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We explore the cosmological signals of theories in which the neutrinos decay into invisible dark
radiation after becoming nonrelativistic. We show that, in this scenario, near-future large-scale structure
measurements from the Euclid satellite, when combined with cosmic microwave background data from
Planck, may allow an independent determination of both the lifetime of the neutrinos and the sum of their
masses. These parameters can be independently determined, because the Euclid data will cover a range of
redshifts, allowing the growth of structure over time to be tracked. If neutrinos are stable on cosmological
timescales, these observations can improve the lower limit on the neutrino lifetime by 7 orders of
magnitude, from Oð10Þ to 2 × 108 yr (95% C.L.), without significantly affecting the measurement of
neutrino mass. On the other hand, if neutrinos decay after becoming nonrelativistic but on timescales less
than Oð100Þ million years, these observations may allow not just the first measurement of the sum of
neutrino masses, but also the determination of the neutrino lifetime from cosmology.
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I. INTRODUCTION

Neutrino decay is a characteristic feature of models in
which neutrinos have masses. Even in the minimal exten-
sion of the Standard Model (SM) that incorporates
Majorana neutrino masses through the nonrenormalizable
Weinberg operator, the heavier neutrinos are unstable and
undergo decay at one loop into a lighter neutrino and a
photon. The same is true of the minimal extension of the
SM that incorporates Dirac neutrino masses through the
inclusion of right-handed singlet neutrinos. In both cases,
the lifetime of the heavier neutrino is of the order of
τν ∼ 1050 sð0.05 eV=mνÞ5, in the limit that the daughter
neutrino mass is neglected [1–5]. This is much longer than
the age of the Universe, and so these minimal neutrino mass
models do not give rise to observable signals of neutrino
decay. However, in general, the neutrino lifetime can be
much shorter. For example, in theories where the gener-
ation of neutrino masses is associated with the breaking of
global symmetries [6–10] (see also [11,12]), a heavier
neutrino can decay into a lighter neutrino and a Goldstone
boson on timescales that can be much shorter than the age
of the Universe.
Until the turn of the century, the decaying neutrino

scenario attracted considerable attention as a possible
solution to the solar and atmospheric neutrino problems
[13–16]. However, this explanation is now disfavored by
the data [17–19]. More recently, radiative neutrino decays
have been put forward as a possible explanation of the

anomalous 21 cm signal observed by the Experiment to
Detect the Global Epoch of Reionization Signature
(EDGES) experiment [20].
There is a strong lower limit on the neutrino lifetime in

the case of radiative decays. In this scenario, the limits on
spectral distortions in the cosmic microwave background
(CMB) can be translated into bounds on radiative neutrino
decays, τν ≳ 1019 s for the larger mass splitting and τν ≳
4 × 1021 s for the smaller one [21], greater than the age of
the Universe. There are also very strong laboratory and
astrophysical bounds on the neutrino dipole moment
operators that induce radiative neutrino decays [22–26].
In contrast, the decay of neutrinos into invisible dark

radiation is only weakly constrained by current data. At
present, the most stringent bounds on invisible neutrino
decays are from cosmological observations. Although
limits can also be placed on neutrino decay based on data
from supernovae [27,28], solar neutrinos [19,29–33], atmos-
pheric neutrinos, and long baseline experiments [34–36],
these constraints are, in general,muchweaker. Cosmological
measurements are sensitive to the neutrino lifetime through
the gravitational effects of the relic neutrinos left over from
the big bang and their decay products. If the neutrino lifetime
is less than the timescale of recombination, then neutrino
decay and inverse decay processes are active during theCMB
epoch. These processes prevent the neutrinos from free
streaming, leading to observable effects on the heights and
locations of the CMB peaks [37–39]. Current limits require
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that the neutrinos be free streaming from redshifts z≳ 8000
until recombination, z ≈ 1100 [40–43] (see also [44]).
This can be translated into a lower bound on the neutrino
lifetime, τν ≥ 4 × 108 sðmν=0.05 eVÞ3 [43], which is
much less than the age of the Universe. This corresponds
to an upper bound on the width of the neutrino, Γν≡
τ−1ν ≤ 8 × 1010ð0.05 eV=mνÞ3 km=s=Mpc. Comparing this
to the Hubble expansion rate, H0 ≈ 70 km=s=Mpc, we see
that at present there is no evidence that neutrinos are stable on
cosmological timescales, and the lifetime of the neutrino
remains an open question.
Knowledge of the neutrino lifetime is of particular

importance for the determination of neutrino masses from
cosmology. At present, the strongest upper limit on the sum
of neutrino masses,

P
mν ≲ 0.12 eV [45], is from cosmo-

logical observations. However, this bound assumes that the
neutrino number density and energy distribution have
evolved in accordance with the standard big bang cosmol-
ogy until the present time. If the neutrinos have decayed
[46,47] or annihilated away [48,49], this bound is not valid
and must be reconsidered. In particular, in the case of
neutrinos that decay on cosmological timescales, values of
the neutrino masses as large as

P
mν ∼ 0.90 eV are

currently allowed by the data [50].
In the coming decade, major improvements are expected

in the precision of cosmological observations, which would
lead to great advances in neutrino physics. The Euclid
satellite, scheduled to be launched in 2022, is expected to
measure both the Galaxy and the cosmic shear power
spectra with unprecedented precision, achieving up to
subpercent accuracy over the redshift range from z ∼ 0.5
to 2 [51]. In the more distant future, the CMB-S4 experi-
ment [52] will lead to major advances over current CMB
observations. This includes improvements in the measure-
ment of CMB lensing, which is very sensitive to the
neutrino masses. Under the assumption that neutrinos are
stable, these new measurements will allow us to probe
values of the neutrino masses smaller than the observed
neutrino mass splittings and thereby determine

P
mν

[53,54]. However, if the neutrinos are unstable on cosmo-
logical timescales, the question of whether

P
mν can, in

fact, be determined remains unanswered.
In this paper, we address this question. We consider

theories in which the neutrinos decay into invisible dark
radiation after becoming nonrelativistic. This corresponds
to the width Γν ≲ 1 × 105ðmν=0.1 eVÞ3=2 km=s=Mpc for
each neutrino. We show that, in this class of models, near-
future large-scale structure measurements from Euclid, in
combination with Planck data, may allow an independent
determination of both the lifetime of the neutrinos and the
sum of their masses. The reason these parameters can be
independently determined is because Euclid takes mea-
surements at multiple redshifts, which allows us to track the
growth of structure over time. In the case of stable
neutrinos, we find that these observations will be able to

extend the lower bound on the lifetime by at least 7 orders
of magnitude, fromOð10Þ yr toOð0.1–10Þ Gyr depending
on the neutrino mass, without significantly affecting the
measurement of the sum of neutrino masses. Furthermore,
we show that if the neutrinos decay after becoming non-
relativistic but with a lifetime less than Oð108Þ yr, these
observations may allow the first determination of not just
the neutrino masses, but also the neutrino lifetime.

II. BREAKING THE DEGENERACY BETWEEN
NEUTRINO MASS AND LIFETIME

The sensitivity of cosmological observables to the
neutrino masses arises from the fact that, after the neutrinos
become nonrelativistic, their contribution to the energy
density redshifts like matter and is, therefore, greater than
that of a relativistic species of the same abundance. This
leads to a faster Hubble expansion, reducing the time
available for structure formation. The net result is an overall
suppression of large-scale structure [55,56] (for reviews,
see [57–60]). A larger neutrino mass gives rise to greater
suppression, since heavier neutrinos become nonrelativistic
at earlier times, and also contribute more to the total energy
density after becoming nonrelativistic. In the case of
neutrinos that decay, the extent of the suppression now
also depends on the neutrino lifetime. The key idea, first
discussed in Refs. [46,47], is that if the neutrinos decay into
massless species after becoming nonrelativistic, the sup-
pression in power is reduced. Depending on how late the
decay kicks in after the neutrinos have become nonrela-
tivistic, the magnitude of the suppression will vary.
These features are illustrated in Fig. 1, where we show

the evolution of the overdensity of cold dark matter and
baryons, δcb ≡ δρcb=ρ̄cb, for three cases, based on the
analysis in Ref. [50] and briefly described in the next
section. The results are expressed in terms of the ratio of
ðδcbÞ2 for each case to its value in the scenario with
massless neutrinos. The black line corresponds to stable
neutrinos with

P
mν ¼ 0.25 eV, while the blue line

corresponds to unstable neutrinos of the same mass. To
simplify the discussion, in this plot we have taken the
lifetimes Γν of all the three neutrinos to be the same. We see
that, as compared to the stable neutrino scenario, unstable
neutrinos of the same mass lead to a smaller suppression of
δcb at z ¼ 0. The red line corresponds to unstable neutrinos
with

P
mν ¼ 0.30 eV, and their lifetime has been chosen

to obtain the same result for the overdensity at z ¼ 0 as for
stable neutrinos with

P
mν ¼ 0.25 eV. We see from the

black and red curves in Fig. 1 that the effects of a stable
neutrino on the matter density perturbations cannot be
easily distinguished from those of a heavier neutrino that is
shorter lived based only on measurements performed at
z≲ 0.3. This is because the growth of δcb is almost frozen
in the region where the cosmological constant dominates
(z≲ 0.3). Therefore, there is a degeneracy between

P
mν

and τν that cannot be resolved based only on measurements
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of the matter power spectrum at low redshifts. However, it
is clear from Fig. 1 that the evolution of the power
suppression at earlier times is different in the two cases.
Consequently, the shapes of the power spectra as a function
of z are distinct. This would allow these two cases to be
distinguished if measurements are made at more than one
redshift with subpercent precision (e.g., black vs red at
z ¼ 0.5 and z ¼ 2 in Fig. 1). As mentioned above, the
Euclid experiment is expected to take measurements at
multiple redshifts between z ≈ 0.5 and z ≈ 2 at this level of
precision. Hence, the combined Euclid and Planck data has
the potential to break the degeneracy between neutrino
mass and lifetime.

III. ANALYSIS

In order to calculate the effects of neutrino decay on
cosmological observables, we implement the Boltzmann
equations corresponding to the decay of neutrinos into dark
radiation that were derived in Ref. [50] into the code CLASS

[61]. We work under the assumption that, after becoming
nonrelativistic, each SM neutrino decays with width Γνi
into two massless particles. Here the indices i label the
neutrino mass eigenstates. For concreteness, we assume
that the decay widths of the three neutrinos satisfy the
relation Γνi ∝ m3

νi . This assumption is motivated by models
in which the generation of neutrino masses is associated
with the breaking of global symmetries. Since Goldstone
bosons are derivatively coupled, in these theories the matrix

element for neutrino decay typically scales as mν=f, where
f corresponds to the scale at which the global symmetry is
broken. Then, after accounting for phase space, we typi-
cally have Γνi ∼m3

νi . Given the observed mass splittings,
this leaves only two remaining independent parameters. We
choose to present the results of our analysis in terms of the
parameters ðPmν;ΓνÞ, where Γν is the decay width of
the heaviest neutrino. With this definition, Γν ≡ Γν3 for the
normal ordering and Γν ≡ Γν2 for the inverted ordering. For
the same values of

P
mν and Γν, the results for the normal

and inverted ordering are different. This is because the
individual neutrino masses are different in the two cases.
Therefore, the neutrinos become nonrelativistic at different
times and have different lifetimes. These differences become
increasingly small for values of

P
mν above 0.2 eV, since in

this regime the neutrinos are quasidegenerate.
Wewish to determine the extent towhich a combination of

Planck data and future Euclid data can help break the
degeneracy between the neutrino mass and lifetime. To that
end, we make use of the mock likelihoods available publicly
in MontePython v3.1 and described in Refs. [62,63]. We
include Euclid galaxy and cosmic shear power spectra in the
“realistic” configuration; i.e., we include nonlinear scales
and employ a loose (redshift-independent) nonlinear cut at
comoving kNL ¼ 2 h=Mpc in the galaxy power spectrum
and kNL ¼ 10 h=Mpc in the cosmic shear power spectrum,
togetherwith a nonlinear correction based onHaloFit [64,65]
and a theoretical error on the nonlinear modeling (as
described in Refs. [62,63]). For a few cases, we employed
an alternative “conservative” prescription where we cut the
data at comoving kNL ¼ 0.2h=Mpc in the galaxy power
spectrum and kNL ¼ 0.5 h=Mpc in the cosmic shear power
spectrum and verified that this leads to very similar results.
This gives us confidence in the robustness of our conclusions.
In order to include Planck data in our forecast, we generate a
mock dataset with the fake likelihood fake_planck_realistic
available in MontePython v3.1. We analyze chains using the
Python package GetDist [66].
We first forecast the lower bound on the neutrino lifetime

that can be reached in the near future.We begin by generating
mock datasets for the case of stable neutrinos, i.e., Γν ¼ 0.
Specifically, we generate a mock dataset for the following
values of

P
mν=eV∶½0.06; 0.12; 0.18; 0.24; 0.30� for the

case of normal ordering and [0.10,0.15,0.20,0.25,0.30] for
inverted ordering. This range covers the minimum

P
mν

allowed by the normal and inverted mass spectra and
also the maximum

P
mν consistent with the current bound

derived in Ref. [50]. We then run one Markov chain
Monte Carlo scan per mock dataset varying the ΛCDM
parameters fωb;ωcdm; 100θs; As; ns; τreiog together with
fPmν=eV;Log10½Γν=ðkm=s=MpcÞ�g. As mentioned ear-
lier, here Γν refers to the width of the heaviest neutrino. As
our modifications to CLASS have the effect of making the
code much slower, we are forced to run a large number of
chains (∼100) to acquire enough points to obtain robust

FIG. 1. Evolution of the ratio of the CDMþ baryon density
perturbations with respect to the case of massless neutrinos. The
blue (black) curve corresponds to the case of stable (unstable)
massive neutrinos with

P
mν ¼ 0.25 eV. Here zdecay, defined as

the redshift at which the neutrino width Γν becomes equal to the
Hubble constant, corresponds to the redshift at the time of
neutrino decay. Similarly, znr denotes the redshift at which
80% of the neutrinos have become nonrelativistic. Unstable
heavier neutrinos with

P
mν ¼ 0.3 eV (red) can give the same

density perturbation at low redshift as stable neutrinos of massP
mν ¼ 0.25 eV. However, at z ¼ 2, the perturbation in the

heavier neutrino scenario deviates at the Oð0.1Þ% level from the
stable neutrino scenario (purple arrow).
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results. This penalizes the use of the Gelman-Rubin criterion
[67] as a convergence test. Nevertheless, all runs satisfy the
Gelman-Rubin criterion except for the cases with fiducialP

mν=eV¼0.06,
P

mν=eV¼0.10, and
P

mν=eV¼ 0.12.
For these runs, we have at most ðR − 1Þ ≈ 0.3, ðR − 1Þ≈
0.22, and ðR − 1Þ ≈ 0.25, respectively. Therefore, we pri-
marily rely on visual inspections, and on comparison
between various chunks of chains, to assess convergence.
As a check, we have verified that, for all scenarios, our
constraints vary by less than 10%when adapting the fraction
of points removed with GetDist from 0.1 to 0.5.
Our results are displayed in Fig. 2 for the normal- (left)

and inverted- (right) mass ordering cases, where we show
the bounds on the decay rate Γν of the heaviest neutrino as a
function of

P
mν. We summarize the bounds on the

neutrino masses and lifetime for both hierarchies in
Table I. Of utmost importance, we find that the combination
of Planck and Euclid can break the degeneracy between
ðPmν;ΓνÞ and set an upper bound on the neutrino life-
time, Log10½Γν=ðkm=s=MpcÞ� ≤ 3.7 (2σ), even for the
lowest possible neutrino mass. Moreover, we find that

the sensitivity to
P

mν is not significantly degraded by
the additional free parameter log10 Γν. As can be seen
from Table I, the bounds on Γν in the normal and
inverted ordering cases become increasingly close aboveP

mν ≳ 0.2 eV. This is because in this limit the neutrinos
are becoming quasidegenerate. Nevertheless, even forP

mν ¼ 0.3 eV, the values of the two largest neutrino
masses differ at the level of a few percent between the
normal and inverted hierarchies. Since Γν ∝ m3

ν, this
accounts for the ∼10% difference between the bounds on
Γν in the two cases. Finally, we mention that we do not find
any strong correlation between the decay rate and the other
cosmological parameters. Therefore, for brevity we do not
explicitly report the reconstructed ΛCDM parameters.
Given these constraints on Log10½Γν=ðkm=s=MpcÞ�, we

anticipate that future cosmological data will be able to
determine that neutrinos are decaying if the width exceeds
this limit. To demonstrate this, we turn our attention to a
scenario with unstable neutrinos and generate two sets of
mock data corresponding to ðLog10½Γν=ðkm=s=MpcÞ�;P

mν=eVÞ ¼ ð3.7; 0.16Þ and (3,0.25) with a normal

FIG. 2. Forecast of the 2D posterior of the sum of neutrino masses (at 68% C.L.) and decay width of the heaviest neutrino (at
95% C.L.) reconstructed from a combination of Planckþ Euclid PðkÞ þ Euclid lensing. The fiducial model assumes that neutrinos are
stable and that they follow the normal ordering (left panel) or inverted ordering (right panel).

TABLE I. Forecast constraints on the sum of neutrino masses (at 68% C.L.) and decay width of the heaviest
neutrino (at 95% C.L.) from Fig. 2.

Normal ordering

Fiducial
P

mν=eV 0.06 0.12 0.18 0.24 0.30P
mν=eV <0.085 0.125þ0.020

−0.020 0.183þ0.017
−0.017 0.243þ0.016

−0.016 0.303þ0.015
−0.015

Log10½ Γν
km=s=Mpc� <3.7 <3.2 <2.1 <1.7 <1.5

Inverted ordering
Fiducial

P
mν=eV 0.10 0.15 0.20 0.25 0.30P

mν=eV <0.13 0.154þ0.017
−0.017 0.205þ0.015

−0.017 0.253þ0.016
−0.016 0.304þ0.015

−0.015
Log10½ Γν

km=s=Mpc� <2.7 <2.2 <1.8 <1.5 <1.3
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ordering. For each mock dataset and fiducial model, we run
two cases, one in which we leave Γν free to vary and another
in which we enforce the constraint Γν ¼ 0. The purpose of
the latter case is to allow us to estimate the typical bias that
would be introduced if this scenario was actually realized in
nature and neutrino decays were not accounted for. The
results of both these runs satisfy the Gelman-Rubin criterion.
Our results are shown in Fig. 3 and summarized in

Table II. We find, as expected, that for both cases the
combination of Planck and Euclid sets an upper limit on the
neutrino lifetime, so that the decaying neutrino scenario can
be distinguished from the stable case at better than 3σ.
Remarkably, in both cases we also obtain a lower limit on the
neutrino lifetime at 3σ, opening the door to the possibility of
determining the neutrino lifetime from cosmology.
Based on our limits, one might expect that the neutrino

lifetime can be determined at better than 2σ provided
Log10½Γν=ðkm=s=MpcÞ�> 3.7 for

P
mν=eV > 0.06. How-

ever, recall that the regime Log10½Γν=ðkm=s=MpcÞ�≳ 5 is
not treated in our formalism, since neutrinos would be
decaying while still relativistic. We defer a detailed study of
the parameter space for which next-generation experiments
can determine the neutrino lifetime to future work.
Interestingly, we find that, in both the cases considered,

the precision at which
P

mν can be detected is strongly
degraded compared to the contours in Fig. 2. Indeed, in

these cases the uncertainty on
P

mν is multiplied by ∼5
when Γ is left free to vary and ∼1.5 when Γν ¼ 0 is
enforced. This is of great importance for next-generation
experiments which claim that a combination of datasets
will be able to detect the sum of neutrino masses “at 5σ”
even in the minimal mass case. Perhaps even more
important, we find that, when Γν ¼ 0 is enforced, a strong
bias in the reconstructed neutrino mass away from the true
value can appear. For the specific cases studied here, we
find a bias of roughly −0.06 eV, i.e., a ∼3σ shift away from
the “true” value.

IV. CONCLUSIONS

In summary, we have considered the cosmological
signatures of theories in which the neutrinos decay into
invisible radiation on cosmological timescales. We have
shown that, in this scenario, observations of large-scale
structure made at multiple redshifts may allow two funda-
mental parameters, the sum of neutrino masses and the
neutrino lifetime, to be determined independently. We find
that near-future measurements by the Euclid satellite can
improve the lower limit on the neutrino lifetime in this
scenario from Oð10Þ to 200 million years. In the case of
neutrinos that decay on shorter timescales, these measure-
ments may allow the neutrino lifetime to be determined
from cosmology.
In our analysis, we have focused on the decay of

neutrinos to dark radiation, which is easier to distinguish
from the case of stable neutrinos than the decay of heavier
neutrinos to lighter ones. However, we expect that our
results also give a good approximation to the latter scenario
in the limit that the lightest neutrino is massless. This
applies to both the normal and inverted hierarchies and
shows that future observations will have some level of
sensitivity to this interesting class of theories.

FIG. 3. The same as Fig. 2, but the fiducial model now assumes decaying neutrinos with ðLog10½Γν=ðkm=s=MpcÞ�;Pmν=eVÞ ¼
ð3.7; 0.16Þ (left panel) and (3,0.25) (right panel) in the normal ordering. The stars and dashed lines indicate the fiducial values of the
corresponding parameters.

TABLE II. Forecast constraints at 68% C.L. on the sum of
neutrino masses and decay width of the heaviest neutrino from
Fig 3.

Fiducial ðLog10½ Γν
km=s=Mpc�;

P
mν=eVÞ (3.7,0.16) (3,0.25)

P
mν=eV 0.167þ0.035

−0.076 0.261þ0.042
−0.069

Log10½ Γν
km=s=Mpc� 3.59þ0.65

−0.45 2.96þ0.64
−0.46P

mν=eV (stable) 0.10þ0.02
−0.02 0.19þ0.02

−0.02
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