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Abstract: The 2014-2016 West African outbreak of Ebola Virus Disease (EVD) was the largest and
most deadly to date. Contact tracing, following up those who may have been infected through
contact with an infected individual to prevent secondary spread, plays a vital role in controlling
such outbreaks. Our aim in this work was to mechanistically represent the contact tracing process
to illustrate potential areas of improvement in managing contact tracing efforts. We also explored
the role contact tracing played in eventually ending the outbreak. We present a system of ordinary
differential equations to model contact tracing in Sierra Leonne during the outbreak. Using data on
cumulative cases and deaths, we estimate most of the parameters in our model. We include the novel
features of counting the total number of people being traced and tying this directly to the number of
tracers doing this work. Our work highlights the importance of incorporating changing behavior
into one’s model as needed when indicated by the data and reported trends. Our results show that
a larger contact tracing program would have reduced the death toll of the outbreak. Counting the
total number of people being traced and including changes in behavior in our model led to better
understanding of disease management.

Keywords: ebola contact tracing; differential equations; parameter estimation

1. Introduction

In March 2014, the most deadly outbreak to date of Ebola virus disease (EVD), a hem-
orrhagic fever, began in Guinea and rapidly spread to Liberia, Nigeria, Senegal, and Sierra
Leone [1]. In October 2014, the World Health Organization (WHO) Ebola Response Team
estimated an overall case fatality rate of 70.8% and basic reproduction numbers () of
1.71 for Guinea, 1.83 for Libera and 1.38 for Sierra Leone [2]. Concern that Ebola might
spread globally via airline travel led to recommendations for health assessments at airports
in the affected countries [3]. A review and meta-analysis of 31 reports found that the
main methods of spread were direct contact with an infected individual and contact with
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deceased loved ones during traditional funeral practices [4]. In the 2014-2016 outbreak in
Sierra Leone, among individuals confirmed to have EVD, 47.9% reported that they had had
contact with someone suspected of having EVD, and 25.5% reported having attended a fu-
neral [5]. These transmission pathways are further indicated as important by mathematical
models and by statistical models [6-9]. Ebola can survive on some surfaces for up to 192 h
unless they are properly disinfected [10]. This might be one of the reasons why so many
health care workers became infected [11]. Outcomes for individuals who contracted EVD
during the outbreak varied based on location, time of infection, and whether the individual
was hospitalized [12].

Contact tracing, sometimes called partner notification, is often used in the fight against
the spread of HIV (Human Immunodeficiency Virus) [13-15]. Contact tracing for Ebola is
quite different, though, because it does not focus primarily on sexual partners but rather
on people who have been in some kind of close contact with the infected or deceased
individual. The goal of contact tracing is to identify secondary infections and to isolate
them in order to stop disease transmission. Throughout the outbreak, the Centers for
Disease Control and Prevention’s Morbidity and Mortality Weekly Report detailed the
progress of the disease as well as some information about contact tracing efforts. The ideal
process for contact tracing is now described, though in some cases it was altered due to
constraints of geography, resource limitations, or testing availability. Contacts were traced
for 21 days after their last known exposure to a confirmed, probable, or suspected case [16].
All contacts being traced were instructed to remain isolated from the general population.
If a contact showed symptoms of EVD, they were moved to a suspected case isolation ward
and tested. If the test was positive, that individual was moved to the confirmed case ward.
If the test was negative, the individual was sent home to be traced for another 21 days.

Webb and Browne and their collaborators built two models using data from Sierra
Leone and Guinea [17,18]. In their SEIR (Susceptible-Exposed—Infectious—Recovered)
model [17], they incorporated contact tracing by building separate compartments for
Exposed individuals and Infectious individuals being traced. Their model did not include
spread within hospitals and spread from contact with deceased individuals. They found
that increasing the fraction of cases reported and increasing the fraction of reported contacts
that were traced could bring Ry below 1. They also provided weekly point estimates
for the effective reproduction number for Guinea and Sierra Leone. In [18], they had a
system of ODEs and a corresponding stochastic model implementation, which included a
compartment for improperly buried bodies of infectious individuals, but did not include a
hospitalized compartment and did not include the workload of tracing persons who do
not become infected. In this work, we will use a similar, but more mechanistic approach of
counting persons being traced and accounting for the workload of the contact tracers. Our
model will include compartments for hospitalized individuals and for dead bodies from
improper burials.

Rivers et al. [19] built an SEIR model of the epidemic in Sierra Leone and Liberia
while it was ongoing and before it had reached a peak. They concluded that improved
contact tracing could have a large impact on number of cases but that even when combined
with two other interventions contact tracing was insufficient to bring the epidemic to
an end. They identified the duration of a traditional funeral in Sierra Leone as 4.5 days
and the length of the incubation period as 10 days—values which we use in our model.
Their work represented improved contact tracing implicitly by increasing the proportion
of infected cases that are diagnosed and hospitalized and decreasing the time it takes for
an infected individual to be hospitalized (from a baseline scenario), but our model will
illustrate contact tracing more explicitly by counting the number of persons being traced.
This counting will indicate the people resources needed for the tracing process, not just the
effects of the tracing.

In Sierra Leone, contact tracing was hampered by practical difficulties [20]. Olu et al.
analyzed contact tracing interview data in the western area districts of Sierra Leone [21],
and noted that contact tracing was hindered by under-reporting of exposure, political
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difficulties in hiring tracers, and an incomplete database for use of tracers. Contacts
being traced were supposed to be provided with basic needs, such as food and water,
but this often did not occur. Some contacts were difficult to trace because of the stigma
of being listed as a contact, and the average number of contacts per case was only 8.5
which was lower than in comparable situations. Olu et al. found that some people
gave false information to tracers, withheld information from tracers, and communities
tended not to trust tracers. This resulted in missed contacts. According to field staff
(personal communication, Centers for Disease Control and Prevention) [22], there were
difficulties in procuring additional people to perform contact tracing. In an urban area, a
tracer could trace about 15 individuals per day, while in a rural area, a tracer could trace
10 individuals per day. In January 2015, there were 1200 contact tracers in Western Area,
Sierra Leone. In neighboring Liberia, tracers faced difficulty finding contacts, difficulty
with completing all 21 days of tracing, and resistance of symptomatic contacts to report to
an Ebola Treatment Unit (ETU) [23]. Other challenges faced by contact tracers in Liberia
included contacts hiding from tracers, people failing to identify all contacts or lying about
their own exposure, resistance to in-home isolation, and difficulties in finding contact
tracers. Many of the same problems were encountered in Sierra Leone. A study by
Swanson et al. found that contact tracing in Liberia was performed for 26.7% of cases and
only identified 3.6% of new cases [24], suggesting room for improvement. Chowell and
Nishiura [25] illustrated the insights for disease management that can come from modeling
connected with Ebola epidemiological data and discussed the need for understanding the
effectiveness of contact tracing.

Our goal was to carefully and mechanistically represent the contact tracing process to
illustrate potential areas of improvement in managing contact tracing efforts. We explored
the role contact tracing played in eventually ending the outbreak. Our model uses a novel
feature, which is explicitly counting the people being traced and connecting the total
persons traced with the workload of contact tracer workers. We will focus our model on
Sierra Leone, for which we have data from the Sierra Leone Ministry of Health [26,27].
These data include cumulative confirmed cases and cumulative confirmed deaths as
reported online during the outbreak in the daily situation report. We will design a system
of Ordinary Differential Equations (ODEs) explicitly incorporating contact tracing, fit this
model to our data, and see what insights we might gain from this mechanistic approach.

2. Model

Our model is a compartmental model made up of a system of ODEs and follows an
SEIR approach, similar to [17-19,21,28]. In addition to the Susceptible, Exposed, Infected,
and Recovered classes, we also include a class (D) to account for the persons who have
died from Ebola in the community (i.e., having not been effectively isolated in a hospital
or by other means), because they are a significant source of infection due to traditional
funeral practices, such as hugging and kissing the body of a deceased loved one. We also
include a Hospitalized (H) class, in which individuals are assumed to be isolated and
not contribute to infection, and if they die their bodies are assumed to be disposed of
safely. We place no upper limit on the size of class H, which does not reflect the situation
during the outbreak where insufficient beds and staffing were a major limiting factor in
controlling the outbreak [29], but allows us to examine the operation of a contact tracing
system assuming hospital resources are readily available.

Our investigation of contact tracing begins with adding two new classes of individuals
being traced. Since exposure is a hidden trait, individuals being traced are either susceptible
or exposed. We created a class called F of susceptible individuals who are being traced but
will not become ill and a second class, Ef, for individuals being traced who are exposed
and will become infectious. Two events can lead to initiation of contact tracing: either an
individual enters the D class or an individual enters the H class. The contacts connected to
the individuals involved in either of these two events will be contacted each day for 21 days
by a contact tracer. We assume that individuals in the F class being traced will follow
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isolation guidelines to prevent them from becoming exposed. Individuals in Er are moved
to the hospital when they present symptoms. The function f alters the completion rate of
key contact tracing steps based on the amount of work to be done along with the number
of available contact tracing staff. There is a limited number of contact tracers, and each
contact tracer is able to trace a limited number of individuals at a time. To account for this,
we place a threshold on the total number of contacts that can be traced at a time. Part of the
work carried out by contact tracers is moving individuals to the hospital, and the remaining
effort is dedicated to visiting contacts who have not (yet) displayed any symptoms of Ebola.
In our flow diagram in Figure 1, one can see the terms with coefficient f representing the
effects of contact tracing. Our model with eight compartments is below:

5 — —5151—/325D—f%+ep (1)
S
/— [
F=fr —0F @)
E
E'= p151+ 25D — gf 1 — aE 3)
E
Ep = qfy —TEr (4)
I
I’:aE—fﬁ—'ﬂ—cpll—vI (5)
I
H/:rEF-O-fN-l-’)/I—(PzH—]lH (6)
R'= ¢l +¢poH @)
D' =vI—wD 8)

where N = S + E + I. The function f depends on F, Er, and I and gives the rate of finding
new contacts

. )

fo K1yl + vl if F+ Ep < (15)(1200)p
0 else

Here, 1 — p is the proportion of the total available contact tracing effort dedicated to
hospitalizing individuals identified as symptomatic. Note that the two events (movement
into H and D) can be seen in the function f with the rates v and vI. In the cutoff for
f, the number 15 is how many contacts on average one contact tracer can trace, and
the number 1200 is the maximum number of contact tracers that were employed in the
Western Area, Sierra Leone (containing the capital city of Freetown), during the 2014—
2016 epidemic [22]. Although the total number of contact tracers varied throughout
the outbreak, we decided to assume the maximum of 1200 was available throughout the
outbreak. The units of f are persons per day. The units of each compartment are individuals.
The units and interpretation of each parameter are listed in Table 1. Note that we do not
account for births or for deaths from any other cause than Ebola.
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Figure 1. Flow diagram with Susceptible-Exposed-Infectious—Recovered (SEIR) standard disease
compartments, F, Ep compartments due to contact tracing, and H, D for Hospitalized and Dead
bodies as appropriate for Ebola. The coefficient f represents transitions due to contact tracing. The
parameters and compartments are defined in Table 1.

Table 1. The parameters and compartment names in our model with their interpretations and units.

Symbol Interpretation Units
B1 transmission from interactions between I and S per person per time
B2 transmission from interactions between D and S per person per time
1/6 number of days a person is traced time
1/« length of the exposed period time
r rate of hospitalization for traced individuals per time
0% rate of hospitalization for untraced individuals per time
1 recovery rate for untreated per time
) recovery rate for treated per time
v death rate for untreated per time
U death rate for treated per time
rate at which dead bodies become non-infectious per time
K1 contacts recruited from hospitalization of one person unitless
L0} contacts recruited from funeral of one person unitless
q scaling factor for exposed contacts unitless
S susceptibles individuals
susceptibles being traced individuals
exposed individuals
Er exposed being traced individuals
I infectious individuals
H hospitalized individuals
D dead bodies individuals
R recovered individuals

People can move from Susceptible to Exposed by coming into contact with a member
of the Infectious class (term f1SI) or by coming into contact with an infectious dead body
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(term B, DS). People who are being traced move from Susceptible to F or from Exposed
to Er by coming into contact with a person who has just been hospitalized or attending a
funeral for somebody who has just died of Ebola (term f % = (r1y] + 1vI) %). This term
is scaled by N because the persons moving in tracing are moved proportionally to the ratio
of persons in their current class. For example, a person being traced from S moves to F at
a rate proportional to % = ﬁ A person is more likely to be in Er while being traced
than to be in F because of the contact they had with either an infected person or a dead
body. To account for this, we multiply the term f % by a number g > 1, a scaling factor to
increase the likelihood of Efs being traced relative to that of F’s being traced. People who
have completed their time being traced and have not developed symptoms move back into
S (term 6F). Once a person has been in the Exposed class for an average of 10 days, they
move to the Infectious class (term «E). A person in the class Er is moved to the hospital
once they develop symptoms (term rEr). If an individual being traced shows symptoms
the first time they are contacted, they are immediately moved to the hospital (term f %).
Some Infectious people decide to go to the hospital on their own (term ). Some Infectious
people manage to survive Ebola and move to R (term ¢ ) but others die of the disease
and we assume they are not safely buried and contribute to the class D (term vI). This is a
simplifying assumption, because, as the epidemic drew on, many people who died in the
community were safely buried. Some Hospitalized individuals will recover (term ¢, H) but
others will die and be safely buried (term yH). After some time has passed, an unsafely
buried dead body is no longer able to infect people (with decay term wD).

3. Reproductive Number

We will derive the basic reproductive number ¥ using the standard method of the
Next Generation Matrix [30-33]. We expect that near the disease-free equilibrium (DFE),
the number of infections will be small but non-zero. The population affected by the
outbreak consisted entirely of susceptibles at the beginning of the outbreak. Therefore, for
this analysis, we assume that f = x1yI + kvl

Now, Equation (7) implies

11" = —¢oH". (10)

Giving I* = H* = 0. From Equation (8), we get D* = 0. Since I* = 0, Equation (2)
gives F* = 0 and Equation (5) gives E* = 0. Since I* = H* = 0, Equation (6) gives E} = 0.
Since E* = I* = 0, we conclude that $* = N(0). We have the DFE: (5§%,0,0,0,0,0, R*,0).
However, we take R* = 0 for computation of the Next Generation Matrix. The diseased
classes here are: E, Er, I, H, and D, with corresponding vectors .# — ¥ forming the right
hand side of the system with only diseased classes,

B1SI+ B2SD aE + q(x17] + 1ov]) s
0 rEp —q(ryyI + szl)ﬁ
F = 0 , V= (4)1+U+’Y)I+(K171+szl)ﬁ—2aE
I
0 (¢2+ p)H — rEp — 1 — Lot
0 wD —vI

It is easy to show that our model satisfies the assumptions required for use of the Next
Generation Method. Note that our DFE is not unique and this is not required. We get the
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Jacobian matrices D.% (E, Eg, I, H,D) and D¥ (E, Er, I, H, D) at the DFE, (0,0,0,0,0) with
S = §*%,

0 0 B1S* 0 PBS*

00 0 0 0
D#(0,0,0,0,0) = 00 0 0 0 ,

0 0 0 0 0

00 0 0 0

x 0 0 0 0

0 r 0 0 0
D¥(0,0,0,0,0) = - 0 ¢r1+v+y 0 0

0 —r = p2+p 0

0 0 —v 0 w

Thus, the basic reproductive number we obtain as the spectral radius of the matrix
D.#(0,0,0,0,0)(D¥)~1(0,0,0,0,0) is

o ﬁls* 1/,325*
%0_4’1+V+7 w(pr+v+7) b

The first term describes the number of new infections that we expect per individual
from the I class, and the second term describes the number of new infections that we expect
per body in the D class.

4. Parameter Estimation

Our data are taken from the Sierra Leone Ministry of Health daily situation reports,
published on their website during the epidemic. We accessed these old web sites via the
Wayback Machine at https://web.archive.org/web/20150314233800/http:/health.gov.sl/
?page_id=583 (accessed on 28 February 2020). Data are listed in Appendix A. Situation
reports were available beginning at Day 77 with the final day being Day 504, but not
every intermediate day had a report. There were 343 total reports available for us to use.
From these reports, we used confirmed cases and deaths. There was one report we chose
to exclude because it listed more confirmed deaths than subsequent reports, making our
total number of data points 342.

We chose some parameters from the literature and estimated others using our data.

The parameters

a:0.1,l:4.5,1:21
w 0

were taken from the literature [16,19,21,28]. Our data indicated that the initial condition for
the H class was H(0) = 94 individuals. We assumed the initial condition for the recovered
class was R(0) = 0 individuals, and that the initial condition for S was roughly equivalent
to the population of Sierra Leone at the time, S(0) = 6,348,350 people. We estimated the
following parameters:

,81/ ﬁZI Y, K1, K2, Y, P,V Y, 4)]/ ¢2‘

We estimated the following initial conditions:

See Table 1 for parameter interpretations and units.

We estimated the above parameters in MATLAB using multistart to generate many
vectors of starting parameter estimates. Each vector was used to initialize a search in fmin-
con, which is a local minimizer. In MATLAB ode45 served as our ODE solver. Parameter
upper and lower bounds were based on ranges of parameters from the literature [19,21]
and from our data. We used papers [19,21] for some ranges because they rely on data
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504

1= (

i=77

from Sierra Leone. For example, parameters comparable to our 1, B2, ¢1, and ¢, were
found in Rivers [19]. Our lower limit for » was based on both papers [19,21]. There is also a
parameter in Olu comparable to our parameter x; [21]. For example, the upper bound for
Fy was taken as 2500 because our data indicated that in early days this was roughly the
number of contacts being traced. To estimate our cumulative simulated cases, we summed
over the entries into the H class, assuming that cases for people in the community were
unconfirmed. To estimate our cumulative simulated deaths, we summed over the deaths
from H and [ together. The data to be compared with simulation results are cumulative
confirmed cases and cumulative confirmed deaths. We minimized the following:

(CasesEstimuted (l) — Casespgty (l) )2 + (DeathsEstimuted (l) — Deathspy, (i))z ) (12)

(Casespyra(i))? (Deathspgg, (i))?

which is a type of sum of least squares for our model. Our data began at day 77 and
ended at day 504, with 342 total data points each for cases and deaths. Note that this does
not include every day between day 77 and day 504. The missing data are for days when
the Ministry of Health situation report was unavailable. The data from one day, when
cumulative deaths were higher than for following days, were excluded. You can see that
some days do not have data by the gaps in the red dots in Figure 2.

We had two primary goals during the process of parameter estimation:

1.  Fit the data with a low | value;
2. Ineach class, we wanted reasonable dynamics, meaning approximately the correct
magnitude in the size of each compartment.

9000 [ 4000 ¢

8000 - 3500 |

7000 -

3000 +

6000 -
0 9 2500
© 5000 - 3
(4] (]
-% 2 2000
— ©
g | =
2 4000 =
3 3
&) O 1500 +

3000 -

1000 F
2000 f
1000 - =00k
0 L L J U L 1 I}
0 200 400 600 0 200 400 600

Days Days

Figure 2. The value of the objective for this simulation was | = 0.0423.

We tried several ways of fitting the data. First, we estimated all the parameters listed
above, holding them all constant throughout the epidemic. This resulted in simulated
epidemic curves that did not flatten at the end, indicating the epidemic would have kept
going (see Appendix B). Then, we chose five parameters that seemed to vary during the
epidemic according to the literature and allowed those five parameters to switch from
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one value to a second value in the middle of the epidemic with a smoothed transition
between the two values. In order to achieve a good simulation of the data with reasonable
compartments, we modified the model by inserting the parameter 4. Then, we reestimated
the parameters using the varying approach for five of the parameters. This resulted in
good simulations of the data with reasonable compartments.

In order to achieve a simulated fit of the data, which would include a flattening of
the cumulative cases and cumulative deaths curves rather than simulations that indicated
the epidemic would not have ended, we decided to allow some parameters (specifically
B1,B2, 7, %1, and xp) to vary over the course of the epidemic. We chose these parameters
because we knew that people’s behavior changed during the epidemic. We smoothed
the transition from the first value of each of these parameters to the second value using
piecewise functions such as the one below for each of the parameters

6.68 x 108 t < 160
Bi(t) = 6.68x1078(1— 5190) 1 304 5 108 (%) 160 <t<190  (13)
3.94 x 1078 t > 190.

Chowell et al. [34] built a system of ODEs representing Ebola outbreaks in Congo
and Uganda and used a smooth transition between two transmission rates due to control
interventions (such as education and contact tracing followed by quarantine).

The literature supports our decision to allow B4, 82,7, x1 and x; to change over the
course of the epidemic. Senga et al. [28] analyzed data on probable and confirmed cases of
EVD and their contacts in Kenema district, Sierra Leone, taken from the national database.
They found that the number of contacts per case increased over time. The low number
of contacts per case reported early in the epidemic was much lower than those reported
in other countries, which they concluded meant that the contact listings were incomplete.
Olu et al. found that during the months of June 2014 to November 2014 the average number
of contacts per case was nine, and that during the months of December 2014 to May 2015,
the average number of contacts per case increased to 16 [21]. Lokuge et al. reported that,
later in the epidemic, people were more likely to come to the hospital of their own volition,
less likely to report funeral contact, and that contact tracing increased in efficacy [29]. These
findings from the literature indicate it is reasonable to conclude that values for 1, B2, 7, 11
and x, changed during the course of the epidemic due to changes in behavior and the level
of education in the population about EVD.

However, we were unable to generate reasonable sizes for compartment Er. Our
simulations were showing very few people passing through Er, which is not reflective
of the success that contact tracing achieved in locating exposed individuals during the
outbreak. We decided to modify the model by adding a multiplier, g, in front of the f £
term. We tried several values and found that a value of 4 = 100 generated reasonable sizes
for compartment Er. This multiplier indicates that people who were being traced had had
contact with an individual who was infectious or with a dead body, so they were more
likely to have been exposed to Ebola than a member of the population who had not had
such contact. These changes resulted in the simulations shown in Figures 2—4 which were
generated using the parameters found in Table 2.

Figure 3 shows how many cases total were identified as part of the contact tracing
effort. Near the end of the outbreak, this number reaches about 1100, which represents
more than a tenth of all confirmed cases. This demonstrates the importance of successful
contact tracing. The peak of contact tracing numbers corresponds to the slowing of the
increase in cumulative cases, around day 200. This indicates that contact tracing efforts
contributed to ending the epidemic.
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Figure 3. Dynamics of class F in the upper left, class Er in the upper right, their sum on the bottom left, and the integral of
those leaving Er to be hospitalized on the bottom right. These classes correspond to the parameters from Table 2 and the

data simulations from Figure 2.

Table 2. Values for parameters, with five parameters having early and late values. Parameters with *
were taken from the data or the literature. Others were estimated.

Parameter Value Parameter Value
B early 1.00 x 10~° r 0.056
B1 late 1.00 x 10~° 0.90
Ba early 1.00 x 107° v 0.024
B2 late 1.00 x 107 U 0.010
7y early 0.41 1 0.020
v late . 2 .

1 0.062 ¢ 0.028
k1 early 29.74 F(0) 2451.10
1 late 44.93 E(0) 32.04
Ky early 44.62 Er(0) 124.88
Ky late 16.61 1(0) 71.76

D(0) 6.09
o 0.1 1/w* 4.5
H(0)* 94 S(0)* 6,348,350
R(0)* 0 1/6* 21
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Note that in Figure 4, the increase later in the epidemic of S results from people
returning to S from F after being traced for 21 days and showing no symptoms. In Figure 4,
the peak in E occurs at day 164, the peak in H about two weeks later on day 176, the peak
in I about two weeks after that on day 192, and then the peak in D on day 197. It is not
surprising that the peak in E precedes the other peaks, but it is surprising that the peak in
D is the last peak to occur. This indicates that there may have been unsafely buried bodies

later in the epidemic, but that fewer people were catching Ebola from funeral interactions
despite this increase in funerals.
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Figure 4. The graphs above correspond to the parameters from Table 2 and the data simulations from Figure 2. Note that
the scales are all different.

In Table 2, there is no difference between 1 early and B; late. However, 5, changes
from an early value of 1.00 * 107 to a much lower later value of 1.00 * 10~7. These
parameter values indicate that while the rate of transmission from interactions between S
and I remained about the same throughout the epidemic, the rate of transmission from
D to S decreased dramatically as people became more educated about Ebola. Oddly,
v = 0.41 decreases to a later value of v = 0.062, which does not agree with accounts from
the literature that people were more likely to come to the hospital once they developed
symptoms later in the epidemic than they were earlier in the epidemic. The value of
k1 = 29.74 early increases to k1 = 44.93 late, corresponding to reports from the literature
that people were more likely to report more complete lists of contacts later in the epidemic.
However, kp = 44.62 early decreased to x, = 16.61 late, adding to the conclusion that
people were less likely to attend traditional funerals later in the epidemic. The changes
in these parameters during the outbreak might be caused by a combination of factors,
including educating the public about Ebola [35], increases in available beds at Ebola
Treatment Centers, and more effective implementation of contact tracing.
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The value of r = 0.056 means that contacts who were infected took an average of
18 days to show symptoms. This value for r is probably unrealistically small, as it should
likely be closer to « = 0.1. The parameter v was slightly larger than y, since those who
were treated had slightly lower chance of dying from Ebola. Similarly, ¢, was larger than
¢1 because those who were treated were more likely to recover from the disease.

5. Importance of Contact Tracing

Figure 5 shows potential trajectories for epidemics with different numbers of contact
tracer workers available, either more or fewer than were actually available during the
epidemic. We varied the number of these workers from 0 to 2000, and note that 1200 is the
corresponding number in our model. Without contact tracing at all, the highest blue curve,
there would have been thousands more cases and deaths. Even a much smaller workforce
than existed would have made a dramatic improvement on the trajectory of the epidemic
from what would have happened without contact tracing. Once the number of contact
tracers reaches about 1000, each increase in the number of workers has much less dramatic
effects. More tracers still would have been better, but the difference in trajectories is much
less dramatic than the difference between 0 tracers and 200 tracers.
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Figure 5. Effect of varying the number of contact tracers available from 0 to 2000, with 1200 as the corresponding number in

our model.

The number of persons traced from each hospitalization (x7) and the number from each
funeral (k) were estimated as 7 = 29.7 early, k1 = 44.9 late, x; = 44.6 early, and x, = 16.6
late in our model. We vary those numbers from 5 to 50 to see the effect on the epidemic.
If we hold each of the contact tracing parameters «; and x constant at the values in Figure 6,
the heat map shows the total number of deaths by day 504 of the outbreak. Increasing each
of the two parameters reduces the total number of deaths, but #; has a much more dramatic



Mathematics 2021, 9, 608

13 of 21

kapp32

50

45

40

35

25

20

15

10

effect than x,. This seems to indicate that more deaths resulted from people having contact
with infected individuals than resulted from people having contact with dead bodies.
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Figure 6. Effect of varying contact tracing parameters x; and «x; on the total number of deaths by day 504 of the epidemic.

6. Discussion and Conclusions

Better understanding of the mechanisms of contact tracing is important for disease
management. Our model is novel in its inclusion of explicit contact tracing of both Suscep-
tible and Exposed individuals, as well as including the limitation on the number of total
contact tracers available for the work. We counted the total number of people being traced
and tracked the length of time they were being traced. Li et al. analyzed 37 compartmental
models of Ebola [9], and they identified models that explicitly included classes of hospital-
ized individuals and of funerals as more useful to management decisions, because they
explicitly included targeted interventions. For this reason, we explicitly included contact
tracing in our model, including the logistical limitations resulting from limited numbers of
contact tracers, because contact tracing is another targeted intervention.

We found that better matching of the simulations with the data was possible when
we allowed five parameters to change over the course of the epidemic: 81, B2, ¥, x1 and «».
These parameters are the per capita rate of transmission from the Infectious compartment
to the Susceptible compartment, the per capita rate of transmission from the Dead Body
compartment to the Susceptible compartment, the rate of transition from the Infectious
compartment to the Hospital compartment, the number of contacts per person generated
from a hospitalized case, and the number of contacts per person generated from a funeral.
These parameters changed during the outbreak because more hospitals were available
as the outbreak went on, people became more educated about the disease, and contact
tracing became more effective. This work illustrates the value of changing parameters due
to known behavior changes.

Early on in the epidemic, people were less likely to report as many contacts as they did
later in the epidemic, as demonstrated by the increase from x; = 29.74 early to x; = 44.93
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late. Later in the epidemic, people were less likely to attend traditional funerals, as seen
in the decrease from x; = 44.62 early to x; = 16.61 late. The transmission parameter 3,
remained unchanged, while 8, decreased from 1.00 x 10~ early to 1.00 x 10~ late.

There was a period when the contact tracing infrastructure was overwhelmed by
cases, as seen in the plateaus in Figure 4. More contact tracers available to work would
have prevented this plateau, but the number of contact tracers available was sufficient to
prevent many more cases and deaths from occurring. Increasing either x; or x, would have
decreased the number of deaths that occurred, but x; had a stronger effect than x;. Overall
this work makes a strong contribution to understanding the effects of contact tracing and
changes in behavior on disease management.

The results of this paper might be improved if we had more details about the number
of contact tracers employed and about the number of individuals being traced through
time. More knowledge about the change of behavior during this outbreak would have
been useful. One limitation of this model is that we assumed there was no within-hospital
transmission, while we know this occurred sometimes.

The practical utility of this model is its use to disease management. One conclusion
of our model is that behavior change over the course of an outbreak significantly impacts
dynamics and should be considered when formulating models and management responses.
It could be interesting to retrospectively analyze other past outbreaks allowing for time-
dependent parameters. One could try to connect behavior change with specific information
campaigns. Figure 5 shows clearly how a linear decrease in the amount of adequate contact
tracing during an outbreak can result in a nonlinear increase in the number of cases and
deaths. As a result, our time-dependent modeling approach can be used in future outbreaks
to assess the amount of contact tracing that should be conducted in order to limit the total
number of cases and deaths.

In the future, we plan to further explore the role of contact tracing in epidemics. To
add international spread features, one could consider mobility data [36]. We plan to build
a model with a more realistic form to the function f which represents how contact tracing
capacity grows in response to an epidemic. We will also explore the role contact tracing plays
in outbreaks of other diseases, including diseases with a latent period such as COVID-19.
The mechanisms of contact tracing procedures for other diseases might be quite different
and require the development of disease-specific models. Optimization techniques (such as
optimal control) could be used to design management strategies for contact tracing.
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Appendix A. Data

Date Day | Cumulative | Cumulative | Date Day | Cumulative | Cumulative
Cases Deaths Cases Deaths
12-Aug-14 | 77 | 717 264 11-Feb-15 | 260 | 8183 3009
13-Aug-14 | 78 | 733 273 12-Feb-15 | 261 | 8193 3018
14-Aug-14 | 79 | 747 280 13-Feb-15 | 262 | 8208 3030
15-Aug-14 | 80 | 757 287 14-Feb-15 | 263 | 8213 3036
16-Aug-14 | 81 | 775 297 15-Feb-15 | 264 | 8226 3043
17-Aug-14 | 82 | 778 305 16-Feb-15 | 265 | 8230 3050
18-Aug-14 | 83 | 783 312 17-Feb-15 | 266 | 8237 3058
19-Aug-14 | 84 | 804 320 18-Feb-15 | 267 | 8239 3063
20-Aug-14 | 85 | 813 322 19-Feb-15 | 268 | 8244 3066
21-Aug-14 | 86 | 823 329 20-Feb-15 | 269 | 8260 3079
22-Aug-14 | 87 | 881 333 21-Feb-15 | 270 | 8275 3088
23-Aug-14 | 88 | 904 336 22-Feb-15 | 271 | 8289 3095
24-Aug-14 | 89 | 935 341 23-Feb-15 | 272 | 8301 3103
25-Aug-14 | 90 | 955 355 24-Feb-15 | 273 | 8308 3113
26-Aug-14 | 91 | 961 363 25-Feb-15 | 274 | 8320 3124
27-Aug-14 | 92 | 988 372 27-Feb-15 | 276 | 8349 3151
28-Aug-14 | 93 | 1018 377 28-Feb-15 | 277 | 8353 3164
29-Aug-14 | 94 | 1033 383 1-Mar-15 | 278 | 8370 3180
30-Aug-14 | 95 | 1077 387 2-Mar-15 | 279 | 8374 3188
31-Aug-14 | 96 | 1106 388 3-Mar-15 | 280 | 8383 3199
1-Sep-14 | 97 | 1115 396 4-Mar-15 | 281 | 8389 3210
2-Sep-14 98 | 1146 399 5-Mar-15 282 | 8398 3222
3-Sep-14 99 | 1174 404 7-Mar-15 284 | 8416 3245
5-Sep-14 101 | 1234 413 8-Mar-15 285 | 8428 3263
6-Sep-14 102 | 1276 426 9-Mar-15 286 | 8444 3279
7-Sep-14 | 103 | 1287 428 10-Mar-15 | 287 | 8463 3289
8-Sep-14 | 104 | 1305 433 11-Mar-15 | 288 | 8469 3297
9-Sep-14 | 105 | 1341 436 12-Mar-15 | 289 | 8472 3303
10-Sep-14 | 106 | 1367 445 13-Mar-15 | 290 | 8476 3312
11-Sep-14 | 107 | 1401 450 15-Mar-15 | 292 | 8487 3325
12-Sep-14 | 108 | 1432 459 16-Mar-15 | 293 | 8501 3327
13-Sep-14 | 109 | 1464 463 17-Mar-15 | 294 | 8502 3336
14-Sep-14 | 110 | 1513 468 19-Mar-15 | 296 | 8508 3360
15-Sep-14 | 111 | 1542 474 20-Mar-15 | 297 | 8515 3370
16-Sep-14 | 112 | 1571 483 21-Mar-15 | 298 | 8518 3376
17-Sep-14 | 113 | 1585 489 22-Mar-15 | 299 | 8520 3381
18-Sep-14 | 114 | 1618 495 23-Mar-15 | 300 | 8528 3393
19-Sep-14 | 115 | 1640 497 24-Mar-15 | 301 | 8529 3398
20-Sep-14 | 116 | 1696 501 25-Mar-15 | 302 | 8532 3407
21-Sep-14 | 117 | 1745 502 26-Mar-15 | 303 | 8535 3413
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22-Sep-14 | 118 | 1775 506 27-Mar-15 | 304 | 8539 3421
23-Sep-14 | 119 | 1816 509 29-Mar-15 | 306 | 8545 3433
24-Sep-14 | 120 | 1885 509 31-Mar-15 | 308 | 8547 3444
25-Sep-14 | 121 | 1920 513 1-Apr-15 309 | 8549 3448
26-Sep-14 | 122 | 1944 513 2-Apr-15 310 | 8549 3454
27-Sep-14 | 123 | 2000 518 3-Apr-15 311 | 8551 3459
28-Sep-14 | 124 | 2090 522 4-Apr-15 312 | 8555 3461
29-Sep-14 | 125 | 2155 527 5-Apr-15 313 | 8555 3466
30-Sep-14 | 126 | 2184 550 6-Apr-15 314 | 8558 3472
1-Oct-14 | 127 | 2212 532 7-Apr-15 315 | 8558 3475
3-Oct-14 | 129 | 2276 538 8-Apr-15 316 | 8559 3476
4-Oct-14 | 130 | 2411 678 9-Apr-15 317 | 8560 3481
5-Oct-14 | 131 | 2459 699 10-Apr-15 | 318 | 8560 3488
6-Oct-14 | 132 | 2504 703 11-Apr-15 | 319 | 8561 3490
7-Oct-14 | 133 | 2585 708 12-Apr-15 | 320 | 8563 3491
8-Oct-14 | 134 | 2593 713 13-Apr-15 | 321 | 8565 3496
10-Oct-14 | 136 | 2698 904 14-Apr-15 | 322 | 8566 3499
11-Oct-14 | 137 | 2792 921 15-Apr-15 | 323 | 8569 3499
12-Oct-14 | 138 | 2849 926 16-Apr-15 | 324 | 8571 3503
13-Oct-14 | 139 | 2894 931 17-Apr-15 | 325 | 8572 3506
14-Oct-14 | 140 | 2977 932 18-Apr-15 | 326 | 8573 3508
15-Oct-14 | 141 | 3003 943 19-Apr-15 | 327 | 8573 3511
16-Oct-14 | 142 | 3058 947 20-Apr-15 | 328 | 8580 3516
17-Oct-14 | 143 | 3097 954 21-Apr-15 | 329 | 8581 3519
18-Oct-14 | 144 | 3154 973 22-Apr-15 | 330 | 8584 3520
19-Oct-14 | 145 | 3223 986 23-Apr-15 | 331 | 8585 3526
20-Oct-14 | 146 | 3295 997 24-Apr-15 | 332 | 8585 3526
21-Oct-14 | 147 | 3345 1001 25-Apr-15 | 333 | 8585 3529
22-Oct-14 | 148 | 3389 1008 26-Apr-15 | 334 | 8586 3533
23-Oct-14 | 149 | 3449 1012 27-Apr-15 | 335 | 8587 3534
24-Oct-14 | 150 | 3490 1026 29-Apr-15 | 337 | 8590 3535
25-Oct-14 | 151 | 3560 1037 30-Apr-15 | 338 | 8591 3535
26-Oct-14 | 152 | 3622 1044 2-May-15 | 340 | 8592 3536
27-Oct-14 | 153 | 3713 1049 3-May-15 | 341 | 8595 3537
28-Oct-14 | 154 | 3760 1057 4-May-15 | 342 | 8597 3538
30-Oct-14 | 156 | 3841 1064 5-May-15 | 343 | 8597 3538
31-Oct-14 | 157 | 3936 1070 6-May-15 | 344 | 8597 3538
1-Nov-14 | 158 | 3996 1077 7-May-15 | 345 | 8597 3538
2-Nov-14 | 159 | 4057 1085 8-May-15 | 346 | 8597 3538
6-Nov-14 | 163 | 4232 1114 9-May-15 | 347 | 8597 3538
7-Nov-14 | 164 | 4277 1126 10-May-15 | 348 | 8597 3538
8-Nov-14 | 165 | 4433 1133 12-May-15 | 350 | 8597 3538
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10-Nov-14 | 167 | 4617 1149 13-May-15 | 351 | 8598 3538
12-Nov-14 | 169 | 4744 1169 15-May-15 | 353 | 8601 3539
13-Nov-14 | 170 | 4828 1180 17-May-15 | 355 | 8605 3541
14-Nov-14 | 171 | 4913 1196 18-May-15 | 356 | 8606 3541
15-Nov-14 | 172 | 4967 1206 19-May-15 | 357 | 8607 3541
16-Nov-14 | 173 | 5056 1223 20-May-15 | 358 | 8608 3541
17-Nov-14 | 174 | 5109 1233 21-May-15 | 359 | 8608 3542
18-Nov-14 | 175 | 5152 1240 22-May-15 | 360 | 8608 3542
19-Nov-14 | 176 | 5210 1249 23-May-15 | 361 | 8608 3542
20-Nov-14 | 177 | 5304 1282 24-May-15 | 362 | 8608 3542
21-Nov-14 | 178 | 5355 1303 25-May-15 | 363 | 8608 3543
22-Nov-14 | 179 | 5402 1333 26-May-15 | 364 | 8611 3545
23-Nov-14 | 180 | 5441 1364 27-May-15 | 365 | 8614 3545
24-Nov-14 | 181 | 5524 1397 28-May-15 | 366 | 8616 3545
25-Nov-14 | 182 | 5595 1429 29-May-15 | 367 | 8617 3545
26-Nov-14 | 183 | 5683 1464 30-May-15 | 368 | 8618 3545
27-Nov-14 | 184 | 5767 1481 31-May-15 | 369 | 8619 3546
28-Nov-14 | 185 | 5831 1496 1-Jun-15 370 | 8620 3546
29-Nov-14 | 186 | 5906 1522 2-Jun-15 371 | 8623 3546
30-Nov-14 | 187 | 5978 1549 3-Jun-15 372 | 8624 3546
1-Dec-14 | 188 | 6039 1575 4-Jun-15 373 | 8626 3546
2-Dec-14 | 189 | 6132 1601 5-Jun-15 374 | 8628 3547
4-Dec-14 | 191 | 6238 1648 6-Jun-15 375 | 8630 3547
5-Dec-14 | 192 | 6292 1669 8-Jun-15 377 | 8636 3549
6-Dec-14 | 193 | 6317 1708 11-Jun-15 | 380 | 8647 3551
7-Dec-14 | 194 | 6375 1734 1-Jul-15 400 | 8671 3569
8-Dec-14 | 195 | 6420 1786 3-Jul-15 402 | 8672 3572
9-Dec-14 | 196 | 6457 1823 4-Jul-15 403 | 8673 3574
10-Dec-14 | 197 | 6497 1865 5-Jul-15 404 | 8674 3574
11-Dec-14 | 198 | 6557 1910 6-Jul-15 405 | 8674 3574
12-Dec-14 | 199 | 6592 1952 7-Jul-15 406 | 8675 3575
13-Dec-14 | 200 | 6638 1999 9-Jul-15 408 | 8679 3575
14-Dec-14 | 201 | 6702 2051 10-Jul-15 | 409 | 8686 3578
15-Dec-14 | 202 | 6757 2076 11-Jul-15 | 410 | 8687 3580
16-Dec-14 | 203 | 6808 2095 12-Jul-15 | 411 | 8688 3581
17-Dec-14 | 204 | 6856 2111 13-Jul-15 | 412 | 8688 3582
18-Dec-14 | 205 | 6903 2136 15-Jul-15 | 414 | 8690 3582
19-Dec-14 | 206 | 6932 2163 16-Jul-15 | 415 | 8690 3582
20-Dec-14 | 207 | 6975 2190 17-Jul-15 | 416 | 8691 3582
21-Dec-14 | 208 | 7017 2216 18-Jul-15 | 417 | 8692 3583
22-Dec-14 | 209 | 7075 2235 19-Jul-15 | 418 | 8692 3583
23-Dec-14 | 210 | 7130 2273 20-Jul-15 | 419 | 8694 3583
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24-Dec-14 | 211 | 7160 2289 21-Jul-15 | 420 | 8694 3583
25-Dec-14 | 212 | 7220 2319 23-Jul-15 | 422 | 8694 3583
26-Dec-14 | 213 | 7275 2345 24-Jul-15 | 423 | 8695 3584
27-Dec-14 | 214 | 7326 2366 25-Jul-15 | 424 | 8695 3585
28-Dec-14 | 215 | 7354 2392 27-Jul-15 | 426 | 8695 3585
29-Dec-14 | 216 | 7419 2410 29-Jul-15 | 428 | 8695 3585
30-Dec-14 | 217 | 7458 2435 31-Jul-15 | 430 | 8694 3585
31-Dec-14 | 218 | 7476 2461 1-Aug-15 | 431 | 8695 3585
1-Jan-15 219 | 7505 2501 2-Aug-15 | 432 | 8695 3585
2-Jan-15 220 | 7542 2524 3-Aug-15 | 433 | 8695 3585
3-Jan-15 221 | 7572 2550 4-Aug-15 | 434 | 8696 3585
4-Jan-15 222 | 7606 2578 5-Aug-15 | 435 | 8696 3585
5-Jan-15 223 | 7641 2607 7-Aug-15 | 437 | 8697 3585
6-Jan-15 224 | 7665 2612 9-Aug-15 | 439 | 8697 3585
7-Jan-15 225 | 7696 2630 11-Aug-15 | 441 | 8697 3585
8-Jan-15 226 | 7718 2650 12-Aug-15 | 442 | 8697 3586
9-Jan-15 227 | 7749 2663 13-Aug-15 | 443 | 8697 3586
10-Jan-15 | 228 | 7777 2684 14-Aug-15 | 444 | 8697 3586
11-Jan-15 | 229 | 7797 2697 15-Aug-15 | 445 | 8697 3586
12-Jan-15 | 230 | 7816 2702 16-Aug-15 | 446 | 8697 3586
13-Jan-15 | 231 | 7839 2718 17-Aug-15 | 447 | 8697 3586
14-Jan-15 | 232 | 7855 2732 18-Aug-15 | 448 | 8697 3586
15-Jan-15 | 233 | 7861 2742 19-Aug-15 | 449 | 8697 3586
16-Jan-15 | 234 | 7885 2760 20-Aug-15 | 450 | 8697 3586
17-Jan-15 | 235 | 7897 2767 23-Aug-15 | 453 | 8697 3586
18-Jan-15 | 236 | 7917 2780 24-Aug-15 | 454 | 8697 3586
19-Jan-15 | 237 | 7923 2788 25-Aug-15 | 455 | 8697 3586
20-Jan-15 | 238 | 7935 2794 26-Aug-15 | 456 | 8697 3586
21-Jan-15 | 239 | 7944 2802 27-Aug-15 | 457 | 8697 3586
22-Jan-15 | 240 | 7958 2814 31-Aug-15 | 461 | 8698 3587
23-Jan-15 | 241 | 7966 2822 2-Sep-15 463 | 8698 3587
24-Jan-15 | 242 | 7977 2830 3-Sep-15 464 | 8698 3587
25-Jan-15 | 243 | 7982 2834 7-Sep-15 468 | 8702 3587
26-Jan-15 | 244 | 7991 2842 12-Sep-15 | 473 | 8703 3587
27-Jan-15 | 245 | 8003 2851 13-Sep-15 | 474 | 8704 3587
28-Jan-15 | 246 | 8015 2859 16-Sep-15 | 477 | 8704 3589
29-Jan-15 | 247 | 8033 2873 17-Sep-15 | 478 | 8704 3589
31-Jan-15 | 249 | 8056 2909 19-Sep-15 | 480 | 8704 3589
1-Feb-15 | 250 | 8073 29011 20-Sep-15 | 481 | 8704 3589
2-Feb-15 | 251 | 8077 2921 21-Sep-15 | 482 | 8704 3589
3-Feb-15 | 252 | 8098 2936 25-Sep-15 | 486 | 8704 3589
4-Feb-15 | 253 | 8111 2949 26-Sep-15 | 487 | 8704 3589
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5-Feb-15 | 254 | 8117 2950 29-Sep-15 | 490 | 8704 3589
6-Feb-15 | 255 | 8124 2959 4-Oct-15 495 | 8704 3589
7-Feb-15 | 256 | 8136 2971 5-Oct-15 496 | 8704 3589
8-Feb-15 | 257 | 8149 2978 6-Oct-15 497 | 8704 3589
10-Feb-15 | 259 | 8169 2998 13-Oct-15 | 504 | 8704 3589

Appendix B. Initial Fitting Results

Note that in Figure A1, the curves are still increasing at day 500, indicating that the
epidemic would have continued.
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Figure A1l. First attempt match to the data of cumulative cases and cumulative deaths with all
parameters constant. The value of | is 0.1963.
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