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Decentralized Event-Triggered Control for a Class
of Nonlinear-Interconnected Systems Using
Reinforcement Learning

Xiong Yang

Abstract—In this article, we propose a novel decentralized
event-triggered control (ETC) scheme for a class of continuous-
time nonlinear systems with matched interconnections. The
present interconnected systems differ from most of the exist-
ing interconnected plants in that their equilibrium points are
no longer assumed to be zero. Initially, we establish a theo-
rem to indicate that the decentralized ETC law for the overall
system can be represented by an array of optimal ETC laws
for nominal subsystems. Then, to obtain these optimal ETC
laws, we develop a reinforcement learning (RL)-based method
to solve the Hamilton-Jacobi-Bellman equations arising in the
discounted-cost optimal ETC problems of the nominal subsys-
tems. Meanwhile, we only use critic networks to implement the
RL-based approach and tune the critic network weight vectors
by using the gradient descent method and the concurrent learn-
ing technique together. With the proposed weight vectors tuning
rule, we are able to not only relax the persistence of the excita-
tion condition but also ensure the critic network weight vectors
to be uniformly ultimately bounded. Moreover, by utilizing the
Lyapunov method, we prove that the obtained decentralized ETC
law can force the entire system to be stable in the sense of uni-
form ultimate boundedness. Finally, we validate the proposed
decentralized ETC strategy through simulations of the nonlinear-
interconnected systems derived from two inverted pendulums
connected via a spring.

Index Terms—Adaptive dynamic programming (ADP), dis-
counted cost, event-triggered control (ETC), interconnected
systems, reinforcement learning (RL).

I. INTRODUCTION

N THE control community, the decentralized adaptive
Icontrol of interconnected systems has been a hot topic
over the past several decades [1]-[3]. This is mainly
because interconnections have been the common character-
istics in many real-world complex systems, such as ecolog-
ical systems, transportation systems, and computer network
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systems. Generally, it is difficult to design the stabilizing
controllers for the interconnected systems using one-shot
approaches [4]. To address this issue, the decentralized con-
trol method was proposed. The decentralized control approach
differs from the one-shot method in that it first partitions the
control problem of the overall system into an array of sub-
problems which are able to be solved independently. Then,
the solutions of subproblems (i.e., independent controllers) all
together constitute the decentralized controller, which makes
the entire system stable. Moreover, the implementation of the
decentralized control algorithm only uses the knowledge of
local subsystems rather than the information of the overall
system.

The past decades have witnessed many techniques or meth-
ods applied to derive the decentralized control, such as the
backstepping method [5], the optimal control approach [6],
and the fuzzy technique [7]. In this article, we will develop the
decentralized control strategy from an optimal control perspec-
tive. The early study applying the optimal control theory to
design decentralized controllers for nonlinear-interconnected
systems could be tracked to Saberi’s work [8]. It was proved
in [8] that the decentralized controller for the overall system
could be derived through solving a set of optimal control prob-
lems of independent nonlinear subsystems. Nevertheless, the
bottleneck of solving nonlinear optimal control problems is
that one often needs to solve the Hamilton—Jacobi—Bellman
equations (HJBEs), which generally do not exist in the closed-
form solutions. To overcome the bottleneck, adaptive dynamic
programming (ADP) [9] and reinforcement learning (RL) [10]
were introduced, which aimed at obtaining the numerical
solutions of HIBEs. The two names, namely, ADP and RL,
are often interchangeable because they have nearly the same
characteristics when applied to solve the optimal control prob-
lems. In the past decades, ADP and RL have been widely
exploited. Various approaches were reported in this field,
such as goal representation ADP [11]; local value iteration
ADP [12]; policy iteration ADP [13], [14]; robust ADP [15];
online RL [16], [17]; off-policy RL [18], [19]; and integral
RL [20], [21].

Though plenty of ADP and RL methods have been success-
fully applied to obtain numerical solutions of HIBEs, most of
them are implemented in the time-triggering mechanism (i.e.,
the controllers are updated periodically). As stated in [22], the
time-triggering mechanism generally had a low efficiency in
using restricted resources, such as the computation bandwidths

2168-2267 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 14,2021 at 19:58:15 UTC from IEEE Xplore. Restrictions apply.



636

and the electric power. To address this problem, the event-
triggered control (ETC) approaches were proposed [23], [24].
A typical feature of many existing ETC methods is that
they update the controllers aperiodically. Due to this prop-
erty, the ETC approaches can save the aforementioned limited
resources. Thus, the ETC methods are widely used in real
applications, such as islanded microgrids [25] and offshore
platforms [26]. In recent years, many event-triggered ADP and
RL approaches have been suggested to design adaptive con-
trollers for nonlinear systems. In [27], an RL-based optimal
ETC scheme was proposed for continuous-time nonlinear
systems. After that, in [28], an ADP-based optimal ETC strat-
egy was developed for partially unknown constrained-input
nonlinear systems. Both [27] and [28] employed an actor—
critic structure to implement the optimal ETC algorithms. To
simplify the actor—critic structure, a single critic network was
presented in [29] to obtain the robust ETC of uncertain non-
linear systems. Different from the work of [29], the robust
ETC of continuous-time nonlinear systems was derived in [30]
by using the Hy control theory and the concurrent learn-
ing technique together. Later, by using a similar structure
as [29] and [30], an ADP-based robust optimal ETC strategy
was suggested in [31] for unknown constrained-input nonlinear
systems. Recently, in [32], an RL-based distributed approxi-
mate optimal ETC scheme was proposed for continuous-time
nonlinear-interconnected systems. More recently, in [33], a
decentralized ETC policy was developed for nonlinear systems
with mismatched interconnections via the combination of the
experience replay technique and adaptive critic designs. (Note:
According to [34], adaptive critic designs were the synonyms
for ADP and RL.)

However, a precondition of applying the aforementioned
ADP and RL approaches (including the time-triggered and
event-triggered ADP and RL methods) is that the equilibrium
points of the controlled systems should be zero. In engineering
applications, there exist many nonlinear dynamical systems
whose equilibrium points are nonzero. Under this circum-
stance, the aforementioned ADP and RL methods cannot be
directly utilized to derive ETC of such systems. For the sake
of using these ADP and RL methods, one often has to move
the equilibrium points to zero through coordinate transforma-
tions. Thus, one needs to acquire the equilibrium points of
the controlled systems beforehand. Nevertheless, it is chal-
lenging to obtain the equilibrium points of nonlinear systems
beforehand, especially for nonlinear-interconnected systems.
Therefore, a question to be asked: if the equilibrium points of
nonlinear-interconnected systems are nonzero, can we present
ADP and RL approaches to obtain the decentralized ETC of
such systems without requiring coordinate transformations?
This motivates this article.

In this article, a novel decentralized ETC scheme
is developed for continuous-time nonlinear systems with
matched interconnections. The present interconnected systems
differ from most of the existing interconnected plants in that
their equilibrium points are no more assumed to be zero.
Initially, a theorem is established to indicate that the decen-
tralized ETC law for the overall system consists of an array
of optimal ETC laws for nominal subsystems. Then, in order
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to obtain these optimal ETC laws, an RL-based method is
developed to solve the HIBEs arising in the discounted-cost
optimal ETC problems of nominal subsystems. The implemen-
tation of the RL-based approach only uses critic networks.
Meanwhile, the critic network weight vectors are tuned by
using the gradient descent method and the concurrent learn-
ing technique together. With the proposed weight tuning
rule, the persistence of excitation condition is relaxed and
the critic network weight vectors are uniformly ultimately
bounded. Moreover, by using the Lyapunov method, it is
proved that the obtained decentralized ETC law forces the
entire system to be stable in the sense of uniform ultimate
boundedness (UUB).

The novelties of this article are three points.

1) In comparison with [27]-[33], this article removes the
restrictive condition that the equilibrium points of non-
linear systems should be zero. Therefore, the present
decentralized ETC law is applicable for more gen-
eral nonlinear plants, especially for those nonlinear-
interconnected systems with nonzero equilibrium points.

2) Though both this article and [30] employ the concur-
rent learning technique, an important difference between
them is that, in this article, the decentralized ETC is
derived via solving an H» optimal ETC problem rather
than the Hy, optimal ETC problem. Hence, the decen-
tralized ETC method can avoid the challenge arising in
solving the Hy, optimal ETC problem. (Note: According
to [35], solving the Hy, optimal control problems must
judge the existence of saddle points beforehand, which
is a big challenge.)

3) This article extends the work of [33] to study the decen-
tralized ETC problem of nonlinear systems with matched
interconnections as well as nonzero equilibrium points.
Apart from the significant difference stated in 1), another
remarkable difference between this article and [33] lies
in that this article no longer needs to introduce the
auxiliary control, let alone to let it satisfy a restric-
tive inequality. (Note: In [33], the auxiliary control is
required to be less than the square root of the term
x;-rQ,-xi, which is often hard to be directly verified.)

It is worth emphasizing here that due to the introduction of

a discount factor into the cost function (i.e., the discounted
cost) for each nominal subsystem, the present decentralized
ETC method can remove the requirement that the equilibrium
point of interconnected systems is zero. Recently, such a dis-
counted cost has been utilized to investigate the optimal track-
ing control (including the time-triggered and event-triggered
tracking control) problems of nonlinear systems [36]—[38].
However, there are few studies on developing ETC methods
to solve regulation problems of nonlinear systems, espe-
cially, the regulation problems of nonlinear-interconnected
systems with nonzero equilibrium points. This also motivates
this article.

Notation: R denotes the set of all real numbers. R" and
R™>™Mi denote the spaces of all real n;-vectors and all n; x
m; real matrices, respectively. €2; is a compact subset of R,
T is the transpose symbol. “2” means “equal by definition.”
When x = [x1, x2, ...,)_Cnl.]T e R", its norm is defined as
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x|l = ‘/Z;’;l |x;|2. When A € R%>"™_ its norm is defined as

|A| = v/tr(AAT) with tr(AAT) denoting the trace of AAT.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. Problem Statement

We consider the continuous-time nonlinear system with
matched interconnections, which consists of N subsystems are
given by

Xi(1) = fi(xi (D) + gi(xi () (u; (1) + ;i (x(1)))
xio =x;(0),i=1,2,...,N (D)

where x; € R™ is the measurable state vector of the ith sub-
system with the initial state x;o, x = [xI,x;, . ,x;l\-,]T e R”
(n = vazl ni) is the whole state, 1; € R is the control vec-
tor of the ith subsystem, fj: R% — R%, g;: R" — RW*M,
and w;: R" — R" are the known smooth mappings, and
gi(xp)wi(x) € R™ is the interconnected term.

Assumption 1: For each i € I = {1,2,...,N}, f;(0) # O,
that is, x; = 0 is not the equilibrium point of the ith subsystem
when u;(#) = 0 and w;(x(¢)) = 0. In addition, the ith subsystem
described as in (1) is controllable.

Assumption 2: For each i € T = {1,2,...,N}, fi(x;) and
gi(x;) have the Lipschitz property on €2; and satisfy:

D Gl < K llxill + by, where Ky, > 0 is the Lipschitz

constant and by > 0 is a known constant;

2) llgi(x)|l < by, where by, > 0 is a known constant.

Remark 1: In general, the Lipschitz continuity of f;(x;)
yields that [[f;(x)| < Krllx;|l (see [28]). However, due to
fi(0) # 0 (see Assumption 1), we have to let ||fi(x)] <
Krllxill+by, in Assumption 2. Likewise, we can let g;(x;) satisfy
an inequality like [lg;(x)|l < Kg,llxill + cg; with K¢, > 0 and
¢g; > 0 be the known constants. Since x; belongs to the com-
pact set €2;, we can conclude that ||x;|| is upper bounded. Thus,
for simplifying the discussion, we let g;(x;) be bounded by a
constant, that is, ||g;(x;)|| < by, in Assumption 2. This feature
is in accordance with the assumption given in [29]-[31].

Assumption 3: For each i € I = {1,2,..., N}, the vector
function w;(x) € R” is bounded as

N
ol <Y ayPy(x) )
j=1
where a;; > 0,j=1,2,...,N, are constants and Pj(xj) € R,
j=1,2,..., N, are positive-definite functions. Furthermore,
wi(0) =0 and P;j(0) =0,i,j=1,2,...,N.
Let

Pi(x;) = max{Py;(x;), P2i(x;), ..., Pni(xi)}. 3)

Then, (2) can be further expressed as

N
loiCl <Y byPi(x), i=1,2,....N “)
j=1
with b; > a;;P;j(x))/Pj(xj), j = 1,2,..., N, being the non-
negative constants.

Remark 2: In real-world systems, there exist interconnected
nonlinear systems possessing the feature of system (1) and sat-
isfying Assumption 3. A typical example is the interconnected
systems derived from two inverted pendulums connected via a
spring (see [1]). As for more detailed analyses, one can refer
to Section VI

The goal of this article is to design an approximate
state-feedback decentralized controller for the interconnected
system (1), subject to Assumptions 1-3, such that the entire
closed-loop system is stable in the sense of UUB. Nonetheless,
it is generally difficult to directly design such a decentral-
ized controller. Inspired by the works of [8] and [39], we will
divide the decentralized stabilization problem into N optimal
control problems of nominal subsystems corresponding to the
interconnected system (1).

B. HJBE for ith Nominal Subsystem

For the ith subsystem given as in (1), the nominal system
(i.e., the ith nominal subsystem) is

Xi = fi(xi) + gi(xi)u;. ©)

Associated with (5), an infinite-horizon cost function with a
discount factor is introduced and written in the form

Vi i) = / T IR e e (©

t

where «; > 0 is the discount factor, and
_ 2 T 2
Ri(xi, ui) = niPy(x;) +x; Qixi + ||lu;l] (7

with n; > 0 being the adjustable parameter, P;(x;) being
defined as (3), Q; € R"%*" being the positive-definite matrix,
and [|u;]1> = u]u;.

Remark 3: The term e~% (=9 (¢ > ) in (6) aims at ensur-
ing the cost function V;‘ "(x;(1)) to be convergent. If there is
no ¢ %9 (ie., o; = 0), then the cost function (6) will
be divergent (or unbounded). This is due to the fact that the
equilibrium point of system (5) is nonzero (see Assumption 1).

The cost function, denoted by V;*(x;), is called the optimal
cost, that is,

min
Uje. i

Vi) = | Vi (xi) (®)

where @7 (€2;) denotes the set of all admissible control policies
defined on ;.

According to [9], Vi*(x;) can be obtained by solving the
HIBE [note: Vi(0) = 0]

i H(x;, VV*(x)),u;) =0 9
uielgfl?ﬂ,-) (-xl ,(xt) ul) ®

where H(x;, VV}(x;), ;) is the Hamiltonian for VV}(x;) (i.e.,
oV¥(x;)/0x;) and u;, and its expression is

H(x, VVE () i) = (VVE) T () + i)
— oV (x) + niP7(x;)

+ x] Qi + il (10)
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The optimal control, denoted by uf (x;), is derived as

uf (x;) = arg Inpfj?ﬂi)H(Xi’ VVF(xi), ui)

u;e
1 T *
=~ 58 (x) V'V (xi). (11)
Inserting (11) into (9), we can restate the HIBE as
T
(Vi) fitx) — Vi () + miP7(x;)
| 2
+x] Qi — H S8 V)| =0 (12)

with V¥(0) = 0.

In general, one can derive the decentralized control law
for the interconnected system (1) by solving an array of
HIJBEs given as in (12) (see [6], [40]). However, as illustrated
in [6] and [40], the proposed decentralized control laws were
implemented in the time-triggering mechanism. As stated in
Section I, the time-triggered control laws often bring about low
efficiencies in utilizing the limited resources. Meanwhile, the
computational load associated with deriving the time-triggered
control policies is heavy. To overcome the two deficiencies,
we aim at developing a decentralized ETC strategy for the
interconnected system (1).

III. DECENTRALIZED ETC STRATEGY

First, we discuss the stability of the interconnected
system (1) in an event-triggering mechanism (ETM). The ETM
shares the same spirits as [27]-[33]. In this part, we prove
that the decentralized ETC of the interconnected system (1)
can be derived by solving an array of event-triggered HIBEs
(ET-HJBEs). Then, we solve these ET-HJBEs through the
critic-only structure.

A. Decentralized Stabilization in the ETM

Let {tk},fio (note: ty < ty+1,k € N) be the sequence of
triggering instants. For the ith nominal subsystem, we denote
the sampled state at the triggering instant # (k € N) as

Xik = xi(te).

To describe the error between the sampled state X;; and the
current state x;(¢), we define an error function as follows:

eik(t) = Xip —xi(t) Vt € [ix, trr1). (13)

Remark 4: Strictly speaking, for the ith nominal subsys-
tem, the sequence of triggering instants should be denoted as
{tf{},‘{’io (note: t,i{ < tj;+1), which is in essence in the same
spirits as [17] and [41]. In order not to result in confusions
of symbols, we write the sequence {t};},fio as {t}p2,, without
mentioning the index i. Likewise, e; x(f) in (13) ought to be
expressed as e; x(1) = X — x;() Vt € [tf(, t,’;+1). Due to the
same reason mentioned above, we present the definition of
eik(t) as (13). In general, the N subsystems’ states are trig-
gered in an asynchronous way. The later simulation results
have verified this fact (see Figs. 7 and 9 in Section VI).

If an event is triggered at the time instant ¢t = #, then
the error function given in (13) satisfies e; (%) = 0. On
the other hand, if letting the state feedback control law
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be executed at the set of sampled states {X;x}7~, then we
will obtain a sequence of ETC laws, that is, {ui()"ci,k)},fio.
Apparently, the sequence {ui(fci,k)},fio consists of discrete-
time control signals u;(X; 1), u;(x;2), ..., u;(X; o). In order to
obtain a continuous-time control signal, one often resorts to
the zero-order hold technique [22]. Letting the zero-order hold
technique be applied to each control policy u;(X; ), we can
generate a continuous-time input signal as follows:

wi(Xigs 1) = ui(Xik) = wixi(1)) V1 € [fr, try1).

Based on the above described ETM, we can derive from (11)
that the optimal ETC policy for the ith nominal subsystem (5)
with the corresponding discounted cost function (6) is [note:
Vi € [tk, trt1)]

_ _ I 1. _
wi (i, 1) = uf (Xix) = —EgiT(x,-,k)VVi*(xiyk)
where v‘/;k()_cl,k) = (3Vi*(xi)/8xi)|x,-=5c,-,k-
Letting u; in (9) be replaced with u} (X, ) given as (14),
we can obtain the ET-HJBE as follows:
T
(VVF) fiG) — Vi () + niP7 () + x] Qi

1 - -
= 5 (Vv ) Taiteg] (%) YV (i)
2
=0

(14)

+ H %g?(xi,k)vv;" (%i.) (15)
with V¥(0) = 0.

Before continuing our discussion, we make an assumption
which was used in [27], [30], and [42].

Assumption 4: u}(x;) given in (11) is Lipschitz continuous
on €2;, that is, there exists a Lipschitz constant K« > 0 such
that, for every x;, X; x € €;, the following inequalitly holds:

Juf ) = i (Gi) | < K
Remark 5: Using (14), Assumption 4 implies
o o) = g (Rik) | < Kogr

where u} (x; 1) stands for p} (x; k, t). For brevity, in subsequent
discussion, we write u} (X;k, ) as ] (x; x) without mentioning
t € [tg, tit1)-

Theorem 1: Consider N nominal subsystems formulated
as (5) with the corresponding discounted cost functions
presented as (6). If Assumptions 1-4 hold, then we can find N
positive constants nf, i=1,2,...,N, such that, for each n; >
nf, the N optimal ETC laws pu}(x; 1), uf(Xi2), ..., ui(xin)
together can force the interconnected system (1) to be stable
in the sense of UUB with the following triggering condition:

P < (1= p7) Amin(Q:)
B ﬁlKl%*

xi—Xik| = Ky [lei]|-

ei

e Il 2 Jer|” A6)
where p; € (0, 1) and B; € (0, +00) are adjustable parameters,
Amin(Q;) is the minimum eigenvalue of Q;, and |le; 7| is the
triggering threshold.

Proof: See Appendix A. |

Theorem 1 shows that the decentralized ETC law for the
interconnected system (1) is able to be obtained via finding
the N optimal ETC laws pu}f (X 1), uf (Xi2), ..., uf(xin). To
this end, we solve N ET-HJBEs given as in (15).
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B. Solving ET-HJBEs via Critic-Only Structure

According to [43, Theorem. 3.1], V/(x;) in (8) can be
represented via a neural network over €2; as follows:

Vi) = Weog () + ¢, (xi) (17)

where W, € R is the ideal weight vector to be determined,
0, (i) = [0cy (X1), Oy (X7, - - -, 0. (x)]T € R is the contin-
uously differentiable vector activation function [note: for every
Xi #0, 00, (x;), 0y (X7), ..., O¢;. (x;) are linearly independent;
0,0 =0,5s =1,2,...,1], ﬁi € N is the number of neu-
rons, and & (x;) € R is the function reconstruction error. As
shown in [44], &, (x;) — O when n; — oo. In other words,
¢, (x;) can be made small via selecting sufficiently large 7;.

By using (17), we can obtain the derivative of V" (x;) at the
sampled state X; x as

VVi (k) = Vo (xix) We, + Vee, (¥ix)
where Vo, (Xix) = (30, (xi)/0x) =%, With Vo, (0) = 0,
and Ve, (Xjx) = (0&¢(x;)/0%;)|y,=5,- Thus, we can restate
wi(Xix) in (14) as [note: Vt € [ty, tig1)]

_ I 1. _ _

wi(xix) = —zgiT(Xi,k)VUCT,.(Xi,k)Wq + ez (xix) (18)

where e (Xik) = —(1/2)g;-r(5ci7k)Veci(5ci,k). Note that W,
in (18) is often unavailable. Thus, we use the estimated weight

vector W, to replace W, Specifically, we use the critic
network to approximate V;*(x;) in (8) as follows:

Vi) = Wloe, (x). (19)

Using (19), we can formulate the estimated value of ] (X;x)
as [note: Nt € [ty, try1)]
A (o 1 1. oA
i(xix) = —Eg,-T(Xi,k)VUCTi (Xik) We;- (20)
Replacing V¥(x;) and u; in (10) with aforementioned
Vi(x;) and f1;(X; ), respectively, we obtain the approximate
Hamiltonian as

A

H(xi, VVi(x), ﬁi(fci,k)) = VAVJ;@ + 0P (xi) + x] Qix;

G| @1
where
bi = Voo, () (fi(xi) + gi(xi) fli(Xi k) — eioe, (x;).

On the other hand, as pointed out by [27] and [45], u;-k (Xi k) is
actually the discretized value of 1] (x;) at the triggering instant
tx. Thus, (9) implies H(x;, VV(x;), uf(x;x)) = 0. Then, by
using (21), we can define the error arising in the approximating
Hamiltonian as

ee; = H (o, VVit). i) = H (i, V7 G i} i)

= Wi + niPHxi) +x] Qixi + || fui (%) ||2 (23)

(22)

For the purpose of making [;(X;x) — wu](X;k), we need to
force e, — 0. That is, we should keep e., small enough. To
this end, one usually tunes Wc,— to minimize the target func-
tion E; = (1 /2)el_eci. In order to make a high efficiency in

utilizing the historical state data and motivated by the works
of [46]-[48], we change the objective function E; to be

lo
1 1
E = Ee;rl_ec,. +>° Ee;secm 4)
— 5=] ——
E“i E"i.s
where e, is given in (23), s € {1,2,..., o} is the index of

the historical state x;(t5), ts € [f, tit1), lo is the number of
the historical state (note: ly > n; with n; denoting the afore-
mentioned number of neurons), and e, is the value of e, at
the historical state x;(z), that is,

ec, = e, (xi(ts)) = Wl is + niPF(xi(ty)
+ 7 () Qxiey) + | i (i) |
where
Gis = Voo, (xi(t) (fi(xi(ts)) + gi(xi(t)) [1i (X k)
— o (xi(15)).

(25)

Applying the gradient descent approach to E; [note: E; =
Ec,.+2i°:1 E.,, in (24)] and selecting the two different normal-
ization terms (1 —|—¢>ZT¢,-)’2 and (1 —i—qb;rJd)i,S)’z, we can update
the estimated weight vector Wc,- via [note: Vt € [tg, tit1)]

l
V;VC- = EC!‘ aEc,' - Ec,' 8ECi,J‘

o (reTe) e T (14 ¢l W
lo
Ec,-d’i Eci(pi,s
== Ce; — Z Ciys
(1+¢7¢)" = (1+0T¢is)

where £, > 0 is an adjustable parameter, and ¢; and ¢; ; are
defined as (22) and (25), respectively.
Denote

vi=¢i/ (1467 0) and vis = gie/ (14 0101s)-

(26)

Let the weight estimation error be W,, = W,, — Wc,-- Then,
from (26), we can obtain [note: t € [ty, ty+1)]

. lo
WC,' = _Zci WszT + Zwi’sw;!-s Wci

s=1

lo
EC,‘ lﬂi
+ ————¢u, +
L+ o] i 2

s=1

ZC,‘ I/fi,s
1+ ¢Iy¢i,s

where ey, and ey, are the residual errors formulated as [27]

e, (27)

e, = —Vel () (i) + g i (¥ix)) + cviec, (xi)
ey, = — Vel (i) (fitxity)) + gi(xi(t)) fui (X))
+ g (xi(ts)).
Remark 6: ACCS)I’diIlg to [46]-[48], the summation term
in (27) can force W, to converge to a small compact set with-

out requiring the persistence of excitation condition only if the
historical state dataset

{oe (i), - .., 0 (xi(t7), - . . o (xity)) } (o > 7i)
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V(x)

Q

=

iz
A

Sampling System

B {tk }::a (tk <l )

Approximate
Hamiltonian

s | Update Rule| i
Eq. 26) | V]

B A

Collected Historical
/n
State Data {x’ (, )}S:]

A

Zero-Order Hold

A

A
Control Law

£,(X,) ithNominal | ¥,

Eq. (20) Subsystem 1/s —>
x(
Fig. 1. Block diagram of the proposed ETC scheme for the ith nominal
subsystem.
satisfies

rank[acl. (xi(tl))’ O¢; (xi(tZ))9 <05 Og; (xi(tlo))] = fli- (28)

In this article, we also need the collected historical state dataset
to satisfy (28). Obviously, the validity of (28) can be guaran-
teed by choosing the large number of the historical state, that
is, lp. In addition, it can be seen from (26) that both the cur-
rent state data and the historical state data [see the first term
and the summation term in (26)] are utilized to make WC,. con-
verge to the ideal weight vector W,, within a small compact
set (or rather, to make the weight estimation error Wc,- con-
verge to a small compact set). Chowdhary [46] first coined
this technique called the concurrent learning. A synonym for
the concurrent learning technique was the experience replay
method [49], [50]. In this article, we call it the concurrent
learning, which is in accordance with [46].

To summarize the above analyses, we provide a block dia-
gram to illustrate the proposed ETC scheme for the ith nominal
subsystem (see Fig. 1).

IV. STABILITY ANALYSIS

We first present an augmented hybrid system comprised of
the ith closed-loop nominal subsystem and the dynamics of
W, in (27). That is, letting z; = [x[, X, WI1T, we have the
following.

1) Continuous DynamiCS' [Note: z; £ zi(1), Vt € [, te+1)1

filx) — gz (i)g] (Xik) Vol (xik) We,
0

Zi = 29)
(Vi i A)Wc = (em; en,,)
where
lo
(Vi Vi) = Vit + D VWi (30)
s=1
e en.) = Lot 3" b,
L+¢; ¢ I 1+¢ bis
2) Discrete Dynamics: (Note: t = ty41, k € N)
0
Zi(M) = zi(0) + | Xik —Oxi(t) (31)

where z;(1t) = lim_, o+ zi(t+¢) with ¢ € (0, g1 —10).
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Before studying the stabilities of (29) and (31), we impose
an assumption which was utilized in [29], [33], and [51].

Assumption 5: For every x; € ;, there exists a constant
b.:,C > 0 such that ||Vo,(x)| < bgc Meanwhile, for every
x; € 2;, there exist constants b‘,3 ; > 0 and baH > 0 such that
lews DIl < be o and [leg; || < bgH

Theorem 2: Conmder the ith nominal subsystem (5) with
associated ET-HIBE (15). Let Assumptions 1-5 be satisfied
and provide an initial admissible control for the ith nominal
subsystem (5). Meanwhile, take the ith ETC law as (20) and
update the critic network weight by using (26). Then, the ith
closed-loop nominal subsystem (5) and the weight estimation
error V~VC,. are stable in the sense of UUB if the triggering
condition is constructed as

2 _ (1= p7)Mmin(Q0)

N2 A |z ]2
(1+ 7K bll” = 2]

leix| (32)

where p; € (0, 1), yi € (0, +00), and |le; 7| is the triggering
threshold, and as long as the following inequality holds:

20 hmin(® (Vi Vi) — (L + 1/v0)%b3,

with Apin (P (Y4, ¥ 5)) being the minimum eigenvalue of
@ (Yi, Yi,s) given in (30).
Proof: See Appendix B. |
Remark 7: In (33), the term Amin(P (Y, ¥is)) is positive
under condition (28). Now, we prove this fact. Similar to the
process of [52, Lemma 2], we can derive

rank|v;(x; (1)), Yi(xi(02)), . . ., ¥i(xi(15)) ]

by >0 (33)

= rank[o, (xi(11)), 0¢, (xi(12)), . . . , 0¢; (xi (1)) ] = 7.
Let & = [Vi(x(t1)), ¥i(xi(t2)), ..., ¥i(xi(#,))]. Then, by
using the matrix theory [53, Chapter. 0.4], we have
rank Ei&‘iT = rank ;. Thus, rank S,-EZ-T = n;, that is,

lo
T ~
rank Z I/fi’sl[fl-’s =n;.

Hence, Zl" v, VWITA e R%*7i is positive definite. Note that
w,w is a positive semidefinite matrix. Therefore, we obtain
that ® (Y, Vi) € R7i > given in (30) is positive definite.
Then, Amin(® (Y4, ¥is)) > 0 holds.

V. LOWER BOUND OF THE MINIMAL INTERSAMPLE TIME

When designing the event-triggered controllers, one has
to guarantee the minimal intersample time to be positive.
Now, we prove this fact. First, we provide an assump-
tion associated with Vo (x;). The assumption was used
in [28] and [29].

Assumption 6: For every i € I = {1,2,...,N}, Vo, (x;)
satisfies the Lipschitz property on 2;. To be specific, for every
x;, x! € Q;, there exists a Lipschitz constant Ko, > 0 making
the following inequality hold:

Vo () —
Theorem 3: Consider the ith nominal subsystem (5) with
the ETC f1;(X; x) proposed as in (20). Let Assumptions 2 and 6

//

Vo, (x}) || < Ko,
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hold and let the triggering condition be given as (32). Then, the
minimal intersample time, denoted by (Afx)min (note: Aty =
tk+1 — Ik, k € N), satisfies the following inequality:

1 -
(At)min = & In(1 + Omin) > 0 (34)
4

where £; and opip are positive constants to be given in
later (38) and (44), respectively.

Proof: Under Assumption 2, the ith nominal subsystem (5)
with the ETC law [1;(X; ) yields

Il = /i) + i) |
< KglIxill + by, | i (%) | + by

Meanwhile, by using Assumptions 2 and 6, we are able to
obtain from (20) that

(35)

. 1 _
|Gl = 3b0Ka, (36)
Combining (35) with (36), we have
. 1 ™
51 < Ky llxill + zbﬁ,.KoC, Wl | %k +05. 37

According to Theorem 2, VNVC is UUB. Note that the ideal
weight W, is typlcally bounded We thus obtain that WC is
bounded (note: WL = W, —W,). Here, we write ||W | < 3A

with 8y, > 0 being the known constant. Let

£ = max{Kﬁ, ~b; Ko, 85 } (38)
Then, (37) can be further written as

Iill < £l + £ | + b (39)

According to (13), it follows that x;(f) = X;x — e;(¢) and
Xi(t) = —é; x(t). We thus derive from (39) that

el = £illew] + 28] %] + by

Note that at the triggering instant #;, it follows e; x(tx) = 0.
Then, according to the comparison lemma [54, Lemma 3.4],
we can find that the solution of (40) satisfies [note: Vt €
[k, tk+1), k € N]

(40)

(41)

”ei,k” < 2£i”)_ci,k” + by, <e£i(t—tk) _ 1)_

£
After doing some computations, we obtain from (41) that

1
Aty = tip1 — I = £—1n(1 +or), keN (42)
i
where
£i Xk — xi(t;
Pl /¥E) | P @)
2£: | %k || + bp;
with xi(tl<_+l) = lim_ o+ X;(tg+1 — ©).
Denote the minimum value of g for all k € N as
Omin = Mi . 44
Omin rkrélI{Il{Qk} 44)

According to (43) and (44), we have Qpin > 0. Then, taking
the minimum value on both sides of (42), we obtain

1

(At)min > £ In(1 + omin) > 0.

That is, (34) holds. ]

Fig. 2.  Two inverted pendulums connected via a spring.

TABLE 1
PARAMETERS USED IN THE TWO INVERTED PENDULUMS

Parameter Meaning Value
My mass of the first pendulum end 2 (kg)

Mo mass of the second pendulum end 2.5 (kg)

J1 moment of inertia (the first pendulum) 0.5 (kg)

J2 moment of inertia (the second pendulum)  0.625 (kg)
g gravitational acceleration 9.81 (m/s2)
h the pendulum height 0.5 (m)

ko spring constant 100 (N/m)
I natural length of the spring 0.5 (m)

b distance between the pendulum hinges 0.4 (m)

Remark 8: As pointed out by [22], Zeno behavior occurs
only when the minimal intersample time is zero. Theorem 3
indicates that the lower bound of the minimal intersample time
is positive. Thus, Zeno behavior is avoided under the condition
given in Theorem 3.

VI. SIMULATION STUDY

To validate the established theoretical results, we consider
the two inverted pendulums connected via a spring proposed
in [1]. The structure of the two inverted pendulums is dis-
played as Fig. 2. Meanwhile, the motion of the two inverted
pendulums can be described via a state-space mode as

. . Migh  koh®\ . koh - -
e _ o i S
X1 = x12, %12 < 7, 27, Sln(x11)+211( )
+4 kol in(r)
— — SIN(X
i an 2
Xo1 = x22
Mogh  koh?
X = ( sz :J >51n(x21) — —(_ )

uy ko h?
+— + —— sin(x12)

Jo 4 (“43)

with ) = x11 and 6, = x»; denoting the angular displace-
ments of the pendulums from vertical. The meanings and
values of the parameters used in the two inverted pendulums
are provided in Table 1.
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Let x; = [x;1, xp]" € R, i =1,2. Then, we can restate
o B
filx;) = |:Zi sin(x;1) + (_1)l+]k0h(i — b)/(ZJl)] (46)

where ; = M;gh/J; — kohz/(4Jl~), i = 1,2. As shown in
Table I, there is [ # b. Then, we can see from (46) that
fi(0) # 0, i = 1,2, which satisfy Assumption 1. Therefore,
the equilibrium point of system (45) is nonzero. Note that
I sin(x;1)]| < |lxi1]| for x;; € R, i = 1,2. Then, it can be
found that f;(x;), i = 1, 2, given in (46) satisfy Assumption 2.
Denoting g;(x;) = [0, 1/J;], i 1,2, we can find that
lgitxll < 1/Ji, i = 1,2, which satisfy Assumption 2. Let
w1 (x) = (koh? /4) sin(x21). Then, according to Table I, we have
lor()|| < 6.25|x21] < 6.25]|x2]|. Likewise, letting wy(x) =
(koh?/4) sin(x12), we obtain [|ws(x)|| < 6.25|x12] < 6.25]|x1].
Thus, to satisfy the inequality (4) (or rather, Assumption 3),
we can select Py(x1) = ||x1|, P2(x2) = ||x2]|, and design the
corresponding parameters as follows: bj; = 0, bjp = 6.25,
by1 = 6.25, and by> = 0. In addition, the initial state vector
of interconnected system (45) is xo = [0.5, —0.5, 1, —1]T.

By using (5), we are able to obtain the nominal subsystems 1
and 2 for the interconnected system (45). According to (6), we
can separately present the discounted cost function for nominal
subsystems 1 and 2 as

o0
Vit = / e (i | + 2] Quxt + 1) de
t
u _ © —an(t—1) 2 T 2
Vy7 (x2) —/ e (nzllmll +X2Q2X2+u2)dr.
t

To make the matrix A in (56) positive definite, we choose
n1 = 40 and n, = 40. At the same time, we let oy = 0.85,
ar = 6.9, and Q1 = Q> = 2.851, with I denoting the 2 x 2
identity matrix. As indicated in Theorem 1, we need to solve
the ET-HJBEs related to nominal subsystems 1 and 2 [such
as (15)] for obtaining the decentralized ETC of system (45). To
this end, we use the critic network (19) to approximately solve
the two ET-HJBEs. The vector activation functions o, (x;),
i = 1,2, are, respectively, given in the form (note: ny = 3
and 71, = 3):

2 2 T
Oc (x1) = [xn,mmz,xlz]

2 > 17
Oc, (X2) = [le,lexzz,xzz] .

The weight parameters associated with Oy (xl) and O, (x2)
are denoted as WL1 (Weyys Wepps Weps]T and W,
[WQ], Wm, Wm] , respectively. The parameters used in (26)
and (32) are designed as follows: £., = 0.8, p; = 0.3, y; =3,
and K, = 4.5, where i =1, 2.

Remark 9: Generally, there is no direct method to verify
Assumption 4. To make Assumption 4 hold, a promising
method is to select sufficiently large Lipschitz constant K, x.
However, choosing large K, will make the triggering thresh-
old |le; 7|l in (16) very small. Therefore, there is a dilemma to
select the Lipschitz constant K,+. In this example, we deter-
mine K, * via computer simulations. We find that selecting
Ky =4. 5 can lead to satisfactory results.

Fig.
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Fig. 4. Performance of the weight vector WQ = [Wt‘zl , Wsz* WCB]T.

Fig.

3

30
Time (sec)

40

50 60

5. ETC uj(xy ) for the nominal subsystem 1.

The experimental study is performed by using the MATLAB
(R2017a) software package. Meanwhile, the computer simu-
lation results are displayed in Figs. 3—11. Figs. 3 and 4 show
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Fig. 6. ETC uy(xp y) for the nominal subsystem 2.
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Fig. 7. Norm of the state error function ej ; (i.e.,
triggering threshold |[ley ||

lley k]l and the event-

the performance of weight vectors W, and W,, used in the
critic networks, which aim at approximating the discounted
cost functions associated with nominal subsystems 1 and 2.
It can be observed from Figs. 3 and 4 that WC] converges
to Wflnal = [0.6021,0.0372, 0.1267]" after the first 40 s, and
W, converges to Windl = [6.5213,1.743,2.4099]" afier the
first 50 s. Figs. 5 and 6 illustrate the ETC uj(x; ) for the
nominal subsystem 1 and the ETC uy(x2 %) for the nominal
subsystem 2, respectively. Fig. 7 displays the norm of the
state error function e ; (i.e., |e1 «||) and the event-triggering
threshold ||e;.r|| when considering the nominal subsystem 1.
Meanwhile, Fig. 8 indicates the intersampling time Af; (note:
Aty = tr41 — tr). It should be noted here that, as shown in
Fig. 7, the event is no longer triggered after the first 45 s
[note: when |lej k|| lle1,7ll, the triggering condition (32)
is not violated]. Thus, after 45 s, there is no intersampling
time. Hence, in Fig. 8, we only present the intersampling time
during the first 45 s. Likewise, when considering the nom-
inal subsystem 2, we use Fig. 9 to depict the norm of the

18 27
Time (sec)

Fig. 8. Intersampling time At (note: Aty =ty — tg).

0.8 T

0.7

0.6 [}

0.5 Ml
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Fig. 9. Norm of the state error function e ; (i.e.,
triggering threshold |[lex ||

llex ]l and the event-
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Fig. 10. Intersampling time Ar}.

state error function ey x (i.e., ||e2«||) and the event-triggering
threshold ||ez,7||. At the same time, we present Fig. 10 to illus-
trate the intersampling time Az, (note: Aty is defined similar
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Fig. 11.  Whole state vector x(f) = [x11(t), x12(1), x21 (t),xzz(t)]T.

to Atg). It should also be mentioned here that, as displayed
in Fig. 9, the event is no longer triggered after the first 48 s.
Therefore, in Fig. 10, we only need to present the intersam-
pling time during the first 48 s. Observing Figs. 8 and 10, we
have that min{Az, Az;} = 0.1 s. Accordingly, we can keep
the Zeno behavior from happening. Furthermore, from Fig. 8
(or Fig. 10), we can see that there are 53 (or 135) state sam-
ples. This indicates that only 53 (or 135) state samples are
utilized to implement the present ETC strategy. While imple-
menting the related time-triggered control scheme, we have
to use 1200 (or 1400) state samples. Therefore, the controller
updates can be reduced up to 95.58% (or 90.36%). In this
sense, the proposed ETC strategy significantly decreases the
computational burden. On the other hand, inserting the con-
verged weight vectors Wg“al and Wgnal into (20), we can obtain
the approximate optimal ETC policies for nominal subsys-
tems 1 and 2, respectively. Then, according to Theorem 1, we
derive the decentralized ETC of the interconnected system (45)
by putting these obtained approximate optimal ETC policies
together. Under the derived decentralized ETC, the closed-loop
interconnected system (45) turns out to be stable in the sense
of UUB (see Fig. 11).

VII. CONCLUSION

We have developed a novel RL-based decentralized ETC
scheme for continuous-time nonlinear systems subject to
matched interconnections. The present decentralized ETC
scheme not only can be implemented without the persis-
tence of excitation condition but also can be directly applied
to those nonlinear-interconnected systems without zero equi-
librium points. The interconnected terms are required to
satisfy the matched condition when designing the decentral-
ized event-triggered controller. Indeed, this is a restrictive
condition. In engineering applications, the knowledge of the
interconnected terms of large-scale nonlinear systems is often
unavailable, which results in the difficulty in judging whether
the interconnected terms satisfy the matched condition or
not. Hence, how to extend the present control approach to
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solve decentralized ETC problems of nonlinear systems with
unknown interconnections is our consecutive work.

On the other hand, when proposing the decentralized
ETC scheme, one often has the problem with data conges-
tions, which is a challenge. Recently, Ding et al. [55], [56]
presented an effective approach based on the actor—critic
structure to design a neural-network-based output-feedback
controller for stochastic nonlinear systems subject to data con-
gestions. Hence, how to develop an RL-based decentralized
ETC strategy for stochastic nonlinear-interconnected systems
with data congestions is also a topic in our future work. More
recently, the distributed control method was introduced to han-
dle control problems of industrial cyber-physical systems [57].
Thus, whether the present control method can be extended to
tackle decentralized ETC problems of industrial cyber-physical
systems is another topic in our future study.

APPENDIX A
PROOF OF THEOREM 1

We take the Lyapunov function candidate in the form

N
L) =) Vi) (47)
i=1

where V¥(x;),i=1,2,..., N are defined as (8). According to
expressions (6) and (7), we can deduct from (8) that, for each
iel={1,2,...,N}, Vi(x;)) > 0,VYx; #0 and V/(x;) =0 &
x; = 0. Thus, Vl-*(x,-), i=1,2,...,N, satisfy the definition of
positive-definite functions. Then, we can conclude that £(x)
in (47) is a positive-definite function.

Differentiating £(x) with respect to ¢ (i.e., dL(x(¢))/dr) and
using the N state trajectories ¥; = f;(x;) + gi(x)(u] Xix) +
wi(x),i=1,2,..., N, we have

N
£ = Y[ (VVie) (i) + it (x)
i=1
+ (VV (xi))Tgi(xi) (17 (Xik) — uf (x)
+ (VY ) gt ). (48)
On the other hand, we can derive from (10) and (11) that

(V7)) (i) + gituy)

= a; Vi (x;) — niP?(xi) — x] Qixi — ||uf (x7) U2 (49)
(VVr o) i) = —2(ur ()
Inserting (49) into (48), we have
. N 2
Loy =1 —niPi(x) — x] Qxi — [uf (x|
i=1
—2(u;"(x,-))-r(,u;k (Xik) — ui (x))
~2(f () ") +er Vi) . (50)

[ S —
2
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Note that 2¢7d < &7¢/Bi+Bid"d (note: B; > 0 is an adjustable
constant) holds for arbitrary vectors ¢ and d with appropriate
dimensions. By using Remark 5, we shall find that 7 in (50)
satisfies

w1 < ke |8+ Bl ik (Rix) — wi e ||

< lus |/ + Bk ei. 1)

Applying Cauchy’s inequality ¢'d < ||&||||d| (note: & and d
are vectors with appropriate dimensions) to mp in (50) and
using (4), we have

N
my < 2[uf ) |l | < 2[uf G| Y byPitx).  (52)
j=1
By using inequalities (51) and (52) as well as the fact that
Amin (@) 1Xi]|?> < xT Qix;, we can obtain from (50) that

‘C(x) =- i(ﬂ?kmin(Qi)”xi“z - Ti(V;k, uT(xi)))
i=1
- i((l - /01'2>)\min(Qi)||)Ci||2 — ,3,'[(’3;k ||ei,k||2>

1

niPF () + |} () Hz

’P|12

I
-

N
=2 [ui ) | Y biPi()

J=1

(53)

where

i(VE, uf () = 0 Vi) + Nl ()lI?/ Bi. (54)

Noticing that u](x;) is an admissible control policy, that is,
ui (x;) € 2/(2;), we can obtain that for every x; € Q;, uf (x;)
and V7 (x;) are bounded [58]. Thus, Y;(V, u (x;)) is bounded.
We denote || Y;(VF, uf (x)|| < epm, with €y, > O being the
constant. Meanwhile, we let

N = diag{ny, m, ..., 0y}
1= diag{ly, 12, ..., 1y} (1;=1, i€l
y@) = [=P1(x1), —P2(x2). ..., —Pn(xn)
[0, uz e, .-, u}t,(xN)H]T.

Then, by using (16), we can see that (53) yields

N
£ = = Y (PPAmn @)1 = e ) = YT @A) (59)

i=1

where A is given in the form

I bii b bin
A=|" B laaB= : (56)
“|B 1 - ’
bn1  bno bnn
It can be seen from (56) that 3 (i.e., diag{ni, n2, e nn}) lies

along the principal diagonal of the block matrix A € R2VX2N
Accordingly, A can be made positive definite by choosing
appropriate n;, i = 1,2, ..., N. In other words, we can find

N positive constants nf, i = 1,2,..., N, such that n; >
makes —yT(x)Ay(x) < 0 valid. Then, (55) further yields

N
£0) = =Y (PPrun(@)I6I2 = €n).  (5T)

i=1

Thus, (57) implies E'(x) < O only if, for every i € I =
{1,2,..., N}, the subsystem state x; is out of the set

1
Dy, = {xi: [[x:]] < ; EM,»/)Lmin(Qi)}~

According to the Lyapunov extension theorem [59], this proves
that the state of the interconnected system (1) is uniformly ulti-
mately bounded. Specifically, with the N optimal ETC laws
wi i), i (Xi2), ..., i (Xin) together, the UUB stability of
the interconnected system (1) is guaranteed. Moreover, for

each i € I, the ultimate bound of x; is /€y, /Amin(Qi)/pi.
This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

We take the Lyapunov function candidate in the form

Li(t) = Vi (%ix) + Vi) + /DWW, . (58)
S—— ———

Ly (n) L1 (1)

As aforementioned, the ith closed-loop augmented system con-
sists of two parts: 1) continuous dynamical system (29) and
2) discrete dynamical system (31). Thus, the stability of the ith
closed-loop augmented system will be studied from following
two situations.

Situation 1: Events are not triggered, that is, ¢ €
[t, tk41), k € N. Then, we have dV/(x;;)/df = 0. Taking
the time derivative of L1 (¢) in (58) and using the solution of
the differential equation X; = fi(x;) + gi(x;) i (X x), we have

L) = (V)T () + gt i)
= (V) (i) + gl (x)
+ (VD) i) (i (Fer) — w ). (59)
On the other hand, according to (11) and (12), it follows that:

(VVE () Tfix) = Vi () — miP?(xi)

1O + [|ur )| (60)
(Vv () i) = —2(uf ()
Inserting (60) into (59), we have
Lit() = a; Vi (xi) — niP}(x) — x] Qixi
— )|+ [ — iz |2 6D

¢
Note that the following inequality holds:

~12 ~112
le+d|" < a+1mner +a+ ||

with y; > 0, i = 1,2,..., N, being the constants, ¢ and d
being the vectors with suitable dimensions. Then, by using
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Assumptions 2, 4, and 5 as well as (18) and (20), we can
derive from ¢ € R in (61) that

¢ = 1) — (%)) + (7 (i) — 2 () |
< (4 1/ | uf (Fik) — Ri(En) |
(4 v | o) — (i) |
1 . 2
< (L 1/y) | =587 (5) Vi, (T Wey + ey (i)
+(1+ ) K
14+ 1/y;)2 .
< #bz al* 482 (v
+(1+ y,')KLf? (62)

Noting that n;P?(x;) > 0 and ||;(X;x)[|*> > 0 and using (62),
we can derive from (61) that

Lit() < — x] Qixi + iV () + bﬁw A+ ) /v

+(1+ n)Ki;F

(1+1/y)?
R

According to the definition of Y;(V, uf(x;)) in (54), it fol-
lows [le;ViO)ll < 12V uf ()l < epn;. In addition,

Amin(Q; )||x,||2 < x] Qix;. Thus, we further develop (63) as

B2 | (63

: 2
Lit@ = = dmin(@0) Ilsill® + (1 + v K e

(L+1/y)?

+ T

where h; = ey, + b2 L+ )% v

Differentiating le(t) in (58) with respect to ¢ and utiliz-
ing (27), we obtain

BB |We|* + i (64)

L) =— Ec,-W;ECD(%, Vis)We,

ECiW;—-l//ié‘Hi + i ZC; ~TWis EH;
1+¢ ¢ 1+ ¢ dis

with ® (v, ¥; ) being defined as (30).

Applying the inequality &'d < &7¢/2 4+ d"d/2 (note: ¢ and
d are vectors with suitable dimensions) to the second term
in (65) and noting that 1/(1 + ¢;r¢i) < 1, we have

(65)

s=1

L. Whipie ¢ 1
ci C,TP, H; < Ci < c,wllﬂ Wc, + 28H SH,)

L+¢lgr — 1+¢T¢i\2
14 14
< Wi We + St eqen. (66)
Similarly, we obtain
lo 1T lo
eci WC.I//i s€H; ¢ Ec- ~ T T ~
Z# < ST lefislﬂ' |
T ci SYiLs i
s=1 1+ ¢iaS¢i’S 2 s=1
lo
L.
+ 70 > el i, (67)
s=1
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Combining (66) with (67) and using Assumption 5, we have

Lo WJ; Vi, n i Le V~VcTi Vi s€H;
L+ ol = 1+¢] dis
Ceo+ 1)
2 (Tﬂu Wl v) CTbgHi-
Thus, we can obtain from (65) that
. Le;
Lip(1) = — 2 mm( (Wh 1/’1 s))HWL, H
Le(lo+1) 5
+ CTbSH, (68)

Using (64) and (68), the derivative of L;(¢) in (58) satisfies

Ly = =pPmin(@) 15112 = (1= o7 )Amin(Q0) 111

14 ,'(l() + 1)
+ (U yDKG el + By + ==2——02,
1
- Z <2eci)\min (QD (lﬂi, 1ﬂi,s))
~ 2
— L+ 1202 )| W, (69)

with /; being given as in (64).

Therefore, if letting (32) and (33) be valid, then (69) implies
Li(r) < 0 provided that we are able to make x; ¢ Q,, or
VVC[. ¢ QWC[_ with €, and QW(‘,-’ respectively, defined as

Ec, (10 + 1)b + Q’hi
Qxi = Sl = — . .
i 2)\mm(Qz)
o Ceilo + 1B, +2h;
Q ~ = W W <
We; “ ” “ ” - Ec,-)xmin( (Wh Wz Y)) - _

where @; = by by (14 1/y:)*.

This verlﬁes that the UUB stability of the ith subsystem state
x; and the weight estimation error W,, based on the Lyapunov
extension theorem [59]. In addition, the ultimate bound of x;
(or WC) is the same as the bound of 2, (or QW ).

Situation II: Events are triggered, that is, t = tk, k € N. In
this situation, we take the difference of the Lyapunov function
candidate described as in (58) into account, that is,

AL (ty) = Vi (Xig1) — Vi (Tix) + ATL (70)
where
AT = Vi (xi())) — V{k(xl'(tk))
T We (i)~ 5 W0 W (7D

2

where x,-(t,:r) = limc_o+x(%x + ¢) and VVC,.(t,':) =
limg o+ W, (t + ¢) with ¢ € (0, fr1 — t).

As proved in Situation 1, if either x; ¢ Q,, or W ¢ Qy
holds, then we have Ll(t) < O for all ¢+ € [tk, tk+1)
Specifically, for all t € [#, tx+1), it follows I>(1) < 0 [note:
Lr(t) = L11(¢) + L12(¢) with Lj1(¢) and Li2(¢) being defined
as (58)]. This indicates that L(¢) is strictly monotonically
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decreasing over the interval [#, fx+1). Noting that #; <t + ¢
for all ¢ € (0, ty+1 — %), we thus have

Ly(t) > Lotk +¢) Vg € (0, frp1 — 1). (72)

Taking the right limit with respect to ¢ on both sides
of (72) (i.e., ¢ — 0T) and according to the property of the
limit [60, Ch. 4], we have

Ly(n) = lim Ly(te + <) = La(r). (73)
c—0t

From (73), we obtain
* l = T o1
Vi (i) + EWCI' () We, (tr)

1 8
= Vi (i) + 5 W (6 We, (1)-

Hence, ATI; defined as (71) satisfies AIl; < 0. On the other
hand, since x;(¢) is UUB in Situation I, we can conclude

Vi (Xigs1) < Vi(Xik).
Thus, if x; ¢ ,, or Wc,- ¢ QVVC. holds, then AL;(#;) in (70)

satisfies ALq(t;) < 0. This demonstrates that x; and Wcl. are
uniformly ultimately bounded through the Lyapunov extension
theorem [59]. In addition, the ultimate bound of x; (or V~Vcl.) is
the same as the bound of €2, (or QWC_). This completes the
proof. [
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