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Abstract
Crime data provides information on the nature and location of the crime but, in 

general, does not include information on the number of criminals operating in a region. By 
contrast, many approaches to crime reduction necessarily involve working with criminals 
or individuals at risk of engaging in criminal activity and so the dynamics of the criminal 
population is important. With this in mind, we develop a mechanistic, mathematical model 
which combines the number of crimes and number of criminals to create a dynamical system. 
Analysis of the model highlights a threshold for criminal efficiency, below which criminal 
numbers will settle to an equilibrium level that can be exploited to reduce crime through 
prevention. This efficiency measure arises from the initiation of new criminals in response 
to observation of criminal activity; other initiation routes - via opportunism or peer pressure 
- do not exhibit such thresholds although they do impact on the level of criminal activity 
observed. We used data from Cape Town, South Africa, to obtain parameter estimates and 
predicted that the number of criminals in the region is tending towards an equilibrium 
point but in a heterogeneous manner - a drop in the number of criminals from low crime 
neighbourhoods is being offset by an increase from high crime neighbourhoods. 

Subject Classification:  (2010) 91C99.

Keywords: Mathematical model, Criminal activity and number of criminals, Criminal efficiency, 
Cape Town, South Africa.
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1.  Introduction

Crime dynamics and criminal behaviours are highly complex dynamic 
processes driven both by environmental conditions and individual 
responses to population behaviours ([11], [49], [8], [32]). Their interwoven 
relationship provides a mechanism to exploit crime data in order to gain 
insight into which aspects of criminal behaviour dominate the observed 
criminal activity, and it is this relationship which motivates our study.

There is much written about individual motivation to engage in criminal 
activity ([16], [23], [25], [19], [18]). Throughout our work, we consider the 
three core motivators: 
 •	� Opportunism ([29]): An individual, independent of any external 

cues, engages in criminal activity; 
 • 	� Observation ([5]): An individual observes the criminal activity of 

others in their environment and decides to engage because they 
perceive benefit in the activity; 

 •	� Peer pressure ([21]): An individual feels pressure to conform to 
behaviours in their environment associated with criminal activity 
and responds in a density-dependent manner i.e. the greater the 
number of criminals in their environment, the greater the chance 
that they will engage with criminal activity. 

From this list, it is straightforward to see that crime prevention can 
be approached in different ways depending on which motivator we wish 
to affect. For example, increased security on property would reduce 
opportunistic motivation without direct intervention with individuals 
considering criminal activity. By contrast, to reduce the impact of 
observation or peer pressure would most likely involve education 
programmes aimed at changing individual perspective on, and desire to 
engage in, criminal activity.

Another feature of crime data is that it often highlights spatial 
heterogeneity in the distribution of crimes geographically ([2], [38], [35], 
[20], [26], [48]). Whilst this adds complexity to the problem, it also provides 
useful constraints on the system. For example, if hotspots for criminal 
activity are identified, crime prevention and control may be focussed 
around these areas. However, the problem is more complex than simply 
identifying hotspots since those engaged in criminal activity at the hotspot 
may not be domiciled close to that hotspot. Therefore, in our approach, we 
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include partial movement of criminals between baseline and heightened 
crime regions.

Over the past decade, interest has grown significantly in using 
mathematical modelling as one tool in the arsenal needed to fully 
understand criminal activity and the potential for its control ([9], [7], 
[22], [47]). For example, Game Theoretic approaches have been used to 
understand criminal behaviour ([13], [43], [34], [1]); dynamical systems for 
the evolution of criminal behaviour ([37], [46], [28]); and novel reaction-
diffusion systems have explored the emergence of spatial heterogeneity in 
criminal activity ([12], [42], [41], [30], [17], [33]). There is also an extensive 
literature that uses statistical modelling approaches to understand crime 
data ([44], [27], [4]) or agent based modelling to consider individual-level 
behaviour and/or activity ([10], [45], [31], [3]). In 2016, a special issue of 
the European Journal of Applied Mathematics was devoted to mathematical 
modelling of crime and security ([6]), further identifying the potential 
for mathematics to help our understanding of the complexity of criminal 
activity and behaviours.

In this paper we present a new model paradigm in which criminal 
activity and number of criminals are explicitly described. This allows us 
to parameterise and subsequently validate (using different data) model 
predictions whilst also setting the scene for future work on crime control 
strategy. In the next section we construct the model, clearly highlighting 
the model assumptions including the three distinct routes into criminal 
behaviour. Following on from this, we extract information from the 
model system, highlighting the importance of key model parameters (and 
parameter groupings) in the model dynamics. In particular, we identify 
a parameter grouping which we label criminal efficiency which is an 
important indicator to determine whether a region is likely to experience 
unbounded growth in criminal activity. In Section 4, we use data from 
Cape Town, South Africa, firstly to parameterise our model for that region. 
Subsequently, using a different subset of the data, we validate the model 
and use the validation region to predict that the crime dynamics in Cape 
Town are tending towards an equilibrium point where criminal activity 
from low activity areas will be reduced from current levels but the activity 
in heightened activity regions will be higher.

In the conclusion, we highlight next stages for this modelling work, 
explaining how we think it might be used in initiatives around crime 
control and crime prevention.
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2.  Model formulation

We consider a model structure that couples two distinct regions for 
criminal activity which we label baseline and heightened. Every criminal 
is associated with one of these regions. Criminals from the baseline will 
only commit crimes within that region but criminals from the heightened 
region can commit crime within both regions.

At time t, ³ 0t  measured in years for consistency with data, we 
let ( ),iN t  = , ,i A B  denote the number of criminals based in region 
i where A and B correspond to the baseline and heightened activity 
regions respectively. Assuming that the number of crimes committed is 
proportional to the number of criminals in each region at time t, then 
the number of crimes committed in each region, denoted ( )A t  and ( )B t  
respectively, is given by:

+
-

d d
d

( ) = ( ) ( );
( ) = (1 ) ( ). (1)

A A B B

B B

A t N t q N t
B t q N t

The parameters d ,i  = ,i A B  denote the average number of crimes 
committed per criminal from region i and q denotes the fraction of 
crimes committed by criminals from region B in A. Whilst it is difficult to 
determine the accuracy of our assumptions about where criminals commit 
their crimes, our choice is driven by the desire for structural simplicity. 
The resulting model allows us to explore the impact of heterogeneity in 
behaviours and coupled regions on the scale and scope of criminal activity 
across both environments.

For the model equations governing the time evolution of criminal 
numbers from each region, we focussed on three distinct and recognised 
mechanisms that influence individuals to undertake criminal activity: 
1.	� Self-initiation, independent of the amount of crime being committed 

and the number of criminals in the region. We interpret this 
mechanism as intrinsic opportunism since it is unrelated to any 
external influence. We represent this in the model with parameters 
l ,i  = ,i A B  which give the number of new criminals per unit time 
in each region, independent of any influence from the amount of 
crime/criminals. 

2.	� Observation of criminal activity and the associated reward 
(financial or otherwise). This process is analogous to an efficiency 
measure since it provides a conversion from crimes committed to 
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new criminals. This is represented in the model by two distinct 
parameters: e ,i  = , ,i A B  is the number of new criminals per crime 
per unit time in each region; and w  which weighs how criminals 
based in region B respond to crimes in region A relative to crimes 
committed in B. 

3.	� Peer pressure by which individuals are encouraged to engage in 
criminal activity because they are based in an environment where 
crime is normalised i.e. in a region of heightened activity. Following 
the literature, we assume that this is a nonlinear effect ([14]). In the 
model, there are two associated parameters: k  scales the impact of 
peer pressure to increase participation in criminal activity; and a  is 
the nonlinear response constant to peer pressure. 

Criminals may also cease to engage in criminal activity which we 
model as a simple linear decay term. We use the parameters -s 1 ,i  = ,i A B  
to denote the average duration for a contiguous period of criminal activity 
in each region.

Combining these model assumptions leads to the governing equations 
for ( ),iN t  = , :i A B  

- + +

- + + + + a

s e l

s e w l k

= ( ) ;

= ( ( ) ( )) (1 ) (2)

A
A A A A

B
B B B B B

dN
N A t

dt
dN

N A t B t N
dt

where t is again measured in years. In this work we set as a = 2  for 
simplicity. To interpret this in a physical context, it means that the per 
capita rate of increase in criminal activity due to peer pressure in region 
B is directly proportional to the number of criminals in that region at any 
given time. Future work will explore the importance of the exponent a  to 
the predictions made using this model structure.

The expressions given in (1) correspond to recorded data which is 
why we explicitly keep track of both ( )A t  and ( )B t  rather than simply 
the number of criminals based in a region (2) for which there is no data. 
However, to carry out the model analysis, we substitute (1) into (2), 
rearranging to highlight key parameter groupings, to give the coupled 
ODE system: 

-

é ù+ - +ë û

é ù+ + + - - +ë û

s

s k w w2 1

= ( 1)

= (1 ) ( ( (1 )) 1) (3)

A
A A A A A B

B
B B B B B B A

dN
m c N c dqN

dt
dN

m N c q q N c d N
dt
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-

é ù+ - +ë û

é ù+ + + - - +ë û

s

s k w w2 1

= ( 1)

= (1 ) ( ( (1 )) 1) (3)

A
A A A A A B

B
B B B B B B A

dN
m c N c dqN

dt
dN

m N c q q N c d N
dt

where, for = , ,i A B  

l e d
s s

= ,  = ,i i i
i i

i i

m c

and d
d= .B

A
d

To fully specify the problem mathematically we provide initial values: 
0 0

0 0(0) = ,  (0) = ,  (0) = ,  (0) = .A A B BN N N N A A B B

Note that the form of (3) lends itself in a straightforward manner to 
non-dimensionalisation. We choose not to do that because we fit the model 
to data which is necessarily dimensional; rather the primary purpose of 
the rescaling was to identify the two key parameter groupings im  and ,ic  

= , .i A B

3.  Insights from model

The primary purpose of this work is to present a simple model 
structure to describe crime dynamics that can be parameterised and 
validated using data on the number of crimes committed as a proof of 
concept. Consequently, the analysis we undertake is simply to identify 
and interpret parameter constraints required to ensure that our model 
solutions are valid.

3.1 Parameter constraints for realistic model outcomes

Model predictions should always be physically realistic. In this case, 
the baseline requirement is that number of crimes/criminals should 
always be non-negative. Solving (1) for ,iN  = ,i A B  gives 

( )- -
-

-

d

d

1( ) = (1 ) ( ) ( ) ;
(1 )

(4)1( ) = ( ).
(1 )

A
A

B
B

N t q A t qB t
q

N t B t
q

Using this expression, we see that ³ 0AN  requires 
- ³(1 ) ( ) ( )q A t qB t
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or, alternatively 

£
+
( )

( ) ( )
A tq

A t B t

which means that the fraction of crimes committed by criminals from B 
in region A must not exceed the fraction of all crimes (by any criminal) 
committed in region A. Based on our model set up, this is realistic 
assumption and we can use it alongside the data to provide finer bounds 
on the value of q (which is already restricted to lie in the interval [0, 1]).

Furthermore, we expect that the higher criminality levels in the 
B-type areas is reflected not only in the total number of crimes, but also in 
the number of criminals in the B areas. Therefore we expect that £ ,A BN N  
and in consequence, we use (4) to find that 

-
³ -

d
d d

(1 ) ( )
.

( )
B

A B

q A t
q

B t

3.2 Steady state analysis

Steady state solutions of (3), which solve 

= = 0A BdN dN
dt dt

are given by the coupled system 
+

=
-

*
* (5)

1
A A B

A
A

m dqc N
N

c

where *
BN  is the solution of the quadratic equation:

é ù
+ + - - - + + =ê ú- -ë û

w
k w2 ( (1 )(1 )) 1 0 (6)

(1 ) (1 )
B B A

B B B A B
A A

c c m
m N N q q c m

c d c

whenever that solution is real and positive.
Since all model parameters are non-negative, the steady state for AN  

given in (6) will only be feasible if 
< 1.Ac

The parameter Ac  measures the number of new criminals produced 
in the baseline region as the result of a single criminal in that region over 
a single period of criminal activity. It makes sense for this value to be less 
than unity as a necessary condition for a steady state to exist since the 



TOWARDS UNDERSTANDING CRIME DYNAMICS� 9

region is characterised by low criminality and if criminal efficiency was 
above unity here, it would correspond to significant increase in criminal 
numbers over time in the baseline region. It is worth noting that, for 

> 1,Ac  / > 0AdN dt  for all t and the number of criminals in the baseline 
region would increase without bound.

We label ,ic  = ,i A B  criminal efficiency: the average number of new 
criminals resulting from the criminal activity of a single criminal within 
their region over a single period of criminal activity.

Having established the requirement for < 1,Ac  we now consider the 
quadratic equation (6). Using the basic properties of a quadratic equation 

+ +2( = 0ax bx c  with > 0a  has real positive roots iff < 0b  and -2 4 > 0),b ac  
(6) will admit positive, and hence realistic, steady state solutions iff:

-
< <

- - +w
1

   ( 0), (7)
(1 )(1 )

A
B

A

c
c b

q c q

and

é ù é ù
+ - - - > + - >ê ú ê ú- -ë û ë û

w
w k

2

2( (1 )(1 )) 1 4    ( 4 0). (8)
(1 ) (1 )

B B A
A B B

A A

c c m
q q c m m b ac

c d c

Figure 1
Graph of criminal efficiency in region B as a function of criminal efficiency in 
region A. The shaded area encloses the parameter space necessary for ensuring 
a positive steady state. It is given by the intersection between condition (7) and 
the condition that > .B Ac c  Model parameters, = 0.351q  and 4= 2.793 10 ,w -´  
taken from Table 1 below, are the values estimated from fitting the model to 

data from the Cape Town area. 
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Assuming that >B Ac c  to reflect the model set up which identifies B 
as a region of heightened criminal activity, then (7) describes a bounded 
region in the -B Ac c  plane as shown in Figure 1. A key observation here is 
that criminal efficiency in B may exceed unity and still produce a positive 
steady state solution.

Once (7) has been satisfied the inequality (8) can always be satisfied by 
suitable choice of the additional parameters in the following qualitative 
ways: 

•	� Sufficiently low levels of criminal opportunism ( ,im  = , )i A B  in one 
or both of the regions; 

•	� Sufficient difference in the number of crimes committed per criminal 
from the two regions (d); 

•	� Sufficiently low peer pressure k( )  in region B. 

The first and third of these conditions correspond to criminal 
environments in which we can identify restraint in criminal behaviour 
without which the model system would predict unbounded growth in the 
amount of criminal activity over time. The second condition links to the 
interplay between the two regions; one interpretation of this is to assume 
that the baseline region should exhibit very low levels of criminal activity, 
particularly in relation to the heightened region.

In the next section, we use the criteria presented in this section to help 
parameterise the model for criminal activity in the Cape Town vicinity 
of South Africa, thus demonstrating the potential for our model to help 
understand crime dynamics based on the criminal data available.

4.  Case Study - Cape Town

To test the performance of the mathematical model, we study a 
dataset collected by the South African Police Service (SAPS) containing 
data about the crimes in South Africa in the period 2005 to 2016 . The 
dataset contains the number of crimes in each police station, classified by 
crime types. SAPS also provides a separate dataset with the geographical 
data of each police station. We restrict our to the police stations in the 
Cape Town area, see Figure 2.
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4.1 Classification of regions

In order to apply the mathematical model to the crime data, we need 
to determine which areas have a baseline criminality level (type A), and 
which areas exhibit a heightened criminal activity (type B). We will first 
proceed to classify each police station, and then we will aggregate the data 
to obtain an average dataset for each type.

There are many possible criteria to define areas of heightened 
criminal activity. One could use absolute crime numbers in each area, but 
some types of crime may not be linked to the overall criminal activity in 
a neighbourhood. For instance, domestic violence in relatively safe areas 
should not count towards a heightened criminal activity. Another problem 
with using absolute crime numbers is the total population differs from 
police station to police station, and in consequence more populated areas 
have more crimes. To avoid this problem, we use murder as a proxy for the 
criminal activity in a given area. According to [36], murder is a good proxy 
for violent crime, and hence we assume that heightened criminal activity 
areas will also have associated a higher level of violence.

We use the estimated population in each police station as provided 
by SAPS to compute the number of murders per inhabitant. We use only 
the data for year 2016 to perform the classification. This has the advantage 

Figure 2
Map showing the break down of Cape Town by Police Station District. Each 
station has been classified as a region of baseline criminal activity or height-

ened criminal activity using the algorithm described in Section 4.1.  
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of avoiding possible overfitting of the model, but limits the validity of 
the classification to areas that have not experienced significant changes 
in their overall criminality levels. To classify an area, we set a threshold 
of 1 murder for every 1000 inhabitants. Therefore, we considered areas 
with more than 1 murder for every 1000 inhabitants in 2016 to be areas 
of heightened criminal activity (type B), and other areas to be areas of 
baseline criminality (type A). Figure 2 depicts the classification of the 
police stations in the Cape Town area.

In the Cape Town area, we obtain 43 police stations in areas of baseline 
criminal activity, and 26 police stations in areas of heightened criminal 
activity. Most of the heightened criminality areas are located around the 
Cape Flats area and to the east. The distribution of the police stations 
with heightened criminal activity suggests a big area of high criminality, 
surrounded by baseline criminality areas. To apply the mathematical 
model, we consider the average number of crimes of all the police stations 
classified as baseline criminality as a single low criminality region, and 
similarly the police stations classified as heightened criminal activity as a 
single high criminality region.

4.2 Methodology for parameter estimation

In order to compare the results of the mathematical model with the 
observed number of crimes, we need to estimate the parameters for the 
model. To estimate the parameters, we use a Bayesian framework [1]. We 
define the log-likelihood of a parameter as the square distance between 
the number of crimes predicted by the mathematical model (1) and (2) 
and the collected data, weighted by the standard deviation of the data. 
We prescribe uniform priors for all the parameters, imposing positivity 
constraints as well as the constraints derived in Section 3 to ensure that the 
baseline and heightened regions satisfy the modelling hypothesis. We run 
five independent Markov chains, of length 610 .  We check for convergence 
of each chain using the Geweke’s Convergence Diagnostic [24], and we 
perform the usual burn-in and thinning procedures (see for instance [39]), 
to end up with 410  independent samples. Convergence in mean is finally 
confirmed by comparing the five independent chains.

We validate the model by splitting the data in two sets, the training 
dataset, and the test dataset. We use the average number of crimes for each 
area, from years 2005 to 2009 as a training dataset, and from 2010 to 2016 
as a test. In particular, this means that the parameters are identified only 
using the information of the first five years.
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4.3 Results

We report the estimated values for the parameters in Table 1. We 
observe that parameters related to criminal activity (for instance, d d,A B  
the average number of crimes per criminal), are much higher in the area 
of heightened criminal activity. The baseline criminality area also shows 
lower rates of initiation and self-initiation into criminal activity.

Using the estimated parameters, we can compare the results of the 
mathematical model with the observed data. Figure 3 depicts both the 
model result and the data. Although we use only the data from years 2005 
to 2009 to fit the model parameters, the ODE solution is in good agreement 
with the data from 2010 onwards. The reason for this is better understood 

Table 1
Estimated parameters of the model (1)-(2). See Section 4.2 for details.

 Parameter  Definition Estimated 
value  Units

 d A  
Average number of crimes per 
criminal in region A 

 4.477 Crimes/
Criminal 

d B  
Average number of crimes per 
criminal in region B 

 22.20 Crimes/
Criminal 

q Fraction of B-criminal crimes 
committed in A 

 0.3510 Non-
dimensional 

e A  
Rate of initiation via observation in 
region A 

 0.001492 Criminals/
Crime/Year 

eB  
Rate of initiation via observation in 
region B 

 1.1339 Criminals/
Crime/Year 

-s 1
A  

Average duration of criminal activity 
in region A 

 0.08953–1 Years 

-s 1
B  

Average duration of criminal activity 
in region B 

 16.42–1 Years 

lA  
Rate of self-initiation in region A  0.07783 Criminals/

Year 

lB  
Rate of self-initiation in region B  42.46 Criminals/

Year 
k  Scaling of peer pressure  

-× 71.5078 10  
Criminals–1

w  Scaling of observations in region A to 
region B 

-× 42.793 10  
Non-
dimensional
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by looking at the phase plane of the number of criminals, depicted in Figure 
4: the system is in a relatively straight orbit approaching the stable steady 
state, and it does not exhibit significant changes when time increases.

The phase plane of the system reveals also the dynamics of the 
number of criminals, which is not directly observable from the data. As 
shown in Figure 3, the average number of crimes is increasing both in the 
baseline and the heightened criminality areas, but we see in the phase 
plane (Figure 4) that the number of criminals is actually decreasing in 
the baseline criminality areas, and in consequence it is the increase of 
the number of criminals in the heightened criminality areas that drives 
the increase in the number of crimes everywhere. Since we are studying 
only an average dataset, the actual predictive power of the present study 
is limited, but these results suggest that our modelling approach can be 
used to better allocate the resources to fight crime in Cape Town.

5.  Conclusion

Our motivation to undertake the work presented in this paper was 
pragmatic: to develop a mathematical model that could provide a useful 

Figure 3
Average number of crimes in the Cape Town area, for regions of baseline (A) 
and heightened (B) criminal activity. The ODE system is fitted using only the 

data from years 2005 to 2009 represented by the filled circles and triangles. The 
model is able to predict the data taken in the following 7 years, represented by 

the empty circles and triangles. 
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tool for colleagues working in the broad arena of crime prevention. This 
practical focus led us to create a model structure that combined both 
descriptions of the time evolution of number of crimes committed and 
the number of criminals. Heterogeneity in the amount of criminal activity 
recorded in neighbouring police districts also led us to consider a model 
that combines regions of low, baseline crime with regions where there is 
more crime and criminal activity. Having decided upon this structure, the 
model terms were simply chosen to describe the key, commonly-observed 
mechanisms for initiation into criminal activity, namely self-initiation 
(opportunism), observation and peer pressure. We combined these 
mechanisms with removal rates that we interpret as individuals engaging 
in periods of criminal activity interspersed with periods of very low or no 
activity (due, for example, to being arrested).

Despite its simplicity, the model form was helpful in identifying key 
parameter groupings which are important in the containment of criminal 
activity. Most important amongst these is the criminal efficiency which 
measures the impact of a single criminal on the initation of other criminals 
who observe the criminal activity (and gain). In the baseline regions, this 

Figure 4
Phase plane of the number of criminals in each area. The solution of the model 

is moving towards the steady state (filled circle) given by the intersection of 

the nullclines = 0AdN
dt

 and = 0.BdN
dt
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measure must be maintained below unity in order to contain criminal 
activity; in the heightened regions, criminal efficiency must also be 
maintained at low levels although these can be higher than for the baseline 
region. Criminal efficiency has three components: average number of 
crimes committed per criminal; rate of initiation into criminal behaviour 
as a result of observing crime; and average period that an individual 
undertakes criminal activity. We suggest that this measure may be 
relevant to professionals involved in crime prevention through improved 
security, education, and sanction respectively. Initiation into criminal 
activity through opportunism or peer pressure are also important in the 
crime dynamics but they are dependent on the efficiency and do not have 
explicit thresholds associated with different population level outcomes.

Concerns over the challenges of parameter estimation were at the 
forefront of our thoughts as we developed the model structure because 
we wanted to create a useable tool and we were aware of the limited 
data available to us. The analysis undertaken in Section 3 was important 
in providing guidance on the region of parameter space that we were 
interested in exploring. Our prudent approach appears to be promising 
based on the case study presented in Section 4. From the data available 
to us, we used the oldest data points to estimate model parameters; the 
model was then validated using the most recent data (past 5 years). The 
decision to fix a = 2  was, in part, driven by the lack of data and a desire 
to minimise the number of parameters that we needed to estimate from 
the data. Having said that, we do not anticipate that qualitatively different 
dynamics would be observed, and in particular the trajectory shown in the 
phase diagram in Figure 3, if the value of a  had been different provided 

³a 1.  From our model parameters, we note that peer pressure is a weak 
component of the initiation into criminal behaviour and might better be 
represented using a simple linear function. Our analytical work on the 
model form will explore this further and will be reported in due course.

The trajectory shown in Figure 3 is interesting. It suggests that in 
the Cape Town region, there is likely to be an increase in the number of 
criminals from regions of heightened criminal activity offset by a reduction 
of the number in baseline regions. In principle, this prediction could be 
exploited to focus crime prevention activity in regions of heightened 
activity.

Going forward, in addition to undertaking a more rigorous treatment 
of the dynamical system to explore quasi steady state assumptions on 
the baseline regions for example, we intend to extend the model system 
to consider more complex spatial interactions. This will address the 
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oversimplification that we make in assuming homogeneity of movement 
between regions A and B which does not take into consideration the 
spatial distribution of regions. Alongside those modifications, we are keen 
to exploit the model in the context of crime prevention and control, using 
our dynamical model for criminal activity within a control framework. In 
the meantime, we are pleased that such a simple, intuitive mechanistic 
model was able to provide useful insights into criminal activity and hope 
that this will encourage further exploitation of mechanistic models within 
the arena of crime prevention and, more generally, the exciting and rapidly 
growing field of criminology. 
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