
for the large-scale formation tracking systems, and is different
from the saturated control methods in [51]–[57].
Remark 2: Actually, y0 denotes the position coordinate of

the time-varying target, and constant vector ζi represents the
local coordinate in the formation pattern. The estimated states
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yi and zi are mainly introduced to estimate the states of the
target, and are generated by the distributed estimators requiring
only local information.
The following theorem shows the main result on achieving

the PFT of multiple Euler–Lagrange systems under the control
input (3).
Theorem 1: Based on Assumptions 1–4, the PFT is achieved

by employing the control input (3), if there exist positive
constants ν ≥ 1,β1i and β2i such that (6) holds, and for i ∈ N

ν2β1i − 2πMi > 0 (7)

2νπdi − 2πMi −
(
2
√
n+ 2ν + 1

)
πCi > 0 (8)

2β1i − β2i − πCi > 0. (9)

Besides, the upper bounds ε1 and ε2 presented in Definition 1
are estimated as

ε1 = 2δi
2β1i − β2i − πCi

(10)

ε2 = 2νδi + 2α1
√
nπCi

2νπdi − 2πMi −
(
2
√
n+ 2ν + 1

)
πCi

(11)

where δi = πκi + πMiα2 + (πCi + πDi)α1 + πgi.
Proof: First, we can conclude that

˙̄yi = −η1sign




∑

j∈Ni

aij
(
yi − ζi − yj + ζj

)


 − z0 (12)

˙̄zi = −η2sign




∑

j∈Ni

aij
(
zi − zj

)


 − ż0 (13)

where i ∈ N . Then, it results from [17] that ȳi = z̄i = 0 for
all t ≥ t∗ = max{t1, t2}, and

t1 = t0 +
maxi∈N ‖yi(t0) − y0(t0) − ζi‖∞

η1 − supt∈T ‖z0‖∞
(14)

t2 = t0 +
maxi∈N ‖zi(t0) − z0(t0)‖∞

η2 − supt∈T ‖ż0‖∞
. (15)

Next, from (12) and (13), y0, z0, ż0 ∈ L∞ ∩ L2 means that
˙̄yi, ˙̄zi ∈ L∞ ∩ L2,∀t ∈ [t0, t∗], i ∈ N .
Thus, yi, zi ∈ L∞ ∩ L2. Moreover, for any bounded initial

conditions, it follows from Property 4 that qi, q̇i, ei, ėi ∈ L∞ ∩
L2,∀t ∈ [t0, t∗], i ∈ N .
From system (1) and the control input (3), the following

system can be obtained when t ∈ [t∗,∞):

Mi(qi)ëi + Ci(qi, q̇i)ėi + Diėi
= β1i tanh(−ei)+ β2i tanh(−ėi)+ Ei (16)

where Ei = κi − Mi(qi)ż0 − Ci(qi, q̇i)z0 − Diz0 − gi(qi) is
bounded with ‖Ei‖ ≤ δi + πCi‖ėi‖ and δi = πκi + πMiα2 +
(πCi + πDi)α1 + πgi, i ∈ N = {1, 2, . . . ,N}.
Then, consider the following Lyapunov function for

system (16):

Vi =
1
2
ėTi Mi(qi)ėi +

1
ν
tanhT(ei)Mi(qi)ėi

+ 1Tn

(
β1iI +

Di

ν

)
ln(cosh(ei)) (17)

where ν ≥ 1 is a positive constant.

Note that

1
4
ėTi Mi(qi)ėi +

1
ν
tanhT(ei)Mi(qi)ėi

= 1
4

(
ėi +

2
ν
tanh(ei)

)T

Mi(qi)
(
ėi +

2
ν
tanh(ei)

)

− 1
ν2

tanhT(ei)Mi(qi) tanh(ei)

≥ − 1
ν2

tanhT(ei)Mi(qi) tanh(ei) (18)

and based on the definition of hyperbolic tangent and secant
functions, the following inequalities can be derived:

1Tn ln(cosh(ei)) ≥ 1
2
tanhT(ei) tanh(ei) (19)

eTi tanh(ei) ≥ tanhT(ei) tanh(ei). (20)

Then, it follows from (17)–(20) that:

Vi ≥ 1
4
ėTi Mi(qi)ėi −

1
ν2

tanhT(ei)Mi(qi) tanh(ei)

+ 1Tn

(
β1iI +

Di

ν

)
ln(cosh(ei))

≥ 1
4
ėTi Mi(qi)ėi + tanhT(ei)

(
β1i

2
I − Mi(qi)

ν2

)
tanh(ei)

+ 1
2
tanhT(ei)β1i tanh(ei)+ 1Tn

Di

ν
ln(cosh(ei))

> 0 (21)

for col(eTi ėTi ) '= 0, which indicates that Vi is positive definite
with respect to ei, ėi.
By calculating the time derivative of Vi along the solution

of system (18), it follows that:

V̇i =
1
2
ėTi Ṁi(qi)ėi + ėTi Mi(qi)ëi +

1
ν
ėTi Sech

2(ei)Mi(qi)ėi

+ 1
ν
tanhT(ei)Ṁi(qi)ėi +

1
ν
tanhT(ei)Mi(qi)ëi

+ ėTi

(
β1iI +

Di

ν

)
tanh(ei)

= ėTi (−Diėi + β1i tanh(−ei)+ β2i tanh(−ėi)+ Ei)

+ 1
ν
ėTi Sech

2(ei)Mi(qi)ėi +
1
ν
tanhT(ei)CT

i (qi, q̇i)ėi

+ 1
ν
tanhT(ei)(−Diėi + β1i tanh(−ei)

+ β2i tanh(−ėi)+ Ei)+ ėTi

(
β1iI +

Di

ν

)
tanh(ei)

= −ėTi Diėi − ėTi β2i tanh(ėi)+ ėTi Ei +
1
ν
tanhT(ei)Ei

+ 1
ν
ėTi Sech

2(ei)Mi(qi)ėi +
1
ν
tanhT(ei)CT

i (qi, q̇i)ėi

− β1i

ν
tanhT(ei) tanh(ei) − β2i

ν
tanhT(ei) tanh(ėi). (22)

Based on Property 4, we have tanhT(ei)CT
i (qi, q̇i)ėi ≤

πCi(α1‖ėi‖ + ‖ėi‖2)‖ tanh(ei)‖. Together with this inequality

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 14,2021 at 19:52:24 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: MODEL-INDEPENDENT FORMATION TRACKING OF MULTIPLE EULER–LAGRANGE SYSTEMS 2817

and ‖Ei‖ ≤ δi + πCi‖ėi‖, it follows from (22) that:

V̇i ≤ −ėTi Diėi − tanhT(ėi)β2i tanh(ėi)+
πMi

ν
‖ėi‖2

+
(
ėTi + 1

ν
tanhT(ei)

)
Ei +

√
nπCi

(
α1‖ėi‖ + ‖ėi‖2

)

ν

− β1i

ν
tanhT(ei) tanh(ei) − β2i

ν
tanhT(ei) tanh(ėi)

≤ −ėTi Diėi − tanhT(ėi)β2i tanh(ėi)

+ πMi +
√
nπCi

ν
‖ėi‖2 +

α1
√
nπCi

ν
‖ėi‖

+ δi‖ėi‖ + δi

ν
‖ tanh(ei)‖ + πCi‖ėi‖2

+ πCi

ν
‖ tanh(ei)‖‖ėi‖ − β1i

ν
tanhT(ei) tanh(ei)

+ β2i

2ν

(
‖ tanh(ei)‖2 + ‖ tanh(ėi)‖2

)

≤ −
[(

πdi −
πMi

ν
−

(√
n

ν
+ 1+ 1

2ν

)
πCi

)
‖ėi‖

−
(

δi +
α1

√
nπCi

ν

)]
‖ėi‖

−
[(

β1i

ν
− β2i

2ν
− πCi

2ν

)
‖ tanh(ei)‖ − δi

ν

]
‖ tanh(ei)‖

(23)

where Sech(xi) = diag(sech(xi1), . . . , sech(xin)).
One can conclude that V̇i ≤ 0 if

‖ėi‖ >
2νδi + 2α1

√
nπCi

2νπdi − 2πMi −
(
2
√
n+ 2ν + 1

)
πCi

(24)

‖ tanh(ei)‖ >
2δi

2β1i − β2i − πCi
. (25)

Then, the PFT is realized, which completes the proof. !
Remark 3: Theorem 1 solves the PFT problem for multiple

Euler–Lagrange systems subjected to the bounded input con-
straints and provides the fact that using the designed control
law (3), the errors between the system states and the time-
varying target trajectories converge to a neighborhood of the
origin. Then, it can be concluded from (10) and (11) that
choosing large enough gain β1i leads to an arbitrary small
upper bound ε1 if ε2 is fixed. It further implies that the robot
position qi can be arbitrarily close to y0 + ζi as t → ∞.
Remark 4: Actually, the proposed model-independent con-

trollers do not rely on the exact knowledge of the model
parameters. To achieve PFT using such controllers, the bound-
aries of the control gains are obtained by employing the
trial-and-error method [48], and this method has already been
processed in many existing papers considering the model-
independent algorithms.

B. ZEFT Problem

To improve the convergence performance of the PFT and
realize the ZEFT, another discontinuous control input is
proposed in this section. Before moving on, the model-
independent control is designed as follows:

ui = β1i tanh(yi − qi)+ β2i tanh(zi − q̇i)+ β3isign(ωi) (26)

Fig. 1. Directed communication graph of multiple Euler–Lagrange systems
as described in (35).

where

ωi = (zi − q̇i)+ 1/ν tanh(yi − qi) (27)

for ∀i ∈ N , ν ≥ 1,β3i are positive constants, and the other
parameters are defined as the same as in (3). Then, the actuator
is bounded, that is, supt∈T ‖ui‖∞ ≤ β1i + β2i + β3i, which
implies that the bounded input constraints can be fulfilled by
choosing the control gains such that

β1i + β2i + β3i ≤ ui,max. (28)

Remark 5: Since the designed control input (26) is dis-
continuous, then the Filippov solution [61] is defined for the
system (1) with such discontinuous control. A solution in
the Filippov’s sense of system ẋ = h(t, x), x(0) = x0, x ∈
Rn, t ≥ 0 is defined as an absolutely continuous function
x(t), t ∈ [0,T],T > 0, which satisfies x(0) = x0, and for
almost all (a.a.) t ∈ [0,T], the differential inclusion ẋ ∈ 0(t, x)
holds, where 0(t, x) = ⋂

φ>0
⋂

µ(2)=0 co[h(t,B(x,φ)\2)], co
is the convex closure hull, B(x, δ) is the open ball of center x
with radius φ, and 2 ⊂ Rn, µ(2) is the Lebesgue measure
of set 2.
The following theorem is presented to show the ZEFT of

multiple Euler–Lagrange systems using the control input (26).
Theorem 2: Based on Assumptions 1–4, the ZEFT is

achieved by employing control input (26), if there exists pos-
itive constants ν ≥ 1,β1i,β2i,β3i such that (7) and (28) hold,
and for ∀i ∈ N

2νπdi − 2πMi −
(
α1 + 2

√
n+ 2ν + 1

)
πCi > 0 (29)

2β1i − (α1 + 1)πCi − β2i > 0 (30)

β3i − δi > 0. (31)

Proof: It also comes to the conclusion that ȳi = z̄i = 0
for all t ≥ t∗ = max{t1, t2}, and qi, q̇i, ei, ėi ∈ L∞ ∩ L2,∀t ∈
[t0, t∗], i ∈ N .

From system (1) and the control input (26), the following
system can be obtained when t ∈ [t∗,∞):

Mi(qi)ëi + Ci(qi, q̇i)ėi + Diėi
= β1i tanh(−ei)+ β2i tanh(−ėi)+ β3isign(−xi)+ Ei (32)

where xi = ėi + 1/ν tanh(ei), i ∈ N .
Considering the same Lyapunov function (17), it follows

from Theorem 1 that Vi is positive definite with respect to
ei, ėi.
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(a)

(b)

Fig. 2. Formation tracking performances of seven robots under control inputs (a) (3) and (b) (26). The thumbnail right is six time points at which the
tracking performances are distinctly presented.

Under the chain rule [62], the time derivative of Vi, along
the solution of system (32), exists for a.a. t ∈ [t0,∞), that is

V̇i
a.a.∈ ėTi (−Diėi + β1i tanh(−ei)+ β2i tanh(−ėi)

+ β3iSIGN(−xi)+ Ei)+
1
ν
ėTi Sech

2(ei)Mi(qi)ėi

+ 1
ν
tanhT(ei)CT

i (qi, q̇i)ėi +
1
ν
tanhT(ei)(−Diėi

+ β1i tanh(−ei)+ β2i tanh(−ėi)+ β3iSIGN(−xi)

+ Ei)+ ėTi

(
β1iI +

Di

ν

)
tanh(ei) (33)

where SIGN(xi) = 1 if xi > 0, [−1, 1] if xi = 0, and −1 if
xi < 0. Then, it follows that for a.a. t ∈ [t0,∞):

V̇i ≤ −ėTi Diėi − tanhT(ėi)β2i tanh(ėi) − β3i‖xi‖1
+

(
ėTi + 1

ν
tanhT(ei)

)
Ei +

πMi

ν
‖ėi‖2

+
√
nπCi

ν
‖ėi‖2 +

α1πCi

2ν

(
‖ tanh(ei)‖2 + ‖ėi‖2

)

− β1i

ν
tanhT(ei) tanh(ei) − β2i

ν
tanhT(ei) tanh(ėi)

≤ −
[
πdi −

πMi

ν
−

(
α1

2ν
+

√
n

ν

)
πCi

]
‖ėi‖2

−
(

β2i −
β2i

2ν

)
‖ tanh(ėi)‖2

− 1
2ν

(2β1i − α1πCi − β2i)‖ tanh(ei)‖2

+ ‖ėi + 1/ν tanh(ei)‖(δi + πCi‖ėi‖) − β3i‖xi‖1
≤ −

[
πdi −

πMi

ν
−

(
α1

2ν
+

√
n

ν
+ 1+ 1

2ν

)
πCi

]
‖ėi‖2

− 1
2ν

(2β1i − (α1 + 1)πCi − β2i)‖ tanh(ei)‖2

− (β3i − δi)‖xi‖
≤ 0. (34)

It follows from (19), (32), and (34) that ei, ėi ∈ L∞ ∩ L2.
Thus, xi,Ei, ëi ∈ L∞∩L2. By Lemma 2 and [62, Corollary 1],
it comes to the conclusion that ei → 0, ėi → 0 as t → ∞,
which means that the ZEFT is realized. Then, the proof is
completed. !
Remark 6: Different from [49], in which the prior

information of the accurate model of the Euler–Lagrange
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(a) (b)

Fig. 3. Tracking performances of positions under saturated control inputs (a) (3) and (b) (26).

systems is required, the presented model-independent con-
trol approaches in this article do not require the knowledge
of system models, which show the superiority of model-
independent control.
Remark 7: The results in this article improve those in [18],

[19], and [50] in the following two aspects. First, Theorems 1
and 2 address both the PFT and ZEFT problems under two
classes of control inputs while only the PFT problem was stud-
ied in [18] and [19]. Second, bounded input constraints are
considered in designing the control laws, which can reduce
the control cost for large-scale systems like the multiple
Euler–Lagrange systems in [50].
Remark 8: Under bounded input constraints, zero-error con-

sensus may be hard to access and only practical consensus
(semiglobal consensus) was obtained in [52]–[56]. Since both
the PFT and ZEFT are successfully addressed in this article,
our results can be seen as the extension of those in [52]–[56]
where only practical consensus was achieved.
Remark 9: Compared with the existing formation tracking

studies of the nonlinear Euler–Lagrange systems in [16], [18]–
[20], [39], and [49], the formation tracking results and the
designed control input in this article show the superiorities as
follows.
1) From the physical point of view, the time-varying track-

ing target, input disturbances can represent more realistic
prospects.

2) Both the PFT and ZEFT are obtained simultaneously
and they can meet corresponding unsolved and wider
practical requirements.

3) The control input with boundedness constraints can save
control cost, especially for large system states.

4) The distributed and model-independent control inputs
can be employed to deal with control systems with lim-
ited model information and provide theoretical guidance
for such problems.

Remark 10: In Theorems 1 and 2, it is not apparent how
to select the control gains since they rely on the dynamic
matrices Di,Mi,Ci of system (1). By using the MATLAB tool-
box, the boundary of these control gains can be obtained by

TABLE II
VALUES OF THE INTERIM PARAMETERS FOR SEVEN ROBOTIC AGENTS

the trial-and-error method [48]. Then, the estimated feasible
region Hi in Theorem 1 and Gi in Theorem 2 can be described,
respectively, as

Hi =
{
(β1i,β2i) ∈ R+ × R+|β1i + β2i ≤ ui,max

β1i >
2πMi

ν2
, 0 < β2i < 2β1i − πCi

}

and

Gi =
{
(β1i,β2i,β3i) ∈ R+ × R+|β1i + β2i + β3i ≤ ui,max

β1i >
2πMi

ν2
, 0 < β2i < 2β1i − (α1 + 1)πCi,β3i > δi

}

for i ∈ N .

IV. NUMERICAL SIMULATIONS

In this section, seven robotic agents are considered to show
the formation tracking problem of multiple Euler–Lagrange
systems, the dynamics of each two-DOF robot manipula-
tor [58] is as follows:

[
Mi1 Mi2
Mi2 Mi3

][
q̈i1
q̈i2

]
+

[
Ci1 Ci2
Ci3 Ci4

][
q̇i1
q̇i2

]

+
[
Di1 0
0 Di2

][
q̇i1
q̇i2

]
+

[
gi1
gi2

]
=

[
ui1
ui2

]
+

[
κi1
κi2

]
(35)
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(a) (b)

Fig. 4. Tracking performances of velocities under saturated control inputs (a) (3) and (b) (26).

(a) (b)

Fig. 5. Position tracking errors of robot 1 under saturated control inputs (a) (3) and (b) (26).

where the model parameters for each manipulator are
Mi1 = hi1 + 2hi2 cos qi2,Mi2 = hi3 + hi2 cos qi2,Mi3 =
hi3,Ci1 = −hi2 sin qi2q̇i2,Ci2 = −hi2 sin qi2(q̇i1 + q̇i2),Ci3 =
hi2 sin qi2q̇i1,Ci4 = 0, gi1 = ag cos qi1+gi2, gi2 = bg cos(qi1+
qi2), hi2 = mi2fi1li2, hi3 = mi2l2i2 + Qi2, hi1 = mi1l2i1 +
mi2(f 2i1 + l2i2) + Qi1 + Qi2, a = mi1li1 + mi2fi1, b = mi2fi2, i =
1, . . . , 7, and g = 9.8 m/s2 is the gravitational acceleration,
mis, lis, fis,Qis(s = 1, 2, i = 1, . . . , 7) denote the mass and dis-
tance from the previous joint to the center, length, and moment
of inertia of the sth link of the ithe robot manipulator.
Without loss of generality, set mi1 = 0.7 + 0.01i, li1 =

0.1 + 0.02i, fi1 = 0.3 + 0.03i,Qi1 = mi1f 2i1/10,mi2 = 0.9 +
0.01i, li2 = 0.2+ 0.02i, fi2 = 0.3+ 0.03i,Qi2 = mi2f 2i2/10 for
i = 1, . . . , 7. Then, choose D11 = 1.5,D21 = 1.2,D31 =
1,D41 = 1.3,D51 = 1.4,D61 = 1.7,D71 = 1.4,D12 =
1,D22 = 1.6,D32 = 1.7,D42 = 1.5,D52 = 1.3,D62 =
1.2,D72 = 1.6, and the disturbances are given as κi1 =
5| sin(t)|, κi2 = 5| cos(t)|, t ≥ t0 = 0. Then, it follows Table II
by simple calculation. The directed communication graph of
seven robots and the target (node 0) are provided in Fig. 1.
The trajectory of the time-varying target and the formation

TABLE III
SELECTED CONTROL GAINS

patterns are given as y0(t) = col(11+6 sin(t),−10−4 cos(t)),
ζ1 = (0, 1.25)T , ζ2 = (1.25, 1.25)T , ζ3 = (1.25, 0)T , ζ4 =
(1.25,−1.25)T , ζ5 = (−1.25,−1.25)T , ζ6 = (−1.25, 0)T , and
ζ7 = (−1.25, 1.25)T .

To ensure that the upper bound of the tracking performance
in Definition 1 is less enough to fulfil the practical require-
ment, the boundaries of the control gains are given large
enough and mainly vary from 15 to 20. For control inputs (3)
and (26), the bounded input constraints are given as 40 and
60, respectively. Based on the derived criteria in Theorems 1
and 2, and the feasible regions in Remark 10, the control gains
in (3) and (26) are chosen as in Table III. Then, it can be con-
cluded that the PFT and ZEFT problems are solved for seven
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(a) (b)

Fig. 6. Velocity tracking errors of robot 1 under saturated control inputs (a) (3) and (b) (26).

Fig. 7. Trajectories of saturated control inputs (3) and (26), and unsaturated control input (36).

robots (35). Fig. 2 shows the formation tracking performances
of seven robots under control inputs (3) and (26). We also
give six time points at which the tracking performances are
distinctly presented. It can be seen from Fig. 2 that seven
robots will tend to an orderly formation following the target.
Given arbitrary initial conditions (each entry of the initial

states is bounded in [−20, 20]), the formation tracking perfor-
mances of positions qi1, qi2 and velocities q̇i1, q̇i2 using control
inputs (3) and (26) are shown in Figs. 3 and 4, respectively.
From Figs. 3 and 4, it can be seen that by employing the
control input (3), the position and velocity tracking errors are
bounded and converge to a neighborhood of the origin as time
goes to infinite, while under the control input (26), the track-
ing errors tend to zero as time goes to infinite. Thus, it can
be concluded that the control input (26) possesses better for-
mation tracking performance compared to control input (3),
which also reveals the superiority for implementing the ZEFT
of multiple Euler–Lagrange systems. To show the performance
of the tracking errors clearly, we further present the position
and velocity tracking errors by considering just robot 1 since
other tracking errors for robots 2–7 are similarly obtained.
Then, for robot 1 under control inputs (3) and (26), Figs. 5

and 6 depict, respectively, the position and velocity tracking
errors.
To show the different functions of saturated (bounded)

and unsaturated control approaches, we give the following
unsaturated control input. Its formation tracking performances
are omitted since they are similar to the ones in Figs. 3(a)–6(a)

ui = β1i(yi − qi)+ β2i(zi − q̇i) (36)

for ∀i ∈ N , where β1i and β2i are positive constants. Fig. 7
depicts the trajectories of saturated control inputs (3) and (26),
and unsaturated control input (36). From Fig. 7, we can see
that the saturated control inputs (3) and (26) are subjected to
the saturation constraints and they remain bounded as time
goes from zero to infinite. However, the control gains of the
unsaturated control input (36) can be very large at the begin-
ning time. To this extent, the saturated control approaches
adopted in this article show the superiority for the reduction
of control cost.
Remark 11: Together with Figs. 3–7, it is concluded that

both saturated (bounded) and unsaturated control inputs can
be adopted to carry out the PFT and ZEFT. However, there
are two main differences for them.
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1) The control input with saturation constraints can save
control cost, especially for large system states. As we
can see from Fig. 7, all trajectories of saturated control
inputs (3) and (26) remain under the saturation con-
straints 40 and 60, respectively, while the trajectories
of unsaturated control input (36) are very large in the
first few seconds.

2) The convergence speed of saturated control inputs is
slower than the unsaturated one at the expense of lower
control cost. Still, we can adopt the saturated con-
trol input (26) instead of (3) to obtain better tracking
performance.

V. CONCLUSION

For multiple Euler–Lagrange systems with directed
interaction graphs and input disturbances, the formation track-
ing problems, including the PFT problem and ZEFT problem,
have been fully addressed. Two model-independent distributed
control laws under the bounded input constraints have been
proposed to solve the PFT and ZEFT problem. The presented
distributed control laws do not require prior information of
structures and features of the system model, and can pro-
vide robustness against input disturbances. In addition, the
input upper bound of the two approaches is independent of
the number of agents’ neighbors. These unique character-
istics of the presented control laws show their superiority,
which has been verified by carrying out comparison studies
in both discussions and simulations. Then, the corresponding
criteria for practical and asymptotic stability of the presented
bounded control algorithms have been derived. In this article,
we mainly consider how to realize constant formation tracking.
Future work will focus on the inter-robot collisions and the
time-varying formation tracking problem of multiple Euler–
Lagrange systems. Moreover, such systems with stochastic
noises and other uncertainties can also be a good choice.
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