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Abstract

Crime data provides information on the nature and location of the crime but, in
general, does not include information on the number of criminals operating in a region. By
contrast, many approaches to crime reduction necessarily involve working with criminals
or individuals at risk of engaging in criminal activity and so the dynamics of the criminal
population is important. With this in mind, we develop a mechanistic, mathematical model
which combines the number of crimes and number of criminals to create a dynamical system.
Analysis of the model highlights a threshold for criminal efficiency, below which criminal
numbers will settle to an equilibrium level that can be exploited to reduce crime through
prevention. This efficiency measure arises from the initiation of new criminals in response
to observation of criminal activity; other initiation routes - via opportunism or peer pressure
- do not exhibit such thresholds although they do impact on the level of criminal activity
observed. We used data from Cape Town, South Africa, to obtain parameter estimates and
predicted that the number of criminals in the region is tending towards an equilibrium
point but in a heterogeneous manner - a drop in the number of criminals from low crime
neighbourhoods is being offset by an increase from high crime neighbourhoods.

Subject Classification: (2010) 91C99.

Keywords: Mathematical model, Criminal activity and number of criminals, Criminal efficiency,
Cape Town, South Africa.
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1. Introduction

Crime dynamics and criminal behaviours are highly complex dynamic
processes driven both by environmental conditions and individual
responses to population behaviours ([11], [49], [8], [32]). Their interwoven
relationship provides a mechanism to exploit crime data in order to gain
insight into which aspects of criminal behaviour dominate the observed
criminal activity, and it is this relationship which motivates our study.

There is much written about individual motivation to engage in criminal
activity ([16], [23], [25], [19], [18]). Throughout our work, we consider the
three core motivators:

e Opportunism ([29]): An individual, independent of any external
cues, engages in criminal activity;

® Observation ([5]): An individual observes the criminal activity of
others in their environment and decides to engage because they
perceive benefit in the activity;

® DPeer pressure ([21]): An individual feels pressure to conform to
behaviours in their environment associated with criminal activity
and responds in a density-dependent manner i.e. the greater the
number of criminals in their environment, the greater the chance
that they will engage with criminal activity.

From this list, it is straightforward to see that crime prevention can
be approached in different ways depending on which motivator we wish
to affect. For example, increased security on property would reduce
opportunistic motivation without direct intervention with individuals
considering criminal activity. By contrast, to reduce the impact of
observation or peer pressure would most likely involve education
programmes aimed at changing individual perspective on, and desire to
engage in, criminal activity.

Another feature of crime data is that it often highlights spatial
heterogeneity in the distribution of crimes geographically ([2], [38], [35],
[20], [26], [48]). Whilst this adds complexity to the problem, it also provides
useful constraints on the system. For example, if hotspots for criminal
activity are identified, crime prevention and control may be focussed
around these areas. However, the problem is more complex than simply
identifying hotspots since those engaged in criminal activity at the hotspot
may not be domiciled close to that hotspot. Therefore, in our approach, we
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include partial movement of criminals between baseline and heightened
crime regions.

Over the past decade, interest has grown significantly in using
mathematical modelling as one tool in the arsenal needed to fully
understand criminal activity and the potential for its control ([9], [7],
[22], [47]). For example, Game Theoretic approaches have been used to
understand criminal behaviour ([13], [43], [34], [1]); dynamical systems for
the evolution of criminal behaviour ([37], [46], [28]); and novel reaction-
diffusion systems have explored the emergence of spatial heterogeneity in
criminal activity ([12], [42], [41], [30], [17], [33]). There is also an extensive
literature that uses statistical modelling approaches to understand crime
data ([44], [27], [4]) or agent based modelling to consider individual-level
behaviour and/or activity ([10], [45], [31], [3]). In 2016, a special issue of
the European Journal of Applied Mathematics was devoted to mathematical
modelling of crime and security ([6]), further identifying the potential
for mathematics to help our understanding of the complexity of criminal
activity and behaviours.

In this paper we present a new model paradigm in which criminal
activity and number of criminals are explicitly described. This allows us
to parameterise and subsequently validate (using different data) model
predictions whilst also setting the scene for future work on crime control
strategy. In the next section we construct the model, clearly highlighting
the model assumptions including the three distinct routes into criminal
behaviour. Following on from this, we extract information from the
model system, highlighting the importance of key model parameters (and
parameter groupings) in the model dynamics. In particular, we identify
a parameter grouping which we label criminal efficiency which is an
important indicator to determine whether a region is likely to experience
unbounded growth in criminal activity. In Section 4, we use data from
Cape Town, South Africa, firstly to parameterise our model for that region.
Subsequently, using a different subset of the data, we validate the model
and use the validation region to predict that the crime dynamics in Cape
Town are tending towards an equilibrium point where criminal activity
from low activity areas will be reduced from current levels but the activity
in heightened activity regions will be higher.

In the conclusion, we highlight next stages for this modelling work,
explaining how we think it might be used in initiatives around crime
control and crime prevention.
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2. Model formulation

We consider a model structure that couples two distinct regions for
criminal activity which we label baseline and heightened. Every criminal
is associated with one of these regions. Criminals from the baseline will
only commit crimes within that region but criminals from the heightened
region can commit crime within both regions.

At time t, t >0 measured in years for consistency with data, we
let N,(t), i=A,B, denote the number of criminals based in region
i where A and B correspond to the baseline and heightened activity
regions respectively. Assuming that the number of crimes committed is
proportional to the number of criminals in each region at time t, then
the number of crimes committed in each region, denoted A(f) and B(f)
respectively, is given by:

A(t)
B(t)

5,N,(H)+q6,N,(t);
(=) N (). )

The parameters 6,, i=A,B denote the average number of crimes
committed per criminal from region i and g denotes the fraction of
crimes committed by criminals from region B in A. Whilst it is difficult to
determine the accuracy of our assumptions about where criminals commit
their crimes, our choice is driven by the desire for structural simplicity.
The resulting model allows us to explore the impact of heterogeneity in
behaviours and coupled regions on the scale and scope of criminal activity
across both environments.

For the model equations governing the time evolution of criminal
numbers from each region, we focussed on three distinct and recognised
mechanisms that influence individuals to undertake criminal activity:

1. Self-initiation, independent of the amount of crime being committed
and the number of criminals in the region. We interpret this
mechanism as intrinsic opportunism since it is unrelated to any
external influence. We represent this in the model with parameters
4., i=A,B which give the number of new criminals per unit time

in each region, independent of any influence from the amount of
crime/criminals.

2. Observation of criminal activity and the associated reward
(financial or otherwise). This process is analogous to an efficiency
measure since it provides a conversion from crimes committed to
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new criminals. This is represented in the model by two distinct
parameters: &, i=A,B, is the number of new criminals per crime
per unit time in each region; and @ which weighs how criminals
based in region B respond to crimes in region A relative to crimes
committed in B.

3. Peer pressure by which individuals are encouraged to engage in
criminal activity because they are based in an environment where
crime is normalised i.e. in a region of heightened activity. Following
the literature, we assume that this is a nonlinear effect ([14]). In the
model, there are two associated parameters: x scales the impact of
peer pressure to increase participation in criminal activity; and « is
the nonlinear response constant to peer pressure.

Criminals may also cease to engage in criminal activity which we
model as a simple linear decay term. We use the parameters o;', i=A,B
to denote the average duration for a contiguous period of criminal activity
in each region.

Combining these model assumptions leads to the governing equations
for N (t), i=A,B:

dN
th -o,N,+e, Al)+A4,;
dN

dt

B —0,N, +£,(0A(t)+B(t)+ A,(1+kN,%) )

where t is again measured in years. In this work we set as o =2 for
simplicity. To interpret this in a physical context, it means that the per
capita rate of increase in criminal activity due to peer pressure in region
B is directly proportional to the number of criminals in that region at any
given time. Future work will explore the importance of the exponent ¢ to
the predictions made using this model structure.

The expressions given in (1) correspond to recorded data which is
why we explicitly keep track of both A(f) and B(f) rather than simply
the number of criminals based in a region (2) for which there is no data.
However, to carry out the model analysis, we substitute (1) into (2),
rearranging to highlight key parameter groupings, to give the coupled
ODE system:

dN,
dt

= O'A[mA+(CA—1)NA+CAquB]
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dN,
dt

= o, [mB(l+KN§)+(CB(a)q+(1—q))—1)NB +a)ch’1NA] (3)

where, for i = A, B,

_ 63
and d—g.

To fully specify the problem mathematically we provide initial values:

N,(0)=NY, N,0)=N,, A®0)=4, B(0)=B,.

Note that the form of (3) lends itself in a straightforward manner to
non-dimensionalisation. We choose not to do that because we fit the model
to data which is necessarily dimensional; rather the primary purpose of
the rescaling was to identify the two key parameter groupings m, and c,,
i=A,B.

3. Insights from model

The primary purpose of this work is to present a simple model
structure to describe crime dynamics that can be parameterised and
validated using data on the number of crimes committed as a proof of
concept. Consequently, the analysis we undertake is simply to identify
and interpret parameter constraints required to ensure that our model
solutions are valid.

3.1 Parameter constraints for realistic model outcomes

Model predictions should always be physically realistic. In this case,
the baseline requirement is that number of crimes/criminals should
always be non-negative. Solving (1) for N,, i=A,B gives

1
N, = 5 - DA0 -eB);
N.(t) = L B(t) @
O™

Using this expression, we see that N, >0 requires

(I-q)A(t) = qB(t)
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or, alternatively

. AD
1= A0 +B)

which means that the fraction of crimes committed by criminals from B
in region A must not exceed the fraction of all crimes (by any criminal)
committed in region A. Based on our model set up, this is realistic
assumption and we can use it alongside the data to provide finer bounds
on the value of g (which is already restricted to lie in the interval [0, 1]).

Furthermore, we expect that the higher criminality levels in the
B-type areas is reflected not only in the total number of crimes, but also in
the number of criminals in the B areas. Therefore we expect that N, <N,
and in consequence, we use (4) to find that

5 5 BI040
B()

3.2 Steady state analysis

Steady state solutions of (3), which solve
dN, dN

dt dt

B

are given by the coupled system
m, +dqc N,

N, =—A—Ta’s 5
e (5)

where N; is the solution of the quadratic equation:

CB
(1-c,)

(@q+(1-g)(1-c,)—-1 +mB+;1C+"Z:)=0 ©)

2
mykN, + N,

whenever that solution is real and positive.
Since all model parameters are non-negative, the steady state for N,
given in (6) will only be feasible if

c, <1.

A

The parameter ¢, measures the number of new criminals produced
in the baseline region as the result of a single criminal in that region over
a single period of criminal activity. It makes sense for this value to be less
than unity as a necessary condition for a steady state to exist since the
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region is characterised by low criminality and if criminal efficiency was
above unity here, it would correspond to significant increase in criminal
numbers over time in the baseline region. It is worth noting that, for
c,>1, dN,/dt>0 for all t and the number of criminals in the baseline
region would increase without bound.

Welabel c,, i=A,B criminal efficiency: the average number of new
criminals resulting from the criminal activity of a single criminal within
their region over a single period of criminal activity.

Having established the requirement for ¢, <1, we now consider the
quadratic equation (6). Using the basic properties of a quadratic equation
(ax® +bx +c =0 with a > 0 hasreal positive rootsiff b <0 and b*> —4ac > 0),
(6) will admit positive, and hence realistic, steady state solutions iff:

1-c,
c, < A=a(i=c,)+aq (b<0), (7)
and
¢, IV e, | e
(1_CA)(a)q+(1 q)(1-c,)) 1} >4mBK{mB+d(1—cA)} (b* —4ac > 0). (8)

a

Figure 1

Graph of criminal efficiency in region B as a function of criminal efficiency in
region A. The shaded area encloses the parameter space necessary for ensuring
a positive steady state. It is given by the intersection between condition (7) and
the condition that ¢, >c,. Model parameters, g =0.351 and @ = 2.793 X 107,
taken from Table 1 below, are the values estimated from fitting the model to
data from the Cape Town area.



10 K A.J WHITE, E. C. FUNOLLET, F. NYABADZA, D. CUSSEDDU, C. KASUMO, N. M. IMBUSY, V. 0. JUMA, A. | MEIR AND T. MARIJANI

Assuming that c, >c, to reflect the model set up which identifies B
as a region of heightened criminal activity, then (7) describes a bounded
region in the ¢, —c, plane as shown in Figure 1. A key observation here is
that criminal efficiency in B may exceed unity and still produce a positive
steady state solution.

Once (7) has been satisfied the inequality (8) can always be satisfied by

suitable choice of the additional parameters in the following qualitative

ways:

* Sufficiently low levels of criminal opportunism (m,, i=A,B) in one
or both of the regions;

e Sufficient difference in the number of crimes committed per criminal
from the two regions (d);

e Sulfficiently low peer pressure (x) in region B.

The first and third of these conditions correspond to criminal
environments in which we can identify restraint in criminal behaviour
without which the model system would predict unbounded growth in the
amount of criminal activity over time. The second condition links to the
interplay between the two regions; one interpretation of this is to assume
that the baseline region should exhibit very low levels of criminal activity,
particularly in relation to the heightened region.

In the next section, we use the criteria presented in this section to help
parameterise the model for criminal activity in the Cape Town vicinity
of South Africa, thus demonstrating the potential for our model to help
understand crime dynamics based on the criminal data available.

4. Case Study - Cape Town

To test the performance of the mathematical model, we study a
dataset collected by the South African Police Service (SAPS) containing
data about the crimes in South Africa in the period 2005 to 2016 . The
dataset contains the number of crimes in each police station, classified by
crime types. SAPS also provides a separate dataset with the geographical
data of each police station. We restrict our to the police stations in the
Cape Town area, see Figure 2.
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4.1 Classification of regions

In order to apply the mathematical model to the crime data, we need
to determine which areas have a baseline criminality level (type A), and
which areas exhibit a heightened criminal activity (type B). We will first
proceed to classify each police station, and then we will aggregate the data
to obtain an average dataset for each type.

There are many possible criteria to define areas of heightened
criminal activity. One could use absolute crime numbers in each area, but
some types of crime may not be linked to the overall criminal activity in
a neighbourhood. For instance, domestic violence in relatively safe areas
should not count towards a heightened criminal activity. Another problem
with using absolute crime numbers is the total population differs from
police station to police station, and in consequence more populated areas
have more crimes. To avoid this problem, we use murder as a proxy for the
criminal activity in a given area. According to [36], murder is a good proxy
for violent crime, and hence we assume that heightened criminal activity
areas will also have associated a higher level of violence.

We use the estimated population in each police station as provided
by SAPS to compute the number of murders per inhabitant. We use only
the data for year 2016 to perform the classification. This has the advantage

-33.25

-33.50

Criminal activity
Baseline

.Heightened

@
@
B
o

Latitude

-34.00

-34.25

18.25 1850 1875 19.00 19.25
Longitude

Figure 2

Map showing the break down of Cape Town by Police Station District. Each
station has been classified as a region of baseline criminal activity or height-
ened criminal activity using the algorithm described in Section 4.1.
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of avoiding possible overfitting of the model, but limits the validity of
the classification to areas that have not experienced significant changes
in their overall criminality levels. To classify an area, we set a threshold
of 1 murder for every 1000 inhabitants. Therefore, we considered areas
with more than 1 murder for every 1000 inhabitants in 2016 to be areas
of heightened criminal activity (type B), and other areas to be areas of
baseline criminality (type A). Figure 2 depicts the classification of the
police stations in the Cape Town area.

In the Cape Town area, we obtain 43 police stations in areas of baseline
criminal activity, and 26 police stations in areas of heightened criminal
activity. Most of the heightened criminality areas are located around the
Cape Flats area and to the east. The distribution of the police stations
with heightened criminal activity suggests a big area of high criminality,
surrounded by baseline criminality areas. To apply the mathematical
model, we consider the average number of crimes of all the police stations
classified as baseline criminality as a single low criminality region, and
similarly the police stations classified as heightened criminal activity as a
single high criminality region.

4.2 Methodology for parameter estimation

In order to compare the results of the mathematical model with the
observed number of crimes, we need to estimate the parameters for the
model. To estimate the parameters, we use a Bayesian framework [1]. We
define the log-likelihood of a parameter as the square distance between
the number of crimes predicted by the mathematical model (1) and (2)
and the collected data, weighted by the standard deviation of the data.
We prescribe uniform priors for all the parameters, imposing positivity
constraints as well as the constraints derived in Section 3 to ensure that the
baseline and heightened regions satisfy the modelling hypothesis. We run
five independent Markov chains, of length 10°. We check for convergence
of each chain using the Geweke’s Convergence Diagnostic [24], and we
perform the usual burn-in and thinning procedures (see for instance [39]),
to end up with 10* independent samples. Convergence in mean is finally
confirmed by comparing the five independent chains.

We validate the model by splitting the data in two sets, the training
dataset, and the test dataset. We use the average number of crimes for each
area, from years 2005 to 2009 as a training dataset, and from 2010 to 2016
as a test. In particular, this means that the parameters are identified only
using the information of the first five years.
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Table 1
Estimated parameters of the model (1)-(2). See Section 4.2 for details.
Parameter Definition Estimated Units
value
S Average number of crimes per 4.477 Crimes/
4 criminal in region A Criminal
S Average number of crimes per 22.20 Crimes/
’ criminal in region B Criminal
q Fraction of B-criminal crimes 0.3510 Non-
committed in A dimensional
e Rate of initiation via observation in 0.001492 | Criminals/
4 region A Crime/ Year
c Rate of initiation via observation in 1.1339 Criminals/
B region B Crime/ Year
o Average duration of criminal activity | 0.08953" | Years
A in region A
o Average duration of criminal activity | 16.42™ Years
B in region B
1 Rate of self-initiation in region A 0.07783 Criminals/
A Year
ate of self-initiation in region . riminals
A Rate of self gion B 4246 C Is/
Year
K Scaling of peer pressure Criminals™
gotpectp 1.5078-107
w Sca.ling of observations in region A to | 5 795 144 Non- .
region B dimensional
4.3 Results

We report the estimated values for the parameters in Table 1. We
observe that parameters related to criminal activity (for instance, & A,é'B
the average number of crimes per criminal), are much higher in the area
of heightened criminal activity. The baseline criminality area also shows
lower rates of initiation and self-initiation into criminal activity.

Using the estimated parameters, we can compare the results of the
mathematical model with the observed data. Figure 3 depicts both the
model result and the data. Although we use only the data from years 2005
to 2009 to fit the model parameters, the ODE solution is in good agreement
with the data from 2010 onwards. The reason for this is better understood
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Figure 3
Average number of crimes in the Cape Town area, for regions of baseline (A)
and heightened (B) criminal activity. The ODE system is fitted using only the
data from years 2005 to 2009 represented by the filled circles and triangles. The

model is able to predict the data taken in the following 7 years, represented by
the empty circles and triangles.

by looking at the phase plane of the number of criminals, depicted in Figure
4: the system is in a relatively straight orbit approaching the stable steady
state, and it does not exhibit significant changes when time increases.

The phase plane of the system reveals also the dynamics of the
number of criminals, which is not directly observable from the data. As
shown in Figure 3, the average number of crimes is increasing both in the
baseline and the heightened criminality areas, but we see in the phase
plane (Figure 4) that the number of criminals is actually decreasing in
the baseline criminality areas, and in consequence it is the increase of
the number of criminals in the heightened criminality areas that drives
the increase in the number of crimes everywhere. Since we are studying
only an average dataset, the actual predictive power of the present study
is limited, but these results suggest that our modelling approach can be
used to better allocate the resources to fight crime in Cape Town.

5. Conclusion

Our motivation to undertake the work presented in this paper was
pragmatic: to develop a mathematical model that could provide a useful
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Figure 4
Phase plane of the number of criminals in each area. The solution of the model
is moving towards the steady state (filled circle) given by the intersection of
the nullclines “N4 =0 and 2 = 0.
dt dt

tool for colleagues working in the broad arena of crime prevention. This
practical focus led us to create a model structure that combined both
descriptions of the time evolution of number of crimes committed and
the number of criminals. Heterogeneity in the amount of criminal activity
recorded in neighbouring police districts also led us to consider a model
that combines regions of low, baseline crime with regions where there is
more crime and criminal activity. Having decided upon this structure, the
model terms were simply chosen to describe the key, commonly-observed
mechanisms for initiation into criminal activity, namely self-initiation
(opportunism), observation and peer pressure. We combined these
mechanisms with removal rates that we interpret as individuals engaging
in periods of criminal activity interspersed with periods of very low or no
activity (due, for example, to being arrested).

Despite its simplicity, the model form was helpful in identifying key
parameter groupings which are important in the containment of criminal
activity. Most important amongst these is the criminal efficiency which
measures the impact of a single criminal on the initation of other criminals
who observe the criminal activity (and gain). In the baseline regions, this
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measure must be maintained below unity in order to contain criminal
activity; in the heightened regions, criminal efficiency must also be
maintained at low levels although these can be higher than for the baseline
region. Criminal efficiency has three components: average number of
crimes committed per criminal; rate of initiation into criminal behaviour
as a result of observing crime; and average period that an individual
undertakes criminal activity. We suggest that this measure may be
relevant to professionals involved in crime prevention through improved
security, education, and sanction respectively. Initiation into criminal
activity through opportunism or peer pressure are also important in the
crime dynamics but they are dependent on the efficiency and do not have
explicit thresholds associated with different population level outcomes.

Concerns over the challenges of parameter estimation were at the
forefront of our thoughts as we developed the model structure because
we wanted to create a useable tool and we were aware of the limited
data available to us. The analysis undertaken in Section 3 was important
in providing guidance on the region of parameter space that we were
interested in exploring. Our prudent approach appears to be promising
based on the case study presented in Section 4. From the data available
to us, we used the oldest data points to estimate model parameters; the
model was then validated using the most recent data (past 5 years). The
decision to fix & =2 was, in part, driven by the lack of data and a desire
to minimise the number of parameters that we needed to estimate from
the data. Having said that, we do not anticipate that qualitatively different
dynamics would be observed, and in particular the trajectory shown in the
phase diagram in Figure 3, if the value of & had been different provided
o >1. From our model parameters, we note that peer pressure is a weak
component of the initiation into criminal behaviour and might better be
represented using a simple linear function. Our analytical work on the
model form will explore this further and will be reported in due course.

The trajectory shown in Figure 3 is interesting. It suggests that in
the Cape Town region, there is likely to be an increase in the number of
criminals from regions of heightened criminal activity offset by a reduction
of the number in baseline regions. In principle, this prediction could be
exploited to focus crime prevention activity in regions of heightened
activity.

Going forward, in addition to undertaking a more rigorous treatment
of the dynamical system to explore quasi steady state assumptions on
the baseline regions for example, we intend to extend the model system
to consider more complex spatial interactions. This will address the
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oversimplification that we make in assuming homogeneity of movement
between regions A and B which does not take into consideration the
spatial distribution of regions. Alongside those modifications, we are keen
to exploit the model in the context of crime prevention and control, using
our dynamical model for criminal activity within a control framework. In
the meantime, we are pleased that such a simple, intuitive mechanistic
model was able to provide useful insights into criminal activity and hope
that this will encourage further exploitation of mechanistic models within
the arena of crime prevention and, more generally, the exciting and rapidly
growing field of criminology.
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