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Abstract: The 2014–2016 West African outbreak of Ebola Virus Disease (EVD) was the largest and
most deadly to date. Contact tracing, following up those who may have been infected through
contact with an infected individual to prevent secondary spread, plays a vital role in controlling
such outbreaks. Our aim in this work was to mechanistically represent the contact tracing process
to illustrate potential areas of improvement in managing contact tracing efforts. We also explored
the role contact tracing played in eventually ending the outbreak. We present a system of ordinary
differential equations to model contact tracing in Sierra Leonne during the outbreak. Using data on
cumulative cases and deaths, we estimate most of the parameters in our model. We include the novel
features of counting the total number of people being traced and tying this directly to the number of
tracers doing this work. Our work highlights the importance of incorporating changing behavior
into one’s model as needed when indicated by the data and reported trends. Our results show that
a larger contact tracing program would have reduced the death toll of the outbreak. Counting the
total number of people being traced and including changes in behavior in our model led to better
understanding of disease management.

Keywords: ebola contact tracing; differential equations; parameter estimation

1. Introduction

In March 2014, the most deadly outbreak to date of Ebola virus disease (EVD), a hem-
orrhagic fever, began in Guinea and rapidly spread to Liberia, Nigeria, Senegal, and Sierra
Leone [1]. In October 2014, the World Health Organization (WHO) Ebola Response Team
estimated an overall case fatality rate of 70.8% and basic reproduction numbers (<0) of
1.71 for Guinea, 1.83 for Libera and 1.38 for Sierra Leone [2]. Concern that Ebola might
spread globally via airline travel led to recommendations for health assessments at airports
in the affected countries [3]. A review and meta-analysis of 31 reports found that the
main methods of spread were direct contact with an infected individual and contact with
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deceased loved ones during traditional funeral practices [4]. In the 2014–2016 outbreak in
Sierra Leone, among individuals confirmed to have EVD, 47.9% reported that they had had
contact with someone suspected of having EVD, and 25.5% reported having attended a fu-
neral [5]. These transmission pathways are further indicated as important by mathematical
models and by statistical models [6–9]. Ebola can survive on some surfaces for up to 192 h
unless they are properly disinfected [10]. This might be one of the reasons why so many
health care workers became infected [11]. Outcomes for individuals who contracted EVD
during the outbreak varied based on location, time of infection, and whether the individual
was hospitalized [12].

Contact tracing, sometimes called partner notification, is often used in the fight against
the spread of HIV (Human Immunodeficiency Virus) [13–15]. Contact tracing for Ebola is
quite different, though, because it does not focus primarily on sexual partners but rather
on people who have been in some kind of close contact with the infected or deceased
individual. The goal of contact tracing is to identify secondary infections and to isolate
them in order to stop disease transmission. Throughout the outbreak, the Centers for
Disease Control and Prevention’s Morbidity and Mortality Weekly Report detailed the
progress of the disease as well as some information about contact tracing efforts. The ideal
process for contact tracing is now described, though in some cases it was altered due to
constraints of geography, resource limitations, or testing availability. Contacts were traced
for 21 days after their last known exposure to a confirmed, probable, or suspected case [16].
All contacts being traced were instructed to remain isolated from the general population.
If a contact showed symptoms of EVD, they were moved to a suspected case isolation ward
and tested. If the test was positive, that individual was moved to the confirmed case ward.
If the test was negative, the individual was sent home to be traced for another 21 days.

Webb and Browne and their collaborators built two models using data from Sierra
Leone and Guinea [17,18]. In their SEIR (Susceptible–Exposed–Infectious–Recovered)
model [17], they incorporated contact tracing by building separate compartments for
Exposed individuals and Infectious individuals being traced. Their model did not include
spread within hospitals and spread from contact with deceased individuals. They found
that increasing the fraction of cases reported and increasing the fraction of reported contacts
that were traced could bring <0 below 1. They also provided weekly point estimates
for the effective reproduction number for Guinea and Sierra Leone. In [18], they had a
system of ODEs and a corresponding stochastic model implementation, which included a
compartment for improperly buried bodies of infectious individuals, but did not include a
hospitalized compartment and did not include the workload of tracing persons who do
not become infected. In this work, we will use a similar, but more mechanistic approach of
counting persons being traced and accounting for the workload of the contact tracers. Our
model will include compartments for hospitalized individuals and for dead bodies from
improper burials.

Rivers et al. [19] built an SEIR model of the epidemic in Sierra Leone and Liberia
while it was ongoing and before it had reached a peak. They concluded that improved
contact tracing could have a large impact on number of cases but that even when combined
with two other interventions contact tracing was insufficient to bring the epidemic to
an end. They identified the duration of a traditional funeral in Sierra Leone as 4.5 days
and the length of the incubation period as 10 days—values which we use in our model.
Their work represented improved contact tracing implicitly by increasing the proportion
of infected cases that are diagnosed and hospitalized and decreasing the time it takes for
an infected individual to be hospitalized (from a baseline scenario), but our model will
illustrate contact tracing more explicitly by counting the number of persons being traced.
This counting will indicate the people resources needed for the tracing process, not just the
effects of the tracing.

In Sierra Leone, contact tracing was hampered by practical difficulties [20]. Olu et al.
analyzed contact tracing interview data in the western area districts of Sierra Leone [21],
and noted that contact tracing was hindered by under-reporting of exposure, political
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difficulties in hiring tracers, and an incomplete database for use of tracers. Contacts
being traced were supposed to be provided with basic needs, such as food and water,
but this often did not occur. Some contacts were difficult to trace because of the stigma
of being listed as a contact, and the average number of contacts per case was only 8.5
which was lower than in comparable situations. Olu et al. found that some people
gave false information to tracers, withheld information from tracers, and communities
tended not to trust tracers. This resulted in missed contacts. According to field staff
(personal communication, Centers for Disease Control and Prevention) [22], there were
difficulties in procuring additional people to perform contact tracing. In an urban area, a
tracer could trace about 15 individuals per day, while in a rural area, a tracer could trace
10 individuals per day. In January 2015, there were 1200 contact tracers in Western Area,
Sierra Leone. In neighboring Liberia, tracers faced difficulty finding contacts, difficulty
with completing all 21 days of tracing, and resistance of symptomatic contacts to report to
an Ebola Treatment Unit (ETU) [23]. Other challenges faced by contact tracers in Liberia
included contacts hiding from tracers, people failing to identify all contacts or lying about
their own exposure, resistance to in-home isolation, and difficulties in finding contact
tracers. Many of the same problems were encountered in Sierra Leone. A study by
Swanson et al. found that contact tracing in Liberia was performed for 26.7% of cases and
only identified 3.6% of new cases [24], suggesting room for improvement. Chowell and
Nishiura [25] illustrated the insights for disease management that can come from modeling
connected with Ebola epidemiological data and discussed the need for understanding the
effectiveness of contact tracing.

Our goal was to carefully and mechanistically represent the contact tracing process to
illustrate potential areas of improvement in managing contact tracing efforts. We explored
the role contact tracing played in eventually ending the outbreak. Our model uses a novel
feature, which is explicitly counting the people being traced and connecting the total
persons traced with the workload of contact tracer workers. We will focus our model on
Sierra Leone, for which we have data from the Sierra Leone Ministry of Health [26,27].
These data include cumulative confirmed cases and cumulative confirmed deaths as
reported online during the outbreak in the daily situation report. We will design a system
of Ordinary Differential Equations (ODEs) explicitly incorporating contact tracing, fit this
model to our data, and see what insights we might gain from this mechanistic approach.

2. Model

Our model is a compartmental model made up of a system of ODEs and follows an
SEIR approach, similar to [17–19,21,28]. In addition to the Susceptible, Exposed, Infected,
and Recovered classes, we also include a class (D) to account for the persons who have
died from Ebola in the community (i.e., having not been effectively isolated in a hospital
or by other means), because they are a significant source of infection due to traditional
funeral practices, such as hugging and kissing the body of a deceased loved one. We also
include a Hospitalized (H) class, in which individuals are assumed to be isolated and
not contribute to infection, and if they die their bodies are assumed to be disposed of
safely. We place no upper limit on the size of class H, which does not reflect the situation
during the outbreak where insufficient beds and staffing were a major limiting factor in
controlling the outbreak [29], but allows us to examine the operation of a contact tracing
system assuming hospital resources are readily available.

Our investigation of contact tracing begins with adding two new classes of individuals
being traced. Since exposure is a hidden trait, individuals being traced are either susceptible
or exposed. We created a class called F of susceptible individuals who are being traced but
will not become ill and a second class, EF, for individuals being traced who are exposed
and will become infectious. Two events can lead to initiation of contact tracing: either an
individual enters the D class or an individual enters the H class. The contacts connected to
the individuals involved in either of these two events will be contacted each day for 21 days
by a contact tracer. We assume that individuals in the F class being traced will follow
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isolation guidelines to prevent them from becoming exposed. Individuals in EF are moved
to the hospital when they present symptoms. The function f alters the completion rate of
key contact tracing steps based on the amount of work to be done along with the number
of available contact tracing staff. There is a limited number of contact tracers, and each
contact tracer is able to trace a limited number of individuals at a time. To account for this,
we place a threshold on the total number of contacts that can be traced at a time. Part of the
work carried out by contact tracers is moving individuals to the hospital, and the remaining
effort is dedicated to visiting contacts who have not (yet) displayed any symptoms of Ebola.
In our flow diagram in Figure 1, one can see the terms with coefficient f representing the
effects of contact tracing. Our model with eight compartments is below:

S′ = −β1SI − β2SD− f
S
N

+ θF (1)

F′ = f
S
N
− θF (2)

E′ = β1SI + β2SD− q f
E
N
− αE (3)

E′F = q f
E
N
− rEF (4)

I′ = αE− f
I
N
− γI − φ1 I − νI (5)

H′ = rEF + f
I
N

+ γI − φ2H − µH (6)

R′ = φ1 I + φ2H (7)

D′ = νI −ωD (8)

where N = S + E + I. The function f depends on F, EF, and I and gives the rate of finding
new contacts

f =

{
κ1γI + κ2νI if F + EF < (15)(1200)p
0 else

. (9)

Here, 1− p is the proportion of the total available contact tracing effort dedicated to
hospitalizing individuals identified as symptomatic. Note that the two events (movement
into H and D) can be seen in the function f with the rates γI and νI. In the cutoff for
f , the number 15 is how many contacts on average one contact tracer can trace, and
the number 1200 is the maximum number of contact tracers that were employed in the
Western Area, Sierra Leone (containing the capital city of Freetown), during the 2014–
2016 epidemic [22]. Although the total number of contact tracers varied throughout
the outbreak, we decided to assume the maximum of 1200 was available throughout the
outbreak. The units of f are persons per day. The units of each compartment are individuals.
The units and interpretation of each parameter are listed in Table 1. Note that we do not
account for births or for deaths from any other cause than Ebola.
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Figure 1. Flow diagram with Susceptible–Exposed–Infectious–Recovered (SEIR) standard disease
compartments, F, EF compartments due to contact tracing, and H, D for Hospitalized and Dead
bodies as appropriate for Ebola. The coefficient f represents transitions due to contact tracing. The
parameters and compartments are defined in Table 1.

Table 1. The parameters and compartment names in our model with their interpretations and units.

Symbol Interpretation Units

β1 transmission from interactions between I and S per person per time

β2 transmission from interactions between D and S per person per time

1/θ number of days a person is traced time

1/α length of the exposed period time

r rate of hospitalization for traced individuals per time

γ rate of hospitalization for untraced individuals per time

φ1 recovery rate for untreated per time

φ2 recovery rate for treated per time

ν death rate for untreated per time

µ death rate for treated per time

ω rate at which dead bodies become non-infectious per time

κ1 contacts recruited from hospitalization of one person unitless

κ2 contacts recruited from funeral of one person unitless

q scaling factor for exposed contacts unitless

S susceptibles individuals

F susceptibles being traced individuals

E exposed individuals

EF exposed being traced individuals

I infectious individuals

H hospitalized individuals

D dead bodies individuals

R recovered individuals

People can move from Susceptible to Exposed by coming into contact with a member
of the Infectious class (term β1SI) or by coming into contact with an infectious dead body
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(term β2DS). People who are being traced move from Susceptible to F or from Exposed
to EF by coming into contact with a person who has just been hospitalized or attending a
funeral for somebody who has just died of Ebola (term f S

N = (κ1γI + κ2νI) S
N ). This term

is scaled by N because the persons moving in tracing are moved proportionally to the ratio
of persons in their current class. For example, a person being traced from S moves to F at
a rate proportional to S

N = S
S+E+I . A person is more likely to be in EF while being traced

than to be in F because of the contact they had with either an infected person or a dead
body. To account for this, we multiply the term f E

N by a number q > 1, a scaling factor to
increase the likelihood of E′Fs being traced relative to that of F′s being traced. People who
have completed their time being traced and have not developed symptoms move back into
S (term θF). Once a person has been in the Exposed class for an average of 10 days, they
move to the Infectious class (term αE). A person in the class EF is moved to the hospital
once they develop symptoms (term rEF). If an individual being traced shows symptoms
the first time they are contacted, they are immediately moved to the hospital (term f I

N ).
Some Infectious people decide to go to the hospital on their own (term γI). Some Infectious
people manage to survive Ebola and move to R (term φ1 I) but others die of the disease
and we assume they are not safely buried and contribute to the class D (term νI). This is a
simplifying assumption, because, as the epidemic drew on, many people who died in the
community were safely buried. Some Hospitalized individuals will recover (term φ2H) but
others will die and be safely buried (term µH). After some time has passed, an unsafely
buried dead body is no longer able to infect people (with decay term ωD).

3. Reproductive Number

We will derive the basic reproductive number <0 using the standard method of the
Next Generation Matrix [30–33]. We expect that near the disease-free equilibrium (DFE),
the number of infections will be small but non-zero. The population affected by the
outbreak consisted entirely of susceptibles at the beginning of the outbreak. Therefore, for
this analysis, we assume that f = κ1γI + κ2νI.

Now, Equation (7) implies
φ1 I∗ = −φ2H∗. (10)

Giving I∗ = H∗ = 0. From Equation (8), we get D∗ = 0. Since I∗ = 0, Equation (2)
gives F∗ = 0 and Equation (5) gives E∗ = 0. Since I∗ = H∗ = 0, Equation (6) gives E∗F = 0.
Since E∗ = I∗ = 0, we conclude that S∗ = N(0). We have the DFE: (S∗, 0, 0, 0, 0, 0, R∗, 0).
However, we take R∗ = 0 for computation of the Next Generation Matrix. The diseased
classes here are: E, EF, I, H, and D, with corresponding vectors F − V forming the right
hand side of the system with only diseased classes,

F =


β1SI + β2SD

0
0
0
0

, V =


αE + q(κ1γI + κ2νI) E

S+I+E
rEF − q(κ1γI + κ2νI) E

S+I+E
(φ1 + ν + γ)I + (κ1γI + κ2νI) I

S+I+E − α E

(φ2 + µ)H − rEF − γI − (κ1γ+κ2ν)I2

S+I+E
ωD− νI

.

It is easy to show that our model satisfies the assumptions required for use of the Next
Generation Method. Note that our DFE is not unique and this is not required. We get the
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Jacobian matrices DF (E, EF, I, H, D) and DV (E, EF, I, H, D) at the DFE, (0, 0, 0, 0, 0) with
S = S∗,

DF (0, 0, 0, 0, 0) =


0 0 β1S∗ 0 β2S∗

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

DV (0, 0, 0, 0, 0) =


α 0 0 0 0
0 r 0 0 0
−α 0 φ1 + ν + γ 0 0
0 −r −γ φ2 + µ 0
0 0 −ν 0 ω

.

Thus, the basic reproductive number we obtain as the spectral radius of the matrix
DF (0, 0, 0, 0, 0)(DV )−1(0, 0, 0, 0, 0) is

<0 =
β1S∗

φ1 + ν + γ
+

νβ2S∗

ω(φ1 + ν + γ)
. (11)

The first term describes the number of new infections that we expect per individual
from the I class, and the second term describes the number of new infections that we expect
per body in the D class.

4. Parameter Estimation

Our data are taken from the Sierra Leone Ministry of Health daily situation reports,
published on their website during the epidemic. We accessed these old web sites via the
Wayback Machine at https://web.archive.org/web/20150314233800/http:/health.gov.sl/
?page_id=583 (accessed on 28 February 2020). Data are listed in Appendix A. Situation
reports were available beginning at Day 77 with the final day being Day 504, but not
every intermediate day had a report. There were 343 total reports available for us to use.
From these reports, we used confirmed cases and deaths. There was one report we chose
to exclude because it listed more confirmed deaths than subsequent reports, making our
total number of data points 342.

We chose some parameters from the literature and estimated others using our data.
The parameters

α = 0.1,
1
ω

= 4.5,
1
θ
= 21

were taken from the literature [16,19,21,28]. Our data indicated that the initial condition for
the H class was H(0) = 94 individuals. We assumed the initial condition for the recovered
class was R(0) = 0 individuals, and that the initial condition for S was roughly equivalent
to the population of Sierra Leone at the time, S(0) = 6,348,350 people. We estimated the
following parameters:

β1, β2, γ, κ1, κ2, r, p, ν, µ, φ1, φ2.

We estimated the following initial conditions:

F(0), E(0), EF(0), I(0), D(0).

See Table 1 for parameter interpretations and units.
We estimated the above parameters in MATLAB using multistart to generate many

vectors of starting parameter estimates. Each vector was used to initialize a search in fmin-
con, which is a local minimizer. In MATLAB ode45 served as our ODE solver. Parameter
upper and lower bounds were based on ranges of parameters from the literature [19,21]
and from our data. We used papers [19,21] for some ranges because they rely on data

https://web.archive.org/web/20150314233800/http:/health.gov.sl/?page_id=583
https://web.archive.org/web/20150314233800/http:/health.gov.sl/?page_id=583
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from Sierra Leone. For example, parameters comparable to our β1, β2, φ1, and φ2 were
found in Rivers [19]. Our lower limit for r was based on both papers [19,21]. There is also a
parameter in Olu comparable to our parameter κ1 [21]. For example, the upper bound for
F0 was taken as 2500 because our data indicated that in early days this was roughly the
number of contacts being traced. To estimate our cumulative simulated cases, we summed
over the entries into the H class, assuming that cases for people in the community were
unconfirmed. To estimate our cumulative simulated deaths, we summed over the deaths
from H and I together. The data to be compared with simulation results are cumulative
confirmed cases and cumulative confirmed deaths. We minimized the following:

J =
504

∑
i=77

( (CasesEstimated(i)−CasesData(i))2

(CasesData(i))2 +
(DeathsEstimated(i)−DeathsData(i))2

(DeathsData(i))2

)
, (12)

which is a type of sum of least squares for our model. Our data began at day 77 and
ended at day 504, with 342 total data points each for cases and deaths. Note that this does
not include every day between day 77 and day 504. The missing data are for days when
the Ministry of Health situation report was unavailable. The data from one day, when
cumulative deaths were higher than for following days, were excluded. You can see that
some days do not have data by the gaps in the red dots in Figure 2.

We had two primary goals during the process of parameter estimation:

1. Fit the data with a low J value;
2. In each class, we wanted reasonable dynamics, meaning approximately the correct

magnitude in the size of each compartment.

Figure 2. The value of the objective for this simulation was J = 0.0423.

We tried several ways of fitting the data. First, we estimated all the parameters listed
above, holding them all constant throughout the epidemic. This resulted in simulated
epidemic curves that did not flatten at the end, indicating the epidemic would have kept
going (see Appendix B). Then, we chose five parameters that seemed to vary during the
epidemic according to the literature and allowed those five parameters to switch from
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one value to a second value in the middle of the epidemic with a smoothed transition
between the two values. In order to achieve a good simulation of the data with reasonable
compartments, we modified the model by inserting the parameter q. Then, we reestimated
the parameters using the varying approach for five of the parameters. This resulted in
good simulations of the data with reasonable compartments.

In order to achieve a simulated fit of the data, which would include a flattening of
the cumulative cases and cumulative deaths curves rather than simulations that indicated
the epidemic would not have ended, we decided to allow some parameters (specifically
β1, β2, γ, κ1, and κ2) to vary over the course of the epidemic. We chose these parameters
because we knew that people’s behavior changed during the epidemic. We smoothed
the transition from the first value of each of these parameters to the second value using
piecewise functions such as the one below for each of the parameters

β1(t) =


6.68× 10−8 t < 160
6.68× 10−8(1− t−160

30 ) + 3.94× 10−8
(

t−160
30

)
160 ≤ t ≤ 190

3.94× 10−8 t > 190.
(13)

Chowell et al. [34] built a system of ODEs representing Ebola outbreaks in Congo
and Uganda and used a smooth transition between two transmission rates due to control
interventions (such as education and contact tracing followed by quarantine).

The literature supports our decision to allow β1, β2, γ, κ1 and κ2 to change over the
course of the epidemic. Senga et al. [28] analyzed data on probable and confirmed cases of
EVD and their contacts in Kenema district, Sierra Leone, taken from the national database.
They found that the number of contacts per case increased over time. The low number
of contacts per case reported early in the epidemic was much lower than those reported
in other countries, which they concluded meant that the contact listings were incomplete.
Olu et al. found that during the months of June 2014 to November 2014 the average number
of contacts per case was nine, and that during the months of December 2014 to May 2015,
the average number of contacts per case increased to 16 [21]. Lokuge et al. reported that,
later in the epidemic, people were more likely to come to the hospital of their own volition,
less likely to report funeral contact, and that contact tracing increased in efficacy [29]. These
findings from the literature indicate it is reasonable to conclude that values for β1, β2, γ, κ1
and κ2 changed during the course of the epidemic due to changes in behavior and the level
of education in the population about EVD.

However, we were unable to generate reasonable sizes for compartment EF. Our
simulations were showing very few people passing through EF, which is not reflective
of the success that contact tracing achieved in locating exposed individuals during the
outbreak. We decided to modify the model by adding a multiplier, q, in front of the f E

N
term. We tried several values and found that a value of q = 100 generated reasonable sizes
for compartment EF. This multiplier indicates that people who were being traced had had
contact with an individual who was infectious or with a dead body, so they were more
likely to have been exposed to Ebola than a member of the population who had not had
such contact. These changes resulted in the simulations shown in Figures 2–4 which were
generated using the parameters found in Table 2.

Figure 3 shows how many cases total were identified as part of the contact tracing
effort. Near the end of the outbreak, this number reaches about 1100, which represents
more than a tenth of all confirmed cases. This demonstrates the importance of successful
contact tracing. The peak of contact tracing numbers corresponds to the slowing of the
increase in cumulative cases, around day 200. This indicates that contact tracing efforts
contributed to ending the epidemic.
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Figure 3. Dynamics of class F in the upper left, class EF in the upper right, their sum on the bottom left, and the integral of
those leaving EF to be hospitalized on the bottom right. These classes correspond to the parameters from Table 2 and the
data simulations from Figure 2.

Table 2. Values for parameters, with five parameters having early and late values. Parameters with ∗
were taken from the data or the literature. Others were estimated.

Parameter Value Parameter Value

β1 early 1.00× 10−9 r 0.056

β1 late 1.00× 10−9 p 0.90

β2 early 1.00× 10−6 ν 0.024

β2 late 1.00× 10−7 µ 0.010

γ early 0.41 φ1 0.020

γ late 0.062 φ2 0.028

κ1 early 29.74 F(0) 2451.10

κ1 late 44.93 E(0) 32.04

κ2 early 44.62 EF(0) 124.88

κ2 late 16.61 I(0) 71.76

D(0) 6.09

α∗ 0.1 1/ω∗ 4.5

H(0)∗ 94 S(0)∗ 6, 348, 350

R(0)∗ 0 1/θ∗ 21
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Note that in Figure 4, the increase later in the epidemic of S results from people
returning to S from F after being traced for 21 days and showing no symptoms. In Figure 4,
the peak in E occurs at day 164, the peak in H about two weeks later on day 176, the peak
in I about two weeks after that on day 192, and then the peak in D on day 197. It is not
surprising that the peak in E precedes the other peaks, but it is surprising that the peak in
D is the last peak to occur. This indicates that there may have been unsafely buried bodies
later in the epidemic, but that fewer people were catching Ebola from funeral interactions
despite this increase in funerals.

Figure 4. The graphs above correspond to the parameters from Table 2 and the data simulations from Figure 2. Note that
the scales are all different.

In Table 2, there is no difference between β1 early and β1 late. However, β2 changes
from an early value of 1.00 ∗ 10−6 to a much lower later value of 1.00 ∗ 10−7. These
parameter values indicate that while the rate of transmission from interactions between S
and I remained about the same throughout the epidemic, the rate of transmission from
D to S decreased dramatically as people became more educated about Ebola. Oddly,
γ = 0.41 decreases to a later value of γ = 0.062, which does not agree with accounts from
the literature that people were more likely to come to the hospital once they developed
symptoms later in the epidemic than they were earlier in the epidemic. The value of
κ1 = 29.74 early increases to κ1 = 44.93 late, corresponding to reports from the literature
that people were more likely to report more complete lists of contacts later in the epidemic.
However, κ2 = 44.62 early decreased to κ2 = 16.61 late, adding to the conclusion that
people were less likely to attend traditional funerals later in the epidemic. The changes
in these parameters during the outbreak might be caused by a combination of factors,
including educating the public about Ebola [35], increases in available beds at Ebola
Treatment Centers, and more effective implementation of contact tracing.
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The value of r = 0.056 means that contacts who were infected took an average of
18 days to show symptoms. This value for r is probably unrealistically small, as it should
likely be closer to α = 0.1. The parameter ν was slightly larger than µ, since those who
were treated had slightly lower chance of dying from Ebola. Similarly, φ2 was larger than
φ1 because those who were treated were more likely to recover from the disease.

5. Importance of Contact Tracing

Figure 5 shows potential trajectories for epidemics with different numbers of contact
tracer workers available, either more or fewer than were actually available during the
epidemic. We varied the number of these workers from 0 to 2000, and note that 1200 is the
corresponding number in our model. Without contact tracing at all, the highest blue curve,
there would have been thousands more cases and deaths. Even a much smaller workforce
than existed would have made a dramatic improvement on the trajectory of the epidemic
from what would have happened without contact tracing. Once the number of contact
tracers reaches about 1000, each increase in the number of workers has much less dramatic
effects. More tracers still would have been better, but the difference in trajectories is much
less dramatic than the difference between 0 tracers and 200 tracers.

Figure 5. Effect of varying the number of contact tracers available from 0 to 2000, with 1200 as the corresponding number in
our model.

The number of persons traced from each hospitalization (κ1) and the number from each
funeral (κ2) were estimated as κ1 = 29.7 early, κ1 = 44.9 late, κ2 = 44.6 early, and κ2 = 16.6
late in our model. We vary those numbers from 5 to 50 to see the effect on the epidemic.
If we hold each of the contact tracing parameters κ1 and κ2 constant at the values in Figure 6,
the heat map shows the total number of deaths by day 504 of the outbreak. Increasing each
of the two parameters reduces the total number of deaths, but κ1 has a much more dramatic
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effect than κ2. This seems to indicate that more deaths resulted from people having contact
with infected individuals than resulted from people having contact with dead bodies.

Figure 6. Effect of varying contact tracing parameters κ1 and κ2 on the total number of deaths by day 504 of the epidemic.

6. Discussion and Conclusions

Better understanding of the mechanisms of contact tracing is important for disease
management. Our model is novel in its inclusion of explicit contact tracing of both Suscep-
tible and Exposed individuals, as well as including the limitation on the number of total
contact tracers available for the work. We counted the total number of people being traced
and tracked the length of time they were being traced. Li et al. analyzed 37 compartmental
models of Ebola [9], and they identified models that explicitly included classes of hospital-
ized individuals and of funerals as more useful to management decisions, because they
explicitly included targeted interventions. For this reason, we explicitly included contact
tracing in our model, including the logistical limitations resulting from limited numbers of
contact tracers, because contact tracing is another targeted intervention.

We found that better matching of the simulations with the data was possible when
we allowed five parameters to change over the course of the epidemic: β1, β2, γ, κ1 and κ2.
These parameters are the per capita rate of transmission from the Infectious compartment
to the Susceptible compartment, the per capita rate of transmission from the Dead Body
compartment to the Susceptible compartment, the rate of transition from the Infectious
compartment to the Hospital compartment, the number of contacts per person generated
from a hospitalized case, and the number of contacts per person generated from a funeral.
These parameters changed during the outbreak because more hospitals were available
as the outbreak went on, people became more educated about the disease, and contact
tracing became more effective. This work illustrates the value of changing parameters due
to known behavior changes.

Early on in the epidemic, people were less likely to report as many contacts as they did
later in the epidemic, as demonstrated by the increase from κ1 = 29.74 early to κ1 = 44.93
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late. Later in the epidemic, people were less likely to attend traditional funerals, as seen
in the decrease from κ2 = 44.62 early to κ2 = 16.61 late. The transmission parameter β1
remained unchanged, while β2 decreased from 1.00× 10−6 early to 1.00× 10−7 late.

There was a period when the contact tracing infrastructure was overwhelmed by
cases, as seen in the plateaus in Figure 4. More contact tracers available to work would
have prevented this plateau, but the number of contact tracers available was sufficient to
prevent many more cases and deaths from occurring. Increasing either κ1 or κ2 would have
decreased the number of deaths that occurred, but κ1 had a stronger effect than κ2. Overall
this work makes a strong contribution to understanding the effects of contact tracing and
changes in behavior on disease management.

The results of this paper might be improved if we had more details about the number
of contact tracers employed and about the number of individuals being traced through
time. More knowledge about the change of behavior during this outbreak would have
been useful. One limitation of this model is that we assumed there was no within-hospital
transmission, while we know this occurred sometimes.

The practical utility of this model is its use to disease management. One conclusion
of our model is that behavior change over the course of an outbreak significantly impacts
dynamics and should be considered when formulating models and management responses.
It could be interesting to retrospectively analyze other past outbreaks allowing for time-
dependent parameters. One could try to connect behavior change with specific information
campaigns. Figure 5 shows clearly how a linear decrease in the amount of adequate contact
tracing during an outbreak can result in a nonlinear increase in the number of cases and
deaths. As a result, our time-dependent modeling approach can be used in future outbreaks
to assess the amount of contact tracing that should be conducted in order to limit the total
number of cases and deaths.

In the future, we plan to further explore the role of contact tracing in epidemics. To
add international spread features, one could consider mobility data [36]. We plan to build
a model with a more realistic form to the function f which represents how contact tracing
capacity grows in response to an epidemic. We will also explore the role contact tracing plays
in outbreaks of other diseases, including diseases with a latent period such as COVID-19.
The mechanisms of contact tracing procedures for other diseases might be quite different
and require the development of disease-specific models. Optimization techniques (such as
optimal control) could be used to design management strategies for contact tracing.
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Appendix A. Data

Date Day Cumulative 
Cases 

Cumulative 
Deaths 

Date Day Cumulative 
Cases 

Cumulative 
Deaths 

12-Aug-14 77 717 264 11-Feb-15 260 8183 3009 
13-Aug-14 78 733 273 12-Feb-15 261 8193 3018 
14-Aug-14 79 747 280 13-Feb-15 262 8208 3030 
15-Aug-14 80 757 287 14-Feb-15 263 8213 3036 
16-Aug-14 81 775 297 15-Feb-15 264 8226 3043 
17-Aug-14 82 778 305 16-Feb-15 265 8230 3050 
18-Aug-14 83 783 312 17-Feb-15 266 8237 3058 
19-Aug-14 84 804 320 18-Feb-15 267 8239 3063 
20-Aug-14 85 813 322 19-Feb-15 268 8244 3066 
21-Aug-14 86 823 329 20-Feb-15 269 8260 3079 
22-Aug-14 87 881 333 21-Feb-15 270 8275 3088 
23-Aug-14 88 904 336 22-Feb-15 271 8289 3095 
24-Aug-14 89 935 341 23-Feb-15 272 8301 3103 
25-Aug-14 90 955 355 24-Feb-15 273 8308 3113 
26-Aug-14 91 961 363 25-Feb-15 274 8320 3124 
27-Aug-14 92 988 372 27-Feb-15 276 8349 3151 
28-Aug-14 93 1018 377 28-Feb-15 277 8353 3164 
29-Aug-14 94 1033 383 1-Mar-15 278 8370 3180 
30-Aug-14 95 1077 387 2-Mar-15 279 8374 3188 
31-Aug-14 96 1106 388 3-Mar-15 280 8383 3199 
1-Sep-14 97 1115 396 4-Mar-15 281 8389 3210 
2-Sep-14 98 1146 399 5-Mar-15 282 8398 3222 
3-Sep-14 99 1174 404 7-Mar-15 284 8416 3245 
5-Sep-14 101 1234 413 8-Mar-15 285 8428 3263 
6-Sep-14 102 1276 426 9-Mar-15 286 8444 3279 
7-Sep-14 103 1287 428 10-Mar-15 287 8463 3289 
8-Sep-14 104 1305 433 11-Mar-15 288 8469 3297 
9-Sep-14 105 1341 436 12-Mar-15 289 8472 3303 
10-Sep-14 106 1367 445 13-Mar-15 290 8476 3312 
11-Sep-14 107 1401 450 15-Mar-15 292 8487 3325 
12-Sep-14 108 1432 459 16-Mar-15 293 8501 3327 
13-Sep-14 109 1464 463 17-Mar-15 294 8502 3336 
14-Sep-14 110 1513 468 19-Mar-15 296 8508 3360 
15-Sep-14 111 1542 474 20-Mar-15 297 8515 3370 
16-Sep-14 112 1571 483 21-Mar-15 298 8518 3376 
17-Sep-14 113 1585 489 22-Mar-15 299 8520 3381 
18-Sep-14 114 1618 495 23-Mar-15 300 8528 3393 
19-Sep-14 115 1640 497 24-Mar-15 301 8529 3398 
20-Sep-14 116 1696 501 25-Mar-15 302 8532 3407 
21-Sep-14 117 1745 502 26-Mar-15 303 8535 3413 
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22-Sep-14 118 1775 506 27-Mar-15 304 8539 3421 
23-Sep-14 119 1816 509 29-Mar-15 306 8545 3433 
24-Sep-14 120 1885 509 31-Mar-15 308 8547 3444 
25-Sep-14 121 1920 513 1-Apr-15 309 8549 3448 
26-Sep-14 122 1944 513 2-Apr-15 310 8549 3454 
27-Sep-14 123 2000 518 3-Apr-15 311 8551 3459 
28-Sep-14 124 2090 522 4-Apr-15 312 8555 3461 
29-Sep-14 125 2155 527 5-Apr-15 313 8555 3466 
30-Sep-14 126 2184 550 6-Apr-15 314 8558 3472 
1-Oct-14 127 2212 532 7-Apr-15 315 8558 3475 
3-Oct-14 129 2276 538 8-Apr-15 316 8559 3476 
4-Oct-14 130 2411 678 9-Apr-15 317 8560 3481 
5-Oct-14 131 2459 699 10-Apr-15 318 8560 3488 
6-Oct-14 132 2504 703 11-Apr-15 319 8561 3490 
7-Oct-14 133 2585 708 12-Apr-15 320 8563 3491 
8-Oct-14 134 2593 713 13-Apr-15 321 8565 3496 
10-Oct-14 136 2698 904 14-Apr-15 322 8566 3499 
11-Oct-14 137 2792 921 15-Apr-15 323 8569 3499 
12-Oct-14 138 2849 926 16-Apr-15 324 8571 3503 
13-Oct-14 139 2894 931 17-Apr-15 325 8572 3506 
14-Oct-14 140 2977 932 18-Apr-15 326 8573 3508 
15-Oct-14 141 3003 943 19-Apr-15 327 8573 3511 
16-Oct-14 142 3058 947 20-Apr-15 328 8580 3516 
17-Oct-14 143 3097 954 21-Apr-15 329 8581 3519 
18-Oct-14 144 3154 973 22-Apr-15 330 8584 3520 
19-Oct-14 145 3223 986 23-Apr-15 331 8585 3526 
20-Oct-14 146 3295 997 24-Apr-15 332 8585 3526 
21-Oct-14 147 3345 1001 25-Apr-15 333 8585 3529 
22-Oct-14 148 3389 1008 26-Apr-15 334 8586 3533 
23-Oct-14 149 3449 1012 27-Apr-15 335 8587 3534 
24-Oct-14 150 3490 1026 29-Apr-15 337 8590 3535 
25-Oct-14 151 3560 1037 30-Apr-15 338 8591 3535 
26-Oct-14 152 3622 1044 2-May-15 340 8592 3536 
27-Oct-14 153 3713 1049 3-May-15 341 8595 3537 
28-Oct-14 154 3760 1057 4-May-15 342 8597 3538 
30-Oct-14 156 3841 1064 5-May-15 343 8597 3538 
31-Oct-14 157 3936 1070 6-May-15 344 8597 3538 
1-Nov-14 158 3996 1077 7-May-15 345 8597 3538 
2-Nov-14 159 4057 1085 8-May-15 346 8597 3538 
6-Nov-14 163 4232 1114 9-May-15 347 8597 3538 
7-Nov-14 164 4277 1126 10-May-15 348 8597 3538 
8-Nov-14 165 4433 1133 12-May-15 350 8597 3538 
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10-Nov-14 167 4617 1149 13-May-15 351 8598 3538 
12-Nov-14 169 4744 1169 15-May-15 353 8601 3539 
13-Nov-14 170 4828 1180 17-May-15 355 8605 3541 
14-Nov-14 171 4913 1196 18-May-15 356 8606 3541 
15-Nov-14 172 4967 1206 19-May-15 357 8607 3541 
16-Nov-14 173 5056 1223 20-May-15 358 8608 3541 
17-Nov-14 174 5109 1233 21-May-15 359 8608 3542 
18-Nov-14 175 5152 1240 22-May-15 360 8608 3542 
19-Nov-14 176 5210 1249 23-May-15 361 8608 3542 
20-Nov-14 177 5304 1282 24-May-15 362 8608 3542 
21-Nov-14 178 5355 1303 25-May-15 363 8608 3543 
22-Nov-14 179 5402 1333 26-May-15 364 8611 3545 
23-Nov-14 180 5441 1364 27-May-15 365 8614 3545 
24-Nov-14 181 5524 1397 28-May-15 366 8616 3545 
25-Nov-14 182 5595 1429 29-May-15 367 8617 3545 
26-Nov-14 183 5683 1464 30-May-15 368 8618 3545 
27-Nov-14 184 5767 1481 31-May-15 369 8619 3546 
28-Nov-14 185 5831 1496 1-Jun-15 370 8620 3546 
29-Nov-14 186 5906 1522 2-Jun-15 371 8623 3546 
30-Nov-14 187 5978 1549 3-Jun-15 372 8624 3546 
1-Dec-14 188 6039 1575 4-Jun-15 373 8626 3546 
2-Dec-14 189 6132 1601 5-Jun-15 374 8628 3547 
4-Dec-14 191 6238 1648 6-Jun-15 375 8630 3547 
5-Dec-14 192 6292 1669 8-Jun-15 377 8636 3549 
6-Dec-14 193 6317 1708 11-Jun-15 380 8647 3551 
7-Dec-14 194 6375 1734 1-Jul-15 400 8671 3569 
8-Dec-14 195 6420 1786 3-Jul-15 402 8672 3572 
9-Dec-14 196 6457 1823 4-Jul-15 403 8673 3574 
10-Dec-14 197 6497 1865 5-Jul-15 404 8674 3574 
11-Dec-14 198 6557 1910 6-Jul-15 405 8674 3574 
12-Dec-14 199 6592 1952 7-Jul-15 406 8675 3575 
13-Dec-14 200 6638 1999 9-Jul-15 408 8679 3575 
14-Dec-14 201 6702 2051 10-Jul-15 409 8686 3578 
15-Dec-14 202 6757 2076 11-Jul-15 410 8687 3580 
16-Dec-14 203 6808 2095 12-Jul-15 411 8688 3581 
17-Dec-14 204 6856 2111 13-Jul-15 412 8688 3582 
18-Dec-14 205 6903 2136 15-Jul-15 414 8690 3582 
19-Dec-14 206 6932 2163 16-Jul-15 415 8690 3582 
20-Dec-14 207 6975 2190 17-Jul-15 416 8691 3582 
21-Dec-14 208 7017 2216 18-Jul-15 417 8692 3583 
22-Dec-14 209 7075 2235 19-Jul-15 418 8692 3583 
23-Dec-14 210 7130 2273 20-Jul-15 419 8694 3583 
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24-Dec-14 211 7160 2289 21-Jul-15 420 8694 3583 
25-Dec-14 212 7220 2319 23-Jul-15 422 8694 3583 
26-Dec-14 213 7275 2345 24-Jul-15 423 8695 3584 
27-Dec-14 214 7326 2366 25-Jul-15 424 8695 3585 
28-Dec-14 215 7354 2392 27-Jul-15 426 8695 3585 
29-Dec-14 216 7419 2410 29-Jul-15 428 8695 3585 
30-Dec-14 217 7458 2435 31-Jul-15 430 8694 3585 
31-Dec-14 218 7476 2461 1-Aug-15 431 8695 3585 
1-Jan-15 219 7505 2501 2-Aug-15 432 8695 3585 
2-Jan-15 220 7542 2524 3-Aug-15 433 8695 3585 
3-Jan-15 221 7572 2550 4-Aug-15 434 8696 3585 
4-Jan-15 222 7606 2578 5-Aug-15 435 8696 3585 
5-Jan-15 223 7641 2607 7-Aug-15 437 8697 3585 
6-Jan-15 224 7665 2612 9-Aug-15 439 8697 3585 
7-Jan-15 225 7696 2630 11-Aug-15 441 8697 3585 
8-Jan-15 226 7718 2650 12-Aug-15 442 8697 3586 
9-Jan-15 227 7749 2663 13-Aug-15 443 8697 3586 
10-Jan-15 228 7777 2684 14-Aug-15 444 8697 3586 
11-Jan-15 229 7797 2697 15-Aug-15 445 8697 3586 
12-Jan-15 230 7816 2702 16-Aug-15 446 8697 3586 
13-Jan-15 231 7839 2718 17-Aug-15 447 8697 3586 
14-Jan-15 232 7855 2732 18-Aug-15 448 8697 3586 
15-Jan-15 233 7861 2742 19-Aug-15 449 8697 3586 
16-Jan-15 234 7885 2760 20-Aug-15 450 8697 3586 
17-Jan-15 235 7897 2767 23-Aug-15 453 8697 3586 
18-Jan-15 236 7917 2780 24-Aug-15 454 8697 3586 
19-Jan-15 237 7923 2788 25-Aug-15 455 8697 3586 
20-Jan-15 238 7935 2794 26-Aug-15 456 8697 3586 
21-Jan-15 239 7944 2802 27-Aug-15 457 8697 3586 
22-Jan-15 240 7958 2814 31-Aug-15 461 8698 3587 
23-Jan-15 241 7966 2822 2-Sep-15 463 8698 3587 
24-Jan-15 242 7977 2830 3-Sep-15 464 8698 3587 
25-Jan-15 243 7982 2834 7-Sep-15 468 8702 3587 
26-Jan-15 244 7991 2842 12-Sep-15 473 8703 3587 
27-Jan-15 245 8003 2851 13-Sep-15 474 8704 3587 
28-Jan-15 246 8015 2859 16-Sep-15 477 8704 3589 
29-Jan-15 247 8033 2873 17-Sep-15 478 8704 3589 
31-Jan-15 249 8056 2909 19-Sep-15 480 8704 3589 
1-Feb-15 250 8073 2911 20-Sep-15 481 8704 3589 
2-Feb-15 251 8077 2921 21-Sep-15 482 8704 3589 
3-Feb-15 252 8098 2936 25-Sep-15 486 8704 3589 
4-Feb-15 253 8111 2949 26-Sep-15 487 8704 3589 
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5-Feb-15 254 8117 2950 29-Sep-15 490 8704 3589 
6-Feb-15 255 8124 2959 4-Oct-15 495 8704 3589 
7-Feb-15 256 8136 2971 5-Oct-15 496 8704 3589 
8-Feb-15 257 8149 2978 6-Oct-15 497 8704 3589 
10-Feb-15 259 8169 2998 13-Oct-15 504 8704 3589 
 

Appendix B. Initial Fitting Results

Note that in Figure A1, the curves are still increasing at day 500, indicating that the
epidemic would have continued.

Figure A1. First attempt match to the data of cumulative cases and cumulative deaths with all
parameters constant. The value of J is 0.1963.

References
1. Frieden, T.R.; Damon, I.; Bell, B.P.; Kenyon, T.; Nichol, S. Ebola 2014–New Challenges, New Global Response and Responsibility.

N. Engl. J. Med. 2014, 371, 1177–1180. [CrossRef] [PubMed]
2. Aylward, B.; Barboza, P.; Bawo, L.; Bertherat, E.; Bilivogui, P.; Blake, I.; Brennan, R.; Briand, S.; Chakauya, J.M.; Chitala, K.;

et al. Ebola virus disease in West Africa-The first 9 months of the epidemic and forward projections. N. Engl. J. Med. 2014,
371, 1481–1495. [CrossRef] [PubMed]

3. Bogoch, I.I.; Creatore, M.I.; Cetron, M.S.; Brownstein, J.S.; Pesik, N.; Miniota, J.; Tam, T.; Hu, W.; Nicolucci, A.; Ahmed, S.; et al.
Assessment of the potential for international dissemination of Ebola virus via commercial air travel during the 2014 west African
outbreak. Lancet 2015, 385, 29–35. [CrossRef]

4. Brainard, J.; Hooper, L.; Pond, K.; Edmunds, K.; Hunter, P.R. Risk factors for transmission of Ebola or Marburg virus disease:
A systematic review and meta-analysis. Int. J. Epidemiol. 2016, 45, 102–116. [CrossRef]

5. Dietz, P.M.; Jambai, A.; Paweska, J.T.; Yoti, Z.; Ksaizek, T.G. Epidemiology and risk factors for ebola virus disease in Sierra
Leone-23 May 2014 to 31 January 2015. Clin. Infect. Dis. 2015, 61, 1648–1654. [CrossRef]

6. Drake, J.M.; Bakach, I.; Just, M.R.; O’Regan, S.M.; Gambhir, M.; Chun-Hai, I.F. Transmission models of historical ebola outbreaks.
Emerg. Infect. Dis. 2015, 21, 1447–1450. [CrossRef]

7. Gomes, M.F.; Piontti, A.P.Y.; Rossi, L.; Chao, D.; Longini, I.; Halloran, M.E.; Vespignani, A. Assessing the international spreading
risk associated with the 2014 West African Ebola outbreak. PLoS Curr. 2014, 6. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJMp1409903
http://www.ncbi.nlm.nih.gov/pubmed/25140858
http://dx.doi.org/10.1056/NEJMoa1411100
http://www.ncbi.nlm.nih.gov/pubmed/25244186
http://dx.doi.org/10.1016/S0140-6736(14)61828-6
http://dx.doi.org/10.1093/ije/dyv307
http://dx.doi.org/10.1093/cid/civ568
http://dx.doi.org/10.3201/eid2108.141613
http://dx.doi.org/10.1371/currents.outbreaks.cd818f63d40e24aef769dda7df9e0da5
http://www.ncbi.nlm.nih.gov/pubmed/25642360


Mathematics 2021, 9, 608 20 of 21

8. Skrip, L.A.; Fallah, M.P.; Gaffney, S.G.; Yaari, R.; Yamin, D.; Huppert, A.; Bawo, L.; Nyenswah, T.; Galvani, A.P. Characterizing
risk of Ebola transmission based on frequency and type of case–contact exposures. Philos. Trans. R. Soc. B Biol. Sci. 2017,
372, 20160301. [CrossRef]

9. Li, S.L.; Bjørnstad, O.N.; Ferrari, M.J.; Mummah, R.; Runge, M.C.; Fonnesbeck, C.J.; Tildesley, M.J.; Probert, W.J.; Shea, K. Essential
information: Uncertainty and optimal control of Ebola outbreaks. Proc. Natl. Acad. Sci. USA 2017, 114, 5659–5664. [CrossRef]

10. Cook, B.W.M.; Cutts, T.A.; Nikiforuk, A.M.; Poliquin, P.G.; Court, D.A.; Strong, J.E.; Theriault, S.S. Evaluating environmental
persistence and disinfection of the Ebola virus Makona variant. Viruses 2015, 7, 1975–1986. [CrossRef]

11. Senga, M.; Pringle, K.; Ramsay, A.; Brett-Major, D.M.; Fowler, R.A.; French, I.; Vandi, M.; Sellu, J.; Pratt, C.; Saidu, J.; et al. Factors
underlying Ebola virus infection among health workers, Kenema, Sierra Leone, 2014–2015. Clin. Infect. Dis. 2016, 63, 454–459.
[CrossRef]

12. Garske, T.; Cori, A.; Ariyarajah, A.; Blake, I.M.; Dorigatti, I.; Eckmanns, T.; Fraser, C.; Hinsley, W.; Jombart, T.; Mills, H.L.; et al.
Heterogeneities in the case fatality ratio in the west African Ebola outbreak 2013–2016. Philos. Trans. R. Soc. B Biol. Sci. 2017,
372, 20160308. [CrossRef]

13. De Arazoza, H.; Lounes, R. A non-linear model for a sexually transmitted disease with contact tracing. IMA J. Math. Appl. Med.
Biol. 2002, 19, 221–234. [CrossRef] [PubMed]

14. Hsieh, Y.H.; Wang, Y.S.; de Arazoza, H.; Lounes, R. Modeling secondary level of HIV contact tracing: Its impact on HIV
intervention in Cuba. BMC Infect. Dis. 2010, 10, 1–9. [CrossRef]

15. Hyman, J.M.; Li, J.; Stanley, E.A. Modeling the impact of random screening and contact tracing in reducing the spread of HIV.
Math. Biosci. 2003, 181, 17–54. [CrossRef]

16. CDC. Increases in Heroin Overdose Deaths—28 States, 2010 to 2012. MMWR Morb. Mortal. Wkly. Rep. 2014. 63, 849–854.
17. Browne, C.; Gulbudak, H.; Webb, G. Modeling contact tracing in outbreaks with application to Ebola. J. Theor. Biol. 2015,

384, 33–49. [CrossRef] [PubMed]
18. Webb, G.; Browne, C.; Huo, X.; Seydi, O.; Seydi, M.; Magal, P. A model of the 2014 ebola epidemic in West Africa with contact

tracing. PLoS Curr. 2015, 7, 1–8. [CrossRef]
19. Rivers, C.M.; Lofgren, E.T.; Marathe, M.; Eubank, S.; Lewis, B.L. Modeling the impact of interventions on an epidemic of Ebola in

Sierra Leone and Liberia. PLoS Curr. 2014, 6, 1–12. [CrossRef]
20. Stehling-Ariza, T.; Rosewell, A.; Moiba, S.A.; Yorpie, B.B.; Ndomaina, K.D.; Jimissa, K.S.; Leidman, E.; Rijken, D.J.; Basler, C.;

Wood, J.; et al. The impact of active surveillance and health education on an Ebola virus disease cluster - Kono District, Sierra
Leone, 2014–2015. BMC Infect. Dis. 2016, 16, 1–7. [CrossRef] [PubMed]

21. Olu, O.O.; Lamunu, M.; Nanyunja, M.; Dafae, F.; Samba, T.; Sempiira, N.; Kuti-George, F.; Abebe, F.Z.; Sensasi, B.; Chimbaru, A.;
et al. Contact Tracing during an Outbreak of Ebola Virus Disease in the Western Area Districts of Sierra Leone: Lessons for Future
Ebola Outbreak Response. Front. Public Health 2016, 4, 1–9. [CrossRef]

22. Washington, M. (Centers for Disease Control and Prevention, Atlanta, GA, USA). Personal communication, 2017.
23. Wolfe, C.M.; Hamblion, E.L.; Schulte, J.; Williams, P.; Koryon, A.; Enders, J.; Sanor, V.; Wapoe, Y.; Kwayon, D.; Blackley, D.J.; et al.

Ebola virus disease contact tracing activities, lessons learned and best practices during the Duport Road outbreak in Monrovia,
Liberia, November 2015. PLoS Negl. Trop. Dis. 2017, 11, 1–16. [CrossRef]

24. Swanson, K.C.; Altare, C.; Wesseh, C.S.; Nyenswah, T.; Ahmed, T.; Eyal, N.; Hamblion, E.L.; Lessler, J.; Peters, D.H.; Altmann, M.
Contact tracing performance during the Ebola epidemic in Liberia, 2014–2015. PLoS Negl. Trop. Dis. 2018, 12, 2014–2015.
[CrossRef] [PubMed]

25. Chowell, G.; Nishiura, H. Transmission dynamics and control of Ebola virus disease (EVD): A review. BMC Med. 2014, 12, 1–17.
[CrossRef]

26. Ebola Situation Report, Ministry of Health and Sanitation, Sierra Leone. 2015. Available online: https://web.archive.org/web/20
150314233800/http:/health.gov.sl/?page_id=583 (accessed on 28 February 2020).

27. Ebola Situation Report, Ministry of Health and Sanitation, Sierra Leone. 2016. Available online: https://web.archive.org/web/20
160509014636/http:/health.gov.sl/?page_id=583 (accessed on 28 February 2020).

28. Senga, M.; Koi, A.; Moses, L.; Wauquier, N.; Barboza, P.; Fernandez-Garcia, M.D.; Engedashet, E.; Kuti-George, F.; Mitiku, A.D.;
Vandi, M.; et al. Contact tracing performance during the ebola virus disease outbreak in kenema district, Sierra Leone. Philos.
Trans. R. Soc. B Biol. Sci. 2017, 372, 20160300. [CrossRef] [PubMed]

29. Lokuge, K.; Caleo, G.; Greig, J.; Duncombe, J.; McWilliam, N.; Squire, J.; Lamin, M.; Veltus, E.; Wolz, A.; Kobinger, G.; et al.
Successful Control of Ebola Virus Disease: Analysis of Service Based Data from Rural Sierra Leone. PLoS Negl. Trop. Dis. 2016,
10, 1–12. [CrossRef]

30. Diekmann, O. Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis, and Interpretation; Wiley series in
mathematical and computational biology; John Wiley: Chichester, UK, 2000.

31. Diekmann, O.; Heesterbeek, H.; Britton, T. Mathematical Tools for Understanding Infectious Disease Dynamics; Princeton University
Press: Princeton, NJ, USA, 2012; Volume 7.

32. Van den Driessche, P.; Watmough, J. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of
disease transmission. Math. Biosci. 2002, 180, 29–48. [CrossRef]

33. Van den Driessche, P.; Watmough, J. Further notes on the basic reproduction number. Lect. Notes Math. 2008, 1945, 159–178.
[CrossRef]

http://dx.doi.org/10.1098/rstb.2016.0301
http://dx.doi.org/10.1073/pnas.1617482114
http://dx.doi.org/10.3390/v7041975
http://dx.doi.org/10.1093/cid/ciw327
http://dx.doi.org/10.1098/rstb.2016.0308
http://dx.doi.org/10.1093/imammb/19.3.221
http://www.ncbi.nlm.nih.gov/pubmed/12650336
http://dx.doi.org/10.1186/1471-2334-10-194
http://dx.doi.org/10.1016/S0025-5564(02)00128-1
http://dx.doi.org/10.1016/j.jtbi.2015.08.004
http://www.ncbi.nlm.nih.gov/pubmed/26297316
http://dx.doi.org/10.1371/currents.outbreaks.846b2a31ef37018b7d1126a9c8adf22a
http://dx.doi.org/10.1371/currents.outbreaks.4d41fe5d6c05e9df30ddce33c66d084c
http://dx.doi.org/10.1186/s12879-016-1941-0
http://www.ncbi.nlm.nih.gov/pubmed/27784275
http://dx.doi.org/10.3389/fpubh.2016.00130
http://dx.doi.org/10.1371/journal.pntd.0005597
http://dx.doi.org/10.1371/journal.pntd.0006762
http://www.ncbi.nlm.nih.gov/pubmed/30208032
http://dx.doi.org/10.1186/s12916-014-0196-0
https://web.archive.org/web/20150314233800/http:/health.gov.sl/?page_id=583
https://web.archive.org/web/20150314233800/http:/health.gov.sl/?page_id=583
https://web.archive.org/web/20160509014636/http:/health.gov.sl/?page_id=583
https://web.archive.org/web/20160509014636/http:/health.gov.sl/?page_id=583
http://dx.doi.org/10.1098/rstb.2016.0300
http://www.ncbi.nlm.nih.gov/pubmed/28396471
http://dx.doi.org/10.1371/journal.pntd.0004498
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1007/978-3-540-78911-6_6


Mathematics 2021, 9, 608 21 of 21

34. Chowell, G.; Hengartner, N.W.; Castillo-Chavez, C.; Fenimore, P.W.; Hyman, J.M. The basic reproductive number of Ebola and
the effects of public health measures: The cases of Congo and Uganda. J. Theor. Biol. 2004, 229, 119–126. [CrossRef]

35. Levy, B.; Edholm, C.; Gaoue, O.; Kaondera-Shava, R.; Kgosimore, M.; Lenhart, S.; Lephodisa, B.; Lungu, E.; Marijani, T.;
Nyabadza, F. Modeling the role of public health education in Ebola virus disease outbreaks in Sudan. Infect. Dis. Model. 2017,
2, 323–340. [CrossRef]

36. Halloran, M.E.; Vespignani, A.; Bharti, N.; Feldstein, L.R.; Alexander, K.; Ferrari, M.; Shaman, J.; Drake, J.M.; Porco, T.;
Eisenberg, J.N.; et al. Ebola: Mobility data. Science 2014, 346, 433. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jtbi.2004.03.006
http://dx.doi.org/10.1016/j.idm.2017.06.004
http://dx.doi.org/10.1126/science.346.6208.433-a
http://www.ncbi.nlm.nih.gov/pubmed/25342792

	Introduction
	Model
	Reproductive Number
	Parameter Estimation
	Importance of Contact Tracing
	Discussion and Conclusions
	Data
	Initial Fitting Results
	References

