Divergent Stutter Bisimulation Abstraction for Controller
Synthesis with Linear Temporal Logic Specifications

Sahar Mohajerani® Robi Malik "

Andrew Wintenberg ¢

Stéphane Lafortune ¢

Necmiye Ozay ¢

& Department of Electrical Engineering, Chalmers University of Technology, Géteborg, Sweden

® Department of Software Engineering, University of Waikato, Hamilton, New Zealand

¢ Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA

Abstract

This paper proposes a method to synthesise controllers for systems with possibly infinite number of states that satisfy a
specification given as an LTL\, formula. A common approach to handle this problem is to first compute a finite-state abstraction
of the original state space and then synthesise a controller for the abstraction. This paper proposes to use an abstraction
method called divergent stutter bisimulation to abstract the state space of the system. As divergent stutter bisimulation factors
out stuttering steps, it typically results in a coarser and therefore smaller abstraction, at the expense of not preserving the
temporal “next” operator. The paper leverages results about divergent stutter bisimulation from model checking and shows
that divergent stutter bisimulation is a sound and complete abstraction method when synthesising controllers subject to

specifications in LTLyo.

Key words: Control synthesis; Computational issues; Controller constraints and structure; Abstraction; LTL specification.

1 Introduction

Dynamic system models are often used for safety-critical
applications, where formal verification and synthesis are
of great importance (Belta et al., 2017). This paper is
concerned with controller synthesis, where the control
logic is automatically computed from a model of the sys-
tem with possibly infinite number of states and a spec-
ification of the desired behaviour in temporal logic. In

* The work of the first author was supported by the Swedish
Research Council under grants 2016-00529 and 2016-06204,
while working as postdoc at the University of Michigan. The
work of the third author was supported in part by US NSF
grant CNS-1738103 and an Early Career Faculty grant from
NASA’s Space Technology Research Grants Program. The
research of the fourth author was supported in part by US
NSF grant CNS-1738103 and the work of fifth author was
supported by an Early Career Faculty grant from NASA’s
Space Technology Research Grants Program..

Email addresses: mohajera@chalmers.se (Sahar
Mohajerani), robi@waikato.ac.nz (Robi Malik),
awintenb@umich.edu (Andrew Wintenberg),
stephane@umich.edu (Stéphane Lafortune),
necmiye@umich.edu (Necmiye Ozay).

Preprint submitted to Automatica

this context, the state space is typically abstracted and
partitioned to produce a finite transition system, and
then finite-state machine synthesis methods are applied
(Ramadge, 1989; Kloetzer and Belta, 2008).

The most commonly used abstraction method for this
purpose is bisimulation (Milner, 1989). Bisimulation is
a strong behavioural equivalence of transition systems,
which preserves all temporal logic properties (Baier and
Katoen, 2008). There exist polynomial-time algorithms
to calculate a bisimilar abstraction of a finite-state sys-
tem (Fernandez, 1990). Bisimulation can also be applied
to continuous state spaces (Pappas, 2003; Belta et al.,
2017; Megawati and van der Schaft, 2016), but the bisim-
ulation algorithms are only guaranteed to terminate for
specific classes of continuous systems (Alur et al., 2000).

To overcome these difficulties, the literature proposes
various alternatives to bisimulation. Approzimate bisim-
ulation relaxes bisimulation by allowing a bounded mis-
match between the behaviours of the abstract and con-
crete system (Girard and Pappas, 2007). A further relax-
ation is obtained by considering (approximate) simula-
tion and feedback refinement relations. These are sound

14 June 2021

but not necessarily complete abstraction methods, in the
sense that the nonexistence of a controller for the ab-
stract system does not imply the nonexistence of a con-
troller for the concrete system (Tabuada, 2009; Zamani
et al., 2011; Belta et al., 2017; Reissig et al., 2016). Dual-
simulation (Wagenmaker and Ozay, 2016) produces a
coarser abstraction than bisimulation; it uses overlap-
ping subsets rather than quotient sets. Moreover, the
dual-simulation algorithm avoids the set difference oper-
ation, so that it preserves the convexity of the regions in
the abstracted state space. Unlike bisimulation, it does
not preserve all temporal logic properties, but it pre-
serves the results of controller synthesis when applied to
linear temporal logic (LTL).

Bisimulation and its variants consider all transitions
as significant. The potential for abstraction can be in-
creased by factoring out so-called stuttering steps where
the system remains in the same region of the state space
without changing any of the propositions relevant for
the specification. By combining sequences of stuttering
steps with the next non-stuttering step in a single tran-
sition, a coarser abstraction is produced. However, the
temporal “next” operator is no longer preserved because
the number of steps between two states may change. Ac-
cordingly, over-approzimations (Liu et al., 2013; Nilsson
et al., 2017) have been proposed to synthesise controllers
for continuous-time systems. The approach is sound for
specifications in LTL\,, the LTL fragment without the
“next” operator, but not complete in general.

This paper considers another approach to factor out
stuttering steps, called divergent stutter bisimulation
(Baier and Katoen, 2008). Divergent stutter bisimula-
tion preserves CTL?O, the fragment of the Computation

Tree Logic CTL" without the “next” operator (Baier
and Katoen, 2008). An efficient algorithm to compute
abstractions based on divergent stutter bisimulation ex-
ists and has been used to simplify state spaces (Groote
and Vaandrager, 1990; Groote et al., 2017). Once an
abstraction and a quotient system are constructed using
divergent stutter bisimulation, verification can be done
using existing tools (Clarke et al., 1999; Baier and Ka-
toen, 2008) and gives the same result as for the original
system. Yet, synthesis is more difficult, because it is not
immediately clear how a controller synthesised for the
abstracted system can be used to control the original
system. A single transition of the abstract controller has
to be implemented by a sequence of several transitions
(including stuttering steps) in the original system.

This paper shows that divergent stutter bisimulation is
a sound and complete abstraction method when synthe-
sising for specifications in LTL,. It is shown that a con-
troller for the abstracted system exists if and only if such
a controller exists for the original system with possibly
infinite number of states, and it is shown how the con-
troller for the original system can be constructed from
the abstract controller.

The divergent stutter bisimulation algorithm and the al-
gorithm to construct a controller for the original system
from the abstract controller have been implemented in
TuLiP (Filippidis et al., 2016) and applied to discrete-
time linear systems from (Hussien and Tabuada, 2018;
Wagenmaker and Ozay, 2016). It is shown that the ab-
stracted system from divergent stutter bisimulation is
smaller compared to bisimulation. As expected, lifting
the control from the discrete abstraction to the original
system is more laborious than it would be using only
bisimulation.

This paper is organised as follows. Section 2 gives a brief
background on modelling and linear temporal logic and
abstraction. Next, Section 3 explains divergent stutter
bisimulation and reviews the algorithm to partition a
state space while preserving divergent stutter bisimula-
tion. Section 4 shows how the abstracted controller is
used to construct a controller for the original system and
proves that the abstraction method is sound and com-
plete. Section 5 applies the algorithm to examples, and
Section 6 gives concluding remarks.

2 Preliminaries

This section gives a brief overview of notations used
throughout the paper. Most of the following definitions
are adopted from Baier and Katoen (2008).

2.1 Finite and Infinite Strings

Let X be a set. The sets of finite and infinite strings of
symbols from X are denoted by X* and X“, respectively.
The combined set of finite and infinite strings over X is
X = X* U XY. The empty string is € € X*, and the
set of nonempty finite strings is X* = X* \ {e}. The
concatenation of strings s € X* and ¢t € X is written
as st. The notation s* refers to the string obtained by
concatenating k > 0 copies of string s € X*. A string
s € X* is called a prefix of t € X, written s C ¢, if
there exists u € X°° such that su = t.

An infinite ascending sequence sg C s; E s C --- of
finite strings s; € X™* has a unique least upper bound
s € X with s; C s for all i > 0, called its closure and
denoted by clo{s; | i > 0}. For s € X, the duplicate-
free string uniq(s) € X is obtained from s by remov-
ing all elements that are equal to their predecessor. For
example, uniq(001322233---) = 01323. Removing du-
plicates from an infinite string may result in a finite or
infinite string.

2.2 Transition Systems and Problem Formulation

Definition 1. A transition system is a tuple G = (Q,
Q°,—,II, =) where @ is a set of states, Q° C @ is the
set of initial states, =& C @ x @ is the state transition

relation, I1is a set of atomic propositions, and = C @ xII
is the satisfaction relation. G is called finite if @ is finite.

Definition 2. A finite path fragment s in a transition
system G = (Q,Q°,—,IL, |E) is a finite state sequence
ZTo - - Xy, such that there are transitions x;_1 — x; for
all 0 < i < n. An infinite path fragment s is an infinite
state sequence xgxy - - - such that x; 1 — x; for all 0 < 3.
If zg € Q° then the path fragment is called a path in G.

A path in a transition system describes a possible be-
haviour of the system.

Definition 3. Let G = (Q, Q°, —,II, =) be a transition
system. The labelling function L: Q — 2™ is defined by
Lz)={rell|zE=x}

The labelling function L relates to each state x € @ a
set of atomic proposition that are satisfied by state x.
The labelling function L is extended to finite or infinite
path fragments s = xgz;--- € Q> by applying it to
each state of the path fragment, L(s) = L(z¢)L(z1) .

This paper is concerned with the construction of con-
trollers that restrict a transition system so that it only
enters certain states.

Definition 4 (Controller). Let G = (Q,Q°,—,II,)
be a transition system. A controller for G is a function
C: Qr —29.

The controller takes as argument a path, representing
the history of all states visited in the path. If xg, ..., x, €
@ are states (n > 0), then the path composed of these
states is written zq - - -z, € Q. The idea is that, after
visiting states xg,...,x, € @, the controlled system is
allowed to enter a state x,+1 € @ if and only if z,,11 €
C(zo--xy).

Definition 5. Let G = (@, Q°, —,IL, =) be a transition
system, and let C': Q* — 29 be a controller for G. The
controlled system, G under the control of C, is C'/G =
(QT,Q°NC(e), = ¢, I, =), where

(i) zo-- wp —|c To - TpTpyr if and only if x, —
Tpt1 in Gand 241 € C(21 -+ -),
(ii) 2o--- 2y F|c 7 if and only if z,, = 7.

In Def. 5, the states of the closed-loop system, C'/G, are
paths of G that are accepted by C. The transitions of
the closed-loop system have the from of z1 -z, — ¢
Z1 -+ Tpy1, where xg - - -z, is path of G and a state of the
controlled system C/G. From a state 1 - -- 2, of C/G,
the next state x1 - - - x,,4+1 can be reached if x,, = x,11
is a transition in G and @, 1 € C(xy - xy).

Accordingly, the paths in C/G are strings of the states
of C/G, i.e., strings of strings. The following definition

adds a more convenient notation to also consider strings
over states of G as paths in C/G.

Definition 6. Let G = (Q,Q°,—,II,), and let C be
a controller for G. A string s € Q° is said to be a path
in C/G if s is a path in G, and for every prefix rz C s
with r € @* and € @ it holds that € C(r).

Another important concern in the following is diver-
gence, where a transition system stays in the same state
indefinitely.

Definition 7. Let G = (Q,Q°,—, 11, |=), and let C be
a controller for G. A state z € @ is divergent in G if
x — x. A finite path s = rx withr € Q* and z € Q is
divergent in C'/G if its last state x is divergent in G and
x € C(s2%) for all k > 0.

2.8 Linear Temporal Logic

This paper considers requirement specifications written
in Linear Temporal Logic (Baier and Katoen, 2008).
Specifically, the fragment considered is LTL\,, which
does not include the nezt operator o. LTL,, formulas ¢
over the set of atomic propositions II are formed accord-
ing to the syntax ¢ == 7 [@1 A w2 | o1 | o1 U o2,
where 7 € II, and ¢; and @3 are LTL\, formulas. U is
the until operator, which is also used to define the more
common operators finally, & ¢ = true U ¢ and always,
Op ==,

Definition 8. Let G = (Q, Q°, —,II,) be a transition
system and let ¢ be an LTL, , formula over II. An infinite
path fragment s € QQ°° is defined to satisfy o, written
s | ¢, recursively as follows:

sEmifs=xpzy -+ and xy | 7;

s = @1 A s if both s = 1 and s = 9

s | —pq if s | 1 does not hold;

s E w1 U v if s = xpx1--- and there exists k > 0
such that z;x;y1--- | @1 for i = 0,...,k — 1 and
TpThy1 - = P2

The transition system G is said to satisfy ¢, written
G = ¢, if s = ¢ holds for every infinite path s in G.

According to this semantics, a transition system satisfies
an LTL,, formula if the formula holds on every infinite
path. The definition does not cover paths that visit a
deadlock state, i.e., a state without outgoing transitions.
It is common to rule out this case so that all paths can
be extended to an infinite path.

Definition 9. Let G = (Q, Q°, —,II,) be a transition
system. Then G is called deadlock free if, Q° # () and for
every reachable state z €) there exists a state y € @
such that z — y.

This paper is concerned with the synthesis problem,
which is to compute a controller enforcing a specification
given as an LTL,, formula for a given transition system.
This problem can now be defined formally as follows.

Problem 1. Given a transition system G and an LTL,,
formula ¢, find a controller C such that C'/G is deadlock-
free and C/G = .

There are several methods to construct a controller that
enforces an LTLy, formula on a finite transition system.
This can be done by transforming the LTL,, formula to
a Rabin or a Biichi automaton, taking a product of the
automaton with the transition system, and then solving
the control problem using existing methods (Ramadge,
1989; Kloetzer and Belta, 2008).

2.4 Abstraction

For systems with very large or infinite state spaces, find-
ing a solution to Problem 1 becomes intractable. One
approach to handle the synthesis problem in such cases
is the use of abstraction techniques, where the state space
is partitioned to produce an equivalent synthesis prob-
lem that can be solved more easily.

A common way to partition a transition system is to
identify and group equivalent states. Given a set X, a
relation =~ C X x X is an equivalence relation on X
if it is reflexive, symmetric, and transitive. The equiva-
lence class of x € X is [z] = {2/ € X | z = 2’ }, and
X/~ ={[z] | x € X } is the set of all equivalence classes
modulo ~.

Given an equivalence relation = on the state set @ of a
transition system, a quotient transition system can be
constructed by grouping all equivalent states into a sin-
gle abstract state, i.e., using @)/~ as a reduced state set.
For the quotient transition system to preserve liveness
properties, it is important to distinguish whether or not
it is possible for the system behaviour to remain within
an equivalence class indefinitely.

Definition 10. Let G = (Q,Q°,—,II,) be a transi-
tion system, and let =~ C @ x @ be an equivalence re-
lation. A state x € @Q is ~-divergent in G if there ex-
ists an infinite path fragment zxx5--- in G such that
x ~ x; for all i > 0. An equivalence class! 7 € Q/= is
~-divergent in G if it contains a ~-divergent state.

Definition 11. Let G = (Q,Q°, —,II, =) be a transi-
tion system, and let &~ C @ x @ be an equivalence rela-
tion. The divergence-respecting quotient transition sys-
tem is G/~ = (Q, Q°, =, 11, &) where,

! Here and in the following, # € Q/~ is an unspecified
equivalence class, which may or may not be equal to the
equivalence class [z] containing z.

Q=Q/~

Q°=1{i°€Q|anQ° £0};

T = 7 if 7 is divergent;

T = gy for & # g, if there exist € Z and y € § such
that x — y;

T |= m if there exists € & such that x |= 7.

Like a standard quotient transition system, the
divergence-respecting quotient includes a transition
T = y between two equivalence classes if the original
transition system has a transition x — y between some
states of these classes, and an equivalence class satisfies
a proposition if one of its states satisfies that proposi-
tion. The difference to a standard quotient lies in the
treatment of selfloop transitions: a selfloop & = Z is
only included in the divergence-respecting quotient if &
is a divergent equivalence class.

For simplicity of notation, in the following, the tilde su-
perscripts of the transition and satisfaction relations of
quotient transition systems will be omitted, thus identi-
fying = with — and = with |=. Further, the following
definition is used to relate path fragments of a transition
system to those of its quotient.

Definition 12. Let G = (Q,Q°,—,II, =) be a tran-
sition system, and let & C @ x () be an equiva-
lence relation. For a (finite or infinite) path fragment
§ = xox1x2 -+ € Q°, the term [s] = [zo][z1][x2] - €
(Q/~)> denotes the path fragment of equivalence
classes that appear in s.

3 Stutter Equivalence

This paper addresses the problem of abstracting a tran-
sition system before calculating a controller to enforce
an LTL,, specification. Without the temporal “next”
operator, the logic LTL\, cannot distinguish how often
states with the same labels are repeated. This leads to
the idea of stutter equivalence (Baier and Katoen, 2008).
Transitions between states with equal labels are called
stuttering steps, and stutter bisimulation considers tran-
sition systems as equivalent if they have the same infi-
nite paths while factoring out the stuttering steps. To
preserve liveness properties, this relation is refined to di-
vergent stutter bisimulation (Baier and Katoen, 2008).

3.1 Stutter Equivalent Paths

Definition 13. Let G; = (Q;, Q¢, =, 1L, |=;) be tran-
sition systems, and let s; be path fragments in G,
for ¢ = 1,2. Then s; and sy are stutter equivalent if
uniq(L(s;)) = uniq(L(s2)) and s; and ss are either both
finite or both infinite.

According to Def. 3, L(s) is the sequence of labellings
visited on the path fragment s, and uniq(L(s)) is the

same sequence after removing duplicates. Therefore,
stutter equivalent paths have the same sequences of
atomic propositions, while the number of states re-
peated by stuttering steps, i.e., transitions whose source
and target states satisfy exactly the same propositions,
does not need to be equal. It is known that stutter
equivalent paths satisfy the same LTL,, formulas.

Proposition 1. (Baier and Katoen, 2008) Let G; =
(Q;,Qf,—;, 11, |=;) be transition systems, and let s; €
QY be path fragments in G, for ¢ = 1, 2. If s; and s are
stutter equivalent, then s; = ¢ if and only if so | ¢ for
any LTL,, formula ¢.

3.2 Divergent Stutter Bisimulation

Definition 14. Let G = (Q,Q°, —,II, =) be a transi-
tion system. A relation =~ C) x Q) is a divergent stutter
bisimulation equivalence on G if for all z1, 29 € @ such
that z1 = x5 the following conditions hold:

(i) L(z1) = L(z2),

(ii) if there exists 2} € @ such that z; — 2} and
x} % xo then there exists a finite path fragment
Toyy ... Ynxh such that n > 0 and 21 =~ y; for
i=1,...,nand 2} =~ 2);

(iii) if there exists 24 € @ such that xo — 24 and
xh % x1 then there exists a finite path fragment
X121 ...2,2) such that n > 0 and zo =~ z; for
i=1,...,nand x4 ~ 2};

(iv) 7 is ~-divergent if and only if x5 is ~-divergent.

Condition (i) requires that equivalent states are labelled
with the same propositions, i.e., the equivalence relation
is proposition-preserving. According to conditions (ii)
and (iii), for two states to be considered as equivalent,
if one of them reaches a state in a different equivalence
class then the other must reach an equivalent state either
directly or after some stuttering steps. The last condi-
tion (iv) means that two states are only equivalent if ei-
ther both exhibit divergent paths or none of them does.

Theorem 2. (Baier and Katoen, 2008) Let G = (Q, Q°,
—,II, =) be a transition system, and let ~ be a divergent
stutter bisimulation on G. If s € Q% is a path in G then
there exists a stutter equivalent infinite path § in G//~.

Theorem 2 shows that, if a transition system G is ab-
stracted to a divergence-respecting quotient G //~ with
respect to a divergent stutter bisimulation, then for any
infinite path in the original system G there exists a stut-
ter equivalent infinite path in the abstraction G//=. By
Prop. 1, these paths satisfy the same LTL,, properties.

3.8 Divergent Stutter Bisimulation Algorithm

There exists a polynomial-time algorithm to calculate
the coarsest divergent stutter bisimulation relation of a

transition system (Groote and Vaandrager, 1990; Groote
et al., 2017), which is summarised in this section. The
algorithm performs partition refinement starting from
an initial partition consisting of regions determined by
the propositions. Regions are split repeatedly when they
contain states that cannot reach the same successors.
The splits are performed by calculating the sets of pre-
decessors of a region and then intersecting all regions
with this predecessor set.

Definition 15. Let G = (Q,Q°, —,II, =) be a transi-
tion system. The set of predecessors of state x € @Q is
Pre(xz) = {y € Q | y = = }. The set of predecessors of a
set of states X C Q is Pre(X) = (J,cx Pre(x). The set
of stutter predecessors of a state set T' C () within P is

PPre(T,P) = {y € P | there exists a finite path (1)
fragment yy; - - - ypx in G withn > 0
and y1,...,yp € Pandz € T} .

The set of divergent states within P is

Div(P) = {y € P | there exists an infinite path (2)
fragment yy1y2--- in G such that
yp € Pforallk>1}.

The stutter predecessors of T' within P are states in the
region P that can reach a state in T directly or after
a finite number of steps within P. The divergent states
within P are states from where an infinite number of
transitions is possible while staying within P. The sets
of stutter predecessors and divergent states can be char-
acterised as fixed points. Given the recursive definition

PPre’ (T, P) = Pre(T) N P ; (3)
PPre'™ (T, P) = Pre(PPre' (T, P)) NP ; (4)

it is clear that
PPre(T, P) =) PPre'(T.P); (5)
Div(P) = ﬂ,>

(2

o PPre' (P, P) . (6)

For finite-state systems, these state sets can be com-
puted in a finite number of steps, but for infinite sys-
tems the calculation of PPre(T, P) or Div(P) may fail
to terminate.

Algorithm 1 uses these operations to calculate a parti-
tion that respects divergent stutter bisimulation. Line 1
computes the initial partition based on the propositions.
It can be constructed as) = @/~ where the relation
~ C @ x @Q is such that ~ y, if x = p if and only
if y = p for all p € TI. Then the algorithm enters the
loop, which repeatedly refines each region until all con-
ditions in Def. 14 are satisfied. Line 4 checks for regions
to be refined based on divergence. If a region P contains

Algorithm 1: Divergent stutter bisimulation
Input: Transition system G = (Q,Q°, —,IL,)
Output: Coarsest partition ¢
1 @ < Initial proposition-preserving partition;
2 done < false;

3 while —done do

if 3P € Q : § C Div(P) C P then

P, + Div(P);

P2 — P \ Pl;

Q « (Q\ {PY)U{P.. P2};

else if 3P, T € Q :) C PPre(T, P) C P then

P, < PPre(T, P);

10 Py + P\ Py;

11 Q« (@Q\{PHu{P, P}

12 | else

13 | | done « true;

© 00 N O ok

14 return Q;

both divergent and non-divergent regions, i.e., if the set
Div(P) is nonempty and a proper subset of P, then it
is refined by putting the divergent and non-divergent
states into their own regions. Additionally, line 8 checks
for splits based on stutter predecessors. Here it needs
to be checked for each pair of regions P and T" whether
some of the states in P are stutter predecessors of T
while others are not, in which case P is split. The al-
gorithm terminates when no more splits are necessary.
Then the result @ represents the coarsest partition that
respects divergent stutter bisimulation.

Example 1. (Wagenmaker and Ozay, 2016) Assume
the transition relation

z(t+1) = 2z(t) + u(t) , (7)

where z(t) € Q = [—1.5,1.5] is the state, and u(t) € U =
[—2, 2] is the control input. The initial partition consists
of three regions, s; = [—-1.5,—1), s = [—1,1), and s5 =
[1,1.5]. For demonstration, consider the computation of
PPre(ss, s2) during the execution of Algorithm 1. First,
PPre’(s3, s5) = Pre(s3) Nsy = [—0.5,1.75] N [~1,1) =
[0.5,1), and then PPre'(ss,s5) = Pre(PPre®(ss, s2)) N
s9 = [-1.25,1.875) N [-1,1) = [-1,1) = s2. Further it-
erations produce no change, so sy does not need to be
split because of s3. In fact, no regions are split at all, and
the initial partition is already a divergent stutter bisim-
ulation. Differently, partitioning based on bisimulation
splits so into Pre(s3) Nsy = [0.5,1) and [—1,0.5), which
require further splitting. Wagenmaker and Ozay (2016)
show that there exists no finite bisimulation partition
for this example. O

Like bisimulation, Algorithm 1 may fail to terminate
when given an infinite state space. Yet there are cases
such as the above example, where bisimulation fails to
terminate while divergent stutter bisimulation yields a

finite abstraction. It is clear and well-known that every
bisimulation relation also is a divergent stutter bisimu-
lation. It follows that Algorithm 1 terminates more of-
ten than bisimulation and always produces the same or
a coarser abstraction.

4 Control Strategy

This section presents the main contributions of the pa-
per and shows how divergent stutter bisimulation can be
used for synthesis. After partitioning the state space us-
ing Algorithm 1, the synthesis problem can be solved for
the abstract system. It remains to construct a controller
that solves Problem 1 for the original system. Next, Sec-
tion 4.1 describes the construction of this controller, and
afterwards Sections 4.2 and 4.3 show that the method is
sound and complete.

4.1 Controller Construction

Given a transition system GG and LTL,, specification ¢,
the objective of this paper is to find a solution for Prob-
lem 1, i.e., a deadlock free controller that enforces p on G.
Using Algorithm 1, the transition system is replaced by
a divergent stutter bisimilar abstraction GG. Then a tra-
ditional synthesis procedure (Ramadge, 1989; Kloetzer
and Belta, 2008) can be used to solve Problem 1 for the
abstraction GG, which results in a controller C' that en-
forces the specification ¢ on the abstraction G.

It follows from the results cited in Section 3.2 that the
system G and its abstraction G satisfy the same LTLy,
properties, but this is only useful to verify that ¢ holds
on the uncontrolled system. After synthesis, it remains to
be shown that the existence of the controller for the ab-
stract system implies the existence of a controller for the
original system. Therefore, it is now shown how the ab-
stract controller C' that enforces the specification on the
abstract system G can be used to design a controller C
that enforces the same specification on the original sys-
tem G. Its construction, which is given in Def. 16, works
by considering the states in the original system G that
correspond to the classes that form the abstraction G.

The controller C' to be constructed for the original sys-
tem observes a path s = x1--- 2, and makes a control
decision C(s) of states allowed next. To base this deci-
sion on the abstract controller C, the path s is mapped
to a path § of the abstract system, and then the control
decision C(3) is used to inform the choice of C(s).

Consider a path § = &1 -+ - &, € (Q/~)7" of the abstrac-
tion, which also is a state of the abstract controlled sys-
tem C'/G by Def. 5. To use C(5) when making the con-
trol decision C(s), it will be considered what classes can

be reached from § under control of C' after possible stut-
tering steps within Zy:

S5i(3) = {7y € (Q/=) | 3&.y is a path in C/G (8)
and § # Ty } ;
S(3) = Ui20 S5%(3) - (9)

S%(3) is the set of equivalence classes that can be reached
in the abstract controlled system after executing § and
then staying ¢ times in the last class &y of §, and S(8) is
the set of equivalence classes reached after an arbitrary
number of repetitions of the last class. This allows for
abstract controllers that transition from Z; to the next
class immediately, or that keep the system in Zj, for some
number of steps before transitioning.

Now consider a finite path s € QT in G, for which a
control decision is to be made. This path is converted to a
path 5 € (Q/~)" so that C(5) can be used to inform the
control decision C(s). The path § must be constructed
in such a way that § is a path in C/G and is stutter
equivalent to s. This is achieved by repeating each of
the equivalence classes in [s] for the smallest number
of times needed to form a path in C/G. Specifically,
5 = |s] 5 according to the following recursive definition,
where r € Q* and z,y € Q:

ifory; (11)
it [y] € S'(lra)s) s (12)

reyle = lrelc
(rayl = Lralelally].

where i = min{i > 0| [y] € S*(|rz]s) } in the last case.
Also, |s] s is undefined if none of the above conditions
applies. By construction, |s] s is stutter equivalent to s
if it is defined, and it is prefix-preserving, i.e., s C ¢
implies |s|s C [t] & if defined.

Now the set of successors outside of the current class
that C allows after s is the union of the classes that can
be reached under control of C' after |s] s,

S(s)=J5(lsle) - (13)

After observing s € QT, the controller C' guides the sys-
tem to a state in S(s), possibly after stuttering steps
within the class of the final state of s. If C' permits diver-
gence, then C' allows it also, otherwise it follows a short-
est path to a state in S(s). These ideas are formalised in
the following definition.

Definition 16. Let G = (Q,Q°, —,II, =) be a transi-
tion system, let ~ be an equivalence relation on @, let
G = G//~, and let C be a controller for G. The con-
troller C': Q* — 2 for G is constructed as follows. First,

for the empty path s = &, we have C(e) = |JC(e). Sec-
ond, for a nonempty path s = zg -z, € QT, the value
of C(s) depends on divergence:

(i) If [xy] is not ~-divergent in G or |s|s is divergent

in G, then
C(s) = [zn] U S(s) . (14)
(i) If [z,,] is ~-divergent in G' and |s] 5 is not divergent
in G, then

C(s) = {S(s) =0 g5

PPre' !(S(s), [xn]) otherwise;

where i = min{j > 0 | 2, € PPre’(S(s), [n]) }.

In Def. 16, C' allows as initial states all states in classes
allowed as initial by C'. Otherwise the decision depends
on the equivalence class [z,,] that corresponds to the last
state of s.

In case (i), this class [z,,] is not divergent or it is divergent
in the abstract controlled system, i.e, [s]a[2n][2n] - is
a path in C'/G, and then C allows the system to stay
in [2,,] or to transit to the classes S(s) allowed as succes-
sors by C. Fig. 1 shows the case of a non-divergent class
to the left, and in the middle class that is divergent in
the abstract controlled system.

In case (ii), [x,] is a divergent class in the uncontrolled
system but the abstract controller C' does not allow
this divergence. The controller C prevents the divergent
behaviour within [x,] and forces the system to transi-
tion to a different equivalence class eventually. The con-
struction (15) ensures that the system transitions to an-
other equivalence class permitted by the abstract con-
troller when possible, and otherwise only allows transi-
tions within [z,] that take the system closer to a state
from where it is possible to leave [z,,]. This case is shown
in Fig. 1 to the right.

4.2 Soundness

Soundness means that any controller synthesised by the
abstraction-based method correctly solves Problem 1.
Here it is shown that if there exists a solution C to the
synthesis problem for an abstracted system G, then the
controller constructed according to Def. 16 solves the
synthesis problem for the original system G.

For the controller to be correct, it must enforce its LTLy,
specification and be deadlock free, which is shown in
Props. 4 and 5 below. Both results depend on the fol-
lowing lemma, which shows that the path [s] s used in
the construction of the controller C' is a path in the ab-
stract controlled system C/G if s is a path in the original
controlled system G.

G G G
@ @ A Y)|l @
[zn]
@ B e

—(¥) |ly]
2|12l

-W(2)|l2l

Fig. 1. Construction of a controller for the original system from the abstraction according to Def. 16, depending on whether
[zn] is not divergent in G (left), |s|4 is divergent in G (middle), or [z] is divergent in G and |s| & is not divergent in G (right).
Transitions disabled by the controller are shown as dashed arrows.

Lemma 3. Let G be a transition system, let ~ be a
divergent stutter bisimulation on G, let C be a controller
for G = G//~, and let C be the controller constructed
from C according to Def. 16. If a finite string s € Q1 is a
path in C/G, then |s] s is defined and is a path in C/G.

Proof. Let s = zg---x,, and let s = xg--- 2 be the
k-th prefix of s. It is shown by induction on k = 0,...,n
that |si] s is defined and a path in C'/G.

Base case: k = 0. As so = x¢ is a path in C/G, it is clear
that o € Q° is an initial state of G and zy € C(g). Then
(2] € {[#°] | 2° € Q° } = Q° is an initial state of G, and
from zo € C(e) = [JC(e) it follows that [x0] € C(e).
This means that [zo] is an initial state of C'/G, which
implies that |so |5 = [20] is defined and a path in C/G.

Inductive step: Assume the claim holds for some 0 <
k <mn,ie, |s;]s is defined and a path in C'//G. It must
be shown that [spy1]s is defined and a path in C'/G.
As k > 0, the path si41 can be written as sp41 =
SETp4+1 = Sk—1TkTr+1. As s and thus its prefix spyq is
a path in C/G, it is clear that x41 € C(sx) by Def. 6.
Consider two cases.

If x;, = Zp41, then it follows by (11) that [spy1]s =
LSk—lxkﬂfk+~1Jé = [Sp—1%k] 5 = [Sk] e is defined and a
path in C'/G by the inductive assumption.

Otherwise 241 ¢ [zx], and as xx41 € C(sg) it follows
in both cases (i) and (ii) of Def. 16 that xx41 € S(sg).
(For case (i), note that PPre™*(S(sg), [zx]) C [z].)
By (13), there exists & € S(|sx|s) such that x4, € 7,
i.e., [£k+1] = &. Then by (8)—(9), there exists ¢ > 0 such
that sy][4’ = |sk)aler]/[zrs1] is a path in C/G.
Choose i to be the smallest with this property. Then
Lskr1)e = Lsk—1zrzr+1]e = [sk—1zn]alzn] [zpa] =
Lsk]) alon) [@r41] by (12), so [Sp4+1]s is defined and a
path in C/G. O

Now it can be shown that the controller constructed
according to Def. 16 enforces the same LTL,, properties
on the original system as the abstract controller does.

Proposition 4. Let G be a transition system, let ~ be
a divergent stutter bisimulation on G, let ¢ be an LTLy,

specification, let C' be a controller for G = G J/~ that
enforces p on G, and let C' be the controller constructed
from C' according to Def. 16. Then C enforces ¢ on G.

Proof. Assume s = xgxy ... is an arbitrary infinite path
in C/G. It is to be shown that s = ¢. By Lemma 3,
for every prefix s, = o --- 2, of s, it holds that [s,]s

is defined and is a path in C'/G. Therefore, as [s]s
is prefix-preserving, there is an ascending sequence
lso]a C |s1]a E --- of paths in C'/G. The closure of
this sequence may be finite or infinite.

If it is infinite, then let 5§ = clo{ |s;]& | 4 > 0}, which is
an infinite path in C'/G and stutter equivalent to s.

Otherwise there exists & > 0 such that |s,]s = |sk]a
for all n > k. As |5,] is defined for all n > 0, it must
have been constructed from (11) and z,, = zj for all
n > k. As s is a path in G, it follows that sj, is divergent
in C/G and zy, is divergent in G. The fact that s, is di-
vergent in C'/G means that C(sy) cannot be constructed
according to case (ii) of Def. 16, as this case only allows
a finite number 4 of steps within [zy]. Then case (i) of
Def. 16 must be used, i.e., |sx]s is divergent in C'/G.
This means by Def. 7 that § = |si]a[2k][zs]--- is an
infinite path in C'/G. Also, as [z,] = [zi] for all n > k,
it is clear that § is stutter equivalent to s.

In both cases, there exists an infinite path 5 in C//G that

is stutter equivalent to s. Since C' enforces ¢ on G, it
follows that § = . Since § is stutter equivalent to s,
based on Prop. 1 it holds that s = ¢. O

The second property required of a correct controller is
that it is deadlock free. Therefore, the following proposi-
tion establishes that if the abstracted closed-loop system
is deadlock free, then the controller constructed using
Def. 16 produces a deadlock free closed-loop behaviour
for the original system.

Proposition 5. Let G be a transition system, let ~ be a
divergent stutter bisimulation on G, let C' be a controller
for G = G/~ such that C'/G is deadlock free, and let

C be the controller constructed from C according to
Def. 16. Then C/G is deadlock free.

Proof. Consider areachable state s of C//G, which can be
written as s = g - - - &, which must be a path in C/G.
It follows by Lemma 3 that [s|s is defined and is a

path in C'/G. By construction, |s]s can be written as
LSJC’ = T+ T with z,, € 7.

First consider the case that |s]s is divergent in C/G,
which by Def. 7 means that ZoZy - - - TxTxZy - - - is a path
in C'/G. This implies that Zj, is divergent in G, and as ~
is a divergent stutter bisimulation on G, it follows that
[z,] = &y is ~-divergent in G. Then there exists z,4+1 €
[] such that z,, — 2,41 in G. Also C(s) is constructed
according to case (i) of Def. 16 for divergent |s] s, and
thus z,41 € [z,] C [2,] US(s) = C(s).

Now consider the case that || is not divergent in C/G.
Then, since C / G is deadlock free, there must exist ¢ > 0
and a class § # @, such that | s] ~Z}7is a pathin C/G. Tt
follows from (8)—(9) that § € S(|s]a)- Also, as |s] 5254
is a path in C’/é, it holds that Z;, — 7 in G, which
means that there exist states * € 7 and y € § such
that x — y in G. Then z,, ~ z, and as =~ is a divergent
stutter bisimulation on G, there exists a path fragment

Ty = Tl —> =" = T Y (16)

in Gwhere x,,...,Tntm-1 € Tr and Tp4py, € §. Assume
without loss of generality that (16) is a shortest path
fragment with these properties. Note that, as 2,4, € ¥
and 7 € S(|s]z), it follows from (13) that 4 € S(s).
Now consider the two cases from Def. 16.

(i) [zn] is not divergent and C(s) = [z,]US(s). Either
it holds that m > 1 and 2,41 € [z,]) or m = 1 and
Tpt1 = Tpam € S(s), so it follows that x,4q1 €
[z,] US(s) = C(s).

(ii) [xy] is divergent and C(s) is defined by (15). It is
first shown by induction on j = 0,...,m — 1 that
Tptm—j—1 € PPre? (S(s), [zn]).

Base case: j = 0. As Zpym—1 € [z,] and
Tntm—1 — Tntm € S(8), it holds that zp4m—_1 €
Pre(S(s)) N [z,] = PPre®(S(s), [zn]).

Inductive step: Assume the claim 2, 1m—j—1 €
PPre’ (S(s), [x,]) holds for some j < m — 1. Then
since Tntm—(G+1)—1 = Tntm—5-2 —7 Tpdm—j—1
in G and Tpypm_(j11)—1 € Tk = [Ty, it is clear
that Tntm—(j+1)—1 S Pre({a:n+7n_j_1}) n [J)n] -

Pre(PPre? (S(s), [x,]))N[z,] = PPre’ T (S(s), [x,]).

This completes the induction. If m = 1 then it
follows with j = 0 that x,, € PPre’(S(s), [x,]), and
thus 41 = Tpem € S(s) = C(s) from (15). If
m > 1 then it follows with j = m — 2 that x,,41 =
PPre™ 2(S(s), [x,]). Also, since (16) is a shortest
path fragment, there does not exist j < m — 2
such that x,11 € PPre’(S(s),[z,]). Then it fol-
lows from (15) that ,, 11 € PPre™ %(S(s), [zn]) =

C(s).

In all the cases there exists x,11 € C(s) with z, —
Zp41. It follows that s — sz,41 in C/G, which shows
that C'/G is deadlock free. O

The following theorem combines the results from Props.
4 and 5 to show that synthesis after divergent stutter
bisimulation is sound.

Theorem 6 (Soundness). Let G be a transition system
and ¢ be an LTL,, formula. Let C' be a controller for
G = G/~ such that C/G is deadlock free and C/G |= .

Let C be the controller constructed from C according to
Def. 16. Then C'/G is deadlock free and C/G = ¢

Proof. Follows directly from Props. 4 and 5. O

Theorem 6 establishes that divergent stutter bisimula-
tion can be used as an abstraction method before solving
Problem 1. Moreover, Def. 16 can be used to construct
a controller for the original system from the abstracted
controller, which is a solution for Problem 1.

4.8 Completeness

Completeness of a synthesis method means that if there
exists a solution to the synthesis problem, then the
method finds a solution. The following theorem shows
that, if there exists a controller C for a system G, then
there also exists a controller C' that enforces the same
LTL\, specification on the divergent stutter bisimilar

abstraction G.

Theorem 7 (Completeness). Let G be a transition sys-
tem, let &~ be a divergent stutter bisimulation on G, let
¢ be an LTL,, specification, and let C' be a controller
for G that enforces ¢ on G such that C/G is deadlock
free. Then there exists a controller C for G = G/~ that
enforces ¢ on G such that C'/G is deadlock free.

Proof. Since C/G is deadlock free, from every initial
state of C'/G there exists an infinite path in C'/G. Let
Q% = {[z°] | #° € Q° N C(e) } be the set of classes of
initial states allowed by C'. Then choose an initial class
To € Q%, and an initial state o € To N Q° N C(e), and

an infinite path s = gz - -+ in C/G. As s is an infinite
pathin G, by Theorem 2, there exists a stutter equivalent
infinite path § = ZoZ; - - - in G. Now construct the con-

troller C such that C'(¢) = {0} and C(&o - - - F_1) = T,
for all & > 0. By construction, C' constrains the ab-
stracted system G such that it can only follow the in-
finite path §, which implies that C'//G is deadlock free.
As s is a path in C/G, and C enforces ¢ on G, it holds
that s = ¢. As § is stutter equivalent to s, it follows by

Prop. 1 that s E . Then, since the § is the only infinite
path in C/G, it follows that C enforces ¢ on G. O

Theorem 7 confirms that, whenever there exists a so-
lution to Problem 1, the method of synthesis after di-
vergent stutter bisimulation also finds a solution. As-
sume that there exists a controller C' that enforces a
given LTLy, specification on a given system G. Then by

Theorem 7, there exists controller C' that enforces the
same specification on the abstraction G. Given a com-
plete procedure to solve the synthesis problem for G, it
is possible to compute such a solution. This solution can
then be converted to a controller for the original system
using Def. 16, which by the results of Section 4.2 solves
Problem 1 for the original system.

5 Examples

This section applies the synthesis and controller con-
struction method using divergent stutter bisimulation to
a variety of systems and compares the results to regular
bisimulation.

As shown in Example 1, there are cases where the coars-
est partition for bisimulation is infinite while a finite di-
vergent stutter bisimulation partition exists. Even when
bisimulation is applicable, stutter bisimulation can of-
fer simpler partitions and faster computation. This is
demonstrated with the next two examples featuring fi-
nite and continuous state spaces. In both cases the sys-
tems are abstracted, controllers are synthesised, and the
closed-loop systems are simulated using TuLiP (Filip-
pidis et al., 2016). All computations were performed on
an Intel i7-4770K CPU with 32 GiB of RAM.

Example 2. Consider a system where K robots, num-
bered 1, ..., K, navigate in a two-dimensional grid G =
{0,...,w} x {0,...,h}. The system state x consists of
the robot locations z!, ..., 2% € G and evolves accord-
ing to

()" = 2" +u for v € {~1,0,1}2 . (17)

The corners of the grid are special locations where the
robots charge at home or perform tasks: Home = (0, 0),
Taskg = (w,0), Task; = (0,h), Tasky = (w, h). A robot
is charged when it enters the home location, and a task
is completed when a robot enters the task region. Each
robot should be charged infinitely often and each task
should be completed infinitely often by some robot, while
no two robots should occupy the same location at the

10

Abstraction Computation Times and Sizes
——- Bisimulation Time —— Bisimulation States
Stutter Bisimulation Time Stutter Bisimulation States

103

103 4

102 4

10! 4

102

100 4

101 4

Time to compute abstraction (s)
Number of states in abstraction

102 4

10!

T
10?
Number of states in orignal system

10t 103

Synthesis and Simulation Times
=== Bisimulation Synth Time —— Bisimulation Sim Time
Stutter Bisimulation Synth Time Stutter Bisimulation Sim Time

B F 102
L
.
,
4
4
;
.
.
;
.
.
L
) / L1023 @
D

[
1 2
E 10%4 / £
= 7
[7 'E
(%] 4
'G g S
[} ’ =1
< 4 i}
€ / 2
> £
[/ F107* &

/
,/
/
4
/
A
L -5
10-1 10

102
Number of states in original system

10°
Fig. 2. Abstraction sizes and computation times (top) and
synthesis and simulation times (bottom) from Example 2.

same time. This is modelled by the LTLy, formula

K 2
DﬁC/\/\DOHi/\/\EIOTj,

(18)
i=1 j=0
where
rE=C & Jijitjnat =27, (19)
= H; < 2' =Home, (20)
rE=T; & Ji:z" = Task; . (21)

Experiments are carried out for K = 2 robots and grid
sizes (w,h) € {(2,2),(2,3),(3,3),(3,4),(4,4),(5,5)}.
For larger grids, the bisimulation algorithm does not
converge within one hour. The states in this example are
only bisimilar to themselves, so the coarsest bisimula-
tion is the original partition defined by the propositions
(19)—(21). For grid sizes 3 x 3 and above, it has 20 re-
gions. Fig. 2 (top) shows the computation times, which
are significantly faster for divergent stutter bisimulation.

Obstacle

Obstacle

Fig. 3. The abstractions in Example 3 using bisimulation
(left) and divergent stutter bisimulation (right). A path using
the synthesised controller is shown for the divergent stutter
bisimulation.

Next, controllers are synthesised for the abstracted sys-
tems and evaluated by simulating a path. At each step,
the time to map the control decision from the abstract
system to a control decision for the original system is
measured and shown in Fig. 2 (bottom). The synthesis
time for the divergent stutter bisimulation abstraction is
significantly lower as expected from the smaller abstrac-
tion size. On the other hand, mapping control decisions
from the abstract system to the original system is sig-
nificantly faster for bisimulation as the construction of
the divergent stutter bisimulation controller is nontriv-
ial. O

Example 3. Consider a continuous analogue of Exam-

ple 2 with one robot modelled by the linear system
2

v =2z +u, ue[—%,%] . (22)

The state space @ is a subset of [0, 6] x [0, 4] with polyg-

onal obstacles as shown in Fig. 3 removed. The atomic

propositions are as in Example 2, and the satisfaction

relation is defined similarly where the home and task lo-
cations are squares at the corners of Q.

The abstraction algorithms are implemented for regions
given by unions of polytopes whose predecessors can be
computed with linear programming. The bisimulation
algorithm is prematurely terminated by splitting only re-
gions exceeding a minimum area, resulting in an abstrac-
tion with 158 regions that takes 349 s to compute. The di-
vergent stutter bisimulation algorithm takes 2003 s and
converges to the original partition. These abstractions
are depicted in Fig. 3.

Next, when synthesising controllers, the computer runs
out of memory during synthesis for bisimulation, while
a controller is synthesised in 38 ms for the much smaller
divergent stutter bisimulation abstraction. When sim-
ulating a path of the closed-loop system for the diver-
gent stutter bisimulation abstraction, the average time
to map control inputs for the abstraction to the original
system is 0.81 ms. O

Even when divergent stutter bisimulation does not result
in the original partition, the resulting abstraction can
still be significantly less complex than abstractions using
bisimulation, as shown in the next two examples.

11

Fig. 4. The abstractions computed in Example 4 using bisim-
ulation (left) and divergent stutter bisimulation (right).

1 1
53
01 S2 S1 0
S4
S5
-1 -1
-1 0 1 —1 0 1

Fig. 5. The partition produced by divergent stutter bisimu-
lation in Example 5.

Example 4. Consider the following continuous-state
double-integrator system:

SR HINIR

where z € [-1,1], v € R, and u € [—0.5, 0.5]. This mod-
els the position x and velocity v of a ball rolling on a
one-dimensional table that can be tilted. The objective
is for the ball to visit two regions L = [—1,—0.5] and
R = [0.5,1] repeatedly, which is expressed in LTL, as
OOIAOO r, where (z,v) Elifz < —0.5and (z,v) Er
if x > 0.5. The bisimulation algorithm terminates in 48 s
resulting in an abstraction with 82 regions, while the di-
vergent stutter bisimulation algorithm converges in 200 s
to an abstraction with 30 regions, as shown in Fig. 4.
Although divergent stutter bisimulation takes longer to
compute, it results in a smaller abstraction. O

(23)

Example 5. (Wagenmaker and Ozay, 2016) Consider
the following two-dimensional linear system:

T4u, (24)

051
0.75 —1

where x € [—1,1] x [-1,1] is the state and u € [—1,1] x
[—1,1] is the control input. The initial partition con-
sists of five regions, s; = [-0.5,0.5) x [-0.5,0.5), s2 =
[-1,0.5) x [-1,1], s3 = [-0.5,1] x [0.5, 1], s4 = [0.5,1] X
[-1,0.5), and s5 = [—0.5,0.5) x [—1,—0.5). Divergent
stutter bisimulation converges to a partition of 15 re-
gions as shown in Fig. 5, after 37s computation time.
The dual-simulation algorithm converges to a partition
of 66 regions after 137s, while the bisimulation algo-
rithm does not terminate after 1 hour—it produces an
approximate partition of 700 regions in 35 minutes. (Wa-
genmaker and Ozay, 2016). O

6 Conclusions

The abstraction method of divergent stutter bisimula-
tion has been applied to reduce a state space before
controller synthesis. Divergent stutter bisimulation is a
well-known abstraction in the field of model checking,
which preserves CTLto properties. This paper leverages
these results to simplify the task of controller synthesis.
It is shown that a controller synthesised to satisfy any
LTL,, specification on a reduced state space based on di-
vergent stutter bisimulation can be converted back to a
controller for the original system. This synthesis method
is sound and complete relative to a sound and complete
synthesis procedure for the abstract state space.

These results improve on bisimulation-based abstrac-
tion, because divergent stutter bisimulation results in
coarser partitions and is more likely to terminate even
for infinite state spaces. This abstraction can also be
considered as more insightful for continuous systems as
it ignores the number of steps needed to transition from
one region to another.

In future work, the authors would like to combine di-
vergent stutter bisimulation with dual-simulation (Wa-
genmaker and Ozay, 2016). Dual-simulation is related
to simulation equivalence (Henzinger et al., 2005) and
improves on bisimulation using covers instead of parti-
tions, and could benefit from the abstraction of stutter-
ing steps in the same way as bisimulation does. It would
also be interesting to generalise the results about LTy,
specifications to CTLy, or CTL?O, and to consider con-
trol under uncertainty or disturbance.

References

Alur, R., Henzinger, T.A., Lafferriere, G., and Pappas,
G.J. (2000). Discrete abstractions of hybrid systems.
Proc. IEEE, 88(7), 971-984. doi:10.1109/5.871304.

Baier, C. and Katoen, J.P. (2008). Principles of Model
Checking. MIT Press.

Belta, C., Yordanov, B., and Gol, E.A. (2017). For-
mal Methods for Discrete-Time Dynamical Systems.
Springer, 1 edition.

Clarke, Jr., E.M., Grumberg, O., and Peled, D.A. (1999).
Model Checking. MIT Press.

Fernandez, J.C. (1990). An implementation of an ef-
ficient algorithm for bisimulation equivalence. Sci.
Comput. Programming, 13, 219-236.

Filippidis, I., Dathathri, S., Livingston, S.C., Ozay, N.,
and Murray, R.M. (2016). Control design for hy-
brid systems with TuLiP: The temporal logic planning
toolbox. In 2016 IEEE Int. Conf. Control Applications
(CCA), 1030-1041. doi:10.1109/CCA.2016.7587949.

Girard, A. and Pappas, G.J. (2007). Approximation
metrics for discrete and continuous systems. IEFE
Transactions on Automatic Control, 52(5), 782-798.

12

Groote, J.F., Jansen, D.N., Keiren, J.J.A., and Wijs,
AJ. (2017). An O(mlogn) algorithm for comput-
ing stuttering equivalence and branching bisimula-
tion. ACM Trans. Computational Logic, 18(13).

Groote, J.F. and Vaandrager, F.W. (1990). An efficient
algorithm for branching bisimulation and stuttering
equivalence. In 17th Int. Colloguium on Automata,
Languages, and Programming, ICALP ’90, 626—638.
Springer.

Henzinger, T.A., Majumdar, R., and Raskin, J.F.
(2005). A classification of symbolic transition systems.
ACM Trans. Computational Logic, 6(1), 1-32.

Hussien, O. and Tabuada, P. (2018). Lazy controller syn-
thesis using three-valued abstractions for safety and
reachability specifications. In 57th IEEE Conf. Deci-
sion and Control, CDC 2018. IEEE.

Kloetzer, M. and Belta, C. (2008). A fully automated
framework for control of linear systems from tempo-
ral logic specifications. IEEFE Trans. Autom. Control,
53(1), 287-297. doi:10.1109/TAC.2007.914952.

Liu, J., Ozay, N., Topcu, U., and Murray, R.M. (2013).
Synthesis of reactive switching protocols from tempo-
ral logic specifications. IEEFE Transactions on Auto-
matic Control, 58(7), 1771-1785.

Megawati, N.Y. and van der Schaft, A. (2016). Bisim-
ulation equivalence of differential-algebraic systems.
Int. J. Control, 91(1), 45-56. doi:10.1080/00207179.
2016.1266519.

Milner, R. (1989). Communication and concurrency.
Series in Computer Science. Prentice-Hall.

Nilsson, P.,; Ozay, N., and Liu, J. (2017). Augmented
finite transition systems as abstractions for control
synthesis. Discrete Fvent Dynamic Systems, 27(2),
301-340.

Pappas, G.J. (2003). Bisimilar linear systems. Automat-
ica, 39, 2035-2047.

Ramadge, P.J.G. (1989). Some tractable supervisory
control problems for discrete-event systems modeled
by Buchi automata. IEEE Trans. Autom. Control,
34(1), 10-19. doi:10.1109/9.8645.

Reissig, G., Weber, A., and Rungger, M. (2016). Feed-
back refinement relations for the synthesis of symbolic
controllers. IEEFE Transactions on Automatic Con-
trol, 62(4), 1781-1796.

Tabuada, P. (2009). Verification and control of hybrid
systems: a symbolic approach. Springer Science &
Business Media.

Wagenmaker, A.J. and Ozay, N. (2016). A bisimulation-
like algorithm for abstracting control systems. In
54th Allerton Conf. Communication, Control and
Computing, 569-576. doi:10.1109/ALLERTON.2016.
7852282.

Zamani, M., Pola, G., Mazo, M., and Tabuada, P. (2011).
Symbolic models for nonlinear control systems with-
out stability assumptions. IEEE Transactions on Au-
tomatic Control, 57(7), 1804-1809.

