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Abstract—This paper develops an event-triggered multi-agent
control method based on adaptive dynamic programming (ADP)
techniques. Different from the traditional ADP-based multi-
agent control with fixed sampling period, our method designs an
adaptive controller only based on the efficiently reduced samples.
The sampling instants are decided by an adaptive triggering
condition to guarantee the stability of the event-triggered learning
process. The theoretical analysis of the proposed method is also
provided in this paper. It is proved that the designed event-
triggered ADP controller can make all the agents synchronize
to the leader’s dynamics with reduced sampled data, and also
reach Nash equilibrium at the same time. Therefore, the proposed
method can save the computational resources in the learning
process. Finally, the simulation results verify the theoretical
analysis and also demonstrate the performance of the developed
method.

Index Terms—Event-triggered control, adaptive dynamic pro-
gramming, multi-agent systems, and online learning.

I. INTRODUCTION

Multi-agent systems are a group of autonomous systems,
interacting with each other through communication or sensing
networks [1], [2]. Such systems can perform certain chal-
lenge tasks which cannot be accomplished by a single agent
[3]. For instance, multi-agent control techniques have been
successfully used in robotics for replicating self-organized
behaviors found in nature such as bird flocking, and fish
schooling [4]. They are also used in developing applications
such as formation control, rendezvous, robot coordination,
and distributed estimation [5], [6]. A fundamental concept
underlying these techniques is the notion of consensus [7],
[8], [9]. In [10], information consensus of multi-agent systems
was developed under the limited and unreliable information
exchange with dynamically changing interaction topologies.
The authors then provided a tutorial overview of information
consensus in multivehicle cooperative control in [11], where
theoretical results regarding consensus-seeking were summa-
rized and several specific applications of consensus algorithms
to multivehicle coordination were also described. The time-
dependent communication links were considered in [12] and
a novel approach was designed which was centered around
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the notion of convexity. The problem of cooperation among a
collection of vehicles was considered in [13]. Such systems
performed a shared task using intervehicle communication
to coordinate their actions. In [14], strategic cyber attacks
were investigated in multi-agent systems and then a distributed
secure consensus tracking control method was established with
a hybrid stochastic secure framework. So far, most of the
studies on multi-agent system control are based on accurate
system functions and/or models. In the real-world applications,
however, the likelihood to access the complete knowledge of
system functions is either infeasible or very difficult to obtain.
Fortunately, adaptive dynamic programming (ADP) techniques
give us an opportunity to solve this problem.
By approximating solutions of the Hamilton-Jacobi-

Bellman (HJB) equation, ADP has attract significantly increas-
ing attentions [15], [16]. It has been widely recognized as
one of the “core methodologies” to achieve optimal control
for intelligent systems [17], [18]. Extensive efforts have been
dedicated to developing ADP method from both theoreti-
cal researches and real-world applications [19], [20], [21].
Recently, ADP method has been integrated into the multi-
agent control designs to relax the requirements of accurate
system functions [22], [23]. The authors in [24] developed
a linear quadratic regulator-based optimal cooperative design
for synchronization control of discrete-time multi-agent sys-
tems. The actor-critic network structures were provided in
[25] for multi-agent graphical games depending only on the
local information available to each agent. The stability and
Nash equilibrium were discussed and proved in [26] with
explicit theoretical foundation analysis. Then in [27], a data-
driven learning-based method was designed for the discrete-
time multi-agent systems with completely unknown dynamics.
Later, this idea was developed for heterogeneous multi-agent
system in [28], which proposed an optimal output regulation
design for partially model-free heterogeneous linear multi-
agent systems with disturbance. The authors in [29] considered
fuzzy ADP structure for leader-based multi-agent differential
games.
In the literature, ADP-based intelligent controls usually

depends on the periodic transmitted data with fixed sampling
period. The control laws are updated for every time instant.
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The communication burden and computation load will be
tremendously high during the learning process. In the situation
with limited computation bandwidth or constrained sensor
power resources, this disadvantage will become severe or
sometimes seriously impact the learning performance. To
solve this problem, event-triggered control method [30], [31],
[32], [33], [34] is introduced into the ADP design to reduce
the computation burden by transmitting the system data and
updating the control laws only when it is necessary [35],
[36], [37], [38], [39], [40], [41]. Recently, it has also been
developed for the multi-agent systems. In [42], the authors
studied a tracking control problem based on the event-triggered
mechanics. The distributed optimal coordination control was
designed in [43] based on the event-triggered ADP techniques.
Motivated by the above observations, this paper develops

a multi-agent consensus control method under the event-
triggered mechanism using ADP techniques. The theoretical
foundation of the designed method is discussed in details.
The major contributions of this paper can be summarized as
follows: (1) different from the existing ADP-based multi-agent
consensus designs, this paper develops an event-triggered
scheme to save the computational resources and only updates
the control signals when an event for certain agent is triggered.
An adaptive triggering condition is designed for each agent
to determine the sampling instants and also guarantee the
stability of the entire system with reduced sampled data.
Note that our proposed method triggered the system in an
asynchronous mode, which means different agents will have
their own triggering instants. This will make the learning
process more flexible. (2) comparing with the event-triggered
multi-agent ADP design in literature, this paper is focused
on the consensus control problem and provides the explicit
theoretical foundation for the proposed method. It shows that
the agents can achieve consensus under the developed event-
triggered control laws and all the agents can achieve Nash
equilibrium at the same time. The Zeno-free behavior in
this learning process is also discussed. We also compare our
results with the traditional time-triggered ADP-based multi-
agent consensus control design, which shows that our method
can achieve competitive performance based on the reduced
sampled system states.
The rest of this paper is organized as follows. Section II

presents the preliminary of graphs and consensus for multi-
agent systems. The proposed event-triggered ADP method is
developed in Section III for multi-agent consensus control
problem with the theoretical analysis of system stability and
Nash equilibrium. Then, Section IV discusses the simula-
tion results to demonstrate the effectiveness of the proposed
method and verify the theoretical analysis. Finally, Section V
concludes this paper.

II. PRELIMINARY

A continuous-time multi-agent system is considered as

ẋi(t) = Axi(t) +Biui(t) (1)

where xi(t) ∈ Rn is the state, and ui(t) ∈ Rmi is the input
coordination control for an arbitrary agent i, i ∈ 1,2,⋯,N . Let
A ∈ Rn×n, Bi ∈ Rmi×mi be the constant matrices.

The leader (target agent) is defined as

ẋ0(t) = Ax0(t). (2)

Usually, only a small percentage of the system is connected
to the leader in multi-agent graph.
The goal of each agent is to approximate the optimal

distributed control laws ui(t) based on its own information
and local observations, such that all the agents can synchronize
to the leader.
Therefore, a local neighborhood tracking error is defined as

δi(t) = ∑
j∈Ni

pij(xi(t) − xj(t)) + qi(xi(t) − x0(t)) (3)

where pij is the adjacency elements, pij > 0 when agent i and
j have direct connection, otherwise, pij = 0, and qi ≥ 0 is the
pinning gain [44], qi > 0 when agent i has a direct path to the
leader, otherwise qi = 0. Here, we assume qi > 0 for at least
one agent.
Based on the discussion in [45], we have that the synchro-

nization error ηi(t) = xi(t) − x0(t) can be made arbitrarily
small by making the neighborhood tracking errors δi(t) small.
Different from [45], this paper will design the learning-based
control signal based on the limited received data. Therefore,
we further rewrite the dynamics of δi(t) as

δ̇i(t) = ∑
j∈Ni

pij(ẋi(t) − ẋj(t)) + qi(ẋi(t) − ẋ0)
= Aδi(t) + (di + qi)Biui(t) − ∑

j∈Ni

pijBjuj(t). (4)

Here, Ni is defined as the set of neighbors of an agent i. It can
be seen that dynamic system (4) has multiple control inputs,
i.e., ui from itself and uj , j ∈ Ni, from all its neighbors. This
means the agent can receive the control signals from their
directly connected neighbors.

III. EVENT-TRIGGERED COOPERATIVE MULTI-AGENT
SYSTEMS ON GRAPH

A. Consensus under event-triggered condition
In order to save the resources, this paper updates the con-

troller only when an event is triggered. Therefore, a sampled-
data system is introduced with a monotonically increasing se-
quence of sampling instants {τi,k}∞k=0, where τi,k < τi,k+1, for
i = 1,2,⋯,N , k = 0,1,2,⋯,∞. The time instant τi,k denotes
the kth consecutive sampling instant of agent i. The outputs
of the sampled-data system shall be δ̂i,k = δi(τi,k), which are
the local neighborhood tracking errors at the sampling instants.
For simplicity, we assume the sampled-data system has zero
task delay.
Define the gap function for ∀t ∈ [τi,k, τi,k+1) as

ei,k(t) = δ̂i,k − δi(t) (5)

which is the difference between the sampled and the current
local neighborhood tracking errors.
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Therefore, the problem becomes to find the distributed con-
trol laws γi(δ̂i,k), which maps the sampled local neighborhood
tracking error δ̂i,k, rather than the current error δi(t), onto
the control laws. Assume that γi(δ̂i,k) is a Lipschitz contin-
uous function. The obtained control sequence {γi(δ̂i,k)}∞k=0
becomes a continuous signal for agent i through a zero-
order hold (ZOH). In particular, this control signal can be
seen as a piecewise constant function. For an arbitrary agent
i, within any time interval [τi,k, τi,k+1), the controller is
ui(t) = γi(δ̂i,k), k = 0,1,2,⋯,∞.
Therefore, we can rewrite the local neighborhood tracking

error dynamics (4) as

δ̇i(t) = Aδi(t) + (di + qi)Biγi(δ̂i,k) − ∑
j∈Ni

pijBjuj(t)
= Aδi(t) + (di + qi)Biγi(δ(t) + ei,k(t))− ∑

j∈Ni

pijBjuj(t), ∀t ∈ [τi,k, τi,k+1)
(6)

Note that the control signals in error dynamics (6) are only
updated when an event is triggered. Now, our goal becomes
to achieve optimality subject to (6), and hence according to
Lemma 1, system (1) can achieve consensus.
First, let us recall the local performance indices for the

traditional time-triggered multi-agent system,

Ji(δi, ui, u−i) = ∫ ∞
t0

⎛
⎝δTi Qiiδi + uT

i Riiui + ∑
j∈Ni

uT
j Rijuj

⎞
⎠dt

= ∫ ∞
t0

U(δi, ui, u−i)dt
(7)

where u−i = {uj ∣j ∈ Ni} is the set of control actions from
the neighbors of agent i, U(δi, ui, u−i) = δTi Qiiδi+uT

i Riiui+∑j∈Ni
uT
j Rijuj is the reinforcement signal, and Qii > 0, Rii >

0, and Rij > 0 are the constant and symmetric matrices with
appropriate dimensions.
When Ji are finite, a differential equivalent to (7) is given

by Bellman’s equation

H(δi,∇Ji, ui, u−i)
≡(∇Ji)T ⎛⎝Aδi + (di + qi)Biui − ∑

j∈Ni

pijBjuj(t)⎞⎠
+ δTi Qiiδi + uT

i Riiui + ∑
j∈Ni

uT
j Rijuj = 0

(8)

where ∇Ji = ∂Ji(δi, ui, u−i)/∂δi is the partially derivatives
of the performance indices Ji(δi, ui, u−i) with respect to the
local neighborhood tracking error δi, with boundary condition
Ji(δi(0), ui, u−i) = 0. That is, the solution of equation (8)
serves as an alternative to evaluating the infinite integral (7) for
finding the value associated to the current feedback controls.
Therefore, according to Bellman’s optimality equation, the
optimal response of agent i to fixed laws u−i can be derived
by minimizing Hamiltonian function with respect to ui as

u∗i = argmin
ui

Hi(δi,∇J∗i , ui, u−i) (9)

where ∇J∗i = ∂J∗i (δi, u∗i , u∗−i)/∂δi. Assume that the minimum
of Hi(δi,∇J∗i , ui, u−i) for agent i exists and is unique. Hence,
the optimal controls u∗i should satisfy

u∗i = ∂Hi

∂ui
= −1

2
(di + qi)R−1ii BT

i
∂J∗i
∂δi
≡ γ∗i (δi). (10)

Note that, equations (8) and (10) show the HJB equations
and the distributed control laws, respectively, in time-triggered
condition. Both of them are updated periodically with fixed
sampling periodic.
To reduce the computation load, we will develop the perfor-

mance indices and the control laws under the event-triggered
condition. This means the controller is designed only based on
the sampled local neighborhood tracking error δ̂i,k, rather than
the current error δi. Therefore, we obtain the event-triggered
control laws as

u∗i = γ∗i (δ̂i,k) = −12(di + qi)R−1ii BT
i

∂J∗i (δ̂i,k)
∂δi

(11)

Therefore, the corresponding performance indices under the
event-triggered condition become

Ji(δi,γi(δ̂i,k), u−i)
=∫ ∞

t0

⎛
⎝δTi Qiiδi + γT

i (δ̂i,k)Riiγi(δ̂i,k) + ∑
j∈Ni

uT
j Rijuj

⎞
⎠dt

=∫ ∞
t0

U(δi,γi(δ̂i,k), u−i)dt
(12)

Definition 1: Control laws ui, ∀i are said to be admissible
if ui are continuous, ui = 0 when δi = 0, ui stabilize system
(6) locally and values (12) are finite.
By taking derivative of (12) with respect to time t along

with the trajectory of the local neighborhood tracking error
δi, we obtain the event-triggered HJB equation,

Hi(δi,∇J∗i ,γ∗i (δ̂i,k), u∗−i)
=(∇J∗i )T ⎛⎝Aδi + (di + qi)Biγ

∗
i (δ̂i,k) − ∑

j∈Ni

pijBjuj(t)⎞⎠
+ δTi Qiiδi + γ∗i (δ̂i,k)TRiiγ

∗
i (δ̂i,k) + ∑

j∈Ni

uT
j Rijuj = 0

(13)

Remark 1: Our goal is to make limt→∞ η(t) = 0. Accord-
ing to Lemma 1, one has when limt→∞ ∣∣δ(t)∣∣ = 0, then
limt→∞ ∣∣η(t)∣∣ = 0. Therefore, in the subsequent development,
we will show the designed event-triggered control laws can
make limt→∞ ∣∣δ(t)∣∣ = 0.

B. Event-triggered controller design for multi-agent systems

In this subsection, an event-triggered ADP control scheme
is provided for multi-agent continuous-time systems. A trig-
gering condition is derived for each agent to guarantee the
stability of the entire system. Before we develop the major
results, let us start with the following assumption.
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Assumption 1: The controller γ(δ1) is Lipschitz continuous
with respect to the gap,

∣∣γi(δi) − γi(δ̂i,k)∣∣ ≤ L∣∣ei,k ∣∣ (14)

where L is a positive real constant, and ei,k = δ̂i,k − δi.
Theorem 1: Consider the dynamic system (6). If there

exists a positive definite function J∗i for agent i that satisfies
the HJB equation (13) with J∗i (δi(0), ui, u−i) = 0, and the
event-triggered control law is given in (11) with the triggering
condition
∣∣ei,k ∣∣2

>(1 − α2)λ(Qii)∣∣δi∣∣2 + ∣∣rTiiγ∗i (δ̂i,k)∣∣2 +∑j∈Ni
λ(Rij)∣∣u∗j ∣∣2

L2∣∣rii∣∣2≜∣∣eTj(δi, δ̂i,k)∣∣2
(15)

then the event-triggered control law (11) can asympototically
stabilize the system, where λ(x) is the minimal eigenvalue of
x, and α ∈ (0,1) is the designed parameter.
Proof: With the event-triggered control law (11), the orbital

derivative of J∗i for agent i along the system trajectory can be
given as

J̇∗i =(∂J∗i
∂δi
)T Aδi + (∂J∗i

∂δi
)T (di + qi)Biγ

∗
i (δ̂i,k)

− (∂J∗i
∂δi
)T ∑

j∈Ni

pijBjuj

(16)

Here, considering the HJB equation (8) and optimal control
law (10) in the time-triggered ADP method for each agent, we
have

(∂J∗i
∂δi
)T Aδi − (∂J∗i

∂δi
)T ∑

j∈Ni

pijBjuj

=(di + qi)2
4

(∂J∗i
∂δi
)T BiR

−1
ii B

T
i (∂J∗i∂δi

)
− δTi Qiiδi − ∑

j∈Ni

uT
j Rijuj

(17)

and

BT
i (∂J∗i∂δi

) = −2(di + qi)−1Riiγ
∗
i (δi) (18)

Substitute (17) and (18) into (16), we obtain

J̇∗i =(di + qi)2
4

(∂J∗i
∂δi
)T BiR

−1
ii B

T
i (∂J∗i∂δi

) − δTi Qiiδi

− ∑
j∈Ni

uT
j Rijuj + (∂J∗i

∂δi
)T (di + qi)Biγ

∗(δ̂i,k)
=γ∗Ti (δi)Riiγ

∗
i (δi) − δTi Qiiδi − ∑

j∈Ni

uT
j Rijuj

− 2γ∗Ti (δi)Riiγ
∗
i (δ̂i,k)

(19)

Since Rii is a symmetric positive definite matrix, we have
Rii as Rii = rTii ⋅ rii. Therefore, we obtain

γ∗Ti (δi)Riiγ
∗
i (δi) − 2γ∗Ti (δi)Riiγ

∗(δ̂i,k)
= ∣∣rTiiγ∗Ti (δi) − rTiiγ∗Ti (δ̂i,k)∣∣2 − ∣∣rTiiγ∗(δ̂i,k)∣∣2

(20)

Substituting (20) into (19) and using the Lipschitz condition
in Assumption 1, we have

J̇∗i =∣∣rTiiγ∗Ti (δi) − rTiiγ∗Ti (δ̂i,k)∣∣2 − ∣∣rTiiγ∗(δ̂i,k)∣∣2− δTi Qiiδi − ∑
j∈Ni

u∗Tj Riju
∗
j

≤L2∣∣rii∣∣2∣∣ei,k ∣∣2 − ∣∣rTiiγ∗i (δ̂i,k)∣∣2 − λ(Qii)∣∣δi∣∣2
− ∑

j∈Ni

λ(Rij)∣∣u∗j ∣∣2
= − α2λ(Qii)∣∣δi∣∣2 − [(1 − α2)λ(Qii)∣∣δi∣∣2
−L2∣∣rii∣∣2∣∣ei,k ∣∣2 + ∣∣rTiiγ∗(δ̂i,k)∣∣2 + ∑

j∈Ni

λ(Rij)∣∣u∗j ∣∣2]
(21)

where λ(x) is the minimal eigenvalue of x.
In order to guarantee the stability of the system, the alge-

braic summation of the last four terms in (21) should be pos-
itive. Consider the triggering condition (15), we know when∣∣ei,k ∣∣2 ≤ ∣∣eTj(δi, δ̂i,k)∣∣2, one obtains (1 − α2)λ(Qii)∣∣δi∣∣2 −
L2∣∣rii∣∣2∣∣ei,k ∣∣2 + ∣∣rTiiγ∗(δ̂i,k)∣∣2 + ∑j∈Ni

λ(Rij)∣∣u∗j ∣∣2 > 0.
Then, (21) can be further rewritten as J̇∗i ≤ −α2λ(Qii)∣∣δi∣∣2 <
0 for any δi ≠ 0. Therefore, u∗i = γ∗i (δ̂i,k) can asymptotically
stabilize the dynamic system (6), and hence according to
Lemma 1, make all agents synchronize to the leader dynamics.
The conclusion holds. ∎
From Theorem 1, we know the agents can synchronize

to the leader’s dynamics only with the efficiently reduced
sampled data. In this process, the sampled-data systems will
continuously monitor the triggering condition (15) and will be
triggered to sample the new data from the dynamic system (6)
when (15) is satisfied. Then the control laws are updated again
based on the new sampled data. Now, we will prove that the
designed event-triggered control laws can provide global Nash
equilibrium solution for the multi-agent system.
Definition 2: A global Nash equilibrium solution for

an N-agent system is given by N-tuple of control laws{u∗1, u∗2,⋯, u∗N} if it satisfies

J∗i ≜ J(δi(t0), u∗i , u∗G−i) ≤ J(δi(t0), ui, u
∗G−i) (22)

where uG−1 denotes the actions of all other agents in the graph
excluding agent i, i.e., uG−i = {uj ∣j ∈ N, j ≠ i}. The N-tuple{J∗1 , J∗2 ,⋯, J∗N} is called the Nash equilibrium of the N-agent
system.
Theorem 2: Let the graph contains a spanning tree with

at least one nonzero pinning gain. If for ∀i, the coupled
HJB equation and the optimal event-triggered control laws
are designed as (13) and (11), respectively, with the triggering
condition (15), then all the agents can reach Nash equilibrium
and the designed event-triggered control laws are global Nash
equilibrium laws.
Proof: According to Theorem 1, we have δi(t) → 0,

when t→∞ with the developed event-triggered control laws.
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The optimal performance index J∗i (δi(t0),γ∗i , u∗−i) satisfies
J∗i (0,0,0) = 0. Therefore, we have

dJ∗i
dt

= ∇J∗i (Aδi + (di + qi)Biγ
∗
i − ∑

j∈Ni

pijBju
∗
j ) (23)

Based on (13), it becomes

dJ∗i
dt

+ δTi Qiiδi + γ∗Ti Riiγ
∗
i + ∑

j∈Ni

u∗Tj Riju
∗
j = 0 (24)

which can be further rewritten as

J∗i (δi(0),γ∗i , u∗−i)
+∫ ∞

0
(δTi Qiiδi + γ∗Ti Riiγ

∗
i + ∑

j∈Ni

u∗Tj Riju
∗
j )dt = 0

(25)

Therefore, performance index (7) can be described as

Ji(δi(0),γi, u−i)
=∫ ∞

0
(δTi Qiiδi + γT

i Riiγii + ∑
j∈Ni

uT
j Rijuj)dt

+ J∗i (δi(0),γ∗i , u∗−i)
− ∫ ∞

0
∇J∗i (Aδi + (di + qi)Biγ

∗
i − ∑

j∈Ni

pijBju
∗
j )dt

(26)

Consider the HJB equation (13) and the control law (11),
we have

Ji(δi(0),γi, u−i)
=J∗i (δi(0),γ∗i , u∗−i) +∫ ∞

0
((γ∗i − γi)TRii(γ∗i − γi)

+ ∑
j∈Nj

(u∗j − uj)∗Rij(uj − u∗j )
+ (∇Ji)T (di + qi)Bi(γi − γ∗i ))dt

(27)

If γi = γ∗i and uj = u∗j , then we obtain J∗i (δi(0),γ∗i , u∗−i) =
J∗i (δi(0),γ∗i , u∗−i). If only uj = u∗j , for ∀γi, equation (27)
becomes

Ji(δi(0),γi, u∗−i)
=J∗i (δi(0),γ∗i , u∗−i) +∫ ∞

0
((γ∗i − γi)TRii(γ∗i − γi)

+ (∇Ji)T (di + qi)Bi(γi − γ∗i ))dt
≥J∗i (δi(0),γ∗i , u∗−i)

(28)

Then, it is clear that Ji(δi(0),γi, u∗−i) ≥ J∗i (δi(0),γ∗i , u∗−i)
holds for all i ∈ {1,2,⋯,N}. Therefore, according to Def-
inition 2, all the agents can reach Nash equilibrium and the
event-triggered control laws are global Nash equilibrium laws,
which completes the proof. ∎
Remark 2: For the continuous-time systems with event-

triggered controller, it is important to analyze the Zeno be-
havior, which is an infinite number of discrete transitions
occurs in a finite time interval [41]. Consider the tracking error
dynamics (4) with the triggering condition (15). According to

Fig. 1. Structure of communication network with one leader and six followers.
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Fig. 2. Tracking errors for all the agents in 3D phase plane plot.

the event-triggered mechanism, at the triggering instant, we
have ∣∣ei,k+1∣∣ = eTi(δi, δ̂i,k). Therefore, we have

L2∣∣rii∣∣2∣∣ei,k ∣∣2 =(1 − α2)λ(Qii)∣∣δi∣∣2 + ∣∣rTiiγ∗i (δ̂i,k)∣∣2+ ∑
j∈Ni

λ(Rij)∣∣u∗j ∣∣2
≥(1 − α2)λ(Qii)∣∣δi∣∣2.

(29)

Since at the kth triggering instant ei,k = 0, the time
of ∣∣ei,k ∣∣/∣∣δi∣∣ growing from 0 to P provides a lower
bound for the minimum interevent time [46], where P =√(1 − α2)λ(Qii)/(L∣∣rii∣∣) > 0, in which L is a positive real
constant. This means the proposed method can achieve Zeno-
free behavior.

IV. SIMULATION

The simulation studies are provided in this section to show
the effectiveness of the proposed method and also demonstrate
the theoretical analysis in this paper. Furthermore, we compare
our results with the traditional time-triggered ADP design
with the same initial conditions. The results show that the
proposed method can achieve competitive performance with
the traditional method.
Consider a six-agent system with the communication net-

work structure provided in Fig.1. Agent 0 is the leader with
the system function as

ẋ0(t) = Ax0(t), A = [ 0.995 −0.09983
0.09983 0.995

] (30)
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Fig. 3. Control signal trajectories for follower agents in event-triggered
condition.

Note that, agent 1 can receive the information from the
leader, while other follower agents can only receive the
information from themselves and their neighbors. Our goal
is to make all follower agents to follow the dynamics of
the leader. The system functions for the follower agents
are xi(t) = Axi(t) + Biui(t) where A is the same with

equation (30), B1 = [ 1
0.2
], B2 = [ 0

0.8
], B3 = [ 0.5

0.5
],

B4 = [ 0
0.4
], B5 = [ 1

0.9
], B6 = [ 0

0.22
]. Based on

the communication network in Fig.1, we have the pinning
gain as q1 = 1, and qi = 0, i ≠ 1, and the edge weights as
p21 = p32 = p43 = p31 = p65 = p16 = 1.

In order to save the resources, the proposed event-triggered
ADP control method is implemented to this six-agent system.
The weighting matrices in the performance index are selected
as Qii = I2×2, Rii = 1, for all i ∈ {1,2,3,4,5,6}, and
R21 = R32 = R43 = R31 = R65 = R16 = 1. Neural network
techniques are applied to implement the proposed method.
Specifically, an action network is developed to estimate the
event-triggered control law (11) based on the sampled data
and a critic network is designed to approximate the value
function (8) to evaluate the performance. These two neural
networks work coordinately with each other to generate the
results. The learning rates for both neural networks are set as
βc = βa = 0.005.

Choose the triggering condition as (15) with L = 3, α = 0.1.
Therefore, we have the triggering condition as

∣∣ei,k ∣∣2 >(1 − 0.12)∣∣δi∣∣2 + ∣∣γ∗i (δ̂i,k)∣∣2 +∑j∈Ni
∣∣u∗j ∣∣2

32
. (31)

Only when the triggering condition (31) is satisfied, the
controller is updated according to the sampled data.
The 3D phase plane plot of tracking errors for agents 1-6

are provided in Fig.2. We can observe that the tracking errors
vanish after 9 seconds and therefore all the agents achieve
synchronization thereafter. The trajectories of event-triggered
control signal are provided in Fig.3. Under the event-triggered
condition, the control signals are not updated periodically and

hence, the trajectories in Fig.3 are piecewise. This means
the control signals keep the same in [τi,k, τi,k+1) and are
only updated when the triggering condition is satisfied. The
relationships between the gap functions and the thresholds
for all the follower agents are shown in Fig.4. It can be
clearly observed that, for each agent, the gap is always
smaller than the threshold to guarantee the stability of the
system. Furthermore, to show the effectiveness of the proposed
method, we compare our results with the traditional time-
triggered ADP method, where the control signals are updated
periodically with fixed sampling instants. The comparisons are
presented in Fig.5 under the same initial conditions. We can
observe that our proposed event-triggered ADP control method
can achieve competitive performance with the traditional time-
triggered ADP method. In this process, the required numbers
of sampled data to update the control signals are provided in
Fig. 6. It can be seen that the proposed methods need much
less sampled data comparing with the traditional ADP method.
It means by efficiently reducing the sampling instants, we can
still obtain the competitive control performance.

V. CONCLUSION

In this paper, an event-triggered ADP method was devel-
oped for multi-agent continuous-time systems. The triggering
conditions were designed for each agent to guarantee the
stability and save the computation burden at the same time.
The proposed method was totally data-driven and no explicit
system models were required in the learning process. The
stability was proved under the event-triggered condition. The
simulation results verified the theoretical analysis and justified
the efficiency of the proposed method.
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