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Continuous-Time Distributed Policy Iteration for
Multicontroller Nonlinear Systems
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Abstract—In this article, a novel distributed policy iteration
algorithm is established for infinite horizon optimal control prob-
lems of continuous-time nonlinear systems. In each iteration of
the developed distributed policy iteration algorithm, only one
controller’s control law is updated and the other controllers’
control laws remain unchanged. The main contribution of the
present algorithm is to improve the iterative control law one by
one, instead of updating all the control laws in each iteration
of the traditional policy iteration algorithms, which effectively
releases the computational burden in each iteration. The proper-
ties of distributed policy iteration algorithm for continuous-time
nonlinear systems are analyzed. The admissibility of the present
methods has also been analyzed. Monotonicity, convergence, and
optimality have been discussed, which show that the iterative
value function is nonincreasingly convergent to the solution of the
Hamilton–Jacobi–Bellman equation. Finally, numerical simula-
tions are conducted to illustrate the effectiveness of the proposed
method.

Index Terms—Adaptive dynamic programming (ADP), approx-
imate dynamic programming, distributed policy iteration, non-
linear systems, optimal control.

I. INTRODUCTION

OPTIMAL control has attracted many researchers from
the control field due to its superiority and practicabil-

ity [1]–[5]. In the complex industrial process control, lots of
real systems are controlled by multiple controllers with each
using an individual strategy. The distributed coordination con-
trol of multicontroller systems, which avoids high-dimensional
controller design of the systems, has attracted compelling
attention [6]–[8], where the desired goal of the distributed
control is to make all the system states in a cooperative
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fashion through a series of distributed control laws. Examples
of distributed control for multicontroller systems arise from
transportation networks, power systems, energy Internet, and
multiagent systems [9]–[13]. In fact, many distributed control
methods focus on the stability of the nonlinear systems with
the distributed control [14]–[18], while the optimality for the
multicontroller systems is scarcely analyzed. The difficulty for
obtaining the optimal control for the multicontroller systems
lies in finding the solutions of the Hamilton–Jacobi–Bellman
(HJB) equations. Up to now, there are still no general analyti-
cal solutions of HJB equations for nonlinear systems. In multi-
controller systems, directly solving the HJB equations is not a
good option to obtain the optimal control laws due to the high
dimensions of the control. In this situation, many methods have
been proposed for achieving the approximate optimal goal.
The adaptive dynamic programming (ADP), which is

very effective in achieving the optimal control of nonlinear
system [19]–[27], is proposed by Werbos [28], [29]. The
ADP has been applied in multicontroller systems for the
optimal control laws. In [30], the optimal control laws of
decentralized uncertain nonlinear systems with mismatched
interconnections were acquired by ADP. In [31], the ADP
was employed to solve the optimal multi-ESM scheduling to
track ground moving targets. In [32]–[34], neural-optimal con-
trol laws of multiplayer nonzero-sum games were obtained via
ADP for nonlinear systems in continuous-time and discrete-
time cases, respectively. In [35] and [36], ADP was used to
obtain the optimal laws of energy management in smart res-
idential microgrids. In [37], the optimal control for multiple-
model systems was obtained via discrete-time off-policy ADP.
However, it can be seen that traditional ADP methods obtain
the optimal multicontroller systems via a centralized control
technique, which implies the heavy computation burden if the
number of the controller is large. Thus, it is necessary to inves-
tigate distributed ADP methods in multicontroller systems for
optimal control laws.
Iterative methods that are advantageous in analyzing the

performance have been combined with ADP to solve HJB
equations indirectly [32], [38]–[42]. Policy iteration, which
is one of the iterative ADP algorithms, that has been widely
investigated [43]–[48]. To deal with the optimal problems for
affine nonlinear systems with continuous-time cases, a pol-
icy iteration algorithm was developed under the quadratic
utility function in [49]. Then, to deal with the cases where
the control inputs are constrained in continuous-time systems,
a developed policy iteration algorithm was presented by
Abu-Khalaf and Lewis [50]. In [51], with transforming H∞
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optimal control to a zero-sum problem, the optimal control
laws for the systems with disturbance were achieved by the
application of the proposed policy iteration algorithm. In [52],
a data-based policy iteration algorithm was established to
solve the optimal control problem for continuous-time non-
linear systems with weak coupling. Some distributed policy
iteration methods were concerned to achieve the optimum
for multicontroller systems, especially for multiagent systems.
In [53], a cooperative policy iteration algorithm for graphical
games was developed for the synchronization of multiagent
systems. In [54], an event-triggered policy iteration algo-
rithm was proposed for distributed linear dynamics. In [55],
the distributed optimal output control law for heterogeneous
multiagent systems was obtained. It should be pointed out
that most previous distributed policy iteration algorithms were
focused on the linear multicontroller systems, which were
not available for nonlinear systems. Up to now, the inves-
tigation about the distributed policy iteration algorithm for
multicontroller systems is scarce, and the proposed research
is motivated by the situation.
In this article, to solve the optimal control problems for

continuous-time nonlinear systems with infinite horizon, a
novel distributed policy iteration algorithm is proposed. The
main advantage of the present method is to improve the
iterative control law one by one, instead of updating all
the control laws at each iteration, which effectively releases
the computation burden. The contents of this article can be
concluded as follows. First, the procedure of the proposed
iteration algorithm is introduced. In the distributed policy
iteration algorithm, it is shown that only one controller’s con-
trol law is updated at each iteration, while other control laws
are unchanged. Second, some novel property analysis meth-
ods are developed for the distributed policy iteration algorithm.
Although only one controller is updated in each iteration, all
of the iterative control laws in any iteration are admissible for
the system. Finally, analysis about the convergence is given,
which can prove that the iterative value functions can converge
to the optimum with monotonically nonincreasing feature.
The remainder of this article is given as follows. In

Section II, the problem formulation is described. In Section III,
the continuous-time distributed policy iteration algorithm is
introduced and some proofs about the admissibility, con-
vergence, and optimality properties are also shown in this
section. Then, in Section IV, simulation results are utilized
to demonstrate the effectiveness of the developed algorithm.
The conclusions are finally drawn in Section V.

II. PROBLEM FORMULATIONS

Consider the following continuous-time multicontroller non-
linear system:

ẋ = F(x, u1, . . . , uN) (1)

where the system state is denoted by x = x(t) ∈ Rn, and ui =
ui(t) ∈ Rmi , i = 1, 2, . . . ,N, represents the control inputs. F(·)
is regarded as the system function. N stands for the number of
the controllers, which is usually a positive integer. Let x0 be the
initial condition of the nonlinear system. Some assumptions
are given in the following for further analysis.

Assumption 1: The system (1) is controllable, and the
system states all belong to a compact set where the origin
is contained; the system function F(x, u1, . . . , un) is Lipschitz
continuous for x and ui, i = 1, 2, . . . ,N; the equilibrium point
of the system (1) is x = 0, when the control inputs satisfy
u = 0, that is, F(0, 0, . . . , 0) = 0; and the multicontrol law
ui(x), i = 1, 2, . . . ,N, is continuous on ! and ui = ui(x) = 0
always holds for x = 0.
To analyze the optimal control problem of system (1),

the performance index function is given with the following
definition:

J(x) =
∫ ∞

t
U(x(s), u1(s), . . . , uN(s))ds (2)

where U(x, u1, . . . , uN) represents the utility function and
positive definite for x and ui, i = 1, 2, . . . ,N.

The admissible control laws of multicontrollers can be
defined as µi ∈ "(!), i = 1, 2, . . . ,N, and "(!) can be
considered as the set of admissible controls on !. Under the
admissible controls, the value function is given as

V(x) =
∫ ∞

t
U(x(s), µ1(x(s)), µ2(x(s)), . . . , µN(x(s)))ds.

(3)

If the value function is continuously differentiable respect to t,
it can be transformed into the following form which is called
the nonlinear Lyapunov equation:

U(x, µ1, . . . , µN)+
(

∂V(x)
∂x

)T

F(x, µ1, . . . , µN) = 0. (4)

Based on the definition in (2), the optimal performance index
function is defined as

J∗(x) = min
µ1,...,µN∈"(!)

{∫ ∞

t
U(x(s), µ1(s), . . . , µN(s))ds

}

(5)

which can satisfy the HJB equation with J∗(0) = 0, and the
following equation can be derived:

min
µ1,...,µN

{

U(x, µ1, . . . , µN)+
(

∂J∗(x)
∂x

)T

F(x, µ1, . . . , µN)

}

= U(x, µ∗
1(x), . . . , µ

∗
N(x))+

(
∂J∗(x)

∂x

)T

× F
(
x, µ∗

1(x), . . . , µ
∗
N(x)

)

= 0 (6)

where µ∗
1(x), . . . , µ

∗
N(x) are the optimal control laws.

Generally, it is almost impossible to obtain J∗(x) by directly
solving the HJB equations, especially for multicontroller
nonlinear systems. Hence, developing a novel distributed pol-
icy iteration algorithm to overcome this difficulty is very
necessary.

III. CONTINUOUS-TIME DISTRIBUTED POLICY

ITERATION: DERIVATIONS AND PROPERTIES

In this section, the derivations of the continuous-time dis-
tributed policy iteration algorithm for multicontroller nonlinear
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systems will be discussed. Furthermore, some new methods to
analyze the convergence and monotonicity will be introduced
and the admissibility of the multicontrol laws will also be
proven.

A. Derivations of the Continuous-Time Distributed Policy
Iteration Algorithm

Let v01(x), . . . , v
0
N(x) ∀x ∈ Rn be arbitrary admissible control

laws. Let V0(x) denote the initial iterative value function, such
that

U
(
x, v01(x), . . . , v

0
N(x)

)
+

(
∂V0(x)

∂x

)T

× F
(
x, v01(x), . . . , v

0
N(x)

)
= 0. (7)

Let k = 1 and τ1 ∈ N ,N = {1, 2, . . . ,N}. Let u(i) = {uj:j ∈
N , j '= i}. Then, we have U(x, uτ1 , u(τ1)) = U(x, u1, . . . , uN).
For k = 1, the control law v1τ1(x) can be calculated by

v1τ1(x) = argmin
uτ1

{

U
(
x, uτ1 , v

0
(τ1)

(x)
)

+
(

∂V0(x)
∂x

)T

F
(
x, uτ1 , v

0
(τ1)

(x)
)}

. (8)

Let v1j (x) = v0j (x), for all j ∈ N and j '= τ1. According
to v11(x), v

1
2(x), . . . , v

1
N(x), the corresponding value function

V1(x) is calculated by

U
(
x, v11(x), . . . , v

1
N(x)

)
+

(
∂V1(x)

∂x

)T

× F
(
x, v11(x), . . . , v

1
N(x)

)
= 0. (9)

For k = 1, 2, . . . let τk ∈ N and U(x, uτk , u(τk)) =
U(x, u1, . . . , uN), the iterative control law vkτk(x) can be
derived by

vkτk(x) = argmin
uτk

{

U
(
x, uτk , v

k−1
(τk)

(x)
)

+
(

∂Vk−1(x)
∂x

)T

F
(
x, uτk , v

k−1
(τk)

(x)
)}

.

(10)

Let vkj (x) = vk−1
j (x), for all j ∈ N and j '= τk. According

to vk1(x), v
k
2(x), . . . , v

k
N(x), the iterative value function Vk(x) is

updated by

U
(
x, vk1(x), . . . , v

k
N(x)

)
+

(
∂Vk(x)

∂x

)T

× F
(
x, vk1(x), . . . , v

k
N(x)

)
= 0. (11)

Then, we can obtain the distributed policy iteration algorithm
as Algorithm 1.
In this article, the function J∗(x) denotes the optimal

performance index function under the optimal control laws
u∗
1(x), u

∗
2(x), . . . , u

∗
N(x). For k = 0, 1, . . ., the function

Vk(x) is used in the iteration process, which denotes the

Algorithm 1 Distributed Policy Iteration Algorithm for
Multicontroller Nonlinear Systems
Initialization:

Choose randomly an admissible control law v0i (x), i =
1, . . . ,N;
Choose a computation precision ε.

Iteration:
1: Let the iteration index k = 0. Construct an iterative value

function V0(x) to satisfy (7);
2: Let k = k + 1, choose τk ∈ N randomly. Do Policy

Improvement

vkτk(x) = argmin
uτk

{
U

(
x, uτk , v

k−1
(τk)

(x)
)

+
(

∂Vk−1(x)
∂x

)T

F
(
x, uτk , v

k−1
(τk)

(x)
)}

;

3: Do Policy Evaluation

U(x, vk1(x), . . . , v
k
N(x))+

(
∂Vk(x)

∂x

)T

× F(x, vk1(x), . . . , v
k
N(x)) = 0;

4: If Vk−1(x) − Vk(x) > ε, goto Step 2.
5: return vk1(x), . . . , v

k
N(x), V

k(x).

iterative value function under the iterative control laws
νk1(x), ν

k
2(x), . . . , ν

k
N(x). In the following, the properties of

Vk(x) will be analyzed and the relationship between Vk(x)
and J∗(x) will be proven.

B. Property Analysis

In this section, the corresponding properties, such as con-
vergence and admissibility of the distributed policy iteration
algorithm, are analyzed. For traditional policy iteration algo-
rithms [43], [45], [49], [50], [58], [59], all the control laws of
the system must be updated in each iteration simultaneously
to guarantee the convergence of Vk(x) and the admissibility of
the control laws. However, for distributed policy iteration algo-
rithm (7)–(11), only one control input is updated such that the
traditional analysis methods are unavailable for the distributed
policy iteration algorithm. Thus, some novel analysis meth-
ods will be established in this section. First, the admissibility
of the distributed iterative control laws will be analyzed and
some lemmas are given in the following.
Lemma 1: If vk1(x), . . . , v

k
N(x), k = 0, 1, . . ., are admissible

control laws for system (1), there exists a value function Vk(x)
to satisfy

U
(
x, vk1(x), . . . , v

k
N(x)

)
+

(
∂Vk(x)

∂x

)T

× F
(
x, vk1(x), . . . , v

k
N(x)

)
= 0. (12)

Theorem 1: For k = 0, 1, . . ., the iterative value
function Vk(x) and the distributed iterative control laws
vk1(x), . . . , v

k
N(x) can be obtained by (7)–(11). If control laws
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vk1(x), . . . , v
k
N are admissible for nonlinear system (1), then

vk+1
1 (x), . . . , vk+1

N are admissible control laws.
Proof: For k = 0, 1, . . ., as vk1(x), . . . , v

k
N are admissible

control laws, (12) is always satisfied based on Lemma 1.
Letting τk+1 ∈ N , vk+1

τk+1
(x) can be obtained by (10), which

is expressed as

vk+1
τk+1

(x) = arg min
uτk+1

{

U
(
x, uτk+1 , v

k
(τk+1)

(x)
)

+
(

∂Vk(x)
∂x

)T

F
(
x, uτk+1 , v

k
(τk+1)

(x)
)}

.

(13)

According to (12), it can be derived that

(
∂Vk(x)

∂x

)T

F
(
x, vk+1

1 (x), . . . , vk+1
N (x)

)

+ U
(
x, vk+1

1 (x), . . . , vk+1
N (x)

)
≤ 0 (14)

where vk+1
τk+1

(x) is obtained by (13) and vk+1
j (x) = vkj (x), for

all j ∈ N and j '= τk+1.
According to Assumption 1, it can be derived that Vk(x) =∫ ∞

t U(x(s), vk1(x(s)), . . . , v
k
N(x(s)))ds is always positive due

to the characteristics of the utility function. Then, Vk(x) is
said to be a positive-definite function. Choose Vk(x) as the
Lyapunov function candidate. Based on (14), we have the fol-
lowing inequality by calculating the derivative of Vk(x) along
(vk+1

1 (x), . . . , vk+1
N (x)):

V̇k(x) =
(

∂Vk(x)
∂x

)T

F
(
x, vk+1

1 (x), . . . , vk+1
N (x)

)

≤ −U
(
x, vk+1

1 (x), . . . , vk+1
N (x)

)
. (15)

Thus, vk+1
1 (x), . . . , vk+1

N (x) are stable control laws
for system (1). Then, it can be derived that
lim
t→∞U(x, vk+1

1 (x), . . . , vk+1
N (x)) = 0.

Let ϒk+1(x), k = 0, 1, . . ., is a value function, such that

ϒk+1(x) =
∫ ∞

t
U

(
x(s), vk+1

1 (x(s)), . . . , vk+1
N (x(s))

)
ds. (16)

Next, we will prove that ϒk+1(x) ∀x ∈ Rn, is finite under
the control laws vk+1

1 (x), . . . , vk+1
N (x). Taking the derivative

of ϒk+1(x) along time t, we have

ϒ̇k+1(x) = −U
(
x, vk+1

1 (x), . . . , vk+1
N (x)

)
. (17)

Considering (15) and (17), we can obtain

V̇k(x) ≤ ϒ̇k+1(x) ∀x ∈ Rn. (18)

As vk1(x), . . . , v
k
N(x) are admissible control laws, define

Vk(x(∞)) = limt→∞ Vk(x(t)) = 0. From (16), we know
that ϒk+1(x(∞)) = limt→∞ ϒk+1(x(t)) = 0. According

to (12) and (16), we can derive
∫ ∞

t

dVk(x(s))
ds

ds

= Vk(x(∞)) − Vk(x(t))

≤
∫ ∞

t

dϒk+1(x(s))
ds

ds

= ϒk+1(x(∞)) − ϒk+1(x(t))

= −
∫ ∞

t
U

(
x(s), vk+1

1 (x(s)), . . . , vk+1
N (x(s))

)
ds. (19)

Then, we can obtain
∫ ∞

t
U

(
x(s), vk+1

1 (x(s)), . . . , vk+1
N (x(s))

)
ds ≤ Vk(x(t)) (20)

which shows that the distributed control laws
vk+1
1 (x), . . . , vk+1

N (x) are admissible for the system (1).
The proof is complete.

Furthermore, the properties for the iterative value function
Vk(x) will be discussed in the following theorem.
Theorem 2: For k = 0, 1, . . ., let the iterative value

function Vk(x) and the distributed iterative control laws
vk1(x), . . . , v

k
N(x) be obtained by (7)–(11). If v01(x), . . . , v

0
N(x)

are admissible control laws, the iterative value function Vk(x),
k = 0, 1, . . . , is monotonically nonincreasing as k increases,
that is

Vk+1(x) ≤ Vk(x) ∀x ∈ Rn. (21)

Proof: Consider k = 0. For the admissible control laws
v01(x), . . . , v

0
N(x), according to Theorem 1, the iterative control

laws v11(x), . . . , v
1
N(x) are admissible control laws. According

to (16), it can be easily derived that V1(x) = ϒ1(x).
Considering the derivative of V0(x) along v11(x), . . . , v

1
N(x),

according to (14), we can obtain

V̇0(x) =
(

∂V0(x)
∂x

)T

F
(
x, v11(x), . . . , v

1
N(x)

)

≤ −U
(
x, v11(x), . . . , v

1
N(x)

)
(22)

such that

V̇0(x) ≤ V̇1(x) ∀x ∈ Rn. (23)

According to Theorem 1, as ν01(x), ν
0
2 (x), . . . , ν

0
N(x) are

admissible control laws, then ν11(x), ν
1
2(x), . . . , ν

1
N(x) are

admissible. These indicate that V0(x(∞)) = 0 and
V1(x(∞)) = 0, which imply that V0(x(t)) ≥ V1(x(t)) ∀x ∈ Rn.
By the implementation of mathematical induction, (21) can
be guaranteed to hold for any k = 0, 1, . . . The proof is
complete.
According to Theorem 2, increasing iterative index k, the

iterative value function is monotonically nonincreasing. Next,
the optimality of the iterative value function will be discussed.
Theorem 3: For k = 0, 1, . . ., the iterative value

function Vk(x) and the distributed iterative control laws
vk1(x), . . . , v

k
N(x) are derived by (7)–(11). Then, Vk(x) con-

verges to a suboptimal performance index function as k → ∞.
Proof: According to Lemma 1, we can derive

Vk(x) =
∫ ∞

t
U

(
x(s), vk1(x(s)), . . . , v

k
N(x(s))

)
ds. (24)
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As the utility function U(x, u1, . . . , uN) is a positive-definite
function for x and ui, i = 1, 2, . . . ,N, according to
Assumption 1, we know that Vk(x) = 0 for x = 0 and
Vk(x) > 0 for all x '= 0. Hence, for k = 0, 1, . . ., Vk(x)
is a positive-definite function for x.
For k → ∞, there must exist a controller which is improved

for infinite times. Without loss of generality, controller τ o,
τ o ∈ N , is assumed to improve for infinite times. Let K denote
a set of iteration indices, which is defined as

K =
{
k|k = 0, 1, . . . , τk = τ o, τ o ∈ N

}
. (25)

Let κj ∈ K, j = 0, 1, . . . Without loss of generality, let κ0 <

κ1 < · · · According to Theorem 2, Vk(x) has been proved to
be nonincreasing as k → ∞ and have the lower limit, which
is defined as V∞(x), that is

V∞(x) = lim
k→∞

Vk(x). (26)

By considering (9) and (11), for k = 0, 1, . . . and )T ≥ 0,
it can be derived that

Vk(x) =
∫ t+)T

t
U

(
x(s), vkτk (x(s)), v

k
(τk)

(x(s))
)
ds

+ Vk(x(t + )T)). (27)

According to (27), for κj ∈ K, j = 0, 1, . . ., consider a new
iterative value function *κj+1 as

*κj+1(x) =
∫ t+)T

t
U(x(s), v

κj+1
τ o (x(s)), v

κj
(τ o)(x(s)))ds

+ Vκj(x(t + )T))

=
∫ t+)T

t
U

(
x(s), v

κj+1
τ o (x(s)), v

κj+1
(τ o) (x(s))

)
ds

+ Vκj(x(t + )T)) (28)

where v
κj+1
τ o (x) is defined by (10) for k = κj and v

κj+1
(τ o) (x) =

v
κj
(τ o)(x). According to Theorem 2, the following conclusion
can be drawn:

Vκj+1(x) ≤ *κj+1(x). (29)

If k → ∞, it is obvious that j → ∞ and κj → ∞. Then, for
k → ∞, we have

V∞(x) ≤
∫ t+)T

t
U

(
x(s), v∞

τ o(x(s)), v
∞
(τ o)(x(s))

)
ds

+ V∞(x(t + )T)). (30)

Define ε as a positive constant, that is, ε > 0. Due to

lim
j→∞

Vκj(x) = lim
k→∞

Vk(x) = V∞(x) (31)

there must be a positive integer κρ < ∞, such that

Vκρ (x) − ε ≤ V∞(x) ≤ Vκρ (x). (32)

Based on (27) and (32), we have

V∞(x) ≥
∫ t+)T

t
U(x(s), v

κρ

τ o (x(s)), v
κρ

(τ o)(x(s)))ds

+ Vκρ (x(t + )T)) − ε

≥
∫ t+)T

t
U(x(s), v

κρ

τ o (x(s)), v
κρ

(τ o)(x(s)))ds

+ V∞(x(t + )T)) − ε

=
∫ t+)T

t
U

(
x(s), v

κρ

τ o (x(s)), v
∞
(τ o)(x(s))

)
ds

+ V∞(x(t + )T)) − ε. (33)

As ε is arbitrary, we have

V∞(x) ≥
∫ t+)T

t
U

(
x(s), v

κρ

τ o (x(s)), v
∞
(τ o)(x(s))

)
ds

+ V∞(x(t + )T)). (34)

According to (10), define v∞
τ o as

v∞
τ o(x) = argmin

uτo

{

U
(
x, uτ o , v∞

(τ o)(x)
)

+
(

∂V∞(x)
∂x

)T

F(x, uτ o , v∞
(τ o)(x))

}

. (35)

According to (34) and (35), we have

V∞(x) ≥
∫ t+)T

t
U

(
x(s), v∞

τ o(x(s)), v
∞
(τ o)(x(s))

)
ds

+ V∞(x(t + )T)). (36)

Combining (30) and (36), we can obtain

V∞(x) =
∫ t+)T

t
U

(
x(s), v∞

τ o(x(s)), v
∞
(τ o)(x(s))

)
ds

+ V∞(x(t + )T)). (37)

As νk1(x), ν
k
2(x), . . . , ν

k
N(x), k = 0, 1, . . ., are admissible

control laws, which indicates V∞(x(k + )T)) = 0 as )T →
∞. According to (35), the following equation of optimality
can be derived with )T → ∞:

0 = U
(
x, v∞

τ o(x), v
∞
(τ o)(x)

)
+

(
∂V∞(x)

∂x

)T

× F
(
x, v∞

τ o(x), v
∞
(τ o)(x)

)

= min
uτo

{

U(x, uτ o , v∞
(τ o)(x))+

(
∂V∞(x)

∂x

)T

× F
(
x, uτ o , v∞

(τ o)(x)
)}

. (38)

Thus, as k → ∞, Vk(x) converges to a suboptimal
performance index function. The proof is complete.

Remark 1: It shows in Theorem 3 that as k → ∞, V∞(x),
which is the limit of the iterative value function and defined as
V∞(x) = limk→∞ Vk(x), converges to the solution of the HJB
equation in (38), not in (6). Thus, the suboptimal performance
index is actually achieved as k → ∞.
In order to obtain the global convergence analysis, a new

criterion is necessary. Before analyzing the global convergence
property, some denotations should be defined, such as Ti =
{k | τk = i, i ∈ N } and πi, which describes how many elements
are in Ti.

Theorem 4 (Global Convergence Property): For k = 0,
1, . . ., the iterative value function Vk(x) and the dis-
tributed iterative control laws vk1(x), . . . , v

k
N(x) are obtained
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by (7)–(11). If πi → ∞ ∀ i ∈ N , as k → ∞, Vk(x) is
convergent to the optimal performance index function, that is

lim
k→∞

Vk(x) = J∗(x). (39)

Proof: The proof is given by the following two steps.
1) Show that the iterative value function Vk(x) will satisfy

lim
k→∞

Vk(x) ≥ J∗(x). (40)

Letting
(
νk+1
1 (x), . . . , νk+1

N (x)
)

= arg min
u1,u2,...,uN

{

U(x, u1, . . . , uN)

+
(

∂Vk(x)
∂x

)T

F(x, u1, . . . , uN)

}

(41)

according to (7)–(11), for any τk ∈ N , k = 0, 1, . . ., we can
derive

min
u1,u2,...,uN

{

U(x, u1, . . . , uN)+
(

∂Vk(x)
∂x

)T

F(x, u1, . . . , uN)

}

= U
(
x, νk+1

1 (x), . . . , νk+1
N (x)

)

+
(

∂Vk(x)
∂x

)T

F
(
x, νk+1

1 (x), . . . , νk+1
N (x)

)

≤ min
uτk+1

{

U
(
x, uτk+1 , u

k
(τk+1)

(x)
)

+
(

∂Vk(x)
∂x

)T

F
(
x, uτk+1 , u

k
(τk+1)

(x)
)}

= U
(
x, vk+1

τk+1
(x), vk(τk+1)

(x)
)

+
(

∂Vk(x)
∂x

)T

F(x, vk+1
τk+1

(x), vk(τk+1)
(x))

≤ 0

= U
(
x, u∗

1(x), . . . , u
∗
N(x)

)

+
(

∂J∗(x)
∂x

)T

F(x, u∗
1(x), . . . , u

∗
N(x))

= min
u1,u2,...,uN

{

U(x, u1, . . . , uN)

+
(

∂J∗(x)
∂x

)T

F(x, u1, . . . , uN)

}

. (42)

Taking derivatives of Vk(x) and J∗(x) along
(νk+1

1 (x), . . . , νk+1
N (x)), according to (42), we obtain

V̇k(x) − J̇∗(x) =
(

∂Vk(x)
∂x

)T

F
(
νk+1
1 (x), . . . , νk+1

N (x)
)

+ U
(
νk+1
1 (x), . . . , νk+1

N (x)
)

−
(

∂J∗(x)
∂x

)T

F(νk+1
1 (x), . . . , νk+1

N (x))

− U
(
νk+1
1 (x), . . . , νk+1

N (x)
)

= min
u1,u2,...,uN

{

U(x, u1, . . . , uN)

+
(

∂Vk(x)
∂x

)T

F(x, u1, . . . , uN)

}

− min
u1,u2,...,uN

{

U(x, u1, . . . , uN)

+
(
∂J∗(x)

∂x

)T

F(x, u1, . . . , uN)

}

+ min
u1,u2,...,uN

{

U(x, u1, . . . , uN)

+
(
∂J∗(x)

∂x

)T

F(x, u1, . . . , uN)

}

−
((

∂J∗(x)
∂x

)T

F(νk+1
1 (x), . . . , νk+1

N (x))

+ U
(
νk+1
1 (x), . . . , νk+1

N (x)
))

≤ 0. (43)

Based on (43), we know that
∫ ∞
t V̇k(x(s))ds ≤∫ ∞

t J̇∗(x(s))ds, which is derived as Vk(x(∞)) − Vk(x(t)) ≤
J∗(x(∞)) − J∗(x(t)). According to Theorem 1, the iterative
control laws νk1(x), . . . , ν

k
N(x) are admissible for system (1),

which indicates that Vk(x(∞)) = 0. The optimal control
laws u∗

1(x), u
∗
2(x), . . . , u

∗
N(x) are admissible, which indicates

that J∗(x(∞)) = 0. Thus, we can derive Vk(x) ≥ J∗(x)
∀k = 0, 1, . . . As k → ∞, (40) is always satisfied.

2) Show that the iterative value function Vk(x) can satisfy

lim
k→∞

Vk(x) ≤ J∗(x). (44)

For πi → ∞, it shows that k → ∞. For k → ∞ and
πi → ∞, according to Theorem 2, define

V∞(x) := lim
k→∞

Vk(x). (45)

As πi → ∞ ∀ i ∈ N , we can derive

v∞
i (x) = argmin

ui

{
U

(
x, ui, v∞

(i)(x)
)

+ ∂V∞(x)
∂x

F(x, ui, v∞
(i)(x))

}
. (46)

According to (11) and (46), we can derive

U
(
x, v∞

1 (x), . . . , v∞
N (x)

)

+ ∂V∞(x)
∂x

F
(
x, v∞

1 (x), . . . , v∞
N (x)

)

= min
u1

{
U

(
x, u1, v∞

2 (x), . . . , v∞
N (x)

)

+ ∂V∞(x)
∂x

F
(
x, u1, v∞

2 (x), . . . , v∞
N (x)

)}

= min
u2

{
min
u1

{
U

(
x, u1, u2, v∞

3 (x), . . . , v∞
N (x)

)

+ ∂V∞(x)
∂x

F
(
x, u1, u2, v∞

3 (x), . . . , v∞
N (x)

)}}
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= min
uN

{
· · ·

{
min
u2

{
min
u1

{
U(x, u1, . . . , uN)

+ ∂V∞(x)
∂x

F(x, u1, . . . , uN)
}}}

· · ·
}

= min
u1,u2,...,uN

{
U(x, u1, . . . , uN)

+ ∂V∞(x)
∂x

F(x, u1, . . . , uN)
}

= 0. (47)

According to (47), we have

V∞(x) =
∫ t+)T

t
U

(
x(s), v∞

1 (x(s)), . . . , v∞
N (x(s))

)
ds

+ V∞(x(t + )T)). (48)

Let µ1(x), . . . , µN(x) be admissible control laws for
system (1). For k = 0, 1, . . ., we define

-k+1(x) =
∫ t+)T

t
U(x(s), µ1(x), . . . , µN(x))ds

+ -k(x(t + )T)) (49)

where -0(x) = V∞(x). Next, we will prove that

-k+1(x) ≥ V∞(x) ∀k = 0, 1, . . . (50)

For k = 0, it is easy to obtain

-1(x) =
∫ t+)T

t
U(x(s), µ1(x(s)), . . . , µN(x(s)))ds

+ V∞(x(t + )T))

≥ min
u1,u2,...,uN

{∫ t+)T

t
U(x(s), u1, . . . , uN)ds

+ V∞(x(t + )T))
}

= V∞(x). (51)

If (50) is satisfied for k = l − 1, l = 1, 2, . . . When k = l, we
can obtain

-l+1(x) ≥
∫ t+)T

t
U(x(s), µ1(x(s)), . . . , µN(x(s)))ds

+ V∞(x(t + )T))

≥ V∞(x). (52)

By using mathematical induction, the above result (50) can be
proven.
According to (49), we have

-k+1(x) =
∫ t+(k+1))T

t
U(x(s), µ1(x(s)), . . . , µN(x(s)))ds

+ -0(x(t + (k + 1))T)). (53)

As µ1(x), . . . , µN(x) be admissible control laws, based on the
result in (50), we can obtain

lim
k→∞

-k+1(x) =
∫ ∞

t
U(x(s), µ1(x(s)), . . . , µN(x(s)))ds

≥ V∞(x). (54)

As µ1(x), . . . , µN(x) are arbitrary admissible control laws, the
following inequality can be derived:

V∞(x) ≤ min
µ1,...,µN∈"(!)

{∫ ∞

t
U(x(s), µ1(s), . . . , µN(s))ds

}

= J∗(xk) (55)

which proves (44). By combining the results
in (40) and (44), (39) can be derived. The proof is
complete.

Remark 2: Theorem 4 indicates that the optimal
control law can be obtained by the distributed pol-
icy iteration algorithm (7)–(11). The distributed
policy iteration algorithm (7)–(11) possesses inher-
ent differences from the traditional policy iteration
algorithms [43], [45], [49], [50], [58], [59]. In each iteration
of traditional policy iteration algorithms, all the control laws
in the multicontrol nonlinear systems have to be updated
simultaneously. If the dimension of the control is large,
the computation burden for the traditional policy iteration
increases. According to the present distributed policy iteration
algorithm (7)–(11), there is only one control law to update
in each iteration, which effectively reduces the computation
burden of the policy iteration algorithms. This is an important
advantage of the distributed policy iteration. On the other
hand, for traditional policy iteration algorithms [43], [45],
[49], [50], [58], [59], it has been proven that the iterative
value function is convergent to the optimal performance
index function as the iteration index increases to infinity.
However, it is pointed out that if there exist controllers that
are improved for finite times in the distributed policy iteration
algorithm, then the iterative value function is convergent to a
suboptimal performance index function instead of the global
optimal one. It is required that all the distributed controllers
are improved for infinite times to guarantee the global optimal
performance index function. In traditional policy iteration
algorithms, the iterative value function is sure to converge
the global optimal performance index function, where the
suboptimality will not happen. This is the disadvantage of the
distributed policy iteration algorithm.

IV. SIMULATION EXAMPLES

In this section, three different simulation examples are con-
ducted with the proposed distributed policy iteration algorithm
to illustrate the corresponding performance. In the simulation
examples, we use BP neural networks to realize the policy
evaluation and improvement.
Example 1: In this example, the simulation of two inverted

pendulums connected by a spring [56] is investigated, whose
structure is shown in Fig. 1. The dynamics of the two inverted
pendulum system can be described as the following equations:

ẋ1,1 = x1,2

ẋ1,2 =
(
m1gr
J1

− kr2

4J1

)
sin

(
x1,1

)
+ kr

2J1
(l − b)

+ u1
J1

+ kr2

4J1
sin

(
x2,1

)

ẋ2,1 = x2,2
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Fig. 1. Structure of two inverted pendulums.

Fig. 2. Iterative value function with 20 iterations in Example 1.

ẋ2,2 =
(
m2gr
J2

− kr2

4J2

)
sin

(
x2,1

)
+ kr

2J2
(l − b)

+ u2
J2

+ kr2

4J2
sin

(
x1,1

)
(56)

where x1,1 and x2,1 represent the angular displacements of the
pendulums from vertical. The initial conditions of the systems
are x0 = [0.1,−0.5,−0.1, 0.5]T . m1 and m2 denote the masses
of the end of two pendulums, and they are considered as m1 =
2 kg and m2 = 2.5 kg in this example. The moments of inertia
are denoted by J1 and J2, which are adopted as J1 = 0.5
kg·m2 and J2 = 0.625 kg·m2 here. The spring constant and
natural length of the spring are represented by k = 100 N/m
and l = 0.5 m, respectively. The pendulum height and the
distance between the pendulum are defined as r = 0.5 m and
b = 0.4 m. g = 9.81 m/s2 stands for gravitational acceleration.
Define the performance index function as

J1(x) =
∫ ∞

t

(
xTQx+ u1R1u1 + u2R2u2

)
ds (57)

where Q, R1, and R2 represent identity matrices with suitable
dimensions.
To implement the proposed distributed policy iteration

algorithm, one critic network and two action networks are

(a)

(b)

Fig. 3. Trajectories of the iterative control laws in Example 1. (a) u1. (b) u2.

(a)

(c) (d)

(b)

Fig. 4. State trajectories of the two inverted pendulum systems. (a) x1. (b) x2.
(c) x3. (d) x4.

adopted with BP algorithms, which all have a three-layers
structure of 4-10-1. Let the learning rate be α = 0.02
and the training error be 10−5. In this example, the ini-
tial control laws are chosen as v01(x) = −K1x and v02(x) =
−K2x, where K1 = [8.07, 2.13, 10.04, 1.93] and K2 =
[8.63, 1.59, 10.69, 2.73], respectively, which are admis-
sible control laws for the two inverted pendulum systems.
η = 0, 1, . . . represents a non-negative integer series and let
N = {1, 2}. Let τk = 1 for k = 2η and let τk = 2 for
k = 2η + 1. Fig. 2 shows the trajectory of the iterative value
function Vk(x) at x = x0 with 20 iterations by implement-
ing the developed continuous-time distributed policy iteration
algorithm. As shown in Fig. 2, the iterative value function is
monotonically nonincreasing as the iteration index increases
and finally, it converges to the optimum, which verifies the
validity of theory analysis.
The trajectories of the iterative multicontrol laws are illus-

trated in Fig. 3. Although for each iteration, only one of
the iterative control laws is updated for the system and the
other control laws remain unchanged, the system can still be
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maintained stable by the distributed iterative control laws. In
Fig. 4, the states of the two inverted pendulum system are illus-
trated. Thus, the correctness of the theoretical analysis can be
verified.
Example 2: In the second example, the torsional pendulum

system [57] with modifications, where two additional control
inputs are added, is introduced for examining the performance
of the developed algorithm. The dynamic model of the modi-
fied pendulum torsional pendulum system can be described as
follows:

{ dθ
dt = ω + θu1
J dω

dt = u2 − Mgl sin θ − fd dθ
dt + ωu3

(58)

where the mass of the pendulum bar is denoted by M = 1/3
kg and the length is represented by l = 2/3 m. Let J =
4/3 Ml2 kg·m2 be the rotary inertia and fd = 0.2 denotes
the frictional factor. The gravity acceleration is represented by
g = 9.8 m/s2. By replacing θ and ω by x1 and x2, the model
of the torsional pendulum system can be rewritten as

[
ẋ1
ẋ2

]
=

[
x2

−Mgl
J sin x1 − fd

J x2

]
+

[
x1

− fdx1
J

]
u1

+
[
0
1
J

]
u2 +

[
0
x2
J

]
u3. (59)

The corresponding performance index function is defined as

J2(x) =
∫ ∞

t

(
xTQx+ u1R1u1 + u2R2u2 + u3R3u3

)
ds

(60)

where Q, R1, R2, and R3 are positive-definite matrices with
suitable dimensions, which are considered as identity matrices
in this example.
To apply the developed methods, four neural networks, con-

sisting of one critic network and three action networks, are
adopted in the systems. The four neural networks all adopt
the BP algorithm to train the weights with three-layers struc-
ture of 2-8-1. Let the learning rate be α = 0.02 and let the
training error be 10−5. The initial conditions of the multi-
control laws are chosen as v01(x) = −K1x, v02(x) = −K2x,
and v03(x) = −K3x, where K1 = [−0.0007,−0.1249],
K2 = [0.0037, 0.6247], and K3 = [0, 0], respectively. Let
N̄ = {1, 2, 3}. Let τk = 1 for k = 2η, τk = 2 for k = 2η + 1,
and τk = 3 for k = 2η + 2. To implement the developed
continuous-time distributed policy iteration, the algorithm has
been iterated for 30 steps. In Fig. 5, the trajectory of the
iterative value function Vk(x) at x = x0 is given to show its
convergence, which implies that the iterative value function
is monotonously nonincreasing and will converge to the opti-
mum as the iteration index increases. The correctness of the
theory analysis can be verified.
The trajectories of the iterative control laws are illustrated

in Fig. 6. Although only one of multicontrol laws is updated
for each iteration and other control laws remain unchanged,
the stability of systems can still be achieved by the distributed
iterative control laws presented in this article. To show the
convergence of the system states, the state trajectories are
illustrated in Fig. 7. Thus, for nonlinear system with multi-
controllers (59), it is feasible to update the multicontrol laws

Fig. 5. Iterative value function with 30 iterations in Example 2.

(a)

(b)

(c)

Fig. 6. Trajectories of multicontrollers in Example 2. (a) u1. (b) u2. (c) u3.

one by one in the distributed policy iteration for obtaining the
global optimal control law of the system, and the advantages
of the distributed policy iteration will be remarkable for the
systems with high dimensions in control.
Example 3: In the third example, a nonaffine nonlinear

system is introduced for examining the performance of the
developed algorithm, and a comparison experiment is con-
ducted with the traditional policy iteration algorithm. The
nonaffine nonlinear system is chosen in [60], where the
dynamic model of the system is described as follows:

ẋ1 = x2 + x1u1
ẋ2 = x21 + 0.15u32 + 0.1

(
4+ x22

)
u2 + sin(0.1u2). (61)

The corresponding performance index function is defined as

J3(x) =
∫ ∞

t

(
xTQx+ u1R1u1 + u2R2u2

)
ds (62)

where Q, R1, and R2 are positive-definite matrices with suit-
able dimensions, which are considered as identity matrices in
this example.
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(a)

(b)

Fig. 7. State trajectories of the torsional pendulum system in Example 2.
(a) x1. (b) x2.

Fig. 8. Iterative value function.

To apply the developed method, one critic network and two
action networks are adopted in the system, which all have
a three-layers structure of 2-10-1. Let the learning rate be
α = 0.02 and let the training error be 10−5. The initial condi-
tions of the multicontrol laws are chosen as v01(x) = −K1x and
v02(x) = −K2x, where K1 = [0, 0] and K2 = [0.4668, 0.9642],
respectively. Let N̄ = {1, 2}. Let τk = 1 for k = 2η and τk = 2
for k = 2η + 1. To implement the developed continuous-time
distributed policy iteration, the algorithm has been iterated for
25 steps. In Fig. 8, the trajectory of the iterative value function
Vk(x) at x = x0 is given to show its convergence, and the tra-
jectory of the traditional policy iteration is given as a contrast.
As shown in Fig. 8, the traditional policy iteration has a faster
convergence speed, because all the control laws in the multi-
control nonlinear system have to be updated simultaneously in
this algorithm, and it increases the computation burden. The
correctness of the theoretical analysis can be verified.
The trajectories of the iterative control laws are illustrated

in Fig. 9. To show the convergence of the system states, the
state trajectories are illustrated in Fig. 10. For the nonaffine
nonlinear system with multicontrollers (61), the correctness

(a)

(c) (d)

(b)

Fig. 9. Trajectories of multicontrollers. (a) u1 by the distributed policy
iteration. (b) u2 by the distributed policy iteration. (c) u1 by the traditional
policy iteration. (d) u2 by the traditional policy iteration.

(a)

(c) (d)

(b)

Fig. 10. State trajectories. (a) x1 by the distributed policy iteration. (b) x2
by the distributed policy iteration. (c) x1 by the traditional policy iteration.
(d) x2 by the traditional policy iteration.

of the proposed distributed policy iteration algorithm can be
demonstrated.

V. CONCLUSION

In this article, a novel continuous-time distributed policy
iteration algorithm is proposed to be applied in multicontroller
nonlinear systems for achieving the infinite horizon optimal
control. In each iteration of the proposed algorithms, only one
of the multicontrol laws is updated instead of all the control
laws, which implies that the control laws are improved one
by one. First, the detailed iterative methods of the distributed
policy iteration are introduced. Second, this article also dis-
cussed the admissibility of the proposed multicontrol laws.
In addition, the iterative value function can converge to opti-
mum, which is the solution of HJB equations. Finally, some
numerical simulations are conducted to verify the effectiveness
of the presented methods.
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