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Decentralized Event-Triggered Control for a Class
of Nonlinear-Interconnected Systems Using
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Abstract—In this article, we propose a novel decentralized
event-triggered control (ETC) scheme for a class of continuous-
time nonlinear systems with matched interconnections. The
present interconnected systems differ from most of the exist-
ing interconnected plants in that their equilibrium points are
no longer assumed to be zero. Initially, we establish a theo-
rem to indicate that the decentralized ETC law for the overall
system can be represented by an array of optimal ETC laws
for nominal subsystems. Then, to obtain these optimal ETC
laws, we develop a reinforcement learning (RL)-based method
to solve the Hamilton–Jacobi–Bellman equations arising in the
discounted-cost optimal ETC problems of the nominal subsys-
tems. Meanwhile, we only use critic networks to implement the
RL-based approach and tune the critic network weight vectors
by using the gradient descent method and the concurrent learn-
ing technique together. With the proposed weight vectors tuning
rule, we are able to not only relax the persistence of the excita-
tion condition but also ensure the critic network weight vectors
to be uniformly ultimately bounded. Moreover, by utilizing the
Lyapunov method, we prove that the obtained decentralized ETC
law can force the entire system to be stable in the sense of uni-
form ultimate boundedness. Finally, we validate the proposed
decentralized ETC strategy through simulations of the nonlinear-
interconnected systems derived from two inverted pendulums
connected via a spring.

Index Terms—Adaptive dynamic programming (ADP), dis-
counted cost, event-triggered control (ETC), interconnected
systems, reinforcement learning (RL).

I. INTRODUCTION

IN THE control community, the decentralized adaptive
control of interconnected systems has been a hot topic

over the past several decades [1]–[3]. This is mainly
because interconnections have been the common character-
istics in many real-world complex systems, such as ecolog-
ical systems, transportation systems, and computer network
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systems. Generally, it is difficult to design the stabilizing
controllers for the interconnected systems using one-shot
approaches [4]. To address this issue, the decentralized con-
trol method was proposed. The decentralized control approach
differs from the one-shot method in that it first partitions the
control problem of the overall system into an array of sub-
problems which are able to be solved independently. Then,
the solutions of subproblems (i.e., independent controllers) all
together constitute the decentralized controller, which makes
the entire system stable. Moreover, the implementation of the
decentralized control algorithm only uses the knowledge of
local subsystems rather than the information of the overall
system.
The past decades have witnessed many techniques or meth-

ods applied to derive the decentralized control, such as the
backstepping method [5], the optimal control approach [6],
and the fuzzy technique [7]. In this article, we will develop the
decentralized control strategy from an optimal control perspec-
tive. The early study applying the optimal control theory to
design decentralized controllers for nonlinear-interconnected
systems could be tracked to Saberi’s work [8]. It was proved
in [8] that the decentralized controller for the overall system
could be derived through solving a set of optimal control prob-
lems of independent nonlinear subsystems. Nevertheless, the
bottleneck of solving nonlinear optimal control problems is
that one often needs to solve the Hamilton–Jacobi–Bellman
equations (HJBEs), which generally do not exist in the closed-
form solutions. To overcome the bottleneck, adaptive dynamic
programming (ADP) [9] and reinforcement learning (RL) [10]
were introduced, which aimed at obtaining the numerical
solutions of HJBEs. The two names, namely, ADP and RL,
are often interchangeable because they have nearly the same
characteristics when applied to solve the optimal control prob-
lems. In the past decades, ADP and RL have been widely
exploited. Various approaches were reported in this field,
such as goal representation ADP [11]; local value iteration
ADP [12]; policy iteration ADP [13], [14]; robust ADP [15];
online RL [16], [17]; off-policy RL [18], [19]; and integral
RL [20], [21].
Though plenty of ADP and RL methods have been success-

fully applied to obtain numerical solutions of HJBEs, most of
them are implemented in the time-triggering mechanism (i.e.,
the controllers are updated periodically). As stated in [22], the
time-triggering mechanism generally had a low efficiency in
using restricted resources, such as the computation bandwidths
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and the electric power. To address this problem, the event-
triggered control (ETC) approaches were proposed [23], [24].
A typical feature of many existing ETC methods is that
they update the controllers aperiodically. Due to this prop-
erty, the ETC approaches can save the aforementioned limited
resources. Thus, the ETC methods are widely used in real
applications, such as islanded microgrids [25] and offshore
platforms [26]. In recent years, many event-triggered ADP and
RL approaches have been suggested to design adaptive con-
trollers for nonlinear systems. In [27], an RL-based optimal
ETC scheme was proposed for continuous-time nonlinear
systems. After that, in [28], an ADP-based optimal ETC strat-
egy was developed for partially unknown constrained-input
nonlinear systems. Both [27] and [28] employed an actor–
critic structure to implement the optimal ETC algorithms. To
simplify the actor–critic structure, a single critic network was
presented in [29] to obtain the robust ETC of uncertain non-
linear systems. Different from the work of [29], the robust
ETC of continuous-time nonlinear systems was derived in [30]
by using the H∞ control theory and the concurrent learn-
ing technique together. Later, by using a similar structure
as [29] and [30], an ADP-based robust optimal ETC strategy
was suggested in [31] for unknown constrained-input nonlinear
systems. Recently, in [32], an RL-based distributed approxi-
mate optimal ETC scheme was proposed for continuous-time
nonlinear-interconnected systems. More recently, in [33], a
decentralized ETC policy was developed for nonlinear systems
with mismatched interconnections via the combination of the
experience replay technique and adaptive critic designs. (Note:
According to [34], adaptive critic designs were the synonyms
for ADP and RL.)
However, a precondition of applying the aforementioned

ADP and RL approaches (including the time-triggered and
event-triggered ADP and RL methods) is that the equilibrium
points of the controlled systems should be zero. In engineering
applications, there exist many nonlinear dynamical systems
whose equilibrium points are nonzero. Under this circum-
stance, the aforementioned ADP and RL methods cannot be
directly utilized to derive ETC of such systems. For the sake
of using these ADP and RL methods, one often has to move
the equilibrium points to zero through coordinate transforma-
tions. Thus, one needs to acquire the equilibrium points of
the controlled systems beforehand. Nevertheless, it is chal-
lenging to obtain the equilibrium points of nonlinear systems
beforehand, especially for nonlinear-interconnected systems.
Therefore, a question to be asked: if the equilibrium points of
nonlinear-interconnected systems are nonzero, can we present
ADP and RL approaches to obtain the decentralized ETC of
such systems without requiring coordinate transformations?
This motivates this article.
In this article, a novel decentralized ETC scheme

is developed for continuous-time nonlinear systems with
matched interconnections. The present interconnected systems
differ from most of the existing interconnected plants in that
their equilibrium points are no more assumed to be zero.
Initially, a theorem is established to indicate that the decen-
tralized ETC law for the overall system consists of an array
of optimal ETC laws for nominal subsystems. Then, in order

to obtain these optimal ETC laws, an RL-based method is
developed to solve the HJBEs arising in the discounted-cost
optimal ETC problems of nominal subsystems. The implemen-
tation of the RL-based approach only uses critic networks.
Meanwhile, the critic network weight vectors are tuned by
using the gradient descent method and the concurrent learn-
ing technique together. With the proposed weight tuning
rule, the persistence of excitation condition is relaxed and
the critic network weight vectors are uniformly ultimately
bounded. Moreover, by using the Lyapunov method, it is
proved that the obtained decentralized ETC law forces the
entire system to be stable in the sense of uniform ultimate
boundedness (UUB).
The novelties of this article are three points.
1) In comparison with [27]–[33], this article removes the

restrictive condition that the equilibrium points of non-
linear systems should be zero. Therefore, the present
decentralized ETC law is applicable for more gen-
eral nonlinear plants, especially for those nonlinear-
interconnected systems with nonzero equilibrium points.

2) Though both this article and [30] employ the concur-
rent learning technique, an important difference between
them is that, in this article, the decentralized ETC is
derived via solving an H2 optimal ETC problem rather
than the H∞ optimal ETC problem. Hence, the decen-
tralized ETC method can avoid the challenge arising in
solving the H∞ optimal ETC problem. (Note: According
to [35], solving the H∞ optimal control problems must
judge the existence of saddle points beforehand, which
is a big challenge.)

3) This article extends the work of [33] to study the decen-
tralized ETC problem of nonlinear systems with matched
interconnections as well as nonzero equilibrium points.
Apart from the significant difference stated in 1), another
remarkable difference between this article and [33] lies
in that this article no longer needs to introduce the
auxiliary control, let alone to let it satisfy a restric-
tive inequality. (Note: In [33], the auxiliary control is
required to be less than the square root of the term
xTi Qixi, which is often hard to be directly verified.)

It is worth emphasizing here that due to the introduction of
a discount factor into the cost function (i.e., the discounted
cost) for each nominal subsystem, the present decentralized
ETC method can remove the requirement that the equilibrium
point of interconnected systems is zero. Recently, such a dis-
counted cost has been utilized to investigate the optimal track-
ing control (including the time-triggered and event-triggered
tracking control) problems of nonlinear systems [36]–[38].
However, there are few studies on developing ETC methods
to solve regulation problems of nonlinear systems, espe-
cially, the regulation problems of nonlinear-interconnected
systems with nonzero equilibrium points. This also motivates
this article.
Notation: R denotes the set of all real numbers. Rni and

Rni×mi denote the spaces of all real ni-vectors and all ni ×
mi real matrices, respectively. !i is a compact subset of Rni .
T is the transpose symbol. “!” means “equal by definition.”
When x̄ = [x̄1, x̄2, . . . , x̄ni ]

T ∈ Rni , its norm is defined as

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 14,2021 at 19:58:15 UTC from IEEE Xplore.  Restrictions apply. 



YANG AND HE : DECENTRALIZED ETC FOR CLASS OF NONLINEAR-INTERCONNECTED SYSTEMS USING RL 637

‖x̄‖ =
√∑ni

i=1 |x̄i|2. When A ∈ Rni×mi , its norm is defined as

‖A| =
√
tr(AAT) with tr(AAT) denoting the trace of AAT.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Problem Statement

We consider the continuous-time nonlinear system with
matched interconnections, which consists of N subsystems are
given by

ẋi(t) = fi(xi(t))+ gi(xi(t))(ui(t)+ ωi(x(t)))

xi0 = xi(0), i = 1, 2, . . . ,N (1)

where xi ∈ Rni is the measurable state vector of the ith sub-
system with the initial state xi0, x = [xT1 , x

T
2 , . . . , x

T
N]

T ∈ Rn
(
n = ∑N

i=1 ni
)
is the whole state, ui ∈ Rmi is the control vec-

tor of the ith subsystem, fi : Rni → Rni , gi : Rni → Rni×mi ,
and ωi : Rn → Rmi are the known smooth mappings, and
gi(xi)ωi(x) ∈ Rni is the interconnected term.

Assumption 1: For each i ∈ I = {1, 2, . . . ,N}, fi(0) '= 0,
that is, xi = 0 is not the equilibrium point of the ith subsystem
when ui(t) = 0 and ωi(x(t)) = 0. In addition, the ith subsystem
described as in (1) is controllable.
Assumption 2: For each i ∈ I = {1, 2, . . . ,N}, fi(xi) and

gi(xi) have the Lipschitz property on !i and satisfy:
1) ‖fi(xi)‖ ≤ Kfi‖xi‖ + bfi , where Kfi > 0 is the Lipschitz

constant and bfi > 0 is a known constant;
2) ‖gi(xi)‖ ≤ bgi , where bgi > 0 is a known constant.
Remark 1: In general, the Lipschitz continuity of fi(xi)

yields that ‖fi(xi)‖ ≤ Kf ‖xi‖ (see [28]). However, due to
fi(0) '= 0 (see Assumption 1), we have to let ‖fi(xi)‖ ≤
Kf ‖xi‖+bfi in Assumption 2. Likewise, we can let gi(xi) satisfy
an inequality like ‖gi(xi)‖ ≤ Kgi‖xi‖ + cgi with Kgi > 0 and
cgi > 0 be the known constants. Since xi belongs to the com-
pact set !i, we can conclude that ‖xi‖ is upper bounded. Thus,
for simplifying the discussion, we let gi(xi) be bounded by a
constant, that is, ‖gi(xi)‖ ≤ bgi in Assumption 2. This feature
is in accordance with the assumption given in [29]–[31].
Assumption 3: For each i ∈ I = {1, 2, . . . ,N}, the vector

function ωi(x) ∈ Rmi is bounded as

‖ωi(x)‖ ≤
N∑

j=1

aijPij
(
xj

)
(2)

where aij ≥ 0, j = 1, 2, . . . ,N, are constants and Pij(xj) ∈ R,
j = 1, 2, . . . ,N, are positive-definite functions. Furthermore,
ωi(0) = 0 and Pij(0) = 0, i, j = 1, 2, . . . ,N.

Let

Pi(xi) = max{P1i(xi),P2i(xi), . . . ,PNi(xi)}. (3)

Then, (2) can be further expressed as

‖ωi(x)‖ ≤
N∑

j=1

bijPj
(
xj

)
, i = 1, 2, . . . ,N (4)

with bij ≥ aijPij(xj)/Pj(xj), j = 1, 2, . . . ,N, being the non-
negative constants.

Remark 2: In real-world systems, there exist interconnected
nonlinear systems possessing the feature of system (1) and sat-
isfying Assumption 3. A typical example is the interconnected
systems derived from two inverted pendulums connected via a
spring (see [1]). As for more detailed analyses, one can refer
to Section VI.
The goal of this article is to design an approximate

state-feedback decentralized controller for the interconnected
system (1), subject to Assumptions 1–3, such that the entire
closed-loop system is stable in the sense of UUB. Nonetheless,
it is generally difficult to directly design such a decentral-
ized controller. Inspired by the works of [8] and [39], we will
divide the decentralized stabilization problem into N optimal
control problems of nominal subsystems corresponding to the
interconnected system (1).

B. HJBE for ith Nominal Subsystem

For the ith subsystem given as in (1), the nominal system
(i.e., the ith nominal subsystem) is

ẋi = fi(xi)+ gi(xi)ui. (5)

Associated with (5), an infinite-horizon cost function with a
discount factor is introduced and written in the form

Vui
i (xi(t)) =

∫ ∞

t
e−αi(τ−t)Ri(xi(τ ), ui(τ ))dτ (6)

where αi > 0 is the discount factor, and

Ri(xi, ui) = ηiP2
i (xi)+ xTi Qixi + ‖ui‖2 (7)

with ηi > 0 being the adjustable parameter, Pi(xi) being
defined as (3), Qi ∈ Rni×ni being the positive-definite matrix,
and ‖ui‖2 = uTi ui.

Remark 3: The term e−αi(τ−t) (τ ≥ t) in (6) aims at ensur-
ing the cost function Vui

i (xi(t)) to be convergent. If there is
no e−αi(τ−t) (i.e., αi = 0), then the cost function (6) will
be divergent (or unbounded). This is due to the fact that the
equilibrium point of system (5) is nonzero (see Assumption 1).
The cost function, denoted by V∗

i (xi), is called the optimal
cost, that is,

V∗
i (xi) = min

ui∈A (!i)
Vui
i (xi) (8)

where A (!i) denotes the set of all admissible control policies
defined on !i.
According to [9], V∗

i (xi) can be obtained by solving the
HJBE [note: V∗

i (0) = 0]

min
ui∈A (!i)

H
(
xi,∇V∗

i (xi), ui
)
= 0 (9)

where H(xi,∇V∗
i (xi), ui) is the Hamiltonian for ∇V∗

i (xi) (i.e.,
∂V∗

i (xi)/∂xi) and ui, and its expression is

H
(
xi,∇V∗

i (xi), ui
)
=

(
∇V∗

i (xi)
)T
(fi(xi)+ gi(xi)ui)

− αiV∗
i (xi)+ ηiP2

i (xi)

+ xTi Qixi + ‖ui‖2. (10)
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The optimal control, denoted by u∗
i (xi), is derived as

u∗
i (xi) = arg min

ui∈A (!i)
H

(
xi,∇V∗

i (xi), ui
)

= − 1
2
gTi (xi)∇V∗

i (xi). (11)

Inserting (11) into (9), we can restate the HJBE as
(
∇V∗

i (xi)
)T fi(xi) − αiV∗

i (xi)+ ηiP2
i (xi)

+ xTi Qixi −
∥∥∥∥
1
2
gTi (xi)∇V∗

i (xi)
∥∥∥∥
2

= 0 (12)

with V∗
i (0) = 0.

In general, one can derive the decentralized control law
for the interconnected system (1) by solving an array of
HJBEs given as in (12) (see [6], [40]). However, as illustrated
in [6] and [40], the proposed decentralized control laws were
implemented in the time-triggering mechanism. As stated in
Section I, the time-triggered control laws often bring about low
efficiencies in utilizing the limited resources. Meanwhile, the
computational load associated with deriving the time-triggered
control policies is heavy. To overcome the two deficiencies,
we aim at developing a decentralized ETC strategy for the
interconnected system (1).

III. DECENTRALIZED ETC STRATEGY

First, we discuss the stability of the interconnected
system (1) in an event-triggering mechanism (ETM). The ETM
shares the same spirits as [27]–[33]. In this part, we prove
that the decentralized ETC of the interconnected system (1)
can be derived by solving an array of event-triggered HJBEs
(ET-HJBEs). Then, we solve these ET-HJBEs through the
critic-only structure.

A. Decentralized Stabilization in the ETM

Let {tk}∞k=0 (note: tk < tk+1, k ∈ N) be the sequence of
triggering instants. For the ith nominal subsystem, we denote
the sampled state at the triggering instant tk (k ∈ N) as

x̄i,k = xi(tk).

To describe the error between the sampled state x̄i,k and the
current state xi(t), we define an error function as follows:

ei,k(t) = x̄i,k − xi(t) ∀t ∈ [tk, tk+1). (13)

Remark 4: Strictly speaking, for the ith nominal subsys-
tem, the sequence of triggering instants should be denoted as
{tik}∞k=0 (note: tik < tik+1), which is in essence in the same
spirits as [17] and [41]. In order not to result in confusions
of symbols, we write the sequence {tik}∞k=0 as {tk}∞k=0 without
mentioning the index i. Likewise, ei,k(t) in (13) ought to be
expressed as ei,k(t) = x̄i,k − xi(t) ∀t ∈ [tik, t

i
k+1). Due to the

same reason mentioned above, we present the definition of
ei,k(t) as (13). In general, the N subsystems’ states are trig-
gered in an asynchronous way. The later simulation results
have verified this fact (see Figs. 7 and 9 in Section VI).
If an event is triggered at the time instant t = tk, then

the error function given in (13) satisfies ei,k(tk) = 0. On
the other hand, if letting the state feedback control law

be executed at the set of sampled states {x̄i,k}∞k=0, then we
will obtain a sequence of ETC laws, that is, {ui(x̄i,k)}∞k=0.
Apparently, the sequence {ui(x̄i,k)}∞k=0 consists of discrete-
time control signals ui(x̄i,1), ui(x̄i,2), . . . , ui(x̄i,∞). In order to
obtain a continuous-time control signal, one often resorts to
the zero-order hold technique [22]. Letting the zero-order hold
technique be applied to each control policy ui(x̄i,k), we can
generate a continuous-time input signal as follows:

µi
(
x̄i,k, t

)
= ui

(
x̄i,k

)
= ui(xi(tk)) ∀t ∈

[
tk, tk+1).

Based on the above described ETM, we can derive from (11)
that the optimal ETC policy for the ith nominal subsystem (5)
with the corresponding discounted cost function (6) is [note:
∀t ∈ [tk, tk+1)]

µ∗
i
(
x̄i,k, t

)
= u∗

i
(
x̄i,k

)
= −1

2
gTi

(
x̄i,k

)
∇V∗

i
(
x̄i,k

)
(14)

where ∇V∗
i (x̄i,k) = (∂V∗

i (xi)/∂xi)|xi=x̄i,k .
Letting ui in (9) be replaced with µ∗

i (x̄i,k, t) given as (14),
we can obtain the ET-HJBE as follows:

(
∇V∗

i (xi)
)Tfi(xi) − αiV∗

i (xi)+ ηiP2
i (xi)+ xTi Qixi

− 1
2

(
∇V∗

i (xi)
)Tgi(xi)gTi

(
x̄i,k

)
∇V∗

i
(
x̄i,k

)

+
∥∥∥∥
1
2
gTi

(
x̄i,k

)
∇V∗

i
(
x̄i,k

)∥∥∥∥
2

= 0 (15)

with V∗
i (0) = 0.

Before continuing our discussion, we make an assumption
which was used in [27], [30], and [42].
Assumption 4: u∗

i (xi) given in (11) is Lipschitz continuous
on !i, that is, there exists a Lipschitz constant Ku∗

i
> 0 such

that, for every xi, x̄i,k ∈ !i, the following inequality holds:
∥∥u∗

i (xi) − u∗
i
(
x̄i,k

)∥∥ ≤ Ku∗
i

∥∥xi − x̄i,k
∥∥ = Ku∗

i

∥∥ei,k
∥∥.

Remark 5: Using (14), Assumption 4 implies
∥∥u∗

i (xi) − µ∗
i
(
x̄i,k

)∥∥ ≤ Ku∗
i

∥∥ei,k
∥∥

where µ∗
i (x̄i,k) stands for µ

∗
i (x̄i,k, t). For brevity, in subsequent

discussion, we write µ∗
i (x̄i,k, t) as µ

∗
i (x̄i,k) without mentioning

t ∈ [tk, tk+1).
Theorem 1: Consider N nominal subsystems formulated

as (5) with the corresponding discounted cost functions
presented as (6). If Assumptions 1–4 hold, then we can find N
positive constants η∗

i , i = 1, 2, . . . ,N, such that, for each ηi ≥
η∗
i , the N optimal ETC laws µ∗

i (x̄i,1), µ
∗
i (x̄i,2), . . . , µ

∗
i (x̄i,N)

together can force the interconnected system (1) to be stable
in the sense of UUB with the following triggering condition:

∥∥ei,k
∥∥2 ≤

(
1 − ρ2

i

)
λmin(Qi)

βiK2
u∗
i

‖xi‖2 !
∥∥ei,T

∥∥2 (16)

where ρi ∈ (0, 1) and βi ∈ (0,+∞) are adjustable parameters,
λmin(Qi) is the minimum eigenvalue of Qi, and ‖ei,T‖ is the
triggering threshold.
Proof: See Appendix A.
Theorem 1 shows that the decentralized ETC law for the

interconnected system (1) is able to be obtained via finding
the N optimal ETC laws µ∗

i (x̄i,1), µ
∗
i (x̄i,2), . . . , µ

∗
i (x̄i,N). To

this end, we solve N ET-HJBEs given as in (15).
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B. Solving ET-HJBEs via Critic-Only Structure

According to [43, Theorem. 3.1], V∗
i (xi) in (8) can be

represented via a neural network over !i as follows:

V∗
i (xi) = WT

ciσci(xi)+ εci(xi) (17)

where Wci ∈ Rñi is the ideal weight vector to be determined,
σci(xi) = [σci1(xi), σci2(xi), . . . , σciñi (xi)]

T ∈ Rñi is the contin-
uously differentiable vector activation function [note: for every
xi '= 0, σci1(xi), σci2(xi), . . . , σciñi (xi) are linearly independent;
σcis(0) = 0, s = 1, 2, . . . , ñi], ñi ∈ N is the number of neu-
rons, and εci(xi) ∈ R is the function reconstruction error. As
shown in [44], εci(xi) → 0 when ñi → ∞. In other words,
εci(xi) can be made small via selecting sufficiently large ñi.

By using (17), we can obtain the derivative of V∗
i (xi) at the

sampled state x̄i,k as

∇V∗
i
(
x̄i,k

)
= ∇σT

ci

(
x̄i,k

)
Wci + ∇εci

(
x̄i,k

)

where ∇σci(x̄i,k) = (∂σci(xi)/∂xi)|xi=x̄i,k with ∇σci(0) = 0,
and ∇εci(x̄i,k) = (∂εci(xi)/∂xi)|xi=x̄i,k . Thus, we can restate
µ∗
i (x̄i,k) in (14) as [note: ∀t ∈ [tk, tk+1)]

µ∗
i
(
x̄i,k

)
= −1

2
gTi

(
x̄i,k

)
∇σT

ci

(
x̄i,k

)
Wci + εµ∗

i

(
x̄i,k

)
(18)

where εµ∗
i
(x̄i,k) = −(1/2)gTi (x̄i,k)∇εci(x̄i,k). Note that Wci

in (18) is often unavailable. Thus, we use the estimated weight
vector Ŵci to replace Wci . Specifically, we use the critic
network to approximate V∗

i (xi) in (8) as follows:

V̂i(xi) = ŴT
ciσci(xi). (19)

Using (19), we can formulate the estimated value of µ∗
i (x̄i,k)

as [note: ∀t ∈ [tk, tk+1)]

µ̂i
(
x̄i,k

)
= −1

2
gTi

(
x̄i,k

)
∇σT

ci

(
x̄i,k

)
Ŵci . (20)

Replacing V∗
i (xi) and ui in (10) with aforementioned

V̂i(xi) and µ̂i(x̄i,k), respectively, we obtain the approximate
Hamiltonian as

Ĥ
(
xi,∇V̂i(xi), µ̂i(x̄i,k)

)
= ŴT

ciφi + ηiP2
i (xi)+ xTi Qixi

+
∥∥µ̂i(x̄i,k)

∥∥2 (21)

where

φi = ∇σci(xi)
(
fi(xi)+ gi(xi)µ̂i(x̄i,k)

)
− αiσci(xi). (22)

On the other hand, as pointed out by [27] and [45], µ∗
i (x̄i,k) is

actually the discretized value of µ∗
i (xi) at the triggering instant

tk. Thus, (9) implies H(xi,∇V∗
i (xi), µ

∗
i (x̄i,k)) = 0. Then, by

using (21), we can define the error arising in the approximating
Hamiltonian as

eci = Ĥ
(
xi,∇V̂i(xi), µ̂i(x̄i,k)

)
− H

(
xi,∇V∗

i (xi), µ
∗
i (x̄i,k)

)

= ŴT
ciφi + ηiP2

i (xi)+ xTi Qixi +
∥∥µ̂i

(
x̄i,k

)∥∥2. (23)

For the purpose of making µ̂i(x̄i,k) → µ∗
i (x̄i,k), we need to

force eci → 0. That is, we should keep eci small enough. To
this end, one usually tunes Ŵci to minimize the target func-
tion Ei = (1/2)eTcieci . In order to make a high efficiency in

utilizing the historical state data and motivated by the works
of [46]–[48], we change the objective function Ei to be

Ei =
1
2
eTcieci

︸ ︷︷ ︸
Eci

+
l0∑

s=1

1
2
eTci,seci,s

︸ ︷︷ ︸
Eci,s

(24)

where eci is given in (23), s ∈ {1, 2, . . . , l0} is the index of
the historical state xi(ts), ts ∈ [tk, tk+1), l0 is the number of
the historical state (note: l0 > ñi with ñi denoting the afore-
mentioned number of neurons), and eci,s is the value of eci at
the historical state xi(ts), that is,

eci,s = eci(xi(ts)) = ŴT
ciφi,s + ηiP2

i (xi(ts))

+ xTi (ts)Qixi(ts)+
∥∥µ̂i

(
x̄i,k

)∥∥2

where

φi,s = ∇σci(xi(ts))
(
fi(xi(ts))+ gi(xi(ts))µ̂i

(
x̄i,k

))

− αiσci(xi(ts)). (25)

Applying the gradient descent approach to Ei [note: Ei =
Eci+

∑l0
s=1 Eci,s in (24)] and selecting the two different normal-

ization terms (1+φT
i φi)

−2 and (1+φT
i,sφi,s)

−2, we can update
the estimated weight vector Ŵci via [note: ∀t ∈ [tk, tk+1)]

˙̂Wci = − -ci(
1+ φT

i φi
)2

∂Eci

∂Ŵci

−
l0∑

s=1

-ci(
1+ φT

i,sφi,s
)2

∂Eci,s

∂Ŵci

= − -ciφi
(
1+ φT

i φi
)2 eci −

l0∑

s=1

-ciφi,s
(
1+ φT

i,sφi,s
)2 eci,s (26)

where -ci > 0 is an adjustable parameter, and φi and φi,s are
defined as (22) and (25), respectively.
Denote

ψi = φi
/(

1+ φT
i φi

)
and ψi,s = φi,s

/(
1+ φT

i,sφi,s

)
.

Let the weight estimation error be W̃ci = Wci − Ŵci . Then,
from (26), we can obtain [note: t ∈ [tk, tk+1)]

˙̃Wci = −-ci



ψiψ
T
i +

l0∑

s=1

ψi,sψ
T
i,s



W̃ci

+ -ciψi

1+ φT
i φi

εHi +
l0∑

s=1

-ciψi,s

1+ φT
i,sφi,s

εHi,s (27)

where εHi and εHi,s are the residual errors formulated as [27]

εHi = −∇εTci(xi)
(
fi(xi)+ gi(xi)µ̂i

(
x̄i,k

))
+ αiεci(xi)

εHi,s = −∇εTci(xi(ts))
(
fi(xi(ts))+ gi(xi(ts))µ̂i

(
x̄i,k

))

+ αiεci(xi(ts)).

Remark 6: According to [46]–[48], the summation term
in (27) can force W̃ci to converge to a small compact set with-
out requiring the persistence of excitation condition only if the
historical state dataset

{
σci(xi(t1)), . . . , σci

(
xi(tñi)

)
, . . . , σci

(
xi(tl0)

)}
(l0 > ñi)
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Fig. 1. Block diagram of the proposed ETC scheme for the ith nominal
subsystem.

satisfies

rank
[
σci(xi(t1)), σci(xi(t2)), . . . , σci

(
xi

(
tl0

))]
= ñi. (28)

In this article, we also need the collected historical state dataset
to satisfy (28). Obviously, the validity of (28) can be guaran-
teed by choosing the large number of the historical state, that
is, l0. In addition, it can be seen from (26) that both the cur-
rent state data and the historical state data [see the first term
and the summation term in (26)] are utilized to make Ŵci con-
verge to the ideal weight vector Wci within a small compact
set (or rather, to make the weight estimation error W̃ci con-
verge to a small compact set). Chowdhary [46] first coined
this technique called the concurrent learning. A synonym for
the concurrent learning technique was the experience replay
method [49], [50]. In this article, we call it the concurrent
learning, which is in accordance with [46].
To summarize the above analyses, we provide a block dia-

gram to illustrate the proposed ETC scheme for the ith nominal
subsystem (see Fig. 1).

IV. STABILITY ANALYSIS

We first present an augmented hybrid system comprised of
the ith closed-loop nominal subsystem and the dynamics of
W̃ci in (27). That is, letting zi = [xTi , x̄

T
i,k, W̃

T
ci ]

T, we have the
following.
1) Continuous Dynamics: [Note: zi ! zi(t), ∀t ∈ [tk, tk+1)]

żi =




fi(xi) − 1

2
gi(xi)gTi

(
x̄i,k

)
∇σT

ci

(
x̄i,k

)
Ŵci

0
−-ci/

(
ψi,ψi,s

)
W̃ci + 0

(
εHi , εHi,s

)



 (29)

where

/
(
ψi,ψi,s

)
= ψiψ

T
i +

l0∑

s=1

ψi,sψ
T
i,s (30)

0
(
εHi , εHi,s

)
= -ciψiεHi

1+ φT
i φi

+
l0∑

s=1

-ciψi,sεHi,s

1+ φT
i,sφi,s

.

2) Discrete Dynamics: (Note: t = tk+1, k ∈ N)

zi(t+) = zi(t)+




0

x̄i,k − xi(t)
0



 (31)

where zi(t+) = limς→0+ zi(t+ς) with ς ∈ (0, tk+1−tk).

Before studying the stabilities of (29) and (31), we impose
an assumption which was utilized in [29], [33], and [51].
Assumption 5: For every xi ∈ !i, there exists a constant

bσci
> 0 such that ‖∇σci(xi)‖ ≤ bσci

. Meanwhile, for every
xi ∈ !i, there exist constants bεµ∗

i
> 0 and bεHi

> 0 such that
‖εµ∗

i
(xi)‖ ≤ bεµ∗

i
and ‖εHi‖ ≤ bεHi

.
Theorem 2: Consider the ith nominal subsystem (5) with

associated ET-HJBE (15). Let Assumptions 1–5 be satisfied
and provide an initial admissible control for the ith nominal
subsystem (5). Meanwhile, take the ith ETC law as (20) and
update the critic network weight by using (26). Then, the ith
closed-loop nominal subsystem (5) and the weight estimation
error W̃ci are stable in the sense of UUB if the triggering
condition is constructed as

∥∥ei,k
∥∥2 ≤

(
1 − ρ2

i

)
λmin(Qi)

(1+ γi)K2
u∗
i

‖xi‖2 !
∥∥ēi,T

∥∥2 (32)

where ρi ∈ (0, 1), γi ∈ (0,+∞), and ‖ēi,T‖ is the triggering
threshold, and as long as the following inequality holds:

2-ciλmin
(
/

(
ψi,ψi,s

))
− (1+ 1/γi)2b2gib

2
σci

> 0 (33)

with λmin(/(ψi,ψi,s)) being the minimum eigenvalue of
/(ψi,ψi,s) given in (30).

Proof: See Appendix B.
Remark 7: In (33), the term λmin(/(ψi,ψi,s)) is positive

under condition (28). Now, we prove this fact. Similar to the
process of [52, Lemma 2], we can derive

rank
[
ψi(xi(t1)),ψi(xi(t2)), . . . ,ψi(xi(tl0))

]

= rank
[
σci(xi(t1)), σci(xi(t2)), . . . , σci

(
xi(tl0)

)]
= ñi.

Let ξi = [ψi(xi(t1)),ψi(xi(t2)), . . . ,ψi(xi(tl0))]. Then, by
using the matrix theory [53, Chapter. 0.4], we have
rank ξiξ

T
i = rank ξi. Thus, rank ξiξ

T
i = ñi, that is,

rank
l0∑

s=1

ψi,sψ
T
i,s = ñi.

Hence,
∑l0

s=1 ψi,sψ
T
i,s ∈ Rñi×ñi is positive definite. Note that

ψiψ
T
i is a positive semidefinite matrix. Therefore, we obtain

that /(ψi,ψi,s) ∈ Rñi×ñi given in (30) is positive definite.
Then, λmin(/(ψi,ψi,s)) > 0 holds.

V. LOWER BOUND OF THE MINIMAL INTERSAMPLE TIME

When designing the event-triggered controllers, one has
to guarantee the minimal intersample time to be positive.
Now, we prove this fact. First, we provide an assump-
tion associated with ∇σci(xi). The assumption was used
in [28] and [29].
Assumption 6: For every i ∈ I = {1, 2, . . . ,N}, ∇σci(xi)

satisfies the Lipschitz property on !i. To be specific, for every
x′
i, x

′′
i ∈ !i, there exists a Lipschitz constant Kσci

> 0 making
the following inequality hold:

∥∥∇σci
(
x′
i
)
− ∇σci

(
x′′
i
)∥∥ ≤ Kσci

∥∥x′
i − x′′

i

∥∥.

Theorem 3: Consider the ith nominal subsystem (5) with
the ETC µ̂i(x̄i,k) proposed as in (20). Let Assumptions 2 and 6
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hold and let the triggering condition be given as (32). Then, the
minimal intersample time, denoted by (4tk)min (note: 4tk =
tk+1 − tk, k ∈ N), satisfies the following inequality:

(4tk)min ≥ 1
£i

ln(1+ 5̄min) > 0 (34)

where £i and 5̄min are positive constants to be given in
later (38) and (44), respectively.
Proof: Under Assumption 2, the ith nominal subsystem (5)

with the ETC law µ̂i(x̄i,k) yields

‖ẋi‖ =
∥∥fi(xi)+ gi(xi)µ̂i(x̄i,k)

∥∥

≤ Kfi‖xi‖ + bgi
∥∥µ̂i

(
x̄i,k

)∥∥ + bfi . (35)

Meanwhile, by using Assumptions 2 and 6, we are able to
obtain from (20) that

∥∥µ̂i(x̄i,k)
∥∥ ≤ 1

2
bgiKσci

∥∥x̄i,k
∥∥
∥∥∥Ŵci

∥∥∥. (36)

Combining (35) with (36), we have

‖ẋi‖ ≤ Kfi‖xi‖ + 1
2
b2giKσci

∥∥∥Ŵci

∥∥∥
∥∥x̄i,k

∥∥ + bfi . (37)

According to Theorem 2, W̃ci is UUB. Note that the ideal
weight Wci is typically bounded. We thus obtain that Ŵci is
bounded (note: Ŵci = Wci−W̃ci). Here, we write ‖Ŵci‖ ≤ δŴci
with δŴci

> 0 being the known constant. Let

£i = max
{
Kfi ,

1
2
b2giKσci

δŴci

}
. (38)

Then, (37) can be further written as

‖ẋi‖ ≤ £i‖xi‖ + £i
∥∥x̄i,k

∥∥ + bfi . (39)

According to (13), it follows that xi(t) = x̄i,k − ei,k(t) and
ẋi(t) = −ėi,k(t). We thus derive from (39) that

∥∥ėi,k
∥∥ ≤ £i

∥∥ei,k
∥∥ + 2£i

∥∥x̄i,k
∥∥ + bfi . (40)

Note that at the triggering instant tk, it follows ei,k(tk) = 0.
Then, according to the comparison lemma [54, Lemma 3.4],
we can find that the solution of (40) satisfies [note: ∀t ∈
[tk, tk+1), k ∈ N]

∥∥ei,k
∥∥ ≤ 2£i

∥∥x̄i,k
∥∥ + bfi

£i

(
e£i(t−tk) − 1

)
. (41)

After doing some computations, we obtain from (41) that

4tk = tk+1 − tk ≥ 1
£i

ln(1+ 5k), k ∈ N (42)

where

5k =
£i

∥∥x̄i,k − xi
(
t−k+1

)∥∥

2£i
∥∥x̄i,k

∥∥ + bfi
> 0, k ∈ N (43)

with xi(t−k+1) = limς→0+ xi(tk+1 − ς).
Denote the minimum value of 5k for all k ∈ N as

5̄min = min
k∈N

{5k}. (44)

According to (43) and (44), we have 5̄min > 0. Then, taking
the minimum value on both sides of (42), we obtain

(4tk)min ≥ 1
£i

ln(1+ 5̄min) > 0.

That is, (34) holds.

Fig. 2. Two inverted pendulums connected via a spring.

TABLE I
PARAMETERS USED IN THE TWO INVERTED PENDULUMS

Remark 8: As pointed out by [22], Zeno behavior occurs
only when the minimal intersample time is zero. Theorem 3
indicates that the lower bound of the minimal intersample time
is positive. Thus, Zeno behavior is avoided under the condition
given in Theorem 3.

VI. SIMULATION STUDY

To validate the established theoretical results, we consider
the two inverted pendulums connected via a spring proposed
in [1]. The structure of the two inverted pendulums is dis-
played as Fig. 2. Meanwhile, the motion of the two inverted
pendulums can be described via a state-space mode as

ẋ11 = x12, ẋ12 =
(
M1ḡh
J1

− k0h2

4J1

)
sin(x11)+

k0h
2J1

(
l̄ − b̄

)

+u1
J1

+ k0h2

4J1
sin(x21)

ẋ21 = x22

ẋ22 =
(
M2ḡh
J2

− k0h2

4J2

)
sin(x21) − k0h

2J2

(
l̄ − b̄

)

+u2
J2

+ k0h2

4J2
sin(x12) (45)

with θ1 = x11 and θ2 = x21 denoting the angular displace-
ments of the pendulums from vertical. The meanings and
values of the parameters used in the two inverted pendulums
are provided in Table I.
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Let xi = [xi1, xi2]T ∈ R2, i = 1, 2. Then, we can restate

fi(xi) =
[

xi2
ῑi sin(xi1)+ (−1)i+1k0h

(
l̄ − b̄

)
/(2Ji)

]
(46)

where ῑi = Miḡh/Ji − k0h2/(4Ji), i = 1, 2. As shown in
Table I, there is l̄ '= b̄. Then, we can see from (46) that
fi(0) '= 0, i = 1, 2, which satisfy Assumption 1. Therefore,
the equilibrium point of system (45) is nonzero. Note that
‖ sin(xi1)‖ ≤ ‖xi1‖ for xi1 ∈ R, i = 1, 2. Then, it can be
found that fi(xi), i = 1, 2, given in (46) satisfy Assumption 2.
Denoting gi(xi) = [0, 1/Ji], i = 1, 2, we can find that
‖gi(xi)‖ ≤ 1/Ji, i = 1, 2, which satisfy Assumption 2. Let
ω1(x) = (k0h2/4) sin(x21). Then, according to Table I, we have
‖ω1(x)‖ ≤ 6.25|x21| ≤ 6.25‖x2‖. Likewise, letting ω2(x) =
(k0h2/4) sin(x12), we obtain ‖ω2(x)‖ ≤ 6.25|x12| ≤ 6.25‖x1‖.
Thus, to satisfy the inequality (4) (or rather, Assumption 3),
we can select P1(x1) = ‖x1‖, P2(x2) = ‖x2‖, and design the
corresponding parameters as follows: b11 = 0, b12 = 6.25,
b21 = 6.25, and b22 = 0. In addition, the initial state vector
of interconnected system (45) is x0 = [0.5,−0.5, 1,−1]T.

By using (5), we are able to obtain the nominal subsystems 1
and 2 for the interconnected system (45). According to (6), we
can separately present the discounted cost function for nominal
subsystems 1 and 2 as

Vu1
1 (x1) =

∫ ∞

t
e−α1(τ−t)

(
η1‖x1‖2 + xT1Q1x1 + u21

)
dτ

Vu2
2 (x2) =

∫ ∞

t
e−α2(τ−t)

(
η2‖x2‖2 + xT2Q2x2 + u22

)
dτ.

To make the matrix Ã in (56) positive definite, we choose
η1 = 40 and η2 = 40. At the same time, we let α1 = 0.85,
α2 = 6.9, and Q1 = Q2 = 2.85I2 with I2 denoting the 2 × 2
identity matrix. As indicated in Theorem 1, we need to solve
the ET-HJBEs related to nominal subsystems 1 and 2 [such
as (15)] for obtaining the decentralized ETC of system (45). To
this end, we use the critic network (19) to approximately solve
the two ET-HJBEs. The vector activation functions σci(xi),
i = 1, 2, are, respectively, given in the form (note: ñ1 = 3
and ñ2 = 3):

σc1(x1) =
[
x211, x11x12, x

2
12

]T

σc2(x2) =
[
x221, x21x22, x

2
22

]T
.

The weight parameters associated with σc1(x1) and σc2(x2)
are denoted as Ŵc1 = [Ŵc11, Ŵc12 , Ŵc13 ]

T and Ŵc2 =
[Ŵc21, Ŵc22 , Ŵc23 ]

T, respectively. The parameters used in (26)
and (32) are designed as follows: -ci = 0.8, ρi = 0.3, γi = 3,
and Ku∗

i
= 4.5, where i = 1, 2.

Remark 9: Generally, there is no direct method to verify
Assumption 4. To make Assumption 4 hold, a promising
method is to select sufficiently large Lipschitz constant Ku∗

i
.

However, choosing large Ku∗
i
will make the triggering thresh-

old ‖ei,T‖ in (16) very small. Therefore, there is a dilemma to
select the Lipschitz constant Ku∗

i
. In this example, we deter-

mine Ku∗
i
via computer simulations. We find that selecting

Ku∗
i
= 4.5 can lead to satisfactory results.

Fig. 3. Performance of the weight vector Ŵc1 = [Ŵc11 , Ŵc12 , Ŵc13 ]
T.

Fig. 4. Performance of the weight vector Ŵc2 = [Ŵc21 , Ŵc22 , Ŵc23 ]
T.

Fig. 5. ETC u1(x̄1,k) for the nominal subsystem 1.

The experimental study is performed by using the MATLAB
(R2017a) software package. Meanwhile, the computer simu-
lation results are displayed in Figs. 3–11. Figs. 3 and 4 show
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Fig. 6. ETC u2(x̄2,k) for the nominal subsystem 2.

Fig. 7. Norm of the state error function e1,k (i.e., ‖e1,k‖) and the event-
triggering threshold ‖ē1,T‖.

the performance of weight vectors Ŵc1 and Ŵc2 used in the
critic networks, which aim at approximating the discounted
cost functions associated with nominal subsystems 1 and 2.
It can be observed from Figs. 3 and 4 that Ŵc1 converges
to Ŵfinal

c1 = [0.6021, 0.0372, 0.1267]T after the first 40 s, and
Ŵc2 converges to Ŵfinal

c2 = [6.5213, 1.743, 2.4099]T after the
first 50 s. Figs. 5 and 6 illustrate the ETC u1(x̄1,k) for the
nominal subsystem 1 and the ETC u2(x̄2,k) for the nominal
subsystem 2, respectively. Fig. 7 displays the norm of the
state error function e1,k (i.e., ‖e1,k‖) and the event-triggering
threshold ‖ē1,T‖ when considering the nominal subsystem 1.
Meanwhile, Fig. 8 indicates the intersampling time 4tk (note:
4tk = tk+1 − tk). It should be noted here that, as shown in
Fig. 7, the event is no longer triggered after the first 45 s
[note: when ‖e1,k‖ ≤ ‖ē1,T‖, the triggering condition (32)
is not violated]. Thus, after 45 s, there is no intersampling
time. Hence, in Fig. 8, we only present the intersampling time
during the first 45 s. Likewise, when considering the nom-
inal subsystem 2, we use Fig. 9 to depict the norm of the

Fig. 8. Intersampling time 4tk (note: 4tk = tk+1 − tk).

Fig. 9. Norm of the state error function e2,k (i.e., ‖e2,k‖) and the event-
triggering threshold ‖ē2,T‖.

Fig. 10. Intersampling time 4t′k .

state error function e2,k (i.e., ‖e2,k‖) and the event-triggering
threshold ‖ē2,T‖. At the same time, we present Fig. 10 to illus-
trate the intersampling time 4t′k (note: 4t′k is defined similar
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Fig. 11. Whole state vector x(t) = [x11(t), x12(t), x21(t), x22(t)]T.

to 4tk). It should also be mentioned here that, as displayed
in Fig. 9, the event is no longer triggered after the first 48 s.
Therefore, in Fig. 10, we only need to present the intersam-
pling time during the first 48 s. Observing Figs. 8 and 10, we
have that min{4tk,4t′k} = 0.1 s. Accordingly, we can keep
the Zeno behavior from happening. Furthermore, from Fig. 8
(or Fig. 10), we can see that there are 53 (or 135) state sam-
ples. This indicates that only 53 (or 135) state samples are
utilized to implement the present ETC strategy. While imple-
menting the related time-triggered control scheme, we have
to use 1200 (or 1400) state samples. Therefore, the controller
updates can be reduced up to 95.58% (or 90.36%). In this
sense, the proposed ETC strategy significantly decreases the
computational burden. On the other hand, inserting the con-
verged weight vectors Ŵfinal

c1 and Ŵfinal
c2 into (20), we can obtain

the approximate optimal ETC policies for nominal subsys-
tems 1 and 2, respectively. Then, according to Theorem 1, we
derive the decentralized ETC of the interconnected system (45)
by putting these obtained approximate optimal ETC policies
together. Under the derived decentralized ETC, the closed-loop
interconnected system (45) turns out to be stable in the sense
of UUB (see Fig. 11).

VII. CONCLUSION

We have developed a novel RL-based decentralized ETC
scheme for continuous-time nonlinear systems subject to
matched interconnections. The present decentralized ETC
scheme not only can be implemented without the persis-
tence of excitation condition but also can be directly applied
to those nonlinear-interconnected systems without zero equi-
librium points. The interconnected terms are required to
satisfy the matched condition when designing the decentral-
ized event-triggered controller. Indeed, this is a restrictive
condition. In engineering applications, the knowledge of the
interconnected terms of large-scale nonlinear systems is often
unavailable, which results in the difficulty in judging whether
the interconnected terms satisfy the matched condition or
not. Hence, how to extend the present control approach to

solve decentralized ETC problems of nonlinear systems with
unknown interconnections is our consecutive work.
On the other hand, when proposing the decentralized

ETC scheme, one often has the problem with data conges-
tions, which is a challenge. Recently, Ding et al. [55], [56]
presented an effective approach based on the actor–critic
structure to design a neural-network-based output-feedback
controller for stochastic nonlinear systems subject to data con-
gestions. Hence, how to develop an RL-based decentralized
ETC strategy for stochastic nonlinear-interconnected systems
with data congestions is also a topic in our future work. More
recently, the distributed control method was introduced to han-
dle control problems of industrial cyber-physical systems [57].
Thus, whether the present control method can be extended to
tackle decentralized ETC problems of industrial cyber-physical
systems is another topic in our future study.

APPENDIX A
PROOF OF THEOREM 1

We take the Lyapunov function candidate in the form

L(x) =
N∑

i=1

V∗
i (xi) (47)

where V∗
i (xi), i = 1, 2, . . . ,N are defined as (8). According to

expressions (6) and (7), we can deduct from (8) that, for each
i ∈ I = {1, 2, . . . ,N}, V∗

i (xi) > 0,∀xi '= 0 and V∗
i (xi) = 0 ⇔

xi = 0. Thus, V∗
i (xi), i = 1, 2, . . . ,N, satisfy the definition of

positive-definite functions. Then, we can conclude that L(x)
in (47) is a positive-definite function.
Differentiating L(x) with respect to t (i.e., dL(x(t))/dt) and

using the N state trajectories ẋi = fi(xi) + gi(xi)(µ∗
i (x̄i,k) +

ωi(x)), i = 1, 2, . . . ,N, we have

L̇(x) =
N∑

i=1

{(
∇V∗

i (xi)
)T(

fi(xi)+ gi(xi)u∗
i (xi)

)

+
(
∇V∗

i (xi)
)Tgi(xi)

(
µ∗
i
(
x̄i,k

)
− u∗

i (xi)
)

+
(
∇V∗

i (xi)
)Tgi(xi)ωi(x)

}
. (48)

On the other hand, we can derive from (10) and (11) that





(
∇V∗

i (xi)
)T(

fi(xi)+ gi(xi)u∗
i

)

= αiV∗
i (xi) − ηiP2

i (xi) − xTi Qixi −
∥∥u∗

i (xi)
∥∥2

(
∇V∗

i (xi)
)Tgi(xi) = −2

(
u∗
i (xi)

)T
.

(49)

Inserting (49) into (48), we have

L̇(x) =
N∑

i=1





− ηiP2

i (xi) − xTi Qixi −
∥∥u∗

i (xi)
∥∥2

−2
(
u∗
i (xi)

)T(
µ∗
i
(
x̄i,k

)
− u∗

i (xi)
)

︸ ︷︷ ︸
π1

−2
(
u∗
i (xi)

)T
ωi(x)︸ ︷︷ ︸

π2

+αiV∗
i (xi)





. (50)
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Note that 2c̃Td̃ ≤ c̃Tc̃/βi+βid̃Td̃ (note: βi > 0 is an adjustable
constant) holds for arbitrary vectors c̃ and d̃ with appropriate
dimensions. By using Remark 5, we shall find that π1 in (50)
satisfies

π1 ≤
∥∥u∗

i (xi)
∥∥2/βi + βi

∥∥µ∗
i
(
x̄i,k

)
− u∗

i (xi)
∥∥2

≤
∥∥u∗

i (xi)
∥∥2/βi + βiK2

u∗
i

∥∥ei,k
∥∥2. (51)

Applying Cauchy’s inequality c̃Td̃ ≤ ‖c̃‖‖d̃‖ (note: c̃ and d̃
are vectors with appropriate dimensions) to π2 in (50) and
using (4), we have

π2 ≤ 2
∥∥u∗

i (xi)
∥∥‖ωi(x)‖ ≤ 2

∥∥u∗
i (xi)

∥∥
N∑

j=1

bijPj(xj). (52)

By using inequalities (51) and (52) as well as the fact that
λmin(Qi)‖xi‖2 ≤ xTi Qixi, we can obtain from (50) that

L̇(x) ≤ −
N∑

i=1

(
ρ2
i λmin(Qi)‖xi‖2 − ϒi

(
V∗
i , u

∗
i (xi)

))

−
N∑

i=1

((
1 − ρ2

i

)
λmin(Qi)‖xi‖2 − βiK2

u∗
i
‖ei,k‖2

)

−
N∑

i=1




ηiP2
i (xi)+

∥∥u∗
i (xi)

∥∥2

−2
∥∥u∗

i (xi)
∥∥

N∑

j=1

bijPj(xj)




 (53)

where

ϒi
(
V∗
i , u

∗
i (xi)

)
= αiV∗

i (xi)+ ‖u∗
i (xi)‖2/βi. (54)

Noticing that u∗
i (xi) is an admissible control policy, that is,

u∗
i (xi) ∈ A (!i), we can obtain that for every xi ∈ !i, u∗

i (xi)
and V∗

i (xi) are bounded [58]. Thus, ϒi(V∗
i , u

∗
i (xi)) is bounded.

We denote ‖ϒi(V∗
i , u

∗
i (xi))‖ ≤ εMi with εMi > 0 being the

constant. Meanwhile, we let

η̃ = diag{η1, η2, . . . , ηN}
1̃ = diag{11, 12, . . . , 1N} (1i = 1, i ∈ I)

y(x) =
[
−P1(x1),−P2(x2), . . . ,−PN(xN)

∥∥u∗
1(x1)

∥∥,
∥∥u∗

2(x2)
∥∥, . . . ,

∥∥u∗
N(xN)

∥∥]T
.

Then, by using (16), we can see that (53) yields

L̇(x) ≤ −
N∑

i=1

(
ρ2
i λmin(Qi)‖xi‖2 − εMi

)
− yT(x)Ãy(x) (55)

where Ã is given in the form

Ã =
[
η̃ BT

B 1̃

]
and B =




b11 b12 · · · b1N
...

...
. . .

...

bN1 bN2 · · · bNN



. (56)

It can be seen from (56) that η̃ (i.e., diag{η1, η2, . . . , ηN}) lies
along the principal diagonal of the block matrix Ã ∈ R2N×2N .
Accordingly, Ã can be made positive definite by choosing
appropriate ηi, i = 1, 2, . . . ,N. In other words, we can find

N positive constants η∗
i , i = 1, 2, . . . ,N, such that ηi ≥ η∗

i
makes −yT(x)Ãy(x) < 0 valid. Then, (55) further yields

L̇(x) ≤ −
N∑

i=1

(
ρ2
i λmin(Qi)‖xi‖2 − εMi

)
. (57)

Thus, (57) implies L̇(x) < 0 only if, for every i ∈ I =
{1, 2, . . . ,N}, the subsystem state xi is out of the set

Dxi =
{
xi : ‖xi‖ ≤ 1

ρi

√
εMi

/
λmin(Qi)

}
.

According to the Lyapunov extension theorem [59], this proves
that the state of the interconnected system (1) is uniformly ulti-
mately bounded. Specifically, with the N optimal ETC laws
µ∗
i (x̄i,1), µ

∗
i (x̄i,2), . . . , µ

∗
i (x̄i,N) together, the UUB stability of

the interconnected system (1) is guaranteed. Moreover, for
each i ∈ I, the ultimate bound of xi is

√
εMi/λmin(Qi)/ρi.

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

We take the Lyapunov function candidate in the form

L1(t) = V∗
i
(
x̄i,k

)
+ V∗

i (xi(t))︸ ︷︷ ︸
L11(t)

+ (1/2)W̃T
ci W̃ci︸ ︷︷ ︸

L12(t)

. (58)

As aforementioned, the ith closed-loop augmented system con-
sists of two parts: 1) continuous dynamical system (29) and
2) discrete dynamical system (31). Thus, the stability of the ith
closed-loop augmented system will be studied from following
two situations.
Situation I: Events are not triggered, that is, t ∈

[tk, tk+1), k ∈ N. Then, we have dV∗
i (x̄i,k)/dt = 0. Taking

the time derivative of L11(t) in (58) and using the solution of
the differential equation ẋi = fi(xi)+ gi(xi)µ̂i(x̄i,k), we have

L̇11(t) =
(
∇V∗

i (xi)
)T(

fi(xi)+ gi(xi)µ̂i(x̄i,k)
)

=
(
∇V∗

i (xi)
)T(

fi(xi)+ gi(xi)u∗
i (xi)

)

+
(
∇V∗

i (xi)
)Tgi(xi)

(
µ̂i

(
x̄i,k

)
− u∗

i (xi)
)
. (59)

On the other hand, according to (11) and (12), it follows that:





(
∇V∗

i (xi)
)Tfi(xi) = αiV∗

i (xi) − ηiP2
i (xi)

−xTi Qixi +
∥∥u∗

i (xi)
∥∥2

(
∇V∗

i (xi)
)Tgi(xi) = −2

(
u∗
i (xi)

)T
.

(60)

Inserting (60) into (59), we have

L̇11(t) = αiV∗
i (xi) − ηiP2

i (xi) − xTi Qixi

−
∥∥µ̂i

(
x̄i,k

)∥∥2 +
∥∥u∗

i (xi) − µ̂i
(
x̄i,k

)∥∥2
︸ ︷︷ ︸

ζ

. (61)

Note that the following inequality holds:
∥∥∥c̃+ d̃

∥∥∥
2

≤ (1+ 1/γi)‖c̃‖2 + (1+ γi)
∥∥∥d̃

∥∥∥
2

with γi > 0, i = 1, 2, . . . ,N, being the constants, c̃ and d̃
being the vectors with suitable dimensions. Then, by using
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Assumptions 2, 4, and 5 as well as (18) and (20), we can
derive from ζ ∈ R in (61) that

ζ =
∥∥(
u∗
i (xi) − µ∗

i
(
x̄i,k

))
+

(
µ∗
i
(
x̄i,k

)
− µ̂i

(
x̄i,k

))∥∥2

≤ (1+ 1/γi)
∥∥µ∗

i
(
x̄i,k

)
− µ̂i

(
x̄i,k

)∥∥2

+ (1+ γi)
∥∥u∗

i (xi) − µ∗
i
(
x̄i,k

)∥∥2

≤ (1+ 1/γi)
∥∥∥∥−1

2
gTi

(
x̄i,k

)
∇σT

ci

(
x̄i,k

)
W̃ci + εµ∗

i
(x̄i,k)

∥∥∥∥
2

+(1+ γi)K2
u∗
i

∥∥ei,k
∥∥2

≤ (1+ 1/γi)2

4
b2gib

2
σci

∥∥W̃ci

∥∥2 + b2εµ∗
i
(1+ γi)

2/γi

+(1+ γi)K2
u∗
i

∥∥ei,k
∥∥2. (62)

Noting that ηiP2
i (xi) ≥ 0 and ‖µ̂i(x̄i,k)‖2 ≥ 0 and using (62),

we can derive from (61) that

L̇11(t) ≤ − xTi Qixi + αiV∗
i (xi)+ b2εµ∗

i
(1+ γi)

2/γi

+ (1+ γi)K2
u∗
i

∥∥ei,k
∥∥2

+ (1+ 1/γi)2

4
b2gib

2
σci

∥∥W̃ci

∥∥2. (63)

According to the definition of ϒi(V∗
i , u

∗
i (xi)) in (54), it fol-

lows ‖αiV∗
i (xi)‖ ≤ ‖0i(V∗

i , u
∗
i (xi))‖ ≤ εMi . In addition,

λmin(Qi)‖xi‖2 ≤ xTi Qixi. Thus, we further develop (63) as

L̇11(t) ≤ − λmin(Qi)‖xi‖2 + (1+ γi)K2
u∗
i

∥∥ei,k
∥∥2

+ (1+ 1/γi)2

4
b2gib

2
σci

∥∥W̃ci

∥∥2 + !i (64)

where !i = εMi + b2εµ∗
i
(1+ γi)

2/γi.
Differentiating L12(t) in (58) with respect to t and utiliz-

ing (27), we obtain

L̇12(t) = − -ciW̃
T
ci/

(
ψi,ψi,s

)
W̃ci

+ -ciW̃
T
ciψiεHi

1+ φT
i φi

+
l0∑

s=1

-ciW̃
T
ciψi,sεHi,s

1+ φT
i,sφi,s

(65)

with /(ψi,ψi,s) being defined as (30).
Applying the inequality c̃Td̃ ≤ c̃Tc̃/2+ d̃Td̃/2 (note: c̃ and

d̃ are vectors with suitable dimensions) to the second term
in (65) and noting that 1/(1+ φT

i φi) ≤ 1, we have

-ciW̃
T
ciψiεHi

1+ φT
i φi

≤ -ci

1+ φT
i φi

(
1
2
W̃T

ciψiψ
T
i W̃ci +

1
2
εTHi

εHi

)

≤ -ci
2
W̃T

ciψiψ
T
i W̃ci +

-ci
2

εTHi
εHi . (66)

Similarly, we obtain

l0∑

s=1

-ciW̃
T
ciψi,sεHi,s

1+ φT
i,sφi,s

≤ -ci
2
W̃T

ci




l0∑

s=1

ψi,sψ
T
i,s



W̃ci

+ -ci
2

l0∑

s=1

εTHi,s
εHi,s . (67)

Combining (66) with (67) and using Assumption 5, we have

-ciW̃
T
ciψiεHi

1+ φT
i φi

+
l0∑

s=1

-ciW̃
T
ciψi,sεHi,s

1+ φT
i,sφi,s

≤ -ci
2
W̃T

ci/
(
ψi,ψi,s

)
W̃ci +

-ci(l0 + 1)
2

b2εHi .

Thus, we can obtain from (65) that

L̇12(t) ≤ −-ci
2

λmin
(
/

(
ψi,ψi,s

))∥∥W̃ci

∥∥2

+ -ci(l0 + 1)
2

b2εHi . (68)

Using (64) and (68), the derivative of L1(t) in (58) satisfies

L̇1(t) ≤ −ρ2
i λmin(Qi)‖xi‖2 −

(
1 − ρ2

i

)
λmin(Qi)‖xi‖2

+ (1+ γi)K2
u∗
i
‖ei,k‖2 + !i +

-ci(l0 + 1)
2

b2εHi

− 1
4

(
2-ciλmin

(
/

(
ψi,ψi,s

))

− (1+ 1/γi)2b2gib
2
σci

)∥∥W̃ci

∥∥2 (69)

with !i being given as in (64).
Therefore, if letting (32) and (33) be valid, then (69) implies

L̇1(t) < 0 provided that we are able to make xi /∈ !xi or
W̃ci /∈ !W̃ci

with !xi and !W̃ci
, respectively, defined as

!xi =




xi : ‖xi‖ ≤ 1
ρi

√
-ci(l0 + 1)b2εHi + 2!i

2λmin(Qi)






!W̃ci
=





W̃ci :

∥∥W̃ci

∥∥ ≤

√√√√ -ci(l0 + 1)b2εHi + 2!i
-ciλmin

(
/

(
ψi,ψi,s

))
− =i

2






where =i = b2gib
2
σci
(1+ 1/γi)2.

This verifies that the UUB stability of the ith subsystem state
xi and the weight estimation error W̃ci based on the Lyapunov
extension theorem [59]. In addition, the ultimate bound of xi
(or W̃ci) is the same as the bound of !xi (or !W̃ci

).
Situation II: Events are triggered, that is, t = tk, k ∈ N. In

this situation, we take the difference of the Lyapunov function
candidate described as in (58) into account, that is,

4L1(tk) = V∗
i
(
x̄i,k+1

)
− V∗

i
(
x̄i,k

)
+ 4>i (70)

where

4>i = V∗
i
(
xi

(
t+k

))
− V∗

i (xi(tk))

+1
2
W̃T

ci

(
t+k

)
W̃ci

(
t+k

)
− 1

2
W̃T

ci(tk)W̃ci(tk) (71)

where xi(t+k ) = limς→0+ xi(tk + ς) and W̃ci(t
+
k ) =

limς→0+ W̃ci(tk + ς) with ς ∈ (0, tk+1 − tk).
As proved in Situation I, if either xi /∈ !xi or W̃ci /∈ !W̃ci

holds, then we have L̇1(t) < 0 for all t ∈ [tk, tk+1).
Specifically, for all t ∈ [tk, tk+1), it follows L̇2(t) < 0 [note:
L2(t) = L11(t) + L12(t) with L11(t) and L12(t) being defined
as (58)]. This indicates that L2(t) is strictly monotonically
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decreasing over the interval [tk, tk+1). Noting that tk < tk + ς

for all ς ∈ (0, tk+1 − tk), we thus have

L2(tk) > L2(tk + ς) ∀ς ∈ (0, tk+1 − tk). (72)

Taking the right limit with respect to ς on both sides
of (72) (i.e., ς → 0+) and according to the property of the
limit [60, Ch. 4], we have

L2(tk) ≥ lim
ς→0+

L2(tk + ς) = L2
(
t+k

)
. (73)

From (73), we obtain

V∗
i (xi(tk))+

1
2
W̃T

ci(tk)W̃ci(tk)

≥ V∗
i
(
xi

(
t+k

))
+ 1

2
W̃T

ci

(
t+k

)
W̃ci

(
t+k

)
.

Hence, 4>i defined as (71) satisfies 4>i ≤ 0. On the other
hand, since xi(t) is UUB in Situation I, we can conclude

V∗
i
(
x̄i,k+1

)
≤ V∗

i
(
x̄i,k

)
.

Thus, if xi /∈ !xi or W̃ci /∈ !W̃ci
holds, then 4L1(tk) in (70)

satisfies 4L1(tk) < 0. This demonstrates that xi and W̃ci are
uniformly ultimately bounded through the Lyapunov extension
theorem [59]. In addition, the ultimate bound of xi (or W̃ci) is
the same as the bound of !xi (or !W̃ci

). This completes the
proof.
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