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Abstract—This article addresses two kinds of formation track-
ing problems, namely: 1) the practical formation tracking (PFT)
problem and 2) the zero-error formation tracking (ZEFT)
problem for multiple Euler-Lagrange systems with input distur-
bances and unknown models. In these problems, the bounded
input constraint, which can be possibly caused by actuator
saturation and power limitations, is taken into consideration.
Then, the two classes of model-independent distributed control
approaches, in which the prior information (i.e., the structures
and features) of the system model is not used, are proposed cor-
respondingly. Based on the nonsmooth analysis and Lyapunov
stability theory, several novel criteria for achieving PFT and
ZEFT of multiple Euler-Lagrange systems are derived. Finally,
numerical simulations and comparisons are presented to verify
the validity and effectiveness of the proposed control approaches.

Index Terms—Actuator saturation, formation tracking, input
disturbance, multiple Euler—Lagrange systems.

I. INTRODUCTION

HE FORMATION tracking problem, as a critical topic
T in cooperative control of multiagent systems, has shown
significant value and drawn increasing attention in past
decades due to its widespread applications in unmanned
vehicles [1]-[5], networked systems [6]-[10], and robotic
teams [11]-[14]. Besides, the distributed control approach
has been widely adopted in dealing with the formation
tracking problems [15]—-[21], due to its lower communication
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cost compared with the centralized one. For instance,
Zuo et al. [15] proposed the distributed control approach to
realize the output formation tracking of the heterogeneous lin-
ear multiagent systems. In [16], the distributed time-varying
formation tracking problem was addressed for second-order
multiagent systems with switching topology. Then, the dis-
tributed sliding-mode control was designed for the finite-time
formation tracking in [17]. Moreover, Yu et al. [18], [19]
extended the formation tracking control problem to nonlinear
multiagent systems and obtained several practical formation
tracking (PFT) results. In [20], the formation robust tracking
problem was studied for multiagent systems with parameter
uncertainties and external disturbances. Chen and Ren [21] dis-
cussed the inherent connection between the dynamic region-
following formation control and distributed average tracking,
and they also made an attempt on the applications of dis-
tributed average tracking algorithms to achieve distributed
control.

On the other hand, increasing research attention has focused
on the multiagent systems whose dynamic behaviors are
described as nonlinear dynamics [22], [23], specifically, the
Euler-Lagrange systems [24]-[27]. Such nonlinear Euler—
Lagrange systems can be used to represent a broad class
of engineering systems, including autonomous vehicles [28];
aerospace systems [29], [30]; and mobile robots [31]-[33],
due to their unique dynamic characteristics. It thus leads to
the generation of some recent research that concentrates on
multiple Euler—Lagrange systems employing the distributed
control approaches [34]-[38]. Especially, it is of great impor-
tance and significance to consider multiple Euler—Lagrange
systems instead of the traditional linear or nonlinear multiagent
systems in dealing with the formation tracking problems [39].

It is worth mentioning that the distributed control
approaches in [40]-[44] are designed based on the system
models with normal or estimated dynamic parameters, that
is, the prior structures and features of the system models are
required. In this manner, the designed control approaches are
called model-based control [45]. However, such model-based
control cannot be constructed and established, in the case that
the model information, that can be directly employed in con-
trol design, is limited [46], [47]. Then, the model-independent
control approach has been a better choice compared with the
model-based one in such a case [48], [49]. Therefore, design-
ing model-independent control for solving the coordination
problems has become a popular topic recently. For instance,
our previous work [50] designed some model-independent
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distributed proportional—derivative-like control approaches to
deal with the target tracking problem of the networked
Euler-Lagrange systems without using model information.
However, only practical stability can be achieved for the con-
sidered closed-loop system, which thus motivates the study on
the zero-error tracking problem of multiple Euler—Lagrange
systems in this article.

In addition to considering the model-independent control
approach, another important topic in the control area is to
develop control algorithms with bounded input. That is mainly
due to the inevitable actuator saturation and power limitations
in engineering applications [51]. Besides, designing control
algorithms with bounded inputs for stabilizing multiple Euler—
Lagrange systems has become extraordinarily difficult, on
account of the fact that there are generally a large num-
ber of agents in their applications [52]. In light of such a
critical impact of the bounded input (i.e., input saturation)
constraints, great efforts have been made to the coopera-
tive tracking problem subjected to such constraints [S3]-[57].
However, the control algorithms presented in [52]-[56] can
only drive the systems to reach PFT. More important, the input
disturbances, which are inevitable in practical applications,
have not been taken into consideration in the aforementioned
literature [51]-[57]. Thus, developing control approaches for
multiple Euler—-Lagrange systems under input disturbances and
bounded input constraints, to solve both the PFT problem and
zero-error formation tracking (ZEFT) problem under a uniform
framework, are still unaccomplished.

Motivated by the above discussions, this article proposes
two kinds of model-independent control approaches with the
consideration of input disturbances and bounded input con-
straints to overcome the challenging problems of both the PFT
and ZEFT for multiple Euler—Lagrange systems. The main
contributions are three-fold.

1) Different from the model-based control approaches
investigated in [40]-[44] that require prior information
of structures and features of the system models, the
presented distributed control approaches are model inde-
pendent, which can be employed to deal with the control
systems with limited model information and provide
theoretical guidance for such problems.

2) In [16], [18]-[20], [39], and [49], the formation tracking
problem was addressed without considering the input
disturbances and bounded input constraints. Since these
constraints are inevitable in some practical applications,
it is of great significance to study the formation tracking
problem with such constraints. Thus, in this article, the
formation tracking problem of multiple Euler—Lagrange
systems with such constraints is successfully solved by
using the presented model-independent control.

3) Compared with the study in [18], [19], and [50] where
only the PFT problem was solved under distributed
control, we present a uniform framework for solving
both the PFT problem and ZEFT problem for multiple
Euler—Lagrange systems.

Notation: R, R+, R", and R"™*" denote the set of real num-
bers, positive real numbers, the n x 1 real column vector, and
n X n real matrix, respectively. 1, = col(1,1,...,1) € R" is
the identity vector and 7, is the n x n identity matrix. sign(-) is
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the signum function. For a vector w = col(wy, w2, ..., w,) €
R", ol = (X, lwi|*)!/? denotes the Euclidean norm and
loll1 = Z?:l lwil, lolleo = max;|w;|. For a matrix C €
R™" the norm ||C|| = v/ Amax(CTC), where Amax(-) denotes
the maximum eigenvalue. tanh(-), sech(-), and cosh(-) denote
the hyperbolic tangent, secant, and cosine functions, respec-
tively, and tanh(w) = col(tanh(wy), ..., tanh(w;,)), cosh(w) =
col(cosh(wy), ..., cosh(w,)). sign(-) denotes the standard
signum function.

II. PRELIMINARIES
A. Graph Theory

Throughout this article, we consider a weighted directed
robotic network ¥4 = (¥, &, .«7/) with a set of N robots, a
set of nodes ¥ = {vi,va,...,vn}, a set of directed edges
E = {(vi,v) 1 vi,v; € ¥} € ¥ x ¥, and a weighted
adjacency matrix & = [a;] € RN*N A directed edge &y
in the robotic network is denoted by the ordered pair of
robots (v;,v;), where v; and v; are called the terminal and
initial robots, respectively, which means that robot v; can
receive information from robot v;. If there is a directed edge
(vi,vj)) € &, then a;; > 0; otherwise, a; = 0. Besides, self-
loop is not allowed, that is, a;; = 0. The target of the directed
robotic network is denoted by robot O and the interaction
between the robots and target is represented by a matrix
B = diag{aio, a2, . .., ano}, Ni = {j € N : (vj,v)) € &,j # i}
is a set of neighbors of robot i, and N = {0,1,2,...,N}.
I' ={¢1, ..., ¢y} denotes a set of formation patterns at time t,
where ¢; is the desired position of robot v;. L = [/;;] € RN*N
is the Laplacian matrix of the graph and it is defined by
L = diag(Aly) — A, that is, lij = Y00, i ay. lj = —ajj. i # j.
For a connected graph, the Laplacian matrix L has a simple
zero eigenvalue with the associated eigenvector 1yL = 0.

B. Problem Formulation

The dynamics of the ith subsystem under input disturbances
are given as [58]

Mi(q)gi + Ci(qi, gi)qi + Digi + 8i(qi) = ui +xi (1)
where i € A/ ={1,2,...,N};t € T = [tg, 00); tog > 0 is the
initial time; and g;(r) € R", ¢;(t) € R", and ¢;(¢) € R" denote
the link position, velocity, and acceleration, which are sim-
plified as g, g;, and §;. M;(q;), Ci(qi, i) € R™" denote the
inertia matrix and the centrifugal-Coriolis matrix, respectively.
gi(gi) € R"™ is the gravity vector. D; € R™" represents the
matrix composed of the damping friction coefficients. k; € R"
denotes the input disturbance. u; is torque control.

The time-varying moving target for the multirobot system
(1) is given as yo = 20, 20 = f(t, z0), where f : T x R" — R"
is the nonlinear dynamics of the target.

Then, we present the following assumptions for system (1).

Assumption 1: The directed robotic network ¢ has a
directed spanning tree.

Assumption 2: The vectors zg, zo € R" are bounded, that is,
there exist constants o, o2, 171, and 12 € R4 such that

sup |lzoll < a1, sup [|zoll < a2

teT teT
sup [lz0llee < 11, sup llZolloo < 12-
teT teT
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TABLE I
CONTROL PROCESS OF THE SATURATED CONTROL INPUTS (3) AND (26)

Algorithm: Control input (3) Control input (26)
Main input: Y0, 20, Gi» B1is B2i, M1, M2, Ui max Y0, 20, Cis B1is B2is B3i, M1 M2, Ui max
Main output: | ¢i, ¢i i, Gi
Step 1 Initialization: The target is globally reachable. Initialization: The target is globally reachable.
Let the initial values € Loo N Lo Let the initial values € Loo N Lo
such that ¢;,¢; € Loc N Lo as t € [to, t*]. such that ¢;,¢; € Loc N Lo as t € [to, t*].
Step 2 Design the bounded control input (3), Design another bounded control input (26),
the nonsmooth estimators (4) and (5). the nonsmooth estimators (4) and (5).
Choose 71 > supser [|20loo; 12 > supser [|20]l0o Choose 11 > supser [|20loo; M2 > supser [120]l0o
such that y; = yo + (i, 2; = 20 for t > t*. such that y; = yo + (i, 2; = 20 for t > t*.
Step 3 Combine with (3)-(5) into (1), system (16) is obtained. Combine with (4), (5), (26) and (27) into (1), system (32) is obtained.
Choose proper 314, f2; and u; max such that ||u;]|eo < Choose proper 314, £2i, £3; and u; max such that ||u;]|co < i max,
U; max and the Lyapunov function (17) for system (16) under | and the Lyapunov function (17) for system (32) under the control
the control input (3) satisfies V; < 0 if (24) and (25) hold. input (26) and Chain Rule satisfies V; <.
Step 4 Consequently, it follows that e;, é; are bounded with Consequently, it follows that e;, é; — 0 as t — oo,
the upper bounds €1,e2 as t — oo, i.e. the PFT is realized. i.e. the ZEFT is realized.

Assumption 3: System (1) is subjected to input constraints,
that is, there exists a positive constant u; max Without reference
to model parameters, such that sup,cr [|uillco < Ui max-

Assumption 4: The input disturbance term is bounded, that
is, there exists a positive constant m,;, such that |k;|| < ;.

Control Objective: Design a controller to control a group of
robotic agents initialized on random bounded positions to track
the target in formation, that is, design control approaches to
achieve the PFT and ZEFT for the considered multiple Euler—
Lagrange systems in the sense of Definitions 1 and 2.

Definition 1: The PFT for system (1) is achieved, if for
Vie N

Aim [ tanh(g;(1) — yo(1) — &)l < &1
lim [|g;(t) — 20D < &2
11— o0

where ¢; is a constant vector at time #, &1 > 0, &2 > 0.
Definition 2: The ZEFT for system (1) is achieved, if for
Vie NV
lim ||gi(®) — yo(®) — &ill =0
oo
lim [|gi(t) — zo()|| = 0.
11— 00

Moreover, for all i € .4, the following properties [58] are
summarized for system (1).

Property 1: The matrix D; is diagonal positive definite.

Property 2: The matrix M;(g;) is symmetric positive
definite.

Property 3: Ml-(q,-) — 2Ci(qi, qi) is skew-symmetric, that is,
eT(Mi(qi) — 2Ci(gi, gi))E = 0,Vq;, i, & € R".

Property 4: The dynamic items of system (1) are bounded,
that is, 0 < mw < [Mi(@)ll = 7m0 < meillgil® <
ICi(qi, il < mcillgill*, 0 < 7ai < IDill < 7pis 1gi(g)ll <
mei, and Vq;, q; € R", where 1y, Ty, Teiy TCi, TDis Tgi are
positive constants.

Finally, we give the following lemmas.

Lemma 1 [59]: If 1,12, ..., T, > 0and 0 < w1 < uy, then

1/u2

n 1/ n
1 M2
E T > E T; . )
i=1 i=1

Lemma 2 [60]: If function W(¢) : [0, co) — R is uniformly
continuous and lim;_, o fé W(e)de is finite, then W() — 0O
as t — o0.

III. MAIN RESULTS
In this section, we establish several conditions ensuring both
the PFT and ZEFT for multiple Euler—Lagrange systems under
two designed distributed and bounded control inputs. The con-

trol process of two bounded control inputs is displayed in
Table I.

A. PFT Problem
For the PFT problem of system (1), the model-independent
distributed control input is designed as follows:
u; = fy;tanh(y; — g;) + Po;i tanh(z; — ¢;) 3)
for Vi € .#, where B1; and fBy; are positive constants. The
estimated states y; and z; are given as

yi=—misign| Y ay(yi = & =y + ) )
.G-A[i

Zj = —npsign Z aij(Zi - Zj) : )
jeN;

Then, the input is bounded by sup,c7 ||#illoo < B1i+ B2i, which
means that the actuator saturation constraints can be fulfilled
by choosing the control gains such that

,311‘ + /32i =< Uj max- (6)

Then, we define the estimated errors as

Yi=Yi—Y0— &% =2 —20
and the target tracking errors
ei =¢qi — Yo — &i, i = gi — 20-

Remark 1: The bounded input constraints are considered in
designing the control (3). With the introduction of the specific
function tanh, it gives rise to the fact that the saturation upper
bound is independent on the number of agents’ neighbors.
It shows that the presented control algorithm has advantages
for the large-scale formation tracking systems, and is different
from the saturated control methods in [51]-[57].

Remark 2: Actually, yo denotes the position coordinate of

the time-varying target, and constant vector ¢; represents the
local coordinate in the formation pattern. The estimated states
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yi and z; are mainly introduced to estimate the states of the
target, and are generated by the distributed estimators requiring
only local information.

The following theorem shows the main result on achieving
the PFT of multiple Euler—Lagrange systems under the control
input (3).

Theorem 1: Based on Assumptions 1-4, the PFT is achieved
by employing the control input (3), if there exist positive
constants v > 1, By; and By; such that (6) holds, and for i € A4~

V2B — 21 > 0 @)
v = 27 — (24/n +2v + 1) 7ci > 0 (8
2B1i — Boi — mci > 0. )

Besides, the upper bounds &1 and ¢; presented in Definition 1
are estimated as

26;
gl = (10)
2B1i — Boi — 7

2v68; + 20 ﬁﬂcj

& = 11
2 2vmy — 2mpi — (Zﬁ +2v + 1)71(;,- (an
where §; = my; + mpicr + (e + Tpi)ay + Ty
Proof: First, we can conclude that
yi = —npsign Z aj(yi—¢i—yi+g) | —20 (12
jeN;
Zi=—msign| Y aj(z—z) | — (13)

N

where i € /. Then, it results from [17] that y; = z; = O for
all t > r* = max{t{, t»}, and

max;e_y ||yi(to) — yo(to) — &illeo
M — super llz0lloo
max;e_y ||zi(f0) — z0(f0)lloo
1n2 — sup,r 1zolloo

Next, from (12) and (13), yo, 20, 20 € Lo N Ly means that
Vis i € Loo N Lo, V1 € 19, t*],i € N.

Thus, vi, zi € Loo N Ly. Moreover, for any bounded initial
conditions, it follows from Property 4 that ¢;, §;, €;, ¢; € Looc N
Ly, vVt € [tg, t*],i € N.

From system (1) and the control input (3), the following
system can be obtained when ¢ € [*, c0):

no=ty+ (14)

h =1ty + (15)

Mi(g)é; + Ci(qi, giéi + Die;

= Biitanh(—e¢;) + po; tanh(—¢;) + E; (16)

where E; = ki — Mi(gi)z0 — Ci(gi, gi)zo — Dizo — 8i(qi) is
bounded with ||E;|| < 8; + mcilleill and §; = myi + myicn +
(mci +mpoy + g i€ N ={1,2,...,N}.
Then, consider the following Lyapunov function for
system (16):
L.r . 1 T .
Vi = ¢ M;(gi)e; + " tanh” (¢;)M;(g;)e;
D.
+17 <,31i1 + 7’) In(cosh(e;)) (17)

where v > 1 is a positive constant.
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Note that

1. . 1 .
ZeiTMi(Qi)ei + " tanh” (e,)M;(g:)é;

1/, 2 T )
=\¢ + " tanh(e;) | M;(gi)| e + " tanh(e;)

1
- = tanh’ (¢;)M;(g;) tanh(e;)

> —% tanh’ (¢;)M;(g;) tanh(e;) (18)

and based on the definition of hyperbolic tangent and secant
functions, the following inequalities can be derived:

1
17 In(cosh(ey) > EtanhT(el-) tanh(e;) (19)
el tanh(e;) > tanh” (¢;) tanh(e;). (20)
Then, it follows from (17)—(20) that:
1., | -
Vi > e Mi(gi)ei — ) tanh” (e;)M;(g;) tanh(e;)
D.
+ 17 (ﬁl i+ 71) In(cosh(e;))
1 . Mi(gi
> Lermigner +annen (27— Y9} ey
4" 2 v2
1 D
+ 7 tanh” (e;) B1; tanh(e;) 4+ 1,, — In(cosh(e;))
v
>0 1)

for col(el-T éiT) # 0, which indicates that V; is positive definite
with respect to e;, é;.

By calculating the time derivative of V; along the solution
of system (18), it follows that:

S P TR 0 UL DU
Vi= Zei M;(gie; + e; Mi(qgi)e; + Vei Sech”(e;)M;(g;)e;
1 T . . 1 T ..
+ ;taﬂh (e)M;(gi)e; + ;tanh (en)M;(g)é;
.T D;
+ ¢ | Bl + T tanh(e;)
= ¢! (—Djé; + Py tanh(—e;) + o tanh(—¢;) + E;)
1. | .
+ ;eZSechz(ei)Mi(qi)ei +- tanh” (e:)C7 (g1, Gi)éi
1 )
+ = tanh” (¢;)(—D;é; + Bi; tanh(—e;)
. .T D;
+ Poitanh(—e¢;) + E;) +e; | Bril + o tanh(e;)
. L. . . 1
= —EiTDiei — eiTﬂzi tanh(e;) + eiTE,' =+ ; tanhT(e,-)E,-
1. | .
+ ;e,-TSechZ(ei>Mi(qi>ei +- tanh” (e,)C7 (g1, Gi)éi

B % tanh’ (e;) tanh(e;) — % tanh’ (¢;) tanh(é;). (22)

Based on Property 4, we have tanhT(ei)CiT(qi,qi)éi <

mci(arlléill + lléill®) | tanh(ep)]. Together with this inequality
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and ||E;|| < 6; + mcilleill, it follows from (22) that:
Vi < —&] Dié; — tanh (&) for tanh (@) + =]

1 nrci(on el + lléill?
n (éiT+;tanhT(ei)>E,+ Vnrci(en el + lleill?)

V
'Bll tanhT(el) tanh(e;) — ﬂ 2 tanhT(e,) tanh(é;)
< ¢l D,-ei — tanh” (¢;) Bai tanh(e,-)
mi + /NG . alfﬂc
+ e’ + =i

. 8 )
+ Silleill + —lll tanh(e;) || + mcillé;

+ —|| tanh(e;) ||lle;ll — @ tanh” (¢;) tanh(e;)

+ @(n tanh(ep) |2 + | tanh @)

Tmi n 1 .
=< —|:<7Tdi L <£ +1+ —>7TCi)||ei||
v v 2v

7TCi di
5y | tanh(e;) | — — ||l tanh(e;) ||
v v

(23)
where Sech(x;) = diag(sec}l(xil), ..., sech(xj,)).
One can conclude that V; < 0 if
2v8; + 2 i
il > vdi 1 2o ey (24)
2y — 27 — (2ﬁ +2v + l)ncl-

| tanh(e;) | 20 (25)
anh(¢))|| > ——.
l 2B1i — Boi — mei

Then, the PFT is realized, which completes the proof. |

Remark 3: Theorem 1 solves the PFT problem for multiple
Euler-Lagrange systems subjected to the bounded input con-
straints and provides the fact that using the designed control
law (3), the errors between the system states and the time-
varying target trajectories converge to a neighborhood of the
origin. Then, it can be concluded from (10) and (11) that
choosing large enough gain Bj; leads to an arbitrary small
upper bound €7 if &, is fixed. It further implies that the robot
position g; can be arbitrarily close to yp + ¢; as t — oo.

Remark 4: Actually, the proposed model-independent con-
trollers do not rely on the exact knowledge of the model
parameters. To achieve PFT using such controllers, the bound-
aries of the control gains are obtained by employing the
trial-and-error method [48], and this method has already been
processed in many existing papers considering the model-
independent algorithms.

B. ZEFT Problem

To improve the convergence performance of the PFT and
realize the ZEFT, another discontinuous control input is
proposed in this section. Before moving on, the model-
independent control is designed as follows:

— i) + Baisign(wi)  (26)

u; = PBy; tanh(y; — g;) + Boi tanh(z;

2817
(1) o) o 70
A% N/ N
O ——
N N N
© o
N/ Y

Fig. 1. Directed communication graph of multiple Euler-Lagrange systems
as described in (35).

where

w; = (z; — q;) + 1/v tanh(y; — g;) 27

for Vi € A, v > 1, B3; are positive constants, and the other
parameters are defined as the same as in (3). Then, the actuator
is bounded, that is, sup,c7 tilloc < B1i + B2i + Bzi, which
implies that the bounded input constraints can be fulfilled by
choosing the control gains such that

Bii + Boi + B3i < Ui max-

Remark 5: Since the designed control input (26) is dis-
continuous, then the Filippov solution [61] is defined for the
system (1) with such discontinuous control. A solution in
the Filippov’s sense of system x = h(t, x), x(0) = xg,x €
R"* t > 0 is defined as an absolutely continuous function
x(t),t € [0,T],T > 0, which satisfies x(0) = xp, and for
almost all (a.a.) r € [0, T], the differential inclusion x € A(z, x)
holds, where A(t, x) = ﬂ¢>0 ﬂmm:o colh(t, B(x, p)\A)], co
is the convex closure hull, B(x, §) is the open ball of center x
with radius ¢, and A C R”", u(A) is the Lebesgue measure
of set A.

The following theorem is presented to show the ZEFT of
multiple Euler—Lagrange systems using the control input (26).

Theorem 2: Based on Assumptions 1-4, the ZEFT is
achieved by employing control input (26), if there exists pos-
itive constants v > 1, By;, B2, B3i such that (7) and (28) hold,
and for Vi e A

(28)

vy — 27N — (a1 +2n+2v + I)JTC,- >0 (29
2B1i — (1 + Drci — P2i > 0 (30)
B3i — 8 > 0. (3D
Proof: Tt also comes to the conclusion that y; = z; = 0

for all + > r* = max{r(, 2}, and q;, §i, €j, ¢; € Loo N L2, Vt €
[to, t*],i € N

From system (1) and the control input (26), the following
system can be obtained when ¢ € [t*, 00):

Mi(gi)éi + Ci(qi, gi)éi + Die;
= Biitanh(—e¢;) + Bo; tanh(—¢;) + B3isign(—x;) + E;
where x; = ¢; + 1/vtanh(e;), i € A
Considering the same Lyapunov function (17), it follows

from Theorem 1 that V; is positive definite with respect to
ei, é;.

(32)
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Fig. 2. Formation tracking performances of seven robots under control inputs (a) (3) and (b) (26). The thumbnail right is six time points at which the

tracking performances are distinctly presented.

Under the chain rule [62], the time derivative of V;, along
the solution of system (32), exists for a.a. ¢ € [fg, 00), that is

Vi '€ & (~Dié; + B tanh(—e;) + B tanh(—é;)

1
+ B3iSIGN(—x;) + E;) + ;éfSechz(ei)Mi(qi)é,-

1 T T PN 1 T .
+ ;tanh (e)C; (gi» gi)ei + ;tanh (e))(—Dje;
+ piitanh(—e;) 4+ Bo;tanh(—e;) + B3;SIGN(—x;)

.T D;
+ E)+eé | Bul + ~ tanh(e;)

where SIGN(x;) = 1 if x; > 0,[—1, 1] if x; = 0, and —1 if

x; < 0. Then, it follows that for a.a. t € [ty, 00):

Vi < —éI'Dié; — tanh” (é;) By tanh(é;) — Baillxilln

) 1 M .
+ <eiT + - tanhT(ei)>El~ + %Ileill2

L Vi
v
— @ tanh’ (¢;) tanh(e;) — @
v v

. ATTCi .
e + =5 (1 tanhen |2 + el

tanh’ (¢;) tanh(é;)

(33)

TTMi o] N .
< —[ﬂdi T (— + T>7TCi]||€i||

2v
- <ﬁzl~ - %)u tanh(&;)]|?
V
1
= 5. @B —armci = B tanh(e;) >
v

+ llé; + 1/vtanh(ey)[|(6; + mcilléill) — Baillxilly

Ty o n ! ¢
_[ T (_l+f+l+—>ﬁci]||ei||2
N 2v

2v T
1
- 5(2/311' — (@1 + Drmci — Bai) | tanh(e;) |12

— (B3i — ) llxill
< 0. (34)

It follows from (19), (32), and (34) that e;, ¢; € Lo N Ly.
Thus, x;, Ej, é; € LooNLy. By Lemma 2 and [62, Corollary 1],
it comes to the conclusion that ¢; — 0,¢; — 0 as t — o0,
which means that the ZEFT is realized. Then, the proof is
completed. |

Remark 6: Different from [49], in which the prior
information of the accurate model of the Euler-Lagrange
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systems is required, the presented model-independent con-
trol approaches in this article do not require the knowledge
of system models, which show the superiority of model-
independent control.

Remark 7: The results in this article improve those in [18],
[19], and [50] in the following two aspects. First, Theorems 1
and 2 address both the PFT and ZEFT problems under two
classes of control inputs while only the PFT problem was stud-
ied in [18] and [19]. Second, bounded input constraints are
considered in designing the control laws, which can reduce
the control cost for large-scale systems like the multiple
Euler-Lagrange systems in [50].

Remark 8: Under bounded input constraints, zero-error con-
sensus may be hard to access and only practical consensus
(semiglobal consensus) was obtained in [52]-[56]. Since both
the PFT and ZEFT are successfully addressed in this article,
our results can be seen as the extension of those in [52]-[56]
where only practical consensus was achieved.

Remark 9: Compared with the existing formation tracking
studies of the nonlinear Euler—Lagrange systems in [16], [18]-
[20], [39], and [49], the formation tracking results and the
designed control input in this article show the superiorities as
follows.

1) From the physical point of view, the time-varying track-
ing target, input disturbances can represent more realistic
prospects.

2) Both the PFT and ZEFT are obtained simultaneously
and they can meet corresponding unsolved and wider
practical requirements.

3) The control input with boundedness constraints can save
control cost, especially for large system states.

4) The distributed and model-independent control inputs
can be employed to deal with control systems with lim-
ited model information and provide theoretical guidance
for such problems.

Remark 10: In Theorems 1 and 2, it is not apparent how
to select the control gains since they rely on the dynamic
matrices D;, M;, C; of system (1). By using the MATLAB tool-
box, the boundary of these control gains can be obtained by
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Position Tracking Errors of Seven 2-DOF Robots
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Tracking performances of positions under saturated control inputs (a) (3) and (b) (26).

TABLE II

VALUES OF THE INTERIM PARAMETERS FOR SEVEN ROBOTIC AGENTS

robot robot robot robot robot robot robot

1 2 3 4 5 6 7
hi| 0.1710 | 0.2076 | 0.2483 | 0.2931 | 0.3423 | 0.3959 | 0.4540
ho | 0.0661 | 0.0795 | 0.0943 | 0.1105 | 0.1283 | 0.1475 | 0.1682
hs | 0.0540 | 0.0649 | 0.0770 | 0.0903 | 0.1047 | 0.1204 | 0.1374
a | 0.3855| 0.4230 | 0.4795 | 0.5280 | 0.5775 | 0.6280 | 0.6795
b | 03003 | 0.3312 | 0.3267 | 0.3948 | 0.4275 | 0.4608 | 0.4947

the trial-and-error method [48]. Then, the estimated feasible
region H; in Theorem 1 and G; in Theorem 2 can be described,
respectively, as

H; = {(ﬂu, Bai) € Ry X Rey|Bri + Bai < ttimax

2JTM'
pri > 7170 < P2i < 2B —JTCi}

and

G = {(ﬂli, Bais B3i) € Ry x Ry |B1i + Bai + B3i < i max

27 pi
Pri > =570 < Boi < 2B1i — (e + Dei. fai > i

forie V.

IV. NUMERICAL SIMULATIONS

In this section, seven robotic agents are considered to show
the formation tracking problem of multiple Euler—Lagrange
systems, the dynamics of each two-DOF robot manipula-
tor [58] is as follows:

My Mp || ga " Ci Cp || agn
Mp My || G Cs Cu || dn

Dir 0 || gi gil uj| Kil
. = 35
+ [ 0 Di2:||:%‘2:|+|:gi2:| |:Ui2i|+|:’(i2:| (35)
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Velocity Tracking Errors of Seven 2-DOF Robots
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Fig. 4. Tracking performances of velocities under saturated control inputs (a) (3) and (b) (26).
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Fig. 5.

where the model parameters for each manipulator are
Mj = hii + 2hipcosqip, Mip = hiz + hipcosqip, Miz =
hi3, Cit = —hipsingngin, Co = —hipsingn(gin + qi2), Ciz =
hiz singiagir, Cia = 0, git = agcos gi1+gi2, gi» = bgcos(gi1 +
qn) hio = mofalp hiz = mplhy + Qp. hn = mal} +
mip(f] + 15) + Qi1 + Qin. a = mjtliy + mipfir, b = mppfp, i =
1,...,7, and g = 9.8 m/s” is the gravitational acceleration,
Mg, lis, fis, Qis(s = 1,2,i =1, ...,7) denote the mass and dis-
tance from the previous joint to the center, length, and moment
of inertia of the sth link of the ithe robot manipulator.
Without loss of generality, set m;; = 0.7 4+ 0.01i,;; =
0.1 +0.02i,f;; = 0.3+ 0.03i, Qi1 = m,-lfl.zl/lo, mp = 0.9 4+
0.014, I = 0.2 4+ 0.024, fip = 0.3+ 0.03i, Qjp = mizfl%/lo for
i = 1,...,7. Then, choose Dy = 1.5,D> = 1.2,D3 =

1,D4yy = 1.3,D51 = 1.4,Dg; = 1.7,D7; = 14,Djp =
1,Dyy = 1.6,D3y = 1.7,Dgyp = 1.5,Dsp = 1.3,Dgp =
1.2,D7, = 1.6, and the disturbances are given as kj; =

5|sin(?)|, kip = 5| cos(?)|, t > to = 0. Then, it follows Table II
by simple calculation. The directed communication graph of
seven robots and the target (node 0) are provided in Fig. 1.
The trajectory of the time-varying target and the formation

Position Tracking Errors of Robot 1

Position tracking errors of robot 1 under saturated control inputs (a) (3) and (b) (26).
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TABLE III

SELECTED CONTROL GAINS

i=2 |i=3 i=5
Bii 15 18 20 15 17 16 20
B2i 20 15 20 17 18 20 13
B3i 15 20 18 20 20 20 17

patterns are given as yo(¢) = col(11+46sin(z), —10—4 cos(t)),
o= (00,1257, 00 = (1.25,1.257, ;3 = (1.25,007, ¢4 =
(1.25, —=1.257, t5 = (—1.25, —1.25)T, ¢¢ = (—1.25,0)7, and
g7 = (—1.25,1.25)T.

To ensure that the upper bound of the tracking performance
in Definition 1 is less enough to fulfil the practical require-
ment, the boundaries of the control gains are given large
enough and mainly vary from 15 to 20. For control inputs (3)
and (26), the bounded input constraints are given as 40 and
60, respectively. Based on the derived criteria in Theorems 1
and 2, and the feasible regions in Remark 10, the control gains
in (3) and (26) are chosen as in Table III. Then, it can be con-
cluded that the PFT and ZEFT problems are solved for seven
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Velocity Tracking Errors of Robot 1
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Fig. 6. Velocity tracking errors of robot 1 under saturated control inputs (a) (3) and (b) (26).
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robots (35). Fig. 2 shows the formation tracking performances
of seven robots under control inputs (3) and (26). We also
give six time points at which the tracking performances are
distinctly presented. It can be seen from Fig. 2 that seven
robots will tend to an orderly formation following the target.

Given arbitrary initial conditions (each entry of the initial
states is bounded in [—20, 20]), the formation tracking perfor-
mances of positions g1, g;» and velocities §;1, ¢;» using control
inputs (3) and (26) are shown in Figs. 3 and 4, respectively.
From Figs. 3 and 4, it can be seen that by employing the
control input (3), the position and velocity tracking errors are
bounded and converge to a neighborhood of the origin as time
goes to infinite, while under the control input (26), the track-
ing errors tend to zero as time goes to infinite. Thus, it can
be concluded that the control input (26) possesses better for-
mation tracking performance compared to control input (3),
which also reveals the superiority for implementing the ZEFT
of multiple Euler—Lagrange systems. To show the performance
of the tracking errors clearly, we further present the position
and velocity tracking errors by considering just robot 1 since
other tracking errors for robots 2—7 are similarly obtained.
Then, for robot 1 under control inputs (3) and (26), Figs. 5

time (sec)

time (sec)

Trajectories of saturated control inputs (3) and (26), and unsaturated control input (36).

and 6 depict, respectively, the position and velocity tracking
errors.

To show the different functions of saturated (bounded)
and unsaturated control approaches, we give the following
unsaturated control input. Its formation tracking performances
are omitted since they are similar to the ones in Figs. 3(a)-6(a)

ui = B1iQyi — qi) + Bai(zi — §i) (36)

for Vi € ¥, where B1; and By; are positive constants. Fig. 7
depicts the trajectories of saturated control inputs (3) and (26),
and unsaturated control input (36). From Fig. 7, we can see
that the saturated control inputs (3) and (26) are subjected to
the saturation constraints and they remain bounded as time
goes from zero to infinite. However, the control gains of the
unsaturated control input (36) can be very large at the begin-
ning time. To this extent, the saturated control approaches
adopted in this article show the superiority for the reduction
of control cost.

Remark 11: Together with Figs. 3-7, it is concluded that
both saturated (bounded) and unsaturated control inputs can
be adopted to carry out the PFT and ZEFT. However, there
are two main differences for them.
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1) The control input with saturation constraints can save
control cost, especially for large system states. As we
can see from Fig. 7, all trajectories of saturated control
inputs (3) and (26) remain under the saturation con-
straints 40 and 60, respectively, while the trajectories
of unsaturated control input (36) are very large in the
first few seconds.

2) The convergence speed of saturated control inputs is
slower than the unsaturated one at the expense of lower
control cost. Still, we can adopt the saturated con-
trol input (26) instead of (3) to obtain better tracking
performance.

V. CONCLUSION

For multiple Euler—Lagrange systems with directed
interaction graphs and input disturbances, the formation track-
ing problems, including the PFT problem and ZEFT problem,
have been fully addressed. Two model-independent distributed
control laws under the bounded input constraints have been
proposed to solve the PFT and ZEFT problem. The presented
distributed control laws do not require prior information of
structures and features of the system model, and can pro-
vide robustness against input disturbances. In addition, the
input upper bound of the two approaches is independent of
the number of agents’ neighbors. These unique character-
istics of the presented control laws show their superiority,
which has been verified by carrying out comparison studies
in both discussions and simulations. Then, the corresponding
criteria for practical and asymptotic stability of the presented
bounded control algorithms have been derived. In this article,
we mainly consider how to realize constant formation tracking.
Future work will focus on the inter-robot collisions and the
time-varying formation tracking problem of multiple Euler—
Lagrange systems. Moreover, such systems with stochastic
noises and other uncertainties can also be a good choice.
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