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Abstract

We investigate optimal mean payoff supervisory control problems on partially observed discrete event systems modeled as weighted
finite-state automata. The transition weights capture variations of a given resource (i.e., energy) expended or replenished during
the operation of the system and the mean payoft is then defined as the average of the transition weights. Two control problems
are considered in this work. For the first, the system is equipped with a fixed amount of initial energy to support its operation
and the supervised system should always have a nonnegative energy level. For the second, the limit mean payoff of any event
sequence should never drop below zero in the supervised system. We further optimize the worst-case limit mean payoff of infinite
event sequences under both scenarios. The two problems are solved sequentially. In order to capture information on both the state
estimate and the energy level of the system, we define energy information states which incorporate sufficient information for the
decision making of the supervisor. Then we propose a finite bipartite transition system called the First Cycle Energy Inclusive
Controller (FCEIC) and further transfer the supervisory control problems into two-player games with properly defined objectives
on the FCEIC. Finally, we perform a min-max search on the game graphs to synthesize the optimal supervisors for both scenarios.
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1. Introduction

Supervisory control has been thoroughly studied under the
framework of discrete event systems (DES). The supervisor re-
stricts the behavior of the plant (system) by enabling and dis-
abling events, so that the given specification is achieved. Su-
pervisory control has been thoroughly discussed under various
DES models from different perspectives [9, 39].

In the context of DES, due to the limited sensing capabil-
ities and measurement noises, the plant is usually partially
observed, which gives rise to supervisory control under par-
tial observation. Many works fall into this category, see,
e.g., [1, 2, 8, 11, 12, 18, 21, 34, 36-38, 43]. Recently, a
novel approach was developed in [41] to synthesize maximally
permissive partial-observation supervisors without assumptions
on the relationship between controllable events and observable
events. It was then extended to a uniform approach in [42] for
the enforcement of a series of qualitative properties in DES.

In addition to logical properties, supervisory control has also
been investigated under some quantitative performance mea-
sures. Optimal supervisory control is one problem of par-
ticular interest, where different frameworks have been devel-
oped. For example, [35] defined both event enablement and
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disablement costs, then found the controller with minimum to-
tal costs to reach the designated states. This framework was
extended in [24, 29] to consider partial observation of the sys-
tem. Furthermore, [31] solved an infinite horizon optimal su-
pervisory control problem under the framework of mean pay-
off games with perfect information. A closely related problem
of optimal stabilization by supervisory control was investigated
in [13, 28, 29]. Along with the deterministic setting, optimal
supervisory control in probabilistic DES was studied in [26].
Motivation In many engineering applications, the system
may generate or consume some resources over a relatively long
time horizon and it is often essential to maintain a reasonable
rate of resource generation/consumption. Consider the power
management system for hybrid electric vehicles [23]. A pos-
itive or negative torque is demanded from the powertrain de-
pending on the driving mode, e.g., cruising or braking. The
power from the electric machine is regulated by tuning the
torque so that the torque complies with the driving mode. The
electric machine generates power by consuming electrical en-
ergy from the battery in the motor mode, and it absorbs power
from the driveline to charge the battery in the generator mode.
When the vehicle is cruising, the engine should consistently
provide sufficient power so that the vehicle moves smoothly.
Here the supervisory control scheme may be applied to deter-
mine the power flow over a long time range when the vehicle
is on the road. Note that the supervisor’s observations may be
compromised by measurement uncertainty or noise.

Contributions The above situation inspires us to investigate
infinite horizon optimal supervisory control under partial obser-
vation, which has never been investigated in DES before to the
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best of our knowledge. We term the resource associated with
the system as energy, which is a generic term. The system is
modeled as a weighted automaton and the limit average weight
characterizes the rate of energy generation/consumption, which
is to be optimized. Specifically, we consider two cases where
the supervisor entails an optimal limit mean payoff. The first is
that the system is granted with certain amount of initial energy
to support its operation and the energy level should never drop
below 0. The second is that the limit mean payoff should always
be above a given threshold. Correspondingly, we formulate two
supervisory control problems and solve them in sequence.

In the first phase, energy information states are defined to
incorporate information on state estimates and energy level of
the system. Next we transfer the supervisory control problems
into two-player games between the supervisor and the “environ-
ment” (system) on the First Cycle Energy Inclusive Controller
(FCEIC). By construction, the supervisor’s winning strategies
in the FCEIC achieve a nonnegative energy level or a suffi-
ciently large limit mean payoff. In the second phase, the op-
timal control strategies are synthesized by solving a minimax
game on a substructure of the FCEIC. Those strategies in turn
solve our proposed control problems after minor manipulation.

Related works Our solution methodology is inspired by the
literature on infinite horizon optimal/stochastic control and al-
gorithmic games in computer science. Here we briefly highlight
our novelty compared with existing research from both fields.

Infinite horizon optimal/stochastic control under partial ob-
servation has long been a challenging problem [7, 19]. Optimal
policy existence problem for infinite horizon partially observ-
able Markov Decision Processes (MDPs) is generally undecid-
able, either with discounted or average reward objectives [22].
To solve the infinite horizon optimal supervisory control prob-
lems, we make some necessary assumptions on the system
(plant) and solve the problems under two-player quantitative
games. It turns out that we may solve the game to synthesize
supervisors by only focusing on the “first” simple cycles since
the mean payoff game is a type of first-cycle games [3], so our
game-theoretic technique is significantly different from the ex-
isting methods to solve optimal control and MDPs [7, 32], such
as value/policy iteration or simulation/approximation methods.
To synthesize the optimal supervisor on the FCEIC, we perform
a min-max search which is similar to the minimax criterion in
optimal control theory [6]. This is consistent with our prob-
lem formulation where we optimize the worst limit mean pay-
off. However, we cannot directly apply the minimax criterion as
our problem is discussed under partial observation. Instead, we
propose the Energy Inter Connected System to “retrieve” the
unobservable strings in the FCEIC. So the minimum/maximum
payofts for both players are correctly evaluated before the opti-
mal control strategy is determined by a min-max search.

Our supervisory control framework is also in contrast with al-
gorithmic game theory for reactive synthesis [4, 5]. First, there
is a plant, i.e., a system to be controlled, and a separate super-
visor (controller) in our work. Additionally, the supervised sys-
tem is closed-loop in the sense that the “input” to the supervisor
is the set of strings generated by the system so far and the “out-
put” of the supervisor is a control decision to inform the system

what events are allowed to occur. Furthermore, the supervi-
sor may allow multiple events to occur simultaneously, then the
system decides what event to execute next. This mechanism of
the supervisor is similar to the so-called multi-strategy in algo-
rithmic games [4], under which one player may choose more
than one outgoing edges at its position. In general, the supervi-
sor may only have limited control and observation capabilities,
i.e., some events of the system can never be disabled and some
events are not observed by the supervisor. Those limitations
are usually not characterized in algorithmic games for reactive
synthesis. The above mentioned differences impose additional
difficulties on directly applying existing results of quantitative
algorithmic games to solve the supervisory control problem in
our work, thus special techniques are necessary.

Specifically, this work leverages some results from mean
payoff games where the first player maximizes the limit average
payoffs (weights) of traversed edges while the second player
minimizes them. Well structured solutions were proposed for
the perfect information mean payoff game [44], where both
players know the complete history of the game up to their cur-
rent positions. The more challenging case is mean payoff games
with imperfect information where one player does not know the
exact state or actions of its opponent. Such games are in general
undecidable [14]. Briefly speaking, the undecidablity is due to
the presence of indefinite cycles with total payoffs of different
signs. The game graph is unfolded to determine the winner of
the game. However, the unfolding is never halted so no player
is able to claim winning the game. Some decidable classes were
presented in [14], which puts some restrictions to eliminate the
indefinite cycles. These results motivate our problem settings.

Our work is not the first to investigate problems in DES by
leveraging results from algorithmic games, see, e.g., [16, 30,
31, 41, 42]. However, both [41] and [42] focused on supervi-
sory control for qualitative properties and [31] discussed op-
timal mean payoff supervisory control under full observation.
In contrast to this work as well, [30] studied supervisory con-
trol under fixed-initial-credit energy games under partial obser-
vation and a more recent work [17] studied supervisory con-
trol under local mean payoft constraints, defined over a finite
number of events. Finally, [16] discussed a different problem,
namely opacity enforcement under energy constraints.

Organization The following sections are organized as fol-
lows. Section 2 describes the system model. In Section 3, we
formulate two optimal mean payoff supervisory control prob-
lems under partial observation. Section 4 introduces energy in-
formation states and the First Cycle Energy Inclusive Controller
(FCEIC) for each problem. In Section 5, we analyze some rel-
evant properties of the FCEIC and partially solve the two pro-
posed problems. Then in Section 6, we completely solve the
two problems by finding the optimal solution from the partial
solutions obtained in Section 5. Finally, Section 7 concludes
the paper and raises potential directions for future work.

A preliminary version of this work appears in [15] with par-
tial results. The major improvements of this work are two-fold.
First, we consider mean payoft supervisory control under con-
straints imposed by the system’s energy capacity, i.e., Prob-
lem 1 in Section 3, which is not discussed in [15]. Second,



we further investigate the optimal control of worst-case limit
mean payoffs in Section 6, which is not treated in [15] either.

2. System model
The system is modeled as a weighted finite-state automaton:
G=(XE,f xp,w)

where X is the finite state space, E is the finite set of events,
f : X X E — X is the partial transition function, xy € X is the
initial state, w : E — Z is the weight function that assigns an
integer to each event. We view the event’s weight as its energy
payoff. A positive number stands for energy gain while a neg-
ative number stands for energy cost. The transition function is
extended to X X E* in the standard manner and we still denote
the extended function by f. The language generated by G is
defined as £(G) = {s € E* : f(xo, s)!} where ! means “is de-
fined”. We denote by s < u if string s is a prefix of u, and s < u
if s < u,s # u. The function w is additive and its domain can
be extended to E* by letting w(e) = 0, w(se,) = w(s) + w(e,)
forany s € E* and e € E. Given s € L(G), the (accumulative)
payoff of s is the sum of each event’s weight in s, i.e. w(s). G
may also have vy € N as its initial energy.

In this work, we assume that safety is satisfied a priori and
we do not include marked states in G. Instead, we consider the
(weak) liveness property: a system G is live if its generated lan-
guage L(G) is live, i.e., Vs € L(G), Ju € E, s.t. su € L(G).
That is, there is a transition defined at each state in G so ev-
ery finite string may have an infinite suffix. This requirement is
without loss of generality since it can be relaxed by adding ob-
servable self-loops at states where no active events are defined.

Given G, for x1,x, € X and e € E, we write x; 5 xp if
f(x1,e) = x. A run in G is a sequence of alternating states
and events: r = x; 4, X a2, 02 x, and it may be in-
finitely long. We denote the set of all runs in G by Run(G),
and specifically, the set of infinite runs by Run;,r(G), so that
Run(G) C Runj,;(G). A run is called initial if its initial state is
the initial state of G. Run r forms a cycle if x; = x,, and r is
called simple if Vi, j € {1,2,---n—1},i # j= x; # x;. If r
is a cycle, the corresponding string eje; - - - e,—; forms a loop,
which is also called simple if r is simple.

Givenr = x; SN X RN N Xn+1, its (accumulative) payoff
is 2,7, w(e;) and its mean payoff is % L, w(e;). The system’s
energy level after r is written as EL(r) = vo + )i, w(e;). The
energy level changes dynamically with event occurrences.

For infinite runs, we also define V,,, : Run;,;(G) — R as the

limit mean payoff of an infinite run. Given r = x; N X2 2, .. -
TS
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Since G is with finite state space and the weight of each event is
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always exists. Notice that the value of V,,,(r) does not depend
on any sequence that appears finitely often when r is infinite.
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The event set E is partitioned as E = E. U E,., where E, is
the set of controllable events and E,. is the set of uncontrol-
lable events. The system is also partially observed and E is
partitioned as £ = E, U E,,, where E, is the set of observable
events and E,, is the set of unobservable events. The natural
projection P : E* — E7 is recursively defined as: V¢’ € E”,
e € E, P(e) = €, P(t) = P(f'e) = P(t')P(e) where P(e) = e if
ec E,and P(e) = €eife € E,, U {€}.

The system G is controlled by a supervisor S : P[L(G)] —
2X that dynamically enables/disables events [9]. Let S be the
set of supervisors. We also use S /G to represent the controlled
system under S. Accordingly, we denote by £L(S/G) the lan-
guage generated in S/G and Run(S /G) the set of runs in S/G,
respectively. A control decision y € 2F is called admissible
if E,. C v, i.e., uncontrollable events are never disabled. We
letI' = {y € 2F : E,. C v} be the set of admissible control
decisions and only consider I in the remainder of the work.

The supervisor only has partial observation of the system.
Given G and a set of states g C X, the unobservable reach, de-
noted by UR(q), is defined as: UR(q) = {x¥’ € X : Ax € ¢,s €
E;,, s.t. f(x,s) = x’}. Specifically, the unobservable reach un-
der a set of events y C E, denoted by UR,(q), is defined as:
UR,(q) ={x' € X : Ix € g, 5 € (EoNy)", s.t. f(x,5) = x’}. The
observable reach under event e, € E,, denoted by Next,, (g), is
defined as: Next, (q) = {x' € X : Ax € g s.t. f(x,e,) = X'}.

The observer of G is defined as: Obs(G) = (X,pss Eo, 05 Xops0)
where X, C 2% is the state space; Xops0 = UR({xo}) is the ini-
tial state and ¢ is the transition function where Yx,,s € Xops,
Ve, € Ey: 6(Xops, €0) = UR(Next,,(xyp5)). The weight func-
tion is omitted here in the definition. An observer state is also
termed a (current) state estimate of the system.

3. Problem Formulations

In this section, we formulate the optimal mean payoft su-
pervisory control problems with and without the constraint of
nonnegative energy level, respectively. Before stating them, we
first assume that there are no unobservable loops in £(G), and
this assumption holds throughout the remainder of this work.

Assumption 1 (No unobservable loops). Given an automaton
G, VxeX Vse E*\{e}, [f(x,5) =x] = [P(s) # €].

Problem 1 (Optimal mean payoft supervisory control under
partial observation-nonnegative energy level case). Given sys-
tem G with initial energy vy € N, design a supervisor S* € S
such that: (i) L(S*/G) is live; (ii) Vr € Run(S*/G): EL(r) = 0;
(i) reRunlmr}(fs* /G) Vinp(r) = il;g relezgff(s /G) Vinp(1)

In other words, the supervised system satisfies the following
conditions: (i) it is live; (ii) its energy level for any run is non-
negative; (iii) its worst case limit mean payoff is maximized.

As a variant, we require the supervisor to enforce nonneg-
ative limit mean payoffs. To study the new problem, we
make Assumption 2 on the system. Given an observer state



Xobs € Xohxs let LOOP(xabs) = {l € E: \ {E} : 6(x0hsa 1) =
Xops and VI < [ s.t. ' # €,8(Xops, ') # Xops} e the set of non-€
simple loops starting from x,,. Given string [ € Loop(x,ps), let
SimLp(xpps, 1) = {t € E* \ {€} : Ax € xpps S.t. f(x,0) = x, P(¥) =
land V¥’ < t, f(x,t") # x} be the set of non-e simple loops with
the same projection / and starting from some state in x,p;.

Assumption 2 (Unambiguous cycle payoffs). Given automaton
G and its observer Obs(G), ¥ xops € Xops, Y1 € Loop(x,p5), and
Vs, s € SimLp(xyps, 1), we have either w(s) < 0 = w(s’) <0
orw(s) > 0= w(s)=>0.

In other words, for two simple loops with the same projec-
tion, their payoffs should have the same sign. This assump-
tion is inspired by the decidable classes of mean payoff games
with partial observation in [14]. Later on in Section 4, we will
see how this assumption guarantees a finite game structure that
helps us to solve Problem 2. We say that a system is with un-
ambiguous cycle payoffs if it satisfies Assumption 2. Checking
Assumption 2 may be reduced to comparing the accumulative
weights of every pair of simple cycles in the system. By graph
theory, the number of simple cycles in a graph may be expo-
nential with respect to the number of states, thus it may take
exponential time to verify the assumption.

Example 1. Let the system G in Figure I be with E,,, = {u;, us}

and E, = {01, 02, 03}). The weight of each event is shown in the

figure. There are 4 simple cycles: xy 4 X1 N X3 REN Xo with

payoff 2, xo N X2 N X4 N Xxo with payoff 1, xo SN X1 N
03 . uz 0] 03 .

X3 — xo with payoff —1 and xy — x, — x4 — xo with payoff

—2. So G is with unambiguous cycle payoffs.

Figure 1: An automaton with unambiguous cycle payoffs

Problem 2 (Optimal mean payoff supervisory control under
partial observation-nonegative mean payoff case). Given sys-
tem G with unambiguous cycle payoffs and mean payoff thresh-
old v € N, design a supervisor S* € S such that: (i)
L(S*/G) is live; (ii) Vr € Runir(S™/G): Vyp(r) = v; (iii)

Viup(r) = sup inf Viup(7).

inf
reRun;, 1 (S*/G) SeS§ r€Run;y(S/G)

Compared with Problem 1, we still require that the super-
vised system be live and the worst case limit mean payoff be
optimized. The difference is that we omit the requirement of
nonnegative energy level, instead, we are to achieve that the
limit mean payoff (rate of energy gain) of any infinite run is
above a given threshold v in (ii) (generally it may not be 0).
However, given the threshold, say v, we may subtract v from
the weight of each event and equivalently evaluate whether the
limit mean payoff is above 0. Hence, we simply let v = 0 in the
following discussion without loss of generality.

Specifically, we call the first two conditions in Problem 1
(respectively Problem 2) as its mean payoff decision problem
which investigates whether some qualitative and quantitative
conditions are satisfied. In both Problems 1 and 2, the optimal
supervisor should maximize the worst case limit mean payoff.
We may imagine that the supervisor is “playing a game” against
an antagonistic opponent, where the supervisor is to maximize
its mean payoff while its opponent is to prevent the supervi-
sor. Note that the two sides may have asymmetric information
since the supervisor only has partial observation of the system.
Thus, it is essential to construct proper estimates for current
states and the energy level of the system so that the supervisor
makes correct decisions. In the following discussion, we solve
Problems 1 and 2 sequentially: we first find solutions to their
corresponding mean payoff decision problems, then completely
solve them by resolving the optimization issues.

4. First Cycle Energy Inclusive Controller

As a first step of solving Problems 1 and 2, we define energy
information states and First Cycle Energy Inclusive Controller
(FCEIC) to transform both problems to two-player games be-
tween the supervisor and the environment. The FCEIC is the
game structure, which records the update of current state esti-
mates and the energy level of the system under control. It is in-
spired by the Bipartite Transition System and All Enforcement
Structure in [42] and [41], which include supervisors enforcing
several logical properties in DES. We build two FCEICs (one
for each problem): they are similar to each other except that we
impose nonnegative energy level on the FCEIC for Problem 1.

4.1. Energy Information States

In order to track state estimates and string payoffs, we de-
fine energy information states which provide a compact way of
encoding information. Here we let |-| be the cardinality of a set.

Before giving the definition, we first present some neces-
sary order relations for vectors in Z". Given two vectors v| =
i), vi2), -, vi)],v2 = [va(1),v2(2), - -, va(n)] € 2", we
denote by v; < v, (respectively vi > vp) if V1 < i < n,vi(i) <
v (i) (respectively vi(i) > v,(i)). We also denote by v; < v, if
V1 <i<nvi@) <w@)and Al < j<n,vi(j) < va(j) (respec-
tively V1 <i < n, vi(@Q) > v2(i) and A1 < j < n, vi(j) > va2())),
i.e., at least one element in v; is strictly smaller (larger) than the
element at the same position in v;.

Definition 1 (Energy information states). Given system G, an
energy information state is a tuple ¢° = (q,v) € 2X x (ULXJIZ").
Let Est(q°) and Lev(q°®) denote the state estimate and energy
level components of ¢, respectively. So ¢¢ = (Est(¢%), Lev(¢®)).

Denote by QF the set of energy information states. There
are two components in an energy information state g.: a cur-
rent estimate of the system state and a vector representing the
energy level of the system when reaching the states in the esti-
mate. Each state in Est(g¢) corresponds to a value in Lev(g®),
whose dimension equals the number of states in the state es-
timate. Given x € Est(¢°), we also write Lev(¢¢, x) as the
element in Lev(g®) that corresponds to x. When Est(¢¢) =



{x1,x2 -+ xx}, Lev(g®) is usually expressed in a vector form
[Lev(g®, x1), Lev(¢®, x3), - - - , Lev(¢°, x¢)]. By convention in this
work, elements in Lev(g®) are placed in an increasing order
w.r.t. state names in Est(q°). Let 0 be the vector of all Os with
proper dimensions. We call ¢° desirable if Lev(¢®) > 0, ie.,
nonnegative energy level for every state in Est(g°).

Next, we define an order < over Q: for ¢, ¢5 € 0%, ¢$ < ¢
if Est(q]) = Est(q5) and Lev(q}) < Lev(g5). We also say that
q;, subsumes ¢ if q{ < ¢5. In other words, g5 shares the same
state estimate with ¢{ and the energy level vector of g5 is no
less than that of ¢{ in a point-wise sense. We define another
order < over QF: for ¢¢, ¢ € OF, ¢ < ¢ if Est(¢%) = Est(q5),
Lev(q}) < Lev(g5). That is to say, ¢{ and g5 have the same state
estimate and there exists i > 1 such that Lev(g)(i) < Lev(g5)(i)
at Est(q{)(i). By Dickson’s lemma (see, e.g., [20]), “<” on k-
dimensional nonnegative integer space N¥ is a well-quasi or-
dering for any k € N*. We further argue that < on desir-
able energy information states is also a well-quasi ordering, i.e.,
for any infinite sequence of desirable energy information states
q7,q5 - € OF, there exist two indexes i < j, such that g =< q;.

We call ¢* € QF x T an augmented energy information
state, which augments an energy information state with a con-
trol decision. Let Ig(¢g*), I'(g*®) denote the energy information
state component and control decision component of ¢, respec-
tively, so g% = (Ig(q¢“),T'(¢*)). With a slight abuse of nota-
tion, we also use Lev(g“, x) to stand for Lev(Ig(g*), x) where
x € Est(Ig(¢g™)). An augmented energy information state g“ is
also called desirable if Lev(Ig(g®)) > 0. Then we discuss how
(augmented) energy information states are updated when the
supervisor makes decisions or enabled observable events occur.

Definition 2 (y-successor). Fory € T, ¢* € QF xTis a y-
successor of ¢¢ € QF if: (i) Est(Ie(¢*)) = UR,(Est(q%)); (ii)
Vx' € Est(Ig(q“)), Lev(g™,x’') = mfin{Lev(qe, X)+w():dx e

Est(q%),€ € (Eyo NY)* st f(x,6) = X'},

If ¢ is a y-successor of ¢°, then the state estimate of Ir(a%)
is the unobservable reach of Est(¢°) under vy and we append
I(a®®) with the control decision y. We also track the minimum
energy level under y, which is achieved by some unobservable
string & reaching a possible state in Est(Ig(q“°)).

Definition 3 (e,-successor). For e, € E,, ¢¢ € OF is an
e-successor of g% € QF xT if: (i) e, € T(q“) = v and
Est(q°) = Next,,(Est(Ig(q“))); (ii) Vx € Est(q®), Lev(¢®, x) =
n)lci,n{Lev(q“e, X))+ w(e,) : Ax' € Est(Ig(g™)) s.t. f(X',e,) = x}.

If ¢° is an e,-successor of ¢“¢, then the state estimate com-
ponent of g° is the observable reach of Est(Ig(q?)) under e,.
Meanwhile, we track the minimum energy level when e, occurs
and a certain state in Est(q“°) is reached. When there is a se-
quence of alternating control decisions and observable events,
we introduce control-observation sequence to characterize the
update of (augmented) energy information states.

Definition 4 (Control-observation sequence). A control-
observation sequence is a sequence of alternating en-
ergy/laugmented energy information states, observable events
and control decisions in the form of:

Yol e €n-l

71 el 72
€ ae € ae €
P=4q —4q — 4 =4y T4, —4,0r

Y1 e Y2 Yn-1 €p-1 Yn
’ € ae € ae ae € ae
P =9 =4 =4 =4 T4, — 4, 4,
where Vi < n,y; €T, ¢; € E,, ¢¢ € QF, ¢ € Q¥ XT, ¢ isa
. e e N ae
Yi-successor of q; and ¢, is an e;-successor of ¢.

. 71 €l Y2
By convention, we also denote by p = ¢] — ¢ — ¢5 —

ae - €1 e _ e N ae € e N2
G T 4G T g and pp = g o g gy o

Vi1 €k-1 Yk .
@ — qif, — q; — g, for 1 < k < n. Strings are

generated under the control decisions in such sequences.

Definition 5 (Strings generated by a control-observation se-
quence). Given a control-observation sequence p or p’, the set
of strings generated by p is defined recursively as: Y1 < k < n,
Str(pr) ={e}
Str(p}) ={¢) € E;, : Ax € Est(q}), x’ € Est(Ig(¢]%)),
&€ NE) st f(x,&)=x}
Str(pr+1) ={siex : Ax € Est(q}), x' € Est(Ig(q)), x" € Est(q;,,),
s, € Str(py), s.t. f(x,5) =%, f(x', er) = X"}
Str(p,1) ={8i+1&k+1 2 Ix € Est(q)), X’ € Est(q;,,), X" €
ES[UE(‘IZL)): Sie1 € Str(pe1), Ekr1 € Vw1 N Eyp)’,

s.t. f(x, See1) = X, (X, ) = X7}

The following proposition shows that given a control-
observation sequence, the energy level vector of an energy or
augmented energy information state always tracks the minimum
payoff of strings reaching the states in the state estimate.

Proposition 1. Given a control-observation sequence p as in

Definition 4, we have that ¥ x € Est(q5):

Lev(q,,x) = min {w(s) : 3% € Est(q), s.t. f(X, ) =x}  (3)
seStr(p)

Given a control-observation sequence p’ as in Definition 4, we
have that ¥ x € Est(Ig(¢5)):
Lev(gy’,x') = min {w(s) : A% € Est(q}), s.t. f(%,5) =x"} &)
seStr(p’)
Proof. See the appendix. O

The proof of Proposition 1 is in a dynamic programming
manner. Since we account for the minimum string payoff when
creating a new e,-Successor or y-successor, the minimum pay-
off is computed by taking the minimal energy value of all
strings consistent with the observation. Note that those strings
only differ in their unobservable substrings.

4.2. Construction of the FCEIC

Next we transfer Problem 1 and Problem 2 to games between
the supervisor and the environment. In general, the games are
infinite since we require live supervised systems and evaluate
limit mean payoffs for both problems. To efficiently solve the
problems, we define a compact information structure called the
First Cycle Energy Inclusive Controller (FCEIC) by consider-
ing the “first cycles” formed by the supervisor in the games.

The two variants of FCEICs are formally defined by
construction, i.e., by adding feasible e,-successors and y-
successors to the state space recursively in Algorithm 1 and Al-
gorithm 2, respectively. The FCEICs with respect to system G



for both problems are constructed in a similar way and of the
same generic form (0F, QZ, E, = Fr, yO, Q1 , Vo) Where:

e QF C QF is the set of energy information states;

e QF C OF xT is the set of augmented energy information
states and for z¢ € QF, 2 = (Ip(z°), T(z%));

o ff: QyxI — QF is the transition function from Qf states
to OF states, where for all y* € QF, y € I'and z° € QF,
[ yi(y‘),y) = 7°]© [z° is a y-successor of y°];

o L1 Q) xE, - Qf is the transition function from Q}
states to QI; states, where for all z¢ € Q;, e, € E, and
¥ € 04, [f5(z¢, e5) = y*]o[y* is an e,-successor of z°];

e ['is the set of admissible control decisions;

® ), € QF is the initial energy information state where
Est(y;) = {xo} and Lev(y() = vo;

° Qf C QI; is the set of leaf states where no transitions are
defined and we partition Q] = Qng U Qf;

e vy € N is the initial energy of the system.

Algorithm 1 Construction of the FCEIC for Problem 1

Input: G, v

Output: FCEIC = (QF,QZ,E o Zy, ,yO,Ql,vo)
1Oy =y 0,=0,0 =0.0), =

2: FlrstCyclel(yo,FCEIC);

3: Return FCEIC;

4. procedure FirstCycle;(y°, FCEIC)

5: for y e I"do

6 Let z¢ be the y-successor of y°;

7: if z¢ is deadlock free and energy safe then

8 Add transition y*° % z° to y,,

9: if z° ¢ QZ then

10: Q) =0, U{zh

11: fore, e yNE, do

12: Let ¢ be an e,- successor of z ;

13: Add transition z¢ N ¥ to z},

14: if 7 ¢ OF then

15: 07 = 0y U )

16: if 3¢ is energy safe then

17: if there exists a run: y RAN bt 2,
¥ RSN z_ iye and dj < n, s.t. yj. < 7 then

18: Stop searching from ¥°, de-
fine Sub(3) = ., let Qf = QF U3}, Qf = OF U ()

19: else FirstCycle, (3¢, FCPEC);

20: else Stop searching from 3j°, let
0 = 07 U{5*}and Qj, = O}, U {5);

For simplicity, QF states are also named Y-states and Q
states are named Z-states in the remainder of the work. A Z-
state z° is deadlock free if Vx € Est(Ig(z%)), de € I'(z%), s.t.
f(x,e)!, i.e., at least one event is enabled at every state in the
state estimate of z¢. Otherwise, z° is called a deadlocking state.
Since there are no unobservable loops in G by Assumption 1, a
deadlock free Z-state always has transitions defined out of it.

Algorithm 2 Construction of the FCEIC for Problem 2

Input: G, vy

Output: FCEIC = (0%, QL E, yz, Z},F Y5, OF s vo)

1 QF =y 05 =0.0f =0.0f) =

2: FirstCycley(yj, FCEIC);

3: Return FCEIC;

4: procedure FirstCycle;(y°, FCEIC)

5: for y eI'do

6: Let z¢ be a y-successor of y°;

7: if z° is deadlock free and energy safe then

8: Add transition y*© RA Z°to ﬂ,

o: if z° ¢ QZ then

10: Q) = 0y U{zh

11: fore, e yNE,do

12: Let ¢ be an e,- successor of z ;

13: Add transition z¢ N ¥ to ZV,

14: if 7 ¢ Of then

15 0} = 0f U F*;

16: if there exists a run: y AN zZ; N
¥ f—l—m lﬁyeand3j<n,s.t.yj < 5° then

17: Stop searching from 3¢, define
Sub() =y, let O = O U {5}, 0F = 0 U (7}

18: if There exists a run: yj RAN 7z N
¥ in 7—>zn : —>5)" and dj < n, s.t. 3° <y§ then

19: Stop searching from ¥, let QlF =
Of U {5} and Qf = OF U {5};

20: elseFirstCycle;(57¢, FCEIC);

The FCEIC in general describes a game between the super-
visor and the environment. A Y-state is an energy information
state where the supervisor issues control decisions If the su-
pervisor issues an admissible control decision vy, a f£ transition
is defined out of a Y-state, which follows the deﬁmtlon of y-
successor. A Z-state is an augmented energy information state,
where the environment plays by selecting observable events to
occur from the events enabled by the supervisor. When a par-
ticular observable event e, is selected to occur by the environ-
ment, a f; F transition is defined out of a Z-state, which follows
the definition of e,-successor. Then it is again the supervisor’s
turn to make the next control decision. This is consistent with
the mechanism of supervisory control under partial observation
where the supervisor’s decision gets updated after the occur-
rence of observable events. In this manner, the two players take
turns to play and a game is formed.

The procedure FirstCycle; where i € {1,2} in either algo-
rithm builds the state space of the FCEIC by a depth-first search
like process. We first discuss FirstCycle; in Algorithm 1. In
this process, we only add deadlock free Z-states to the struc-
ture and ensure that there are events enabled at every state in
the state estimate of any Z-state. In lines 16, 17 and 18 of Al-
gorithm 1, if the newly added energy safe state 7 subsumes a
non-leaf state y° on the run starting from the 1n1t1a1 state, then
we know that the two energy information states share the same



state estimate but the new state ¢ has a higher or equal energy
level vector compared with 5. We also know that some simple
cycles with nonnegative payoffs are formed in the system for the
first time. Then we terminate searching and add the new state as
a leaf state of the FCEIC. That is why we call this structure first
cycle energy inclusive controller. In the following sections, we
will explain in more detail why it is sufficient to consider simple
cycles to solve Problem 1. On the other hand, if a new Z-state
or Y-state is not energy safe, we stop searching since the sys-
tem’s energy level drops below 0 at some state, thus the second
requirement in Problem 1 is violated.

Similarly for FirstCycle, of Algorithm 2, in lines 16 and 18,
if the newly added state y° subsumes or is subsumed by an ex-
isting state on the run from initial state y{ to §°, we know that
the two energy information states share the same state estimate
and y¢ has a higher, lower or equal energy level vector com-
pared with that state. We also know that some simple cycles
with nonnegative or negative payoffs are formed in the system
for the first time. Then we terminate searching and add the new
state 7¢ as a leaf state of the FCEIC. Since Problem 2 does not
require nonnegative energy level of the system, the states cre-
ated by FirstCycle, are not necessarily energy safe.

Next, we partition leaf Y-states as: Qf = g U Q;, where Qg
represents good leaf states and in represents bad leaf states.
In the FCEIC for Problem 1, a good leaf state is energy safe
and subsumes a non-leaf state, while a bad leaf state is energy
unsafe. If a good leaf state is reached, there are simple cycles
with nonnegative payoffs in the system and the system’s energy
level would be nonnegative forever if those cycles are traversed
indefinitely. However, if a bad leaf state is reached, there exists
some string so that the energy level of the system drops below
0. Similarly, in the FCEIC for Problem 2, a good leaf state sub-
sumes a non-leaf state while a bad leaf state is subsumed by a
non-leaf state. If a good leaf state is reached, we know there
exist simple cycles with nonnegative payoffs in the system; if
bad leaf state is reached, there exist simple cycles with neg-
ative payoffs. In both algorithms, we define Sub(y°) to store
the preceding state subsumed by good leaf state y°. Actually,
the supervisors in both Problem 1 and Problem 2 should reach
good leaf states and avoid bad ones, which is explained in more
detail later on. Finally, if no state subsumes another, we call
FirstCycle recursively in both algorithms until no more new
states are added to the structure. We may also show that Algo-
rithm 1 and Algorithm 2 return a finite and acyclic structure.

Theorem 1. Algorithm I returns a finite structure.

Proof. By contradiction. Assume that the FCEIC is infinite.
Since E, I' C 2F and E, are finite, the number of transitions

at each state in the structure is finite. By Konig’s lemma [20]

. . P ¥ Y
and Algorithm 1, there exists an infinite run y SAN Fod SN ¥y RAN

Z{ --- in the FCEIC and it is never the case that 3y%, yel’., i<j,s.t
y; < ¥j. However, this contradicts with < being a well-quasi
ordering on energy safe energy information sates. O

Theorem 2. Algorithm 2 returns a finite structure.

Proof. By contradiction. assume that the FCEIC is infinite.
Since E, I’ C 2F and E, are finite, the number of transitions

defined at each state in the structure is finite. Then by Konig’s
. P Y
lemma (see, e.g., [20]), there exists an infinite run y{ EAN % 2,

in the FCEIC such that it is neither the case that
Elyf,yj, i< j,styf < yj nor the case that yj < y¢. That means
there exist y?, yj (i < j)andintegers k # [ s.t. Est(y{) = Est(yj.),
Lev(y{)(k) < Lev(y;)(k) and Lev(y{)()) > Lev(yj.)(l) for ele-
ments in Lev(y?) and Lev(yj.). Hence there exist two simple

Y1
€ e..-
g

cycles in G: x| SN X o- NN x1 and x| e—]> bAREE AN x) s.t.
x1, x| € Est(y]), P(er---e,) = P(e] -+ -ey), w(e; ---e,) 2 0 and
w(e] - --e;) < 0. However, this contradicts with Assumption 2
that G is with unambiguous cycle payofts. O

The size of the state space of the FCEIC is bounded by non-
primitive recursive Ackermann functions (see, e.g., [33]) fol-
lowing a similar argument as [14, 27]. Mean payoff games
with incomplete information were also solved by evaluating
first simple cycles after the game graphs are unfolded in [14].

Example 2. In this example, we construct a first cycle en-
ergy inclusive controller following Algorithm 1. Let the sys-
tem G in Figure 2 be with E, = {01,07,03,04}, E,, =
{a1,a2,a3,a4,b1,by,c1,¢2,¢3,¢c4.05}, E. = {c1,¢2,03,¢4,C5),
E.. = {a1,a2,a3,a4,b1,b3,01,02,03,04}. The weight of each
event is shown in the figure and the system has initial energy
vo = 3. Then all admissible control decisions are: yy = E,,
1 = {ci,2} U Ey, v2 = {3} U Ey, 7§ = {c3,¢c5} U Ey,
v3 = {c4} U Eyue, Y4 = {c1} U Eye, v5 = {c2} U E,.. For simplicity,
we only include feasible controllable events at the correspond-
ing states in the admissible control decisions.

Then we follow Algorithm 1 to build the FCEIC in Figure 3.
For simplicity of the graph, we do not put the energy level vec-
tors in the figure but show them in Table 1. The elements in each
energy level vector are placed in the same order as the order of
states in the corresponding state estimate.

Figure 2: The automaton G in Example 2

In the FCEIC, the game is initiated from y; where the only
feasible control decision is yy. If the supervisor plays o, a
Z-state z is reached where the environment selects observable
event 01 to occur. Then the supervisor takes the turn to play at
y{ and the rest of the structure is interpreted in a similar way.
Notice that at y5, if the supervisor issues control decision vy,
(enables c3 and disables cs), then a deadlocking Z-state 75, is
reached, where no event can occur at x4 after cs is disabled.
Here 75 is not included in the FCEIC by Algorithm 1 and we



state name state components

Yo {{xo}, 3}

% {{xo, x1, %2}, [3, 1, 0], yo}

N {{x3, x4}, [2, 11}

Z {{x3, x4, X5, X6, X7, X3, X9, X10},[2, 1,5,2,7,2,6,5], 71}
Y5 {x12},4}

bed {{x12}, 4, yo!
Y5, {{x12},6}

% {{xo, x12, x14}, [0, 4, 3], 4}
Y53 {{x12}, -2}
Vo4 {{x12},6}

Y {{x13},2}

Z; {{x13}, 2, y0}

Y3 {{x13},4}

%% {{x10, x13, x15}, [1, 2, 1], 73}
Y33 {{x13}, -2}

Y34 {{x13},4}

7 {{x3, x4, x5, X7}, [2, 1,5, 71, 74}
Yio {{os, x4}, 13,21}

Z {{x3, x4, X6, X3}, [2, 1, 2, 2], y5}
Yis {3, x4}, [3, 2]}

Z¢ {{x3, x4}, [2, 11, 70}

Yia Vig = {{x3, x4}, [3,2]}
Yis ¥is = {{x3, x4}, [3,2]}

X3, X4, X5, X6, X7, Xg,
X9, X10},

[P [ ] |[9513}3 | [xas)*
Yi-3 Yi-a ¥§_3 Y54

Figure 3: The First Cycle Energy Controller in Example 2 (without z9)

mark it by a blue cross in Figure 3. Meanwhile, we calculate the
energy level vector of each state. For example, Est(yy) = {xo},
Lev(yy) = vo = 3; since z{j is the yy-successor of y;, we have
that Est(Ig(z)) = URy(Est(yy)) = {xo0,x1, %2}, Lev(z, x1) =
min{w(ar), w(az)} = 1, Lew(zf, x2) = min{w(az), w(as)} = 0
and zy = {{xo, x1, x2}, [3, 1,01, y0}; since y| is the oy-successor
of 7§, we have that Est(y{) = Next, ({{xo, x1,x2}) = {x3, x4},
Lev(y{, x3) = Lev(zy, x1)+w(o1) = 2, Lev(y], x4) = Lev(z(, x2)+
w(o1) = 1 and y§ = {{x3, x4}, [2, 11}

From the table, we find that y{ < ¥{_, Y < Yi_s
YOS Ve Y S Vs Y S Y Yy S Vg Yy S
y§72 and yg < y§74 by evaluating their energy level vec-
tors. We also find two energy unsafe states y5_, and Y5_,
since Lev(y5_5) = =2 and Lev(y5_;) = —2. After check-
ing all states in Figure 3, we stop adding new states from

the leaf states of the FCEIC. Then we have good leaf states
QZ; = 0 Y3 Yo Y5 Y500 Yo a0 Y50, Y5y} and bad leaf
states Qg = {)5_5.¥5_3). For example, when y|_, is reached,
we locate three simple cycles with nonnegative payoffs in au-
b
tomaton G: x3 SN X5 BN X7 SN x3 with payoff 6, x3 2 X3
with payoff 1 and x4 2 x4 with payoff 1. The bad leaf states
actually come from the two simple cycles with negative pay-
offs in G: X9 2z, X12 SN X14 5, X9 with payoff —6 and

. by
X10 N X13 SN X1s — Xy with payoff —4. Those two cycles
should be avoided if we want to solve Problem 1.

Example 3. The system G is the same as the one in Example 2
and we construct a first cycle energy inclusive controller fol-
lowing Algorithm 2. It happens that the FCEIC is the same as
the one in Figure 3. Specifically, y5_, < y5 and y_; < ¥5, so
¥5_5 and y5_, are also bad leaf states in this example. They are
due to the two simple cycles with negative payoffs mentioned
at the end of Example 2. Again, those two cycles should be
avoided if we want to solve Problem 2.

5. Mean Payoff Decision Problems

In this section, we show that there exist solutions for the
mean payoff decision problems mentioned at the end of Sec-
tion 3 if and only if the supervisor has strategies to win the
game on the FCEIC. Therefore the first two requirements of
Problem 1 and Problem 2 are satisfied. The last requirement
in both problems, i.e., the optimization issue, will be discussed
and addressed in the next section. The following analyses of
this work apply to both FCEICs returned by Algorithm 1 and
Algorithm 2, so we will not distinguish them but just use the
term “FCEIC” when there is no confusion.

By the construction process of Algorithms 1 and 2, we stop
expanding the game graph when the first cycles with positive
payoffs are formed or the energy level drops below 0. There-
fore, the runs in the FCEIC (defined by either Algorithm 1 or 2)
are finite control-observation sequences. We denote by Run(F)
the set of runs in the FCEIC. Given ry € Run(F), we write
¥¢ € ry (respectively z¢ € ry) if y° (respectively z¢) is a Y-state
(respectively Z-state) in ry. We also let Lasty(ry) and Lastz(ry)
be the last Y-state and Z-state of ry, respectively. Specifically,
we denote by Run,(F) (respectively Run,(F)) the set of runs
whose last states are Y-states (respectively Z-states).

Then we discuss strategies for both players in the FCEIC,
which indicate the choices for players when it is their turn
to play. Define the supervisor’s strategy (control strategy) as
a function 7y : Runy,(F) — T and environment’s strategy as
n. . Run,(F) — E,. Both players select a transition according
to their strategies when it is their turn to play. Since the su-
pervisor only has partial observation of the system and makes
decisions from state estimates, we call its strategy observation
based. Denote the set of all supervisor’s strategies by Il and
the set of all environment’s strategies by II,. If the supervisor
plays g and the environment plays x, from the initial state y,

then a unique initial run, denoted by r(r,, 7r.), is generated. We

Yn-1 €n—1
5 Z; € .

Y e
also let Run(y, m,) = {y* = 25 5 y5--- | ¢



. 71 e Yi-1 €
Vi<ny =m(y* — z§ — D R I - ¥9)} be the set

of runs starting from y° and consistent with control strategy 7,
i.e., the control decisions in the run are specified by n;.

In the FCEIC, we say the supervisor wins the game if only
good leaf states are reached, otherwise, the environment wins
the game if at least one bad leaf state is reached. So the game
on the FCEIC is a safety game under full observation after in-
troducing the energy information states. Either the supervisor
or the environment has a winning strategy from any state in the
FCEIC, since safety games are determined [4].

A strategy m; € II; for player i € {s,e} in the FCEIC is in-
formation state based if the decisions only depend on the cur-
rent energy or augmented energy information state. In other
words, n; € II; is information state based if m;(r) = ni(r}) for
all ry, r} € Run(F) such that Last(ry) = Last(r}). Therefore, in-
formation state based strategies for the supervisor and the envi-
ronment can be represented by 7, : Q‘; —Tandn, : Q; - E,,
respectively. Such a strategy is also called positional in the lit-
erature, see, e.g., [4], as it only depends on the current position
of the player. Since positional strategies are sufficient to win a
finite safety game [4], we assume that both players play posi-
tional strategies in the following discussion.

Following the transitions in the FCEIC, we can specify con-
trol decisions from Y-states and the control decisions are up-
dated after observable events occur from Z-states. Thus, the
control strategies in the FCEIC work in the same way as stan-
dard partial observation supervisors. In the following discus-
sion, we will use the words “supervisor’” and “supervisor’s strat-
egy (control strategy)” interchangeably.

We define the supervisor’s winning region Winy as the set of
states from which the supervisor has a strategy to reach good
leaf states for sure regardless of the environment’s strategies.
To solve Problem 1 or Problem 2, the supervisor should only
reach good leaf states. Actually, the procedures to obtain Win,
for both problems are the same after the FCEIC is given. Hence
we present one unified algorithm, i.e., Algorithm 3, to compute
Wing for Problem 1 or Problem 2.

Algorithm 3 Compute the winning region of the FCEIC

Input: FCEIC returned by Algorithm 1 or Algorithm 2
Output: Win, for Problem 1 or Problem 2
1: while 3y € OF \ Q;; , s.t. ¢ has no successor do

2: Remove y* and all ¢ € Q}, s.t. f1(z°,¢,) = y* for some
e, € Ey;
3: Take the accessible part of the structure;

4: Denote the remaining structure by FCEIC,, and return the
states in it;

We briefly discuss the process in Algorithm 3, which calcu-
lates the winning region in a fixed point calculation manner.
All bad leaf states are removed first as well as their preceding
Z-states. Then we further prune away Y-states that have no suc-
cessor states and their preceding Z-states in an iterative manner.
Notice that when we prune away a Y-state, we also need to re-
move all its preceding Z-states, otherwise the already enabled
observable events are blocked from happening. However, when

a Z-state is removed, we only remove its preceding Y-state if
the Y-state has no successors, since the supervisor is still able
to avoid the removed Z-state when it has other successors. The
algorithm stops when no more states are removed. In this way,
we make sure that only good leaf states are reached under cer-
tain control strategies and we have the winning region. In other
words, any control strategy in the FCEIC,, is a winning control
strategy in the FCEIC, and vice versa. It is possible that Algo-
rithm 3 returns an empty set thus the environment always wins
the game regardless of the supervisor’s strategies.

Intuitively, Algorithm 3 is similar to calculating the supremal
controllable sublanguage in nonblocking supervisory control
under full observation [9]. The bad leaf states are viewed as
undesirable marked states while the good leaf states are viewed
as desirable ones; transitions for y’:: are viewed as controllable
while transitions for ff: are viewed as uncontrollable.

Next we discuss how a supervisor solving the mean payoff
decision problem is obtained. In the FCEIC, the supervisor ei-
ther aims to achieve a nonnegative energy level (correspond-
ing to Algorithm 1 and Problem 1) or aims to achieve a non-
negative limit mean payoff (corresponding to Algorithm 2 and
Problem 2). If only good leaf states are reached under a wining
control strategy in the FCEIC, then only simple cycles with a
nonnegative payoff are formed in the supervised system. Since
the energy level vector in an energy information state returns the
minimum string payoft by Proposition 1, the payoffs of strings
with the same observation and reaching the same state are all
nonnegative if the minimum string payoff is nonnegative.

Therefore, we let the supervisor make the same decision
whenever the state estimate of a good leaf state is reached. In-
tuitively speaking, the supervisor “ignores” the actual energy
level of the system and just views the game starting from a
good leaf state y° as the same game that starts from the state
subsumed by y°. In Algorithms 1 and 2, we define Sub(y°) as
the state that subsumes y°. We may imagine that y¢ is “merged”
with Sub(y®) by letting all transitions going to y° lead to S ub(y*)
instead. In this manner, the game on the FCIEIC is extended
to be infinite and we call the resulting game as an extended
game. This is essentially the process of strategy transfer dis-
cussed in [3, 14], which transfers the strategies on the induced
finite game to the original infinite game. A similar procedure is
presented in Section V of [31]. In this way, the supervisor per-
petually completes cycles with nonnegative payoffs since every
simple cycle has a nonnegative payoff. Thus, the limit mean
payoff and energy level also become nonnegative for infinite
runs. The goal of the supervisor is either to achieve a nonnega-
tive energy level (extended game corresponding to Problem 1)
or a nonnegative limit mean payoff (extended game correspond-
ing to Problem 2). Both objectives may be evaluated by focus-
ing on the first cycles formed by the supervisor and we stop
expanding the game graph when the first cycles are formed.

Overall, we claim that any control strategy in the FCEIC,,
solves the mean payoff decision problem of Problem 1 or Prob-
lem 2. Conversely, we also claim that if the mean payoft de-
cision problem has solutions, then there exist winning control
strategies in the FCEIC returned by either Algorithm 1 or 2.



Formally speaking, the following two theorems hold.

Theorem 3. There exists a supervisor solving the mean payoff
decision problem of Problem 1 if and only if the supervisor has
a winning strategy in the FCEIC defined by Algorithm 1.

Proof. The “only if” part. We show by contrapositive, i.e., if
there does not exist a winning control strategy in the FCEIC,
then there does not exist a supervisor solving the mean payoff
decision problem. If no winning control strategy exists, then
Wing is empty by Algorithm 3. So Vr, € Il;, dn, € I1,, s.t.
Lasty(ry(ny, 7)) € QF = Lasty(ry(ng, 7)) € Q. i.e, no mat-
ter what decisions made by the supervisor, there always exist
runs ending in bad leaf states. Therefore for x;, there always
exists a run r consistent with 7 in the supervised system such
that V(r) < 0, i.e., the supervised system’s energy level be-
comes negative under 7, for some string. That is to say, no
supervisor solves the mean payoff decision problem.

The “if” part. Suppose that 7y is a winning control strat-
egy in the FCEIC. We follow Algorithm 3 and obtain Win, and
FCEIC,,, so m is also in the FCEIC,,. In the following discus-
sion, we imagine that all transitions leading to a leaf state y° in

the FCEIC,, lead to S ub(y°) so that the game on the FCEIC,, be-
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comes infinite-duration. That is, Vry = yj — z{ — ¥/ - —
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FCEIC, if y¢,

€ Run(yj,my) where y{ is the initial state of the
€ Qg , then we extend the domain of s by let-

ting my(rp) = m(yg RAN bod 2, ¥ oy yy,) for some m < n
and y;, < ys. Whenever Est(y;) is reached again, the control
strategy (supervisor) makes the same decision as if Est(y;) is
reached for the first time. By perpetually making the same deci-
sion whenever a state estimate is reached, the supervisor guar-
antees that the energy level after any string in the supervised
system never becomes negative. The reasons are that all states
in the FCEIC,, are energy safe and the energy level does not
decrease when we form the extended games.

Finally, since there are no deadlocking Z-states and every Y-
state has successors in the FCEIC,,, we can show that 7, is live
following a similar argument as in Section V of [42]. Thus,
solves the mean payoff decision problem of Problem 1. O

Theorem 4. There exists a supervisor solving the mean payoff
decision problem of Problem 2 if and only if the supervisor has
a winning strategy in the FCEIC defined by Algorithm 2.

Proof. The proof is similar to that of Theorem 3 and we just
sketch it here. We show the “only if” part by contrapositive as
well. If no winning control strategy exists, then Wing is empty
by Algorithm 3, i.e., no matter what decisions made by the su-
pervisor, there always exist runs ending in bad leaf states. The
supervisor only form cycles with negative payoffs so that the
limit mean payoff for any run is negative and no supervisor
solves the mean payoff decision problem of Problem 2.

The “if” part. If there exists a winning strategy for the super-
visor in the FCEIC, then the supervisor achieves nonnegative
limit mean payoff since are cycles in the FCEIC,, are with non-
negative payoffs. The supervisor is also live, so it solves the
mean payoff decision problem of Problem 2. O
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Therefore, we have shown the soundness and completeness
of Algorithms 1 and 2. Overall, we transform the mean pay-
off decision problem for Problem 1 (Problem 2) into a safety
game under perfect information and solve it by finding winning
control strategies. We end this section with an example.

Example 4. We revisit Example 2 (Example 3) to find the win-
ning regions of the FCEIC following Algorithm 3. Since the
good (bad) leaf states in both examples coincide, the winning
regions for both examples remain the same. The FCEIC,, is
shown in Figure 4, where green dashed lines connect each good
leaf state with the state subsumed by it, indicating that the su-
pervisor always makes the same decision from the two con-
nected states. So the game is extended to be infinite-duration. In
building the FCEIC,, shaded states y5_, and y5_; in Figure 3
are bad leaf states, thus are pruned by Algorithm 3. Mean-
while, good leaf states y5,_, and y5_, are also removed as they
become no longer accessible from the initial state y after their
preceding Z-states zg and 7 are removed. That means that the
supervisor should not choose vy, at y5 orys at y5, otherwise, the
environment may choose 0, at zg or o3 at zg to reach some bad
leaf states and wins the game.

Then we present a winning control strategy for the supervi-
sor, which is indicated by blue lines in Figure 4. As is seen, the
supervisor S issues yy at yj, y1 at y{, yo at y5 and yy at y5. If
the supervisor makes those decisions infinitely often, then only
cycles with nonnegative payoffs are formed in the supervised
system. Finally we show the supervised system under this strat-
egy in Figure 5. Compared with the original system in Figure 2,
the cycles with a negative payoff have been broken. Then it is
easy to verify that the supervised system is live and all infinite
runs have a positive limit mean payoff. Thus, S solves the mean
payoff decision problem of Problem 1 (Problem 2).

~

- Vs~ (X3, X4, X6, N2 z
S RS X3, Xa}3
e Xgh Vs -

Yi-3

Figure 4: The FCEIC,, with dashed green lines connecting good leaf states with
their subsumed states; Winy is the set of all states

6. Mean Payoff Optimization Problems

In the preceding section, we have solved the mean payoff de-
cision problems and we continue to find the control strategy that
optimizes the worst-case limit mean payoff to completely solve
Problem 1 (Problem 2) in this section. Our method is inspired
by the technique of solving min-max games [25], however, ad-
ditional analysis is necessary here due to the partial observation.



Figure 5: A supervisor solving the mean payoff decision problem

As there is no difference between the procedures of synthesiz-
ing the optimal control strategies for both problems, we present
a uniform approach in the following discussion.

In the FCEIC,,, we denote by Run(F,,) the set of runs and

Runyeqr(F\,) the set of runs ending in a good leaf state, respec-

V-1 en-1
— ¢ —

. . Yo €o

tively. Given arun ry = y5 — z5 — )+~ -

ve € Run(F,,) with y;’. <y, for some j < n where y; is a leaf
state, we know that simple loops with nonnegative payoffs are
generated from each state in state estimate £ SHYY).

In order to determine the mean payoffs of strings generated
by runs in the FCEIC,,, we need to know exactly what ob-
servable and unobservable events are in the string. However,
we only know the observable events from transitions in the
FCEIC,, since the unobservable transitions are hidden within
each state. In order to explicitly reveal the inner connections
between states by unobservable strings inside each Y-state or
Z-state in the FCEIC,,, we introduce a new transition system
called the Energy Inter Connected System (EICS), which is in-
spired by the Inter Connected System proposed in [41].

Definition 6 (Energy Inter Connected System (EICS)). Given

the FCEIC,, with respect to G, its corresponding Energy

Inter Connected System (EICS) is defined as: EICS

(QFICS | EFICS | ¢EICS, quCS’ Q;EICS) where:

o QFISS C (0 xX)U(QF x X) is the state space such that:
- (0%, x) € QFICS ifye e Ql; and x € Est(y®);

- (2%, x) € QFC if ¢ € QF and x € Est(Ip((2%));
o EFICS — EUT is the set of events in the EICS;

. QFICS w EEICS _, QFICS

. fEICS is the partial transition

function defined as: Vy € I', Ve € E:

- fEICS((ye’-xl)77) = (Ze,X2) l:f_xl = X2 n G and
(¢, y) = ¢ in the FCEIC,;

- fHO(E x),e) = (%) if f(x1,€) = xp in G and
ec F(Ze) N Euo:'

- FEICS (%, x1),e) = 0% x2) if f(x1,€) = x2inG, e €
I(z%) N E, and f£(z*,e) = y* in the FCEIC,;

EICS — = {¥§» Xo} is the initial state;

[ ] qo

) Qf’cs ={(y%,x) € QFICS 1 y* ¢ QZ, in the FCEIC,,} is the
set of leaf states where no transitions are defined.

Intuitively, the EICS is similar to the structure obtained from

parallel composition between the FCEIC,, and the system G.

It explicitly shows both observable and unobservable reaches

between and within states of the FCEIC,,. A state in the EICS
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contains a state from the FCEIC,, and a state from G. There are
three types of f£/CS transitions defined in the EICS. The first
type indicates the supervisor’s decisions from certain states of
the system, so the first component of an EICS state changes
from a Y-state to its succeeding Z-state in the FCEIC,, and the
second component stays the same. The second type indicates
the unobservable reaches within Z-states in the FCEIC,,, so the
first state component of (z°, x1) stays the same and the second
component becomes x, = f(xj,e) under e € I'(z°) N E,,,. The
third type indicates observable reaches between Y-states and Z-
states in the FCEIC,,,, so the first component gets updated from
a Z-state to its succeeding Y-state in the FCEIC,, and the second
component also gets updated by the enabled observable event.
With the EICS built, we are able to explicitly see how strings
are generated under control decisions in the FCEIC,,.

The leaf states of the EICS contain leaf states of the FCEIC,,,
which also indicate simple cycles in the FCEIC,,. For a leaf
state (%, x) € Qf’ €S| we are able to track simple loops starting
from x € Est(y®) by following transitions between (3, x) and

(¢, x), where 3 < y°. We define Lp,;,(y¢,x) = {t € E* : Ary =
i EEN z N DAREE 2, £, 2 v € Run(F,),s.t. j <

n,yj5ye,t€Str(y;—>Zj—>'~%—l>Zn | =50, fla ) =

x} as the set of simple loops starting from x. For a simple loop
w(1)
L
Furthermore, we define Vjeor : Runjqr(F\,) — R to char-
acterize the (limit) mean payoff of runs ending in a leaf state
of the FCEIC,,. If a run r; ends in a leaf state y¢, we have

Viear(rs) = min min 1), i.e., the minimum possible
leaf 1) = IO00 ) et it oy V) P

mean payoff of all simple loops formed from states in Es#(y°).
We take the minimum mean payoff among simple loops to char-
acterize the (limit) mean payoff of the run, since only the cyclic
part of a run contributes to the limit mean payoft and the super-
visor maximizes the worst-case limit mean payoff. With a slight
abuse of notation, we let Vi r(Last(ry)) stand for Vi, r(r¢).

Given a pair of strategies n; € II; and 7, € II, in the
FCEIC,,, we let ry(ng,m.) be the unique initial run generated
under (7, 7r.) and its last state Last(ry(m,, 7.)) € Qg . Then we
define the optimal control strategy which maximizes the worst
mean payoffs of runs in the FCEIC,,.

t € Lpgin(3°, x), we define its mean payoff as V(¢) =

Definition 7 (Optimal Control Strategy in the FCEIC,,). A win-
ning control strategy n; in the FCEIC,, is optimal if

mln Vleaf(rf(ﬂ-s, 7)) = max mln Vleaf(rf(ﬂ-Sa L))

m 5)
Smce the FCEIC,, is acychc aﬁd the number of positional
strategies for both players are finite, the optimal control strategy
always exists. Here we are ready to synthesize a (positional)
optimal control strategy from the FCEIC,, and present Algo-
rithm 4. From Definition 7, an optimal control strategy max-
imizes its mean payoff against the antagonistic environment’s
strategies, which minimize the supervisor’s mean payoff. So
we may view that the supervisor and the environment play a
min-max game [25] on the FCEIC,,. In Algorithm 4, we lever-
age backward induction [25] to determine an optimal control
strategy on the FCEIC,,. In this iterative procedure, the super-
visor is the maximizer and the environment is the minimizer.



First we compute the string mean payoffs from the leaf
states of the EICS. Furthermore, it is possible to calculate
Viear(r (75, m.)) from the FCEIC,,, with the EICS defined.
Specifically, the EICS is used to determine the mean payoffs
of simple loops from the leaf states of the FCEIC,, in line 5 of
Algorithm 4. For a leaf state (y*, x) € QF/“S we can always find
another state (5, x) € QS such that 3 < y¢ in the FCIEC,,.
Then we track f/CS transitions to find both observable and un-
observable events between (3, x) and (), x) € QF/“S. After-
wards, we determine Lpg;,(y°, x) and calculate V(¢) for each
t € Lpgn(y%, x). There may be multiple simple loops formed
from x € Est(y°), with different mean payoffs. Then we cal-
culate Vi, r(y), the minimum mean payoff of all possible sim-
ple loops formed from all states in Est(y®). Vieqr(y°) is also the
minimum possible mean payoff that the supervisor may achieve
when state estimate Est(y¢) is reached.

Then we run Procedure Optimal to assign a value Vg(g°) to
each state ¢° in the FCEIC,,. In this procedure, we first de-
termine the values to leaf states in line 6. Next we propagate
backwards to determine the values of predecessor states until
the root state is assigned a value. Specifically, if the current
state is a Z-state, we assign the minimum value of its successor
states to it in line 18, since the environment always minimizes
the mean payoff of the supervisor. If the current state is a Y-state
(not a leaf state), we assign the maximum value of its successor
states to it in line 21, since the supervisor always maximizes its
mean payoff. This min-max procedure is consistent with Defi-
nition 7 where the optimal supervisor maximizes the worst-case
payoff it may achieve. It goes on until a value is assigned to the
initial state yg of the FCEIC,,. Since the FCEIC,, is finite, Al-
gorithm 4 terminates after all states are assigned their values.

When Procedure Optimal is implemented, we can assign or-
ders to states in the FCEIC,, so that a state is evaluated after
all its successors are evaluated. This is essentially the process
of backward induction in solving min-max games [25]. After
obtaining V values, we specify the optimal control decisions
at Y-states of the FCEIC,,, which constitute the optimal con-
trol strategy. It is possible that there are multiple optimal con-
trol decisions at the current Y-state when some of the successor
states have the same Vg value. Then we randomly choose a
control decision. Similar min-max search processes were pre-
sented in [31, 40] to synthesize optimal strategies of mean pay-
off games, for the specific problems discussed in those works.

After obtaining an optimal positional control strategy in the
FCEIC,,, we again let the supervisor make the same decision
from the current Y-state as from the state subsumed by it. In
this way, the game is extended to be infinite and we obtain a
supervisor that perpetually issues control decisions to generate
a live system. Intuitively, the supervisor always traverses the
simple cycle with the highest mean payoff since alternating be-
tween cycles with different mean payoffs does not result in a
higher mean payoff. Hence, a positional strategy is sufficient to
solve Problem 1 (Problem 2), summarized as follows.

Theorem 5. If 7§ is returned by Algorithm 4, then we can ex-
tend 7, to a supervisor S* that solves Problem 1 (Problem 2).

Proof. By Algorithm 4, for every leaf state y* € szx ,
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Algorithm 4 Synthesize an optimal control strategy

Input: the FCEIC,, and the EICS
Output: An optimal strategy m, for Problem 1 or 2
1: for leaf state y° in FCEIC,, do
2 for leaf state (y°, x) in EICS do
3: Get Lpy;(y°, x) following transitions in EICS;
4: for ¢t € Lp;,,(y°, x) do
5
6

Calculate V(?);

Calculate V, ‘) = min min
leaf(y ) x€Est(y®) teLpim(¥¢,x)

Vsl(t);
7: for ¢¢ € QO U OF do
: Vr(q°) = Optimal(q°);

9: for y* € 0} \ Of do

10: Find one y € I, s.t. 32° € QF, fL(*y) = z° and
Vr(y*) = Vr(z);

11: Return 75(y°) = v;

12: procedure Optimal(q®)

13: for ¢° € Qf do

14: Vr(q®) = Vleaf(qe);

15: Return Vg (¢°);

16: for g. € (0} U Q) \ Of do

17: if ¢° € OF then

18: Ve(g®) = minqgng{Optimal(Zf) de, €
Eo, S.t. f;I;(Qe’ eo) = qe};

19: Return Vp(¢°);

20: if ¢° € OF then

21: Ve(g®) = maxqeng{Optimal(Zf) dy €
T, s.t. )i(qe,)’) =q°};

22: Return Vp(¢°);

o~ . . e
Viear %) = Xerglxltgf) zeL;E,lgv,x) Va(t). Let string *(y°) be such

min min
XEESH(y®) t€LP i (¥¢ %)
that a Z-state z¢ can reach k leaf states VY5 VL € Qg, ie.,

Vi <k, de; € E,, s.t. Zl;(ze, e;) = y¢. Thus we know:

Vr(2%) = min{Vr(y)), - - - Ve(p)} = min{Vy(t1(67), - - -, Va (O}
Let string £(z°) be such that Vu(f(z)
min{Vy(t(y)), -+, Va(t(y))} thus #°(z°) is the string with
the minimum loop mean payoff. The environment still locates
the string whose simple loop has the minimum mean payoff,
by evaluating V., r(y®). From the EICS, we can explicitly see
which cyclic string has the minimum loop mean payoft.
Suppose that one predecessor state of z¢ is 3 and ¥ has suc-
cessor states z{,--- ,z;, (z° is one of them). Then the supervi-
sor maximizes its Vy value among the successor states of j°,
i.e., we let Vip(5°) = maxy Vp(z)) where i < m. Since Vr(z)
is the minimum mean payoft of some simple loop, Vp(5°) still
maximizes the minimum mean payoffs of simple loops obtained
from some leaf states in the FCEIC,,. Thus, the supervisor loses
no information when making decisions by evaluating Vg(z°).
By Algorithm 4, the supervisor chooses the control decision
that maximizes Vr(z{). Then we repeat the same argument
backwards to the root state. In this way, we show that by evalu-
ating the V values for Y-states or Z-states, the supervisor cor-

that V(1" (y°)) = Va(®) = Vieas(y°). Suppose



rectly performs maximization among Vg values from its suc-
cessors and the environment correctly performs minimization.
Finally Vr(yj) = max min Vje,s(rs(7s, 7)) holds. Then we
ngell m€ll,

extend 7, to a supervisor S* by the same argument as in the
proof of Theorem 3, i.e., imagine that each leaf state in the
FCEIC,, is “merged” with the state subsumed by it and let the
supervisor make the same decision whenever a state estimate
is reached. By checking the transitions in the EICS, we are
also able to find a run in the supervised system S*/G leading
to Vr(yg) = reRun%nI}{s*/G) Viup(r) = sup inf Viup(r). So §*

SeS reRunyp(S/G)
solves Problem 1 (Problem 2). O

We analyze the complexity for Algorithm 4, which essen-
tially performs a minimax search. Results in [10] show that
the time complexity of the minimax search is O(b") and the
space complexity is O(bn), where b is the maximum number
of choices at each point in the search tree and n is the depth
of the tree. For Algorithm 4, we have b = max{2/&l |E,|} and
n = 2-2%4+ 1 in the worst case. Here 2/%! is the maximum num-
ber of control decisions at a state and there are at most 22X+ 1
states between any two states in the FCEIC,,. Thus we obtain
the complexity bounds for Algorithm 4.

We further discuss the structure of the optimal control strat-
egy from Algorithm 4. Given a pair of strategies (7, 7,) €
I, x I1, and an initial run r} € Run(F,), let rf(r}; 7, 7,) be the
run whose “prefix” is /. and continues under 7y and 7, until it
ends in a leaf state of the FCEIC,,. Formally, r/(r};n,,m,) =

J

f
Y1 Y1 el Y2
ey = m(ry = z{) and y; = m,(ry — 2 = )5 — -+

Y1 el Y2 e
- — 2z — ¥ — .-+ — y; where y; € Qg, Y = ns((’f.),

€

= Y
5 z¢) forall 2 < i < n. We also
write 7¢('; 7, ) as rf(Last((’f.); mg, ) since both players’ de-
cisions only depend on their current positions. Now we show
that the optimal control strategy enjoys a structural property re-
sembling subgame perfect equilibrium in game theory [25] and
Bellman’s optimality principle in dynamic programming [7].

V1 el V2
_ ’
e =m(r, > >y, — -

Proposition 2. Let m; be a control strategy returned by Algo-
rithm 4, then for any initial run r}, € Run(F,,), we have:

;Lrélnne Vleaf(rf(r};ﬂf;s 776)) = IIIER( min Vleaf(rf(r};ﬂ's,ﬂ'e)) (6)

nyell m.€ll,
Proof. See the appendix. O

This proposition illustrates the structure of the optimal con-
trol strategy obtained from Algorithm 4. If the supervisor fol-
lows the strategy indicated by Algorithm 4 from its current
position, then its onward decisions still constitute an optimal
strategy in the remaining game, which can be viewed as a “sub-
game” [25]. In other words, the supervisor has no incentive
to deviate from its optimal strategy given that the environment
does its best to minimize the supervisor’s mean payoff. As seen
from the proof, this result is due to the backward induction pro-
cess of maximization and minimization in Algorithm 4.

Example 5. We revisit Example 4 and find an optimal control
strategy to solve Problem 1 and Problem 2 completely. First
we obtain the EICS w.rt. the FCEIC,, in Figure 6. For sim-
plicity of the graph, we still preserve the state names from G
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and use dashed rectangles to indicate the Y-states or Z-states
of the FCEIC,,. For example, the top green dashed rectangle
corresponds to three states in the EICS, i.e. (25, x0), (25> x1)
and (z{, x2) where Est(Ig(z()) = {xo, x1, x2}. Specifically, blue
and green dashed rectangles correspond to the Y-states and Z-
states of the FCEIC,, respectively. As is seen, the EICS is a tree-
like structure whose leaf states (yi_z, X3), (yf_z, X4), (yf_s, X3),

€ x5 O3, O g x3), OF_go ), 0% 5. x12)
and (y5_,, x13) are marked in double dark blue lines.

With the EICS built, we proceed to find the optimal control
strategy by Algorithm 4. We start by calculating the values of
Vieay for each leaf state of the FCEIC,,. For example, in the
EICS, there are two simple cycles between Y-states y; and y{_,,

. 01 | by 01 .
i.e., x3 — x3 and x3 — x5 — x7 — Xx3. Then we obtain

Va(o1) = 1 (for x3), Va(cibro1) = 2 and Vy(o1) = 1 (both for
x4). Therefore, Vp(yS_,) = min{l,2} = 1. Similarly, we obtain
the Vi values for other leaf states in the FCEIC,,, which are
shown in Figure 7. Next, we apply backward induction from the
leaf states until the root state, then determine an optimal con-
trol strategy. In this process, we always choose to minimize at
Z-states and maximize at Y-states. By Algorithm 4, we know
Vr(z$) = min{2,3} = 2 and Vp(z5) = Vr(zl) = 1. Thus, we
have the supervisor’s decisions at each Y-state, which are in-
dicated by solid red lines in Figure 7. An optimal supervisor
enables c| upon observing o, as shown in Figure 8. The worst
limit mean payoff is 1 in the supervised system. Actually, it is
also optimal for the supervisor to disable both ¢y and c; at yf,
which yields the same worst case limit mean payoff.

Notice that choosing y4 or ys at | is optimal in the sense that
the environment also follows its “optimal strategy” to minimize
the supervisor’s limit mean payoff. If the supervisor deviates
Sfrom yy or vy and chooses vy at y|, then the environment may
choose 01 at z{, which leads to leaf state y_s and a potentially
lower limit mean payoff % Interestingly, if the environment also
deviates from choosing o1 from z{ by choosing 0, or 03, then the
supervisor should choose yo at y5 and ¥5, which yields a better
limit mean payoff for the supervisor compared with the case
of choosing y4 at yj. Those two decisions are optimal in the
“subgame” given that y; or y5 is reached and viewed as starting
points of the subgame. This is consistent with Proposition 2.

7. Conclusion

This work studied infinite horizon optimal supervisory con-
trol under partial observation for the first time in discrete event
systems. We considered two optimal control scenarios, then
formulated two supervisory control problems correspondingly.
To this end, we defined energy information states and the First
Cycle Energy Inclusive Controller (FCEIC) for each problem.
Based on the FCEIC, each problem was transformed into a fi-
nite game with perfect information and proper objectives. As an
intermediate solution step, we solved the mean payoff decision
problems. Finally we solved a min-max game to find the opti-
mal control strategy among partial solutions. For future work, it
would be of interest to explore infinite horizon optimal supervi-
sory control with other quantitative performance objectives and



Figure 6: The energy inter-connected system w.r.t. the FCEIC,, in Example 4.
The blue and green dashed rectangles correspond to the Y-states and Z-states in
the FCEIC,,, respectively. The leaf states are marked in double blue lines.
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Figure 7: Optimal decisions of the supervisor at each Y-state are indicated in
red; the Vr values for each state of the FCEIC,, are also shown in the figure.
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()l

Figure 8: An optimal supervisor solving Problem 1 and Problem 2

under partial observation. In addition, it would also be worth-
while to investigate the application of the theoretical framework
developed herein on specific engineering platforms such as the
power management system of electric hybrid vehicles.
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Appendix A. Proofs of propositions
Proof of Proposition 1:

Proof. Proof by induction. Consider the observable string ¢ =
e;---e;-1 (n > 1). We also use the notations o and pj, from
Definition 5 in the following discussion.

Induction Basis: n = 1 and consider q1 or qf EAN q{¢. The
result obviously holds for single state g7 and also holds for

Y I oL
q; RAN q{¢ by Definition 5 and the definition of y-successor.
Inductive Hypothesis: we assume the lemma holds when n =
k, i.e., for p; and p;.
Induction Step: when n =
First, g7, , 18 an e;-successor or g

Est(q;, ) = qr+1, then Vx € G+ 1
Lev(q,,,,x) = min{Lev(¢}’, x Nrw(ey) : Ax' € qk, s.t. f(X',e) =
¥

k + 1, consider p,1 and oy, ;.
¢. Let Est(Ig(q{)) = ¢, and

By the inductive hypothesis and Definition 5, we have:

x}

Lev(q;,,, x) =minmin{w(s;) + w(e) : A% € Est(q]), s, € Str(p;)
x S

s.t. f(X,5,) = x)
=min{w(sgs+1) : AX € Est(y)), Skv1 € Str(ops+1) s-t.

Sk+1

Ska1 = Spep, f(F, Sgr1) = X}

15

Then g% is a yi41-successor of gy, . Let Est(q;,,) = qi+1 and
Est(Ie(qi5,)) = qyq> SOVYX € q s

Lev(gi’y» x') = min{Lev(gp,y, X) + &) : X € i,

k+1

&kl € (Eup Nyge1)” 8te f(x, Epir) = X'}

From what we just proved,

Lev(q;,,,x") = réglin{LeV(qu 2 X) + W(€1) X € Gra,
k+1

Eer1 € (Euo Nyrs)” st f(x, €pp1) = X'}
=min{w(sy,,) : AX € Est(q), s;,; € Str(p,,) s.t.
Sk+l
Spe1 = Ska1ékets f(X, 80, ) = &'}

Thus the result holds at k£ + 1, completing the proof.

Proof of Proposition 2:

Proof. By definition, the FCEIC,, is an acyclic structure and
the depth of its runs is thus bounded. So there exists a positive
integer m such that from its initial state, every leaf state can
be reached within m steps. Then we prove this proposition by
induction on the number of steps for an initial run to reach a
leaf state of the FCPEC,,, i.e., we show that VF(Last(r’.)) =

mm Vleaf(r)‘(rf’ﬂs’ne)) = 7rrn€zhx;n1n Vieap(r(ry; ms, 7).

Inducnon Basis: Consider the case when the last state of r}
is a leaf states in the FCPEC,,. Then this proposition becomes
Theorem 5, thus, it naturally holds.

Inductive Hypothesis: Suppose that the result holds for any
r} that reaches leaf states within at most & steps, where k < m—2
for some integer m > 2. In addition, the function Optimal in the
algorithm assigns Vp(Last(r})) = ;I}Ell}‘ll Viea f(rf(r_’f; Ty M) =

max mm Vlmf(rf(r}; 7, 7)) to the last state of r}..
nsell; mell, E

Induction Step: Consider r} that reaches leaf states within at

most k + 2 steps. Suppose that Last(r}) = Lasty(r}) =y° We
know that there exists z¢ = ; (y'¢,y) for some y € I" and specif-
ically, 2 = fE(y,y") for y* = ;(y'*,y*). Thus, succeeding
Z-state z° = f\F ’¢,y) of y’¢ reaches a leaf state within at most
k + 1 steps. By Algorithm 4, Vr(y’¢) = Vp(Z°) = max VEr(Z%).

Also some transmons are defined from z° and lead to suc-
ceeding Y -state ¢ which reaches the leaf states within at most
k steps. By the inductive hypothesis, min Viear (re(y%; nj,ne)) =
mallTx min Vi, (rp(y*; ng, m.)) for any r w1th Last(r )

ng€lly mell,

Again from Algorithm 4, we know:

Vr(z°) = min Vp(y*) = min min Viear (re(y*; 75, 7))
v{’ ~£‘ 'E v E

= mln Vsz(rf(z ﬂy,ﬂe)) = max min Vi, r(rs(z; my, 7))
nsell; mell,

thus the result holds for runs whose last states reach the leaf
states of the FCEIC,, within k + 1 steps. Furthermore,

Vr() =max Vr(z) = max 1 min Vieay (s (" 7))

= mlIIII Vleaf(rf(y 7 ”e)) = max mlIIII Vleaf(rf(y T, TTe)

7€
Therefore the result holds for k + 2, completing the proof. [



