

1

2 **Poroelastic coefficients for anisotropic single and double porosity
3 media**

4 Qi Zhang · Ronaldo I. Borja*

5 Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA. *E-mail:
6 borja@stanford.edu

7 **Summary.** Closed-form expressions for poroelastic coefficients are derived for anisotropic materials exhibiting single
8 and double porosity. A novel feature of the formulation is the use of the principle of superposition to derive the governing
9 mass conservation equations from which analytical expressions for the Biot tensor and Biot moduli, among others,
10 are derived. For single porosity media, the mass conservation equation derived from the principle of superposition is
11 shown to be identical to the one derived from continuum principle of thermodynamics, thus confirming the veracity of
12 both formulations and suggesting that this conservation equation can be derived in more than one way. To provide
13 further insight into the theory, numerical values of the poroelastic coefficients are calculated for granite and sandstone
14 that are consistent with the material parameters reported by prominent authors. In this way, modelers are guided on
15 how to determine these coefficients in the event that they use the theory for full-scale modeling and simulations.

16 **Keywords.** Anisotropy, double porosity, poroelasticity, principle of superposition

17 **1 Introduction**

18 A large number of existing reservoirs may be categorized as naturally fractured [5, 15, 16, 21, 22, 24, 25, 26,
19 32, 33, 34, 44, 45]. By this we usually refer to materials with distributed discontinuities that they exhibit
20 two very distinct porous networks. Roughly speaking, the first porous network is formed of penny-shaped
21 cracks or fissures mainly due to tectonic activities, while the second is formed of rounded pores [20]. As for
22 their characteristics, the fracture networks are characterized by low storage and high permeability, whereas
23 the porous blocks are characterized by high storage and low permeability [55]. As a result, the behaviors
24 of fractured reservoirs are considerably different from those of conventional reservoirs [25], which could
25 be reflected in the soil consolidation, groundwater flow, solute transport, and gas/oil production [3]. Until

26 now, the modeling of fractured reservoirs is still one of the most challenging activities in geomechanics and
27 geosciences.

28 Over the last 50 years, numerous models with different degrees of sophistication have been proposed for
29 porous materials, which can be divided into three categories. In the earliest category, a fractured system was
30 grossly treated as an equivalent single porosity continuum [40], and the existence of fractures or cracks is
31 reflected in the material coefficients such as stiffness, which may be orders of magnitude different from those
32 of a homogeneous medium [3]. However, this approach has a number of drawbacks such as the identification
33 of the representative blocks and the determination of equivalent permeability values [3, 32]. On the contrary,
34 the second category is known as the explicit (direct) modeling approach such as the discrete fracture network
35 [6, 23, 27, 48], which allows one to account for each length scale directly within a model. However, the very
36 large number of micro-fractures in the unconventional reservoir [37] could make the direct simulation of
37 discrete fracture networks computationally prohibitive [1, 2].

38 The third category is the double porosity model [4, 50], which assumed that two pore regions overlap in a
39 computational domain. The main idea is that for every physical point in space, there may be two scales of
40 porosity, one representing the average porosity in the fracture network and the other in the porous blocks [20].
41 This idealization may be thought of as an extreme case of the crack density model of Wong [53] when the
42 micro-fracture density becomes very high. The mathematical basis for this model is known as mixture theory
43 in which any material in a composite medium that is significantly different from those of other intervening
44 materials deserves a separate description. This leads to two mass conservation equations, one for each of
45 the foregoing porosity regions. These equations are coupled by a leakage (source/sink) term [30, 36, 37, 42].
46 Nowadays, the double porosity concept has been widely used in civil engineering, energy resource engineering,
47 and many other related fields of engineering [3, 32].

48 Previous formulations of poroelasticity in double porosity media have assumed isotropy in both deformation
49 and fluid flow [3, 7, 18, 19, 25, 29, 31, 35, 36, 46, 52, 59]. However, many geologic materials have exhibited
50 anisotropy in either or both deformation and fluid flow responses [14, 28, 41, 43, 49, 54, 57, 60]. In this
51 work, we consider a special case of anisotropy known as transverse isotropy, or cross-anisotropy, which is
52 characterized by a plane on which the response is isotropic and an axis perpendicular to this plane on which
53 the response is anisotropic. For a single-porosity medium, the effect of transverse isotropy has already been
54 incorporated into the poroelasticity equations [17, 49, 58]. For a double-porosity medium, however, its effect
55 has not been clearly elucidated in light of the limitations imposed by current laboratory testing procedures.

56 The aim of this paper is to address the above-mentioned knowledge gap in the poroelasticity of anisotropic
 57 double-porosity media. A novel feature of the mathematical formulation is the use of the principle of
 58 superposition in combination with mixture theory to arrive at the governing mass balance equations. The
 59 mathematical formulation is innovative because it leads to a result that is identical to what has been developed
 60 previously using continuum principles of thermodynamics [58], but following a different route. It is the first
 61 time, to the authors' knowledge, that these new formulas and interpretations are presented within the context
 62 of poromechanics.

63 However, we emphasize at the outset that the principle of superposition is applied in this paper at a fixed
 64 hydromechanical state where only mechanical deformation is involved, and not from one hydromechanical
 65 state to another where dissipative processes would render the principle inapplicable. Furthermore, we restrict
 66 the developments to linear elasticity. Nevertheless, even with the assumption of poroelasticity, the parameters
 67 or coefficients of a model are usually arbitrarily assumed in the literature, and their fundamental origins were
 68 not clearly established. In this respect, the results of this paper are useful in shedding light onto the physical
 69 meaning of the governing conservation equations and the relevant poroelastic coefficients.

70 The paper is organized as follows: Based on mixture theory, mass conservation equations are first
 71 formulated in Section 2 for single porosity media, where the evolution laws for the volume fractions are
 72 derived. To this end, we make use of the principle of superposition for anisotropic single porosity media to
 73 obtain the poroelastic coefficients and compare them with those derived in [17, 58]. In Section 3 we extend
 74 the formulation to anisotropic double porosity media and derive the corresponding poroelastic coefficients
 75 analytically. The elastic moduli for transversely isotropic materials are discussed in Section 4, where the
 76 relevant poroelastic coefficients for two types of rock are also calculated and compared with those derived by
 77 prominent authors [8, 29]. Finally, conclusions are given in Section 5.

78 2 Single porosity media

79 In the following discussion and throughout this paper, we assume that the solid deformation is infinitesimal
 80 in the sense that the domain of the problem does not change appreciably. We denote by V a representative
 81 elementary volume (REV) consisting of a mixture of solid and fluid. Let ϕ^s and ϕ^f represent the volume
 82 fractions of solid and fluid, respectively, defined as

$$\phi^s = \frac{V_s}{V}, \quad \phi^f = \frac{V_f}{V}, \quad (1)$$

83 where V_s and V_f are volumes of solid and fluid in V , respectively. The closure condition on the volume
84 fractions is

$$\phi^s + \phi^f = 1. \quad (2)$$

85 The partial mass densities of the solid and fluid are given by

$$\rho^s = \phi^s \rho_s, \quad \rho^f = \phi^f \rho_f, \quad (3)$$

86 where ρ_s and ρ_f are the intrinsic mass densities of solid and fluid, respectively. The total mass density of the
87 mixture is given by the sum

$$\rho = \rho^s + \rho^f. \quad (4)$$

88 We denote the material time derivatives following the motions of solid and fluid by $d(\cdot)/dt$ and $d^f(\cdot)/dt$,
89 respectively. The mass balance equations for solid and fluid, assuming no mass exchanges between them, take
90 the form

$$\frac{d\rho^s}{dt} + \rho^s \nabla \cdot \mathbf{v} = 0, \quad (5)$$

$$\frac{d^f \rho^f}{dt} + \rho^f \nabla \cdot \mathbf{v}_f = 0, \quad (6)$$

91 where \mathbf{v} and \mathbf{v}_f are the intrinsic velocities of solid and fluid particles, respectively. Written in terms of ρ_s
92 and ρ_f , the conservation equations take the form

$$\frac{d\phi^s}{dt} + \frac{\phi^s}{\rho_s} \frac{d\rho_s}{dt} + \phi^s \nabla \cdot \mathbf{v} = 0, \quad (7)$$

$$\frac{d^f \phi^f}{dt} + \frac{\phi^f}{\rho_f} \frac{d^f \rho_f}{dt} + \phi^f \nabla \cdot \mathbf{v}_f = 0. \quad (8)$$

93 Assuming barotropic flow, the constitutive equation relating density and pressure in the solid is given by

$$\frac{1}{\rho_s} \frac{d\rho_s}{dt} = \frac{1}{K_s} \frac{dp_s}{dt}, \quad (9)$$

94 where p_s and K_s are the intrinsic pressure and bulk modulus in the solid. Substituting in Eq. (7) yields

$$\frac{d\phi^s}{dt} + \frac{\phi^s}{K_s} \frac{dp_s}{dt} + \phi^s \nabla \cdot \mathbf{v} = 0. \quad (10)$$

97 For the fluid, we take a similar intrinsic constitutive relation of the form

$$\frac{1}{\rho_f} \frac{d^f \rho_f}{dt} = \frac{1}{K_f} \frac{d^f p}{dt}, \quad (11)$$

98 where $p = p_f$ is the intrinsic pressure in the fluid. Substituting into Eq. (8) gives

$$\frac{d^f \phi^f}{dt} + \frac{\phi^f}{K_f} \frac{d^f p}{dt} + \phi^f \nabla \cdot \mathbf{v}_f = 0. \quad (12)$$

99 We recall that the material time derivative following the fluid motion is related to the material time
100 derivative following the solid motion through the equation

$$\frac{d^f(\cdot)}{dt} = \frac{d(\cdot)}{dt} + \nabla(\cdot) \cdot \tilde{\mathbf{v}}_f, \quad (13)$$

101 where $\tilde{\mathbf{v}}_f = \mathbf{v}_f - \mathbf{v}$ is the relative velocity of fluid with respect to solid. Thus, for the fluid we obtain

$$\frac{d\phi^f}{dt} + \frac{\phi^f}{K_f} \frac{dp}{dt} + \frac{1}{K_f} (\nabla p) \cdot \mathbf{q} + \nabla \cdot \mathbf{q} + \phi^f \nabla \cdot \mathbf{v} = 0, \quad (14)$$

102 where

$$\mathbf{q} = \phi^f \tilde{\mathbf{v}}_f \quad (15)$$

103 is the superficial Darcy velocity.

104 The total Cauchy stress tensor $\boldsymbol{\sigma}$ may be written as the sum of partial stress tensors in the form

$$\boldsymbol{\sigma} = \phi^s \boldsymbol{\sigma}_s - \phi^f p \mathbf{1}, \quad (16)$$

105 where $\boldsymbol{\sigma}_s$ is the intrinsic stress in the solid (force in solid per unit area of solid), and $\mathbf{1}$ is the second-order
106 identity tensor. We note that the intrinsic solid stress has the form

$$\boldsymbol{\sigma}_s = -p_s \mathbf{1} + \mathbf{s}_s, \quad (17)$$

107 where p_s is the intrinsic solid pressure and \mathbf{s}_s is the deviatoric component of $\boldsymbol{\sigma}_s$. However, it is also common
108 knowledge that part of the total stress tensor $\boldsymbol{\sigma}$ may be ascribed to an effective stress $\boldsymbol{\sigma}'$ that depends on
109 solely on the deformation of the solid frame. For linear elasticity, the relation takes the form

$$\sigma' = \mathbb{C}^e : \epsilon, \quad (18)$$

110 where ϵ is the small strain tensor describing the deformation of the solid frame, and \mathbb{C}^e is a rank-four tensor
 111 (with major and minor symmetries) characterizing the elastic isotropy or anisotropy of the porous material,
 112 see Section 4.

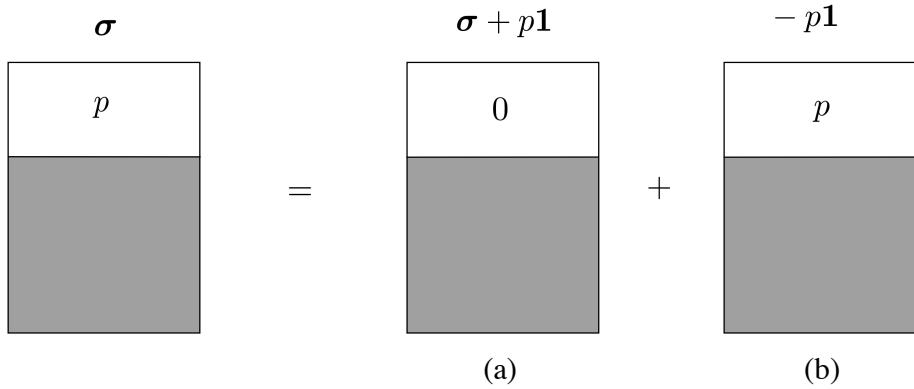


Fig. 1. Superposition in poroelasticity: Phase diagram for a single porosity volume with solid represented by the shaded area and pores represented by the white area. Volume is subjected to a tensorial stress indicated above each diagram; number inside the white area is the generated pore fluid pressure.

113 To determine the component of fluid pressure p that complements the effective stress σ' , we make use of
 114 the principle of superposition shown in Fig. 1. In loading configuration (a) of this figure, the porous volume is
 115 subjected to a total stress of $(\sigma + p\mathbf{1})$ with no internal fluid pressure within the pores, thus resembling a dry
 116 condition. In this case, the load is borne completely by the solid frame. In loading configuration (b), on the
 117 other hand, a total stress of $-p\mathbf{1}$ is applied to the same volume that generates an internal fluid pressure p
 118 within it. This second load is borne completely by the solid constituent. Superposition of these two loading
 119 configurations yields the original problem.

120 Since the internal fluid pressure is zero for loading configuration (a), the strain in the solid matrix can be
121 calculated as

$$\epsilon^{(a)} = (\mathbb{C}^e)^{-1} : (\boldsymbol{\sigma} + p\mathbf{1}) , \quad (19)$$

122 where $(\mathbb{C}^e)^{-1}$ is the elastic compliance tensor under dry (or drained) condition. For loading configuration (b),
 123 on the other hand, the solid matrix is subjected to isotropic deformation equal to the isotropic strain in the
 124 solid constituent, *i.e.*,

$$\epsilon^{(b)} = -\frac{p}{3K_s} \mathbf{1} . \quad (20)$$

125 The sum of these two strains represents the total strain in the solid frame, *i.e.*,

$$\boldsymbol{\epsilon} = \boldsymbol{\epsilon}^{(a)} + \boldsymbol{\epsilon}^{(b)} = (\mathbb{C}^e)^{-1} : (\boldsymbol{\sigma} + p\mathbf{1}) - \frac{p}{3K_s}\mathbf{1}. \quad (21)$$

126 Pre-multiplying both sides by \mathbb{C}^e yields the effective Cauchy stress,

$$\boldsymbol{\sigma}' = \mathbb{C}^e : \boldsymbol{\epsilon} = \boldsymbol{\sigma} + p\mathbf{b} \quad \Rightarrow \quad \boldsymbol{\sigma} = \boldsymbol{\sigma}' - p\mathbf{b}, \quad (22)$$

127 where

$$\mathbf{b} = \mathbf{1} - \frac{\mathbb{C}^e : \mathbf{1}}{3K_s} \quad (23)$$

128 is the same Biot tensor derived by Zhao and Borja [58]. However, it must be noted that Zhao and Borja
129 employed continuum thermodynamics to arrive at the above result, whereas the present formulation makes
130 use of the superposition principle. That the same result is obtained via two different methods is noteworthy
131 since one result verifies the other, see also the expression derived by Cheng [17]. We note that for isotropic
132 elasticity the Biot tensor reduces to

$$\mathbf{b} = \left(1 - \frac{K}{K_s}\right)\mathbf{1} = \alpha\mathbf{1}, \quad (24)$$

133 where K is the elastic bulk modulus of the solid frame and $\alpha = 1 - K/K_s$ is the familiar Biot coefficient, see
134 Borja [10]. For rocks, typical values of α range from 0.6 to 0.9 [39].

135 We next use the same superposition principle to evaluate the remaining dependent variable in the balance
136 of mass for the solid phase, namely, either the mass density ρ_s in Eq. (7) or the pressure p_s in Eq. (10). Let
137 us first define θ_s as the intrinsic volumetric strain in the solid constituent, which can be decomposed into $\theta_s^{(a)}$
138 and $\theta_s^{(b)}$ following the superposition procedure. For loading configuration (a) shown in Fig. 1, the intrinsic
139 Cauchy stress in the solid constituent is $(\boldsymbol{\sigma} + p\mathbf{1})/\phi^s$, while the intrinsic mean normal stress is $(\sigma + p)/\phi^s$,
140 where $\sigma = \text{tr}(\boldsymbol{\sigma})/3$. Thus, the intrinsic volumetric strain in the solid (assuming a constant K_s) is

$$\theta_s^{(a)} = \frac{1}{K_s} \frac{\sigma + p}{\phi^s} = \frac{1}{K_s} \frac{-\phi^s p_s - \phi^f p + p}{\phi^s} = \frac{p - p_s}{K_s}. \quad (25)$$

141 For loading configuration (b) the solid constituent is subjected to the fluid pressure p , so

$$\theta_s^{(b)} = -\frac{p}{K_s}. \quad (26)$$

142 Adding the two and taking the material time derivative following the solid motion yields

$$\frac{d\theta_s}{dt} = \frac{d\theta_s^{(a)}}{dt} + \frac{d\theta_s^{(b)}}{dt} = \frac{1}{\phi^s K_s} \left[\frac{d\sigma}{dt} + \phi^f \frac{dp}{dt} - (p - p_s) \frac{d\phi^s}{dt} \right]. \quad (27)$$

143 From solid mechanics, we know the intrinsic volumetric strain rate in solid $d\theta_s/dt$ is related to the change in

144 ρ_s through the following equation, assuming the solid mass is conserved

$$\frac{d\theta_s}{dt} = -\frac{1}{\rho_s} \frac{d\rho_s}{dt}. \quad (28)$$

145 After substituting Eq. (27) and Eq. (28) into Eq. (7) and collecting terms, we obtain

$$\left(1 + \frac{p - p_s}{K_s} \right) \frac{d\phi^s}{dt} - \frac{1}{K_s} \left(\frac{d\sigma}{dt} + \phi^f \frac{dp}{dt} \right) + \phi^s \nabla \cdot \mathbf{v} = 0. \quad (29)$$

146 We note that

$$\frac{p - p_s}{K_s} = \theta_s^{(a)} \ll 1, \quad (30)$$

147 see [58]. Thus, the balance of mass for solid takes the simpler form

$$\frac{d\phi^s}{dt} - \frac{1}{K_s} \left(\frac{d\sigma}{dt} + \phi^f \frac{dp}{dt} \right) + \phi^s \nabla \cdot \mathbf{v} = 0. \quad (31)$$

148 The final step is to determine an expression for $d\sigma/dt$.

149 From the effective stress relation Eq. (22), we obtain

$$\frac{\mathbf{1} : \mathbb{C}^e : \boldsymbol{\epsilon}}{3} = \sigma + \left(1 - \frac{\mathbf{1} : \mathbb{C}^e : \mathbf{1}}{9K_s} \right) p \quad (32)$$

150 by taking the trace of both sides. Next, by taking the material time derivatives of both sides and solving, we

151 obtain

$$\frac{d\sigma}{dt} = \frac{\mathbf{1} : \mathbb{C}^e}{3} : \frac{d\boldsymbol{\epsilon}}{dt} - \left(1 - \frac{\mathbf{1} : \mathbb{C}^e : \mathbf{1}}{9K_s} \right) \frac{dp}{dt}. \quad (33)$$

152 Substituting back into Eq. (31) and collecting terms yields

$$\frac{d\phi^s}{dt} + \frac{\beta}{K_s} \frac{dp}{dt} - \frac{\mathbf{1} : \mathbb{C}^e}{3K_s} : \frac{d\boldsymbol{\epsilon}}{dt} + \phi^s \nabla \cdot \mathbf{v} = 0, \quad (34)$$

153 where

$$\beta = 1 - \phi^f - \frac{\mathbf{1} : \mathbb{C}^e : \mathbf{1}}{9K_s}. \quad (35)$$

154 For the fluid phase, we add Eq. (14) and Eq. (34) to obtain

$$\mathbf{b} : \frac{d\boldsymbol{\epsilon}}{dt} + \frac{1}{\mathcal{M}} \frac{dp}{dt} + \frac{1}{K_f} (\nabla p) \cdot \mathbf{q} + \nabla \cdot \mathbf{q} = 0, \quad (36)$$

155 where \mathcal{M} is the Biot modulus, defined as

$$\frac{1}{\mathcal{M}} = \frac{\beta}{K_s} + \frac{\phi^f}{K_f}. \quad (37)$$

156 Equation (36) can be used in combination with balance of linear momentum to solve coupled systems with
157 the \mathbf{u}/p formulation [51, 58].

158 3 Double porosity media

159 We denote by V a representative elementary volume (REV) consisting of a mixture of solid with double porosity.
160 Let ϕ^s , ϕ^m , and ϕ^M represent the volume fractions of solid, nanopores, and micro-fractures, respectively,
161 defined as

$$\phi^s = \frac{V_s}{V}, \quad \phi^m = \frac{V_m}{V}, \quad \phi^M = \frac{V_M}{V}, \quad (38)$$

162 where V_s , V_m , and V_M are the volumes of solid, nanopores, and micro-fractures contained in V . The closure
163 condition on the volume fractions is

$$\phi^s + \phi^m + \phi^M = 1. \quad (39)$$

164 The pore fractions represent the proportion of pore volume occupied by the nanopores and micro-fractures,
165 and are given by

$$\psi^m = \frac{\phi^m}{1 - \phi^s}, \quad \psi^M = \frac{\phi^M}{1 - \phi^s}. \quad (40)$$

166 The denominator in these two expressions, $1 - \phi^s$, is the porosity ϕ of the mixture. The closure condition on
167 the pore fractions is

$$\psi^m + \psi^M = 1. \quad (41)$$

168 In what follows, we assume that the nanopores and micro-fractures are filled with the same type of fluid,
169 which could be either liquid or gas. The partial mass densities of the solid, fluid in the nanopores, and fluid

170 in the micro-fractures are given by

$$\rho^s = \phi^s \rho_s, \quad \rho^m = \phi^m \rho_m, \quad \rho^M = \phi^M \rho_M, \quad (42)$$

171 where ρ_s , ρ_m , and ρ_M are the intrinsic mass densities of the solid, fluid in the nanopores, and fluid in the
172 micro-fractures, respectively. The total mass density of the mixture is given by the sum

$$\rho = \rho^s + \rho^m + \rho^M. \quad (43)$$

173 Denoting the material time derivatives following the motions of solid and fluids by $d(\cdot)/dt$, $d^m(\cdot)/dt$,
174 and $d^M(\cdot)/dt$, the mass balance equations take the form

$$\frac{d\rho^s}{dt} + \rho^s \nabla \cdot \mathbf{v} = 0, \quad (44)$$

175

$$\frac{d^m \rho^m}{dt} + \rho^m \nabla \cdot \mathbf{v}_m = c^m, \quad (45)$$

176

$$\frac{d^M \rho^M}{dt} + \rho^M \nabla \cdot \mathbf{v}_M = c^M, \quad (46)$$

177 where \mathbf{v} , \mathbf{v}_m , and \mathbf{v}_M are the velocities of solid, fluid in the nanopores, and fluid in the micro-fractures,
178 respectively. We assume in the foregoing equations that the solid mass is conserved, and that the nanopores
179 and micro-fractures exchange mass at the rates if c^m and c^M per unit total volume. For a closed system,

$$c^m + c^M = 0. \quad (47)$$

180 Assuming barotropic flow on the solid and fluids once again, we can write the solid mass balance equation
181 in terms of θ_s defined in Section 2 as

$$\frac{d\phi^s}{dt} - \phi^s \frac{d\theta_s}{dt} + \phi^s \nabla \cdot \mathbf{v} = 0, \quad (48)$$

182 and the fluid mass balance equations in terms of the intrinsic fluid pressures p_m and p_M as

$$\frac{d\phi^m}{dt} + \frac{\phi^m}{K_m} \frac{dp_m}{dt} + \frac{1}{K_m} (\nabla p_m) \cdot \mathbf{q}_m + \nabla \cdot \mathbf{q}_m + \phi^m \nabla \cdot \mathbf{v} = \frac{c^m}{\rho_m}, \quad (49)$$

183

$$\frac{d\phi^M}{dt} + \frac{\phi^M}{K_M} \frac{dp_M}{dt} + \frac{1}{K_M} (\nabla p_M) \cdot \mathbf{q}_M + \nabla \cdot \mathbf{q}_M + \phi^M \nabla \cdot \mathbf{v} = \frac{c^M}{\rho_M}, \quad (50)$$

184 where

$$\mathbf{q}_m = \phi^m (\mathbf{v}_m - \mathbf{v}) , \quad \mathbf{q}_M = \phi^M (\mathbf{v}_M - \mathbf{v}) \quad (51)$$

185 are the superficial Darcy velocities; and K_m and K_M are the intrinsic fluid bulk moduli.

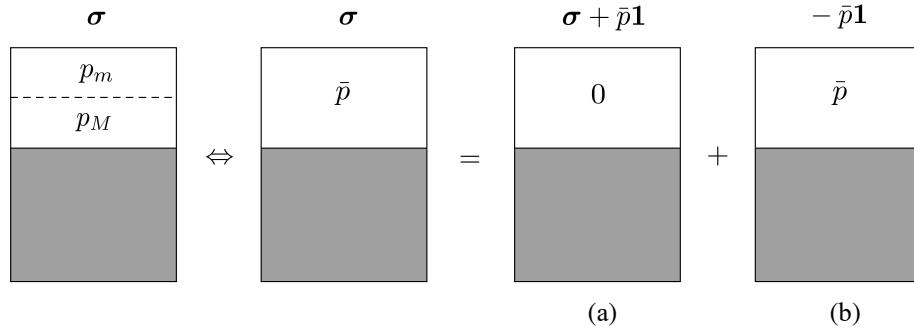


Fig. 2. Statistically distributed pores allow a double porosity structure to be replaced with a single porosity structure with mean pore fluid pressure \bar{p} .

186 To derive the effective stress equation, a key aspect is to recognize the statistically distributed nature of
 187 the pores, which allows the double porosity structure to be represented by a single porosity structure with
 188 a weighted pore fluid pressure. Consider, for example, the superposition shown in Fig. 2. Here, the double
 189 porosity structure is replaced with a statistically equivalent single porosity structure with a weighted pore
 190 fluid pressure of \bar{p} given by [11]

$$\bar{p} = \psi^M p_M + \psi^m p_m. \quad (52)$$

191 Thus we can use the results from Section 2 directly by replacing p with \bar{p} rather than repeating the whole
 192 process of Section 2. Specifically, from Eq. (22), we have

$$\sigma = \sigma' - \bar{p}b = \sigma' - \psi^M p_M b - \psi^m p_m b, \quad (53)$$

193 where b is the same Biot tensor given in Eq. (23). From Eq. (34), we have

$$\frac{d\phi^s}{dt} + \frac{\beta}{K_s} \frac{d\bar{p}}{dt} - \frac{\mathbf{1} : \mathbb{C}^e}{3K_s} : \frac{d\epsilon}{dt} + \phi^s \nabla \cdot \mathbf{v} = 0, \quad (54)$$

194 where β is already defined in Eq. (35) with ϕ^f replaced by porosity ϕ . Note here the time derivative of \bar{p}
 195 generates an additional term which is the time derivative of pore fraction $d\psi^M/dt$, and this term is unique to
 196 double porosity formulation.

197 *Remark.* An alternative approach that does not explicitly employ volume averaging of the pore pressures, such
 198 as that shown in Eq. (52), is presented in Appendix A. This latter formulation reinforces the understanding
 199 that the principle of superposition does not depend on the sequence of loading, and that there is more than
 200 one way by which one can get to the same result.

201 In order to evaluate $d\phi^m/dt$ and $d\phi^M/dt$ of Eqs. (49) and (50), we must develop a constitutive law for
 202 $d\psi^M/dt$. We refer to the phase diagram shown in Fig. 3, where the REV is partitioned into two superimposed
 203 regions representing the nanopore and micro-fracture skeletons. These two regions must be distinguished from
 204 the nanopore and micro-fracture volumes, which are mainly pore spaces occupied by fluids. The nanopore
 205 and micro-fracture skeletons are themselves superimposed solids and pore spaces. Let V_{np} and V_{mf} represent
 206 respective portions of the total volume V occupied by the nanopore and micro-fracture skeletons. The
 207 corresponding volume fractions are

$$\varphi^m = \frac{V_{np}}{V}, \quad \varphi^M = \frac{V_{mf}}{V}, \quad \varphi^m + \varphi^M = 1. \quad (55)$$

208 Since both volume fractions are statistically distributed throughout the entire volume, we would require the
 209 porosities are the same for the nanopore and micro-fracture skeletons, *i.e.*,

$$\phi = \frac{\phi^m}{\varphi^m} = \frac{\phi^M}{\varphi^M}, \quad (56)$$

210 which implies that $\varphi^m \equiv \psi^m$ and $\varphi^M \equiv \psi^M$.

211 We next consider following trivial decomposition

$$\boldsymbol{\sigma} = \psi^m \boldsymbol{\sigma} + \psi^M \boldsymbol{\sigma}, \quad (57)$$

212 and assume the following decomposition for $\boldsymbol{\sigma}'$

$$\boldsymbol{\sigma}' = \psi^m \boldsymbol{\sigma}'_m + \psi^M \boldsymbol{\sigma}'_M, \quad (58)$$

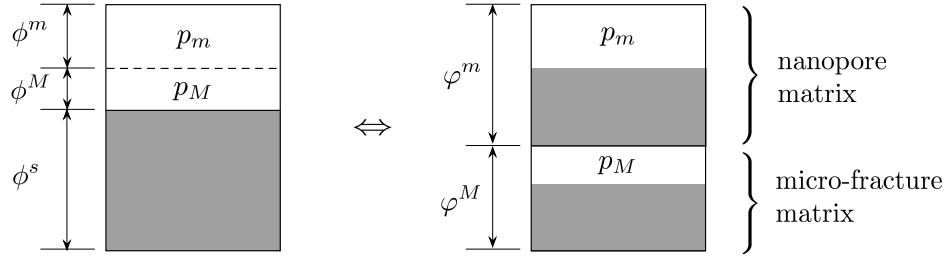


Fig. 3. Representation of double porosity structure in terms of superimposed nanopore and micro-fracture skeletons or matrices.

213 where σ'_m and σ'_M are effective stresses in the nanopore and micro-fracture skeletons of Fig. 3. Rewriting the
 214 effective stress relation Eq. (53) in the expanded form using above two equations gives

$$\psi^m (\boldsymbol{\sigma} + p_m \mathbf{b}) + \psi^M (\boldsymbol{\sigma} + p_M \mathbf{b}) = \psi^m \sigma'_m + \psi^M \sigma'_M. \quad (59)$$

215 This equation holds for any ψ^M (and ψ^m), so we must have

$$\boldsymbol{\sigma} + p_m \mathbf{b} = \sigma'_m, \quad \boldsymbol{\sigma} + p_M \mathbf{b} = \sigma'_M, \quad (60)$$

216 which means that

$$\sigma'_m - p_m \mathbf{b} = \sigma'_M - p_M \mathbf{b}. \quad (61)$$

217 Taking the trace and applying the material time derivative with respect to solid motion gives

$$\frac{d\sigma'_m}{dt} - \frac{d\sigma'_M}{dt} = \left(\frac{dp_m}{dt} - \frac{dp_M}{dt} \right) b, \quad (62)$$

218 where $\sigma'_m = \text{tr}(\sigma'_m)/3$, $\sigma'_M = \text{tr}(\sigma'_M)/3$, and $b = \text{tr}(\mathbf{b})/3$.

219 In terms of the volumetric strain in the nanopore and micro-fracture skeletons, θ_m and θ_M , respectively,
 220 we assume linear elasticity and rewrite the foregoing equations as

$$K_m^e \frac{d\theta_m}{dt} - K_M^e \frac{d\theta_M}{dt} = \left(\frac{dp_m}{dt} - \frac{dp_M}{dt} \right) b, \quad (63)$$

221 where K_m^e and K_M^e are the elastic bulk moduli of the nanopore and micro-fracture skeletons, respectively
 222 (not to be confused with the fluid bulk moduli K_m and K_M). Finally, from Fig. 3, we recognize that if the
 223 height of the REV remains unchanged, we can represent $d\theta_m/dt$ and $d\theta_M/dt$ as

$$\frac{d\theta_m}{dt} = -\frac{1}{1-\psi^M} \frac{d\psi^M}{dt}, \quad \frac{d\theta_M}{dt} = \frac{1}{\psi^M} \frac{d\psi^M}{dt}. \quad (64)$$

224 Substituting Eq. (64) into Eq. (63) yields the poroelastic equation

$$\frac{d\psi^M}{dt} = \frac{1}{\mathcal{C}} \left(\frac{dp_M}{dt} - \frac{dp_m}{dt} \right), \quad (65)$$

225 where

$$\mathcal{C} = \frac{1}{b} \left(\frac{K_m^e}{1-\psi^M} + \frac{K_M^e}{\psi^M} \right) \quad (66)$$

226 is a modulus describing the change in internal structure of the material. We remark that a constitutive
227 law relating the variation of pore fraction ψ^M with pore pressure difference $p_M - p_m$ is consistent with the
228 internal energy equation for double porosity media developed by Borja and Choo [13]. We also note that
229 only one combined coefficient \mathcal{C} is needed to describe the material response, although its physical meaning is
230 based on the two elasticity constants K_m^e and K_M^e .

231 Now we can rewrite Eqs. (49) and (50) in terms of the primary unknown variables p_m , p_M , and ϵ . Recall
232 that

$$\frac{d\phi^m}{dt} = -\psi^m \frac{d\phi^s}{dt} - \phi \frac{d\psi^M}{dt} \quad (67)$$

233 and

$$\frac{d\phi^M}{dt} = -\psi^M \frac{d\phi^s}{dt} + \phi \frac{d\psi^M}{dt}. \quad (68)$$

234 Thus, we can combine Eqs. (54) and (65) to obtain equivalent forms of Eqs. (49) and (50) as

$$\psi^m \mathbf{b} : \frac{d\epsilon}{dt} + \frac{1}{K_m} (\nabla p_m) \cdot \mathbf{q}_m + \nabla \cdot \mathbf{q}_m + S_{mM} \frac{dp_M}{dt} + S_{mm} \frac{dp_m}{dt} = \frac{c^m}{\rho_m} \quad (69)$$

235 and

$$\psi^M \mathbf{b} : \frac{d\epsilon}{dt} + \frac{1}{K_M} (\nabla p_M) \cdot \mathbf{q}_M + \nabla \cdot \mathbf{q}_M + S_{MM} \frac{dp_M}{dt} + S_{Mm} \frac{dp_m}{dt} = \frac{c^M}{\rho_M}. \quad (70)$$

236 where

$$\left. \begin{aligned} S_{mm} &= \frac{\beta\psi^m\psi^m}{K_s} + \frac{\phi^m}{K_m} - \frac{\omega^m - \phi}{\mathcal{C}} \\ S_{MM} &= \frac{\beta\psi^M\psi^M}{K_s} + \frac{\phi^M}{K_M} + \frac{\omega^M + \phi}{\mathcal{C}} \\ S_{mM} &= \frac{\beta\psi^m\psi^M}{K_s} + \frac{\omega^m - \phi}{\mathcal{C}} \\ S_{Mm} &= \frac{\beta\psi^m\psi^M}{K_s} - \frac{\omega^M + \phi}{\mathcal{C}} \end{aligned} \right\} \quad (71)$$

237 are storage coefficients. Equations (69) and (70) can then be used in combination with balance of linear
 238 momentum to solve coupled systems based on a $\mathbf{u}/p_M/p_m$ formulation [18, 19, 56].

239 In calculating the coefficients of Equations (69) and (70), we can further assume that

$$\omega^m = \frac{\beta(p_M - p_m)\psi^m}{K_s} \ll 1, \quad \omega^M = \frac{\beta(p_M - p_m)\psi^M}{K_s} \ll 1, \quad (72)$$

240 since $|p_M - p_m|/K_s$ is on the order of intrinsic strain [9]. In this case, the storage coefficients reduce to the
 241 forms

$$\left. \begin{aligned} S_{mm} &= \frac{\beta\psi^m\psi^m}{K_s} + \frac{\phi^m}{K_m} + \frac{\phi}{\mathcal{C}} \\ S_{MM} &= \frac{\beta\psi^M\psi^M}{K_s} + \frac{\phi^M}{K_M} + \frac{\phi}{\mathcal{C}} \\ S_{mM} = S_{Mm} &= \frac{\beta\psi^m\psi^M}{K_s} - \frac{\phi}{\mathcal{C}} \end{aligned} \right\}, \quad (73)$$

242 i.e., the matrix of storage coefficients becomes symmetric. Thus, all the coefficients of $d\epsilon/dt$, dp_M/dt , and
 243 dp_m/dt are “constants” in the sense that they do not depend on the primary unknown variables. Furthermore,
 244 it is also reasonable to assume that the pressures p_M and p_m do not affect the density terms in \mathbf{q}_M and \mathbf{q}_m ,
 245 i.e., $\mathbf{q}_M = \mathbf{q}_M(\nabla p_M, \rho_{\text{ref}}\mathbf{g})$ and $\mathbf{q}_m = \mathbf{q}_m(\nabla p_m, \rho_{\text{ref}}\mathbf{g})$, where ρ_{ref} is the reference (constant) fluid density
 246 and \mathbf{g} is the gravity acceleration vector.

247 Finally, we can combine Eqs. (69) and (70) to obtain the total flow equation. The result reads

$$\begin{aligned} \mathbf{b} : \frac{d\epsilon}{dt} + \frac{1}{\mathcal{M}_m} \frac{dp_m}{dt} + \frac{1}{\mathcal{M}_M} \frac{dp_M}{dt} + \frac{1}{K_m} (\nabla p_m) \cdot \mathbf{q}_m \\ + \frac{1}{K_M} (\nabla p_M) \cdot \mathbf{q}_M + \nabla \cdot \mathbf{q}_t = \frac{c^m}{\rho_m} + \frac{c^M}{\rho_M}, \end{aligned} \quad (74)$$

248 where \mathcal{M}_m and \mathcal{M}_M are the Biot moduli defined as

$$\frac{1}{\mathcal{M}_m} = \left(\frac{\beta}{K_s} + \frac{\phi}{K_m} \right) \psi^m - \frac{\beta(p_M - p_m)}{K_s \mathcal{C}}, \quad \frac{1}{\mathcal{M}_M} = \left(\frac{\beta}{K_s} + \frac{\phi}{K_M} \right) \psi^M + \frac{\beta(p_M - p_m)}{K_s \mathcal{C}}, \quad (75)$$

249 ϕ is the porosity, and $\mathbf{q}_t = \mathbf{q}_m + \mathbf{q}_M$ is the resultant total flux vector. Eq. (74) is analogous to the pressure
 250 equation of multiphase flow through porous media [47].

251 **4 Poroelastic coefficients**

252 **4.1 Elastic coefficients**

253 Before illustrating how Eqs. (69) and (70) may be used, we first consider a transversely isotropic elastic solid
 254 characterized by an elastic moduli tensor \mathbb{C}^e of the form

$$\begin{aligned} \mathbb{C}^e = & \lambda^e \mathbf{1} \otimes \mathbf{1} + 2\mu_T \mathbb{I} + a^e (\mathbf{1} \otimes \mathbf{M} + \mathbf{M} \otimes \mathbf{1}) \\ & + b^e \mathbf{M} \otimes \mathbf{M} + 2(\mu_L - \mu_T)(\mathbf{M} \odot \mathbf{1} + \mathbf{1} \odot \mathbf{M}), \end{aligned} \quad (76)$$

255 where $(\mathbf{A} \odot \mathbf{B})_{ijkl} = (A_{ik}B_{jl} + A_{il}B_{jk})/2$, \mathbb{I} is the symmetric fourth-order identity tensor, $\mathbf{M} = \mathbf{n} \otimes \mathbf{n}$ is the
 256 microstructure tensor, \mathbf{n} is the unit normal vector to the bedding plane, and λ^e , μ_L , μ_T , a^e , and b^e are the
 257 five material elastic constants. The subscript $(\cdot)_T$ (bed-parallel BP) pertains to the plane of isotropy, and
 258 subscript $(\cdot)_L$ (bed-normal BN) pertains to the direction perpendicular to the plane of isotropy.

259 In practice, we do not determine λ^e , μ_L , μ_T , a^e , and b^e directly from laboratory experiments. Instead,
 260 we obtain these constants indirectly from the following procedure. First, we perform the following matrix
 261 inversion

$$\begin{bmatrix} \mathbf{C}_{11}^e & \mathbf{0} \\ \mathbf{0} & \mathbf{C}_{22}^e \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11}^e & \mathbf{0} \\ \mathbf{0} & \mathbf{S}_{22}^e \end{bmatrix}^{-1}, \quad (77)$$

262 where $\mathbf{0}$ represents a 3×3 null matrix. The remaining submatrices are

$$\mathbf{C}_{11}^e = \begin{bmatrix} \lambda^e + 2\mu_T & \lambda^e & \lambda^e + a^e \\ \lambda^e & \lambda^e + 2\mu_T & \lambda^e + a^e \\ \lambda^e + a^e & \lambda^e + a^e & \lambda^e + 2\tilde{\mu} \end{bmatrix}, \quad (78)$$

263 where $\tilde{\mu} = 2\mu_L - \mu_T + a^e + b^e/2$, and

$$\mathbf{C}_{22}^e = \begin{bmatrix} \mu_T & 0 & 0 \\ 0 & \mu_L & 0 \\ 0 & 0 & \mu_L \end{bmatrix}. \quad (79)$$

264 The compliance submatrices are

$$\mathbf{S}_{11}^e = \begin{bmatrix} 1/E_h & -\nu_{hh}/E_h & -\nu_{vh}/E_v \\ -\nu_{hh}/E_h & 1/E_h & -\nu_{vh}/E_v \\ -\nu_{hv}/E_h & -\nu_{hv}/E_h & 1/E_v \end{bmatrix} \quad (80)$$

265 and

$$\mathbf{S}_{22}^e = \begin{bmatrix} 2(1 + \nu_{hh})/E_h & 0 & 0 \\ 0 & 1/G_{vh} & 0 \\ 0 & 0 & 1/G_{vh} \end{bmatrix}. \quad (81)$$

266 In the above four submatrices, E_v and E_h are Young's moduli in v and h directions, ν_{hh} , ν_{vh} , and ν_{hv}
267 are Poisson's ratios, and G_{vh} is the shear modulus. These constants are directly measurable in laboratory
268 experiments [38]. Poisson's ratios ν_{hv} and ν_{vh} are not independent because we have

$$\frac{\nu_{vh}}{E_v} = \frac{\nu_{hv}}{E_h}, \quad (82)$$

269 which guarantees symmetry of the compliance matrix. Note the matrix on the LHS of Eq. (77) is exactly the
270 Voigt form of \mathbb{C}^e in Eq. (76) when $\mathbf{n} = \mathbf{e}_z = [0, 0, 1]^T$.

271 **4.2 Comparison of poroelastic coefficients**

272 To further illustrate the use of formulas (69) and (70), we compare the calculated values of the poroelastic
273 coefficients with those obtained by Berryman and Pride [8] and Khalili and Selvadurai [29]. To this end, we
274 elucidate the differences in the mathematical formulations adopted in their models. Berryman and Pride
275 considered an isotropic double porosity material with six basic variables, namely, the mean total stress σ ,
276 volumetric strain ϵ , fluid pressures p_M and p_m , and fluid content variations ζ_M and ζ_m . In terms of these
277 variables, they formulated a set of linear constitutive equations of the form

$$\begin{Bmatrix} \epsilon \\ -\zeta_m \\ -\zeta_M \end{Bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \begin{Bmatrix} \sigma \\ -p_m \\ -p_M \end{Bmatrix}, \quad (83)$$

278 where a_{11} through a_{33} are all constant coefficients. The flow continuity equations are given as [37]

$$\frac{\partial \zeta_m}{\partial t} + \nabla \cdot \mathbf{q}_m = \gamma (p_M - p_m) , \quad (84)$$

279

$$\frac{\partial \zeta_M}{\partial t} + \nabla \cdot \mathbf{q}_M = \gamma (p_m - p_M) , \quad (85)$$

280 where γ is the leakage parameter. This approach is a phenomenological or micromechanical approach for
281 obtaining the poroelastic coefficients, which is different from what we have presented in Section 3.

282 In order to rewrite Eqs. (84) and (85) in terms of the primary unknown variables adopted in our formulation,
283 we need to move the term σ in Eq. (83) to the LHS and the term ϵ to the RHS. The result reads

$$\sigma = \frac{\epsilon}{a_{11}} + \frac{a_{12}}{a_{11}} p_m + \frac{a_{13}}{a_{11}} p_M , \quad (86)$$

284

$$\zeta_m = -\frac{a_{12}}{a_{11}} \epsilon + s_{mm} p_m + s_{mM} p_M , \quad (87)$$

285 and

$$\zeta_M = -\frac{a_{13}}{a_{11}} \epsilon + s_{Mm} p_m + s_{MM} p_M . \quad (88)$$

286 where the storage coefficients are given by

$$\left. \begin{aligned} s_{mm} &= a_{22} - \frac{a_{12}^2}{a_{11}} \\ s_{MM} &= a_{33} - \frac{a_{13}^2}{a_{11}} \\ s_{mM} &= s_{Mm} = a_{23} - \frac{a_{12} a_{13}}{a_{11}} \end{aligned} \right\} . \quad (89)$$

287 From the above three equations, we identify the scalar Biot coefficients of the Berryman-Pride isotropic
288 double porosity model as $-a_{12}/a_{11}$ (for nanopores or matrix) and $-a_{13}/a_{11}$ (for micro-fractures). As for the
289 formulation proposed by Khalili and Selvadurai [29], we tune the values of K_p (bulk modulus of the porous
290 blocks), K_b , and K_s in their formulation so as to obtain the same Biot coefficients $-a_{12}/a_{11}$ and $-a_{13}/a_{11}$ of
291 the Berryman-Pride model. The result reads

$$K_b = \frac{1}{a_{11}} , \quad K_p = \frac{K_b}{1 + (a_{13}/a_{11})} , \quad K_s = \frac{1}{a_{11} + a_{12} + a_{13}} . \quad (90)$$

292 while the fluid content variations are given by

$$\dot{\zeta}_m = \alpha_1 \epsilon + \dot{s}_{mM} p_M + \dot{s}_{mm} p_m \quad (91)$$

293 and

$$\dot{\zeta}_M = \alpha_2 \epsilon + \dot{s}_{Mm} p_m + \dot{s}_{MM} p_M, \quad (92)$$

294 where the storage coefficients are

$$\left. \begin{aligned} \dot{s}_{mm} &= \frac{\alpha_2 - \phi^M}{K_p} + \frac{\alpha_1 - \phi^m - \alpha_2 + \phi^M}{K_s} + \frac{\phi^m}{K_m} \\ \dot{s}_{MM} &= \frac{\alpha_2 - \phi^M}{K_p} + \frac{\phi^M}{K_M} \\ \dot{s}_{mM} &= \dot{s}_{Mm} = \frac{\alpha_2 - \phi^M}{K_s} - \frac{\alpha_2 - \phi^M}{K_p} \end{aligned} \right\}, \quad (93)$$

295 and where $\alpha_1 = K_b/K_p - K_b/K_s = -a_{12}/a_{11}$ and $\alpha_2 = 1 - K_b/K_p = -a_{13}/a_{11}$. Note that we have modified
296 the notation for ζ_m and ζ_M to indicate that the Khalili-Selvadurai constitutive formulation is not the same
297 as the Berryman-Pride formulation. By substituting these constitutive laws into Eqs. (84) and (85), it is now
298 possible to compare the poroelastic coefficients with those used in Eqs. (69) and (70).

299 Table 1 presents a set of input parameters used in these constitutive relations. We consider two types
300 of material, Chelmsford granite and Weber sandstone, since they are well-characterized by laboratory data.
301 Tables 2–4 display the results of calculations using the above three double-porosity frameworks. By comparing
302 these three frameworks, we find that the Biot coefficients of our method are quite different from the other two
303 methods, which is because we use pore fractions (ψ^M and ψ^m) as weights to obtain \bar{p} in Fig. 2, while different
304 weighting schemes were adopted in [8, 29]. Nevertheless, the total Biot coefficient matches well among the three
305 methods. The main dependence on the last three rows of Table 2 (i.e. the storage coefficients, ignoring the φ^m
306 and φ^M terms) is in the value of \mathcal{C} , and by tuning the value of \mathcal{C} , we find that the agreement of the storage
307 coefficients with those of the other two methods is quite good for both the granite and sandstone examples. In
308 particular, we find the off-diagonal storage coefficients S_{Mm} , s_{Mm} , and \dot{s}_{Mm} have a negative value for both
309 rocks, which might also be true for other parameter settings. Furthermore, it must be emphasized that our
310 approach is the only one that can handle an anisotropic macroscopic system. In terms of the time derivative,
311 our approach adopts the material time derivative for solid and fluid, while the other two approaches simply
312 use partial time derivative as an approximation, compare Eqs. (69) and (70) with Eqs. (84) and (85), for
313 example. This facilitates an easier extension of our theory to the finite deformation regime since the material
314 time derivative already carries the convected term.

Table 1. Material parameters. Note that Berryman and Pride [8] did not provide the values of E_h , E_v , G_{vh} , ν_{hh} , and ν_{vh} , so they were deduced by setting $\mathbf{1} : \mathbb{C}^e : \mathbf{1}/9 \approx 1/a_{11}$. In addition, they determined the values of a_{11} through a_{33} from a large number of other material parameters, see their Table 1 and Table B1.

Parameter	Chelmsford granite	Weber sandstone
a_{11} (GPa $^{-1}$)	0.125	0.250
a_{12} (GPa $^{-1}$)	-0.040	-0.073
a_{13} (GPa $^{-1}$)	-0.067	-0.150
a_{22} (GPa $^{-1}$)	0.041	0.100
a_{23} (GPa $^{-1}$)	-0.0010	-0.0003
a_{33} (GPa $^{-1}$)	0.070	0.152
K_s (GPa)	53.6	37.3
$K_m = K_M = K_f$ (GPa)	3.3	3.3
Porosity ϕ^m	0.001	0.095
Porosity ϕ^M	0.011	0.010
Young's modulus E_h (GPa)	13.0	7.8
Young's modulus E_v (GPa)	8.5	5.0
Shear modulus G_{vh} (GPa)	4.0	3.0
Poisson's ratio ν_{hh}	0.18	0.15
Poisson's ratio ν_{vh}	0.25	0.20
Vector \mathbf{n}	$\mathbf{e}_z = [0, 0, 1]^T$	$\mathbf{e}_z = [0, 0, 1]^T$
Intermediate modulus \mathcal{C} (GPa)	0.5	3.2

Table 2. Double porosity and state variables for the proposed formulation. Note that the storage coefficients are multipliers of material time derivatives. Furthermore, the results in this table are invariant with respect to the vector \mathbf{n} given in Table 1.

Variable/coefficient	Granite	Sandstone
$\text{tr}(\psi^m \mathbf{b})/3$ for nanopores	0.077	0.812
$\text{tr}(\psi^M \mathbf{b})/3$ for micro-fractures	0.773	0.081
Intermediate variable β	0.838	0.788
Storage coefficient S_{mm} (GPa $^{-1}$)	0.025	0.079
Storage coefficient S_{MM} (GPa $^{-1}$)	0.040	0.036
Storage coefficient S_{Mm} (GPa $^{-1}$)	-0.023	-0.031

Table 3. Berryman and Pride [8] double porosity coefficients.

Coefficient	Granite	Sandstone
α_1 for nanopores	0.318	0.292
α_2 for micro-fractures	0.533	0.600
Storage coefficient s_{mm} (GPa $^{-1}$)	0.028	0.078
Storage coefficient s_{MM} (GPa $^{-1}$)	0.034	0.062
Storage coefficient s_{Mm} (GPa $^{-1}$)	-0.022	-0.044

315 5 Closure

316 We have utilized the principle of superposition to derive poroelastic coefficients for single and double porosity
317 media. The resulting conservation laws are exact for single porosity media and are consistent with those

Table 4. Khalili and Selvadurai [29] double porosity coefficients.

Coefficient	Granite	Sandstone
α_1 for nanopores	0.318	0.292
α_2 for micro-fractures	0.533	0.600
Storage coefficient \dot{s}_{mm} (GPa $^{-1}$)	0.027	0.077
Storage coefficient \dot{s}_{MM} (GPa $^{-1}$)	0.034	0.062
Storage coefficient \dot{s}_{Mm} (GPa $^{-1}$)	-0.021	-0.043

318 derived in [17, 58]. For double porosity media, we derived an evolution law for total porosity ϕ by introducing
319 the weighted pore fluid pressure $\bar{p} = \psi^M p_M + \psi^m p_m$ in the equivalent single porosity structure, which is
320 consistent with the results of Borja and Koliji [11]. We then adopted the effective stress concept to derive
321 an evolution law for the pore fraction ψ^M or ψ^m . Identical results were obtained by using different loading
322 paths, thus affirming the invariance of the principle of superposition with respect to sequence of loading.

323 The resulting formulas for double porosity media require fewer material parameters than those proposed
324 by other authors while delivering a comparable performance. Thus, the proposed approach is useful whenever
325 the unknown parameters cannot be readily determined in the laboratory. Provided that the processes
326 involved are reversible, extension of this work to multi-field coupling, such as thermo-hydro-chemo-mechanical
327 (THCM) coupling, is possible. However, the principle of superposition cannot be applied to irreversible or
328 path-dependent processes, such as processes involving elastoplastic deformations. In this case, the formulation
329 must be complemented by thermodynamical principles to accommodate the effect of plastic dissipation [12].
330 Nevertheless, the theory presented in this paper is still very useful for a wide variety of applications given the
331 prominent role of poroelasticity in the scientific literature.

332 Acknowledgments

333 This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of
334 Basic Energy Sciences, Geosciences Research Program, under Award Number DE-FG02-03ER15454. Support
335 for materials and additional student hours were provided by the National Science Foundation under Award
336 Number CMMI-1914780.

337 **Appendix A: An alternative superposition**

338 In this Appendix, we derive the effective stress equation using the principle of superposition but with an
 339 alternative sequence of loading on an elementary volume shown in Fig. 4. As noted earlier, the result should
 340 not depend on the sequence of loading, and here we illustrate a more elaborate loading scenario than the one
 341 presented earlier. In loading configuration (a) of Fig. 4, the volume is subjected to a total stress of $(\sigma + p_M \mathbf{1})$
 342 with no internal fluid pressure in either the nanopores or the micro-fractures. The associated strain in the
 343 solid matrix is then calculated as

$$\epsilon^{(a)} = (\mathbb{C}^e)^{-1} : (\sigma + p_M \mathbf{1}), \quad (94)$$

344 where \mathbb{C}^e is the previously defined drained elasticity tensor for the double-porosity medium. For loading
 345 configuration (b), the solid matrix is subjected to isotropic deformation equal to the isotropic strain in the
 346 solid constituent, and so we write

$$\epsilon^{(b)} = -\frac{p_m}{3K_s} \mathbf{1}. \quad (95)$$

347 Loading configuration (c) shows the volume under an isotropic stress of $-(p_M - p_m)\mathbf{1}$ with a pore fluid
 348 pressure of $(p_M - p_m)$ acting in the micro-fractures and zero in the nanopores. Because both pore scales are
 349 statistically distributed throughout the entire volume, the loading is equivalent to having all of the pore
 350 spaces subjected to a uniform pressure of $\psi^M(p_M - p_m)$, which we further analyze in Fig. 5.

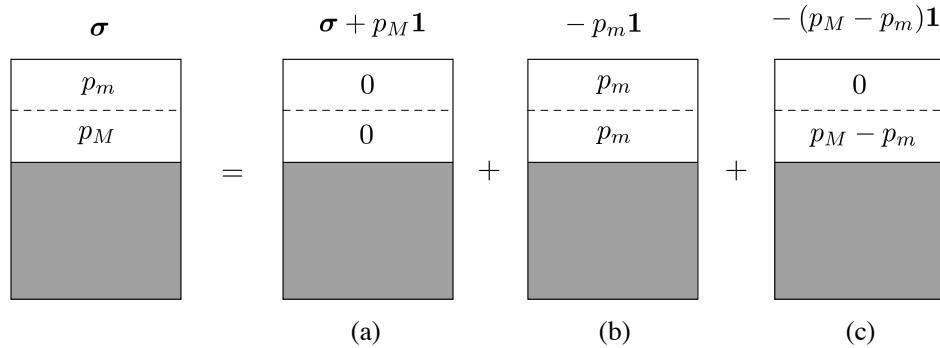


Fig. 4. Superposition in poroelasticity: Phase diagram for a double-porosity volume with solid represented by the shaded area and pores represented by the white area. Volume is subjected to a tensorial stress indicated above each diagram; numbers inside the white area are the generated pore fluid pressures in the nanopores (p_m) and micro-fractures (p_M).

351 In Fig. 5, loading configuration (c) is replaced with loading configuration (d), which in turn is represented
 352 as the superposition of loading configurations (e) and (f). In loading configuration (e), the volume is subjected

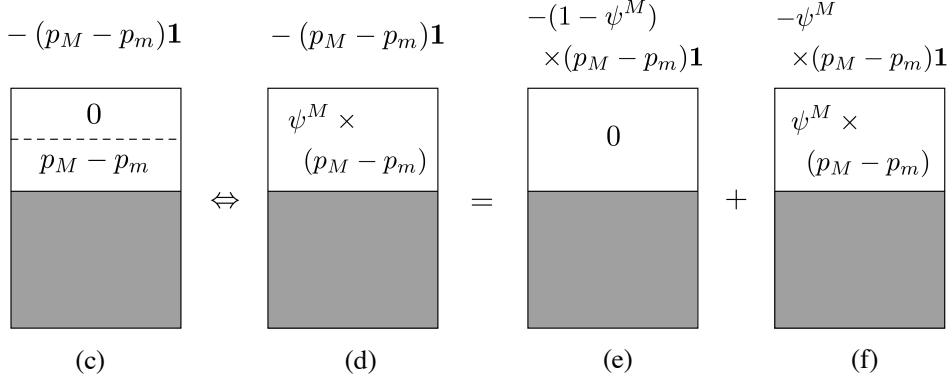


Fig. 5. Superposition in poroelasticity: Phase diagram for a double-porosity volume with solid represented by the shaded area and pores represented by the white area. Loading configuration (c) is equivalent to loading configuration (d), which is represented as the superposition of loading configurations (e) and (f).

353 to a total load of $-(1 - \psi^M)(p_M - p_m)\mathbf{1}$ with no pressure within the pores. This results in a drained isotropic
 354 deformation of the solid skeleton equal to

$$\boldsymbol{\epsilon}^{(e)} = -(\mathbb{C}^e)^{-1} : (1 - \psi^M)(p_M - p_m)\mathbf{1}. \quad (96)$$

355 In loading configuration (f), the solid constituent is subjected to an isotropic deformation equal to the
 356 isotropic strain in the solid constituent, which is given by

$$\boldsymbol{\epsilon}^{(f)} = -\frac{\psi^M(p_M - p_m)}{3K_s}\mathbf{1}. \quad (97)$$

357 Adding all four components of strain yields the total strain in the solid frame, equal to

$$\begin{aligned} \boldsymbol{\epsilon} &= \boldsymbol{\epsilon}^{(a)} + \boldsymbol{\epsilon}^{(b)} + \boldsymbol{\epsilon}^{(e)} + \boldsymbol{\epsilon}^{(f)} \\ &= (\mathbb{C}^e)^{-1} : (\boldsymbol{\sigma} + \bar{p}\mathbf{1}) - \frac{\bar{p}}{3K_s}\mathbf{1}, \end{aligned} \quad (98)$$

358 where \bar{p} is the same mean pore fluid pressure defined in Eq. (52). Premultiplying both sides by \mathbb{C}^e and noting
 359 once again that $\mathbb{C}^e : \boldsymbol{\epsilon}$ is the effective Cauchy stress $\boldsymbol{\sigma}'$ yields Eq. (53).

360 **References**

361 [1] M. Ashworth, F. Doster, Foundations and their practical implications for the constitutive coefficients of
362 poromechanical dual-continuum models, *Transport in Porous Media* 130 (2019) 699–730.

363 [2] M. Ashworth, F. Doster, Anisotropic dual-continuum representations for multiscale poroelastic materials:
364 Development and numerical modeling, *International Journal for Numerical and Analytical Methods in
365 Geomechanics* 44 (2020) 2304–2328.

366 [3] M. Bai, D. Elsworth, Coupled Processes in Subsurface Deformation, fFlow, and Transport, ASCE Book
367 Series, ASCE Press (2000).

368 [4] G. I. Barenblatt, Iu. P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous
369 liquids in fissured rocks [strata], *Journal of Applied Mathematics and Mechanics* 24 (1960) 1286–1303.

370 [5] K. C. Bennett, L. A. Berla, W. D. Nix, R. I. Borja, Instrumented nanoindentation and 3D mechanistic
371 modeling of a shale at multiple scales, *Acta Geotechnica* 10 (2015) 1–14.

372 [6] I. Berre, F. Doster, E. Keilegavlen, Flow in fractured porous media: A review of conceptual models and
373 discretization approaches, *Transport in Porous Media* 130 (2019) 215–236.

374 [7] J. G. Berryman, Extension of poroelastic analysis to double-porosity materials: New technique in
375 microgeomechanics, *Journal of Engineering Mechanics* 128 (2002) 840–847.

376 [8] J. G. Berryman, S. R. Pride, Models for computing geomechanical constants of double-porosity materials
377 from the constituents' properties, *Journal of Geophysical Research* 107 (2002) 1–15.

378 [9] A. Bonazzi, B. Jha, F.P.J. de Barros, Transport analysis in deformable porous media through integral
379 transforms, *International Journal for Numerical and Analytical Methods in Geomechanics* 45 (2021)
380 307–324.

381 [10] R. I. Borja, On the mechanical energy and effective stress in saturated and unsaturated porous continua,
382 *International Journal of Solids and Structures* 43 (2006) 1764–1786.

383 [11] R. I. Borja, A. Koliji On the effective stress in unsaturated porous continua with double porosity,
384 *Journal of the Mechanics and Physics of Solids* 57 (2009) 1182–1193.

385 [12] R. I. Borja, *Plasticity Modeling & Computation*, Springer-Verlag, Berlin-Heidelberg.

386 [13] R. I. Borja, J. Choo, Cam-Clay plasticity, Part VIII: A constitutive framework for porous materials
387 with evolving internal structure, *Computer Methods in Applied Mechanics and Engineering* 309 (2016)
388 653–679.

389 [14] R. I. Borja, Q. Yin, Y. Zhao, Cam-Clay plasticity. Part IX: On the anisotropy, heterogeneity, and
390 viscoplasticity of shale, *Computer Methods in Applied Mechanics and Engineering* 360 (2020) 112695.

391 [15] J. T. Camargo, J. A. White, R. I. Borja, A macroelement stabilization for mixed finite el-
392 ement/finite volume discretizations of multiphase poromechanics. *Computational Geosciences*
393 <https://doi.org/10.1007/s10596-020-09964-3>.

394 [16] M. Chen, L. J. Hosking, R. J. Sandford, H. R. Thomas, A coupled compressible flow and geomechanics
395 model for dynamic fracture aperture during carbon sequestration in coal, *International Journal for*
396 *Numerical and Analytical Methods in Geomechanics* 44 (2020) 1727–1749.

397 [17] A. H.-D. Cheng, *Poroelasticity*, Springer (2016).

398 [18] J. Choo, J. A. White, R.I. Borja, Hydromechanical modeling of unsaturated flow in double porosity
399 media, *International Journal of Geomechanics* (2016) DOI: 10.1061/(ASCE)GM.1943-5622.0000558,
400 D4016002.

401 [19] J. Choo, R. I. Borja, Stabilized mixed finite elements for deformable porous media with double porosity,
402 *Computer Methods in Applied Mechanics and Engineering* 293 (2015) 131–154.

403 [20] O. Coussy, *Poromechanics*, John Wiley and Sons (2004).

404 [21] R. Deb, P. Jenny, An extended finite volume method and fixed-stress approach for modeling fluid
405 injection-induced tensile opening in fractured reservoirs. *International Journal for Numerical and*
406 *Analytical Methods in Geomechanics* 44 (2020) 1128–1144.

407 [22] Q. Gao, A. Ghassemi (2020), Finite element simulations of 3D planar hydraulic fracture propagation
408 using a coupled hydro-mechanical interface element, *International Journal for Numerical and Analytical*
409 *Methods in Geomechanics* 44 (2020) 1999–2024.

410 [23] T. T. Garipov, M. Karimi-Fard, H. A. Tchelepi, Discrete fracture model for coupled flow and geome-
411 chanics, *Computational Geosciences* 20 (2016) 149–160.

412 [24] J. Ge, S. Jerath, A. Ghassemi, Semianalytical modeling on 3D stress redistribution during hydraulic
413 fracturing stimulation and its effects on natural fracture reactivation, *International Journal for Numerical*
414 *and Analytical Methods in Geomechanics* 44 (2020) 1184–1199.

415 [25] H. R. Ghafouri, R. W. Lewis, A finite element double porosity model for heterogeneous deformable
416 porous media, *International Journal for Numerical and Analytical Methods in Geomechanics* 20 (1996)
417 831–844.

418 [26] M. R. Hajiabadi, A. R. Khoei, A bridge between dual porosity and multiscale models of heterogeneous
419 deformable porous media, *International Journal for Numerical and Analytical Methods in Geomechanics*
420 43 (2019) 212–238.

421 [27] J. Jiang, R. M. Younis, Hybrid coupled discrete fracture/matrix and multicontinuum models for
422 unconventional reservoir simulation, *SPE Journal* 21 (2016) 1009–1027.

423 [28] W. Jin, C. Arson, Fluid-driven transition from damage to fracture in anisotropic porous media: a
424 multi-scale XFEM approach, *Acta Geotechnica* 15 (2020) 113–144.

425 [29] N. Khalili, A. P. S. Selvadurai, A fully coupled constitutive model for thermo-hydro-mechanical analysis
426 in elastic media with double porosity, *Geophysical Research Letters* 30 (2003) 1–5.

427 [30] P. Lemonnier, B. Bourbiaux, Simulation of naturally fractured reservoirs. State of the art. Part 2
428 matrix-fracture transfers and typical features of numerical studies, *Oil & Gas Science and Technology*
429 65 (2010) 263–286.

430 [31] K. T. Lewallen, H. F. Wang, Consolidation of a double-porosity medium, *International Journal of
431 Solids and Structures* 35 (1998) 4845–4867.

432 [32] R. W. Lewis, B. A. Schrefler, The finite element method in the static and dynamic deformation and
433 consolidation of porous media, John Wiley and Sons (1998).

434 [33] F. Liu, Modeling hydraulic fracture propagation in permeable media with an embedded strong discon-
435 tinuity approach, *International Journal for Numerical and Analytical Methods in Geomechanics* 44
436 (2020) 1634–1655.

437 [34] C. Liu, J. H. Prévost, N. Sukumar, Modeling branched and intersecting faults in reservoir-geomechanics
438 models with the extended finite element method, *International Journal for Numerical and Analytical
439 Methods in Geomechanics* 43 (2019) 2075–2089.

440 [35] J. Ma, G. Zhao, N. Khalili, A fully coupled flow deformation model for elasto-plastic damage analysis
441 in saturated fractured porous media, *International Journal of Plasticity* 76 (2016) 29–50.

442 [36] A. Mehrabian, Y. N. Abousleiman, Generalized Biot's theory and mandel's problem of multiple-porosity
443 and multiple-permeability poroelasticity, *Journal of Geophysical Research: Solid Earth* 119 (2014)
444 2745–2763.

445 [37] V. X. Nguyen, Y. N. Abousleiman, Poromechanics solutions to plane strain and axisymmetric mandel-
446 type problems in dual-porosity and dual-permeability medium, *Journal of Applied Mechanics* 77 (2010)
447 1–18.

448 [38] H. Niandou, J. F. Shao, J. P. Henry, D. Fourmaintraux, Laboratory investigation of the mechanical
449 behaviour of tournemire shale, *International Journal of Rock Mechanics and Mining Sciences* 34 (1997)
450 3–16.

451 [39] A. Nur, J. D. Byerlee, An exact effective stress law for elastic deformation of rock with fluids, *Journal*
452 *of Geophysical Research* 76 (1971) 6414–6419.

453 [40] A. Pergament, P. Tomin, Single porosity model for fractured formations, ECMOR XIII-13th European
454 Conference on the Mathematics of Oil Recovery (2012).

455 [41] M. Pouragha, R. Wan, M. Eghbalian, Critical plane analysis for interpreting experimental results on
456 anisotropic rocks, *Acta Geotechnica* 14 (2019) 1215–1225.

457 [42] E. Ranjbar, H. Hassanzadeh, Matrix fracture transfer shape factor for modeling flow of a compressible
458 fluid in dual-porosity media, *Advances in Water Resources* 34 (2011) 627–639.

459 [43] S. J. Semnani, J. A. White, R. I. Borja, Thermo-plasticity and strain localization in transversely
460 isotropic materials based on anisotropic critical state plasticity, *International Journal for Numerical
461 and Analytical Methods in Geomechanics* 40 (2016) 2423–2449.

462 [44] N. Shauer, C. A. Duarte, Improved algorithms for generalized finite element simulations of three-
463 dimensional hydraulic fracture propagation, *International Journal for Numerical and Analytical Methods
464 in Geomechanics* 43 (2019) 2707–2742.

465 [45] S. Shiozawa, S. Lee, M. F. Wheeler, The effect of stress boundary conditions on fluid-driven fracture
466 propagation in porous media using a phase-field modeling approach, *International Journal for Numerical
467 and Analytical Methods in Geomechanics* 43 (2019) 1316–1340.

468 [46] S. Valliappan, N. Khalili, Flow through fissured porous media with deformable matrix, *International
469 Journal for Numerical Methods in Engineering* 29 (1990) 1079–1994.

470 [47] H. A. Tchelepi, Multiphase flow in porous media, Stanford ENERGY 221 Lecture notes (2019).

471 [48] M. N. Vu, A. Pouya, D. M. Seyed, Theoretical and numerical study of the steady-state flow through finite
472 fractured porous media, *International Journal for Numerical and Analytical Methods in Geomechanics*
473 38 (2014) 221–235.

474 [49] H. F. Wang, Theory of linear poroelasticity with applications to geomechanics and hydrogeology,
475 Princeton University Press (2000).

476 [50] J. E. Warren, P. J. Root, The behavior of naturally fractured reservoirs, *SPE Journal* 3 (1963) 245–255.

477 [51] J. A. White, N. Castelletto, H. A. Tchelepi, Block-partitioned solvers for coupled poromechanics: A
478 unified framework, *Computer Methods in Applied Mechanics and Engineering* 303 (2016) 55–74.

479 [52] R. K. Wilson, E. C. Aifantis, On the theory of consolidation with double porosity, *International Journal
480 of Engineering Science* 20 (1982) 1009–1035.

481 [53] T.-F. Wong, Anisotropic poroelasticity in a rock with cracks. *Journal of Geophysical Research: Solid*
482 *Earth* 122 (2017) 7739–7753.

483 [54] G. Xu, M. Gutierrez, C. He, W. Meng, Discrete element modeling of transversely isotropic rocks with
484 non-continuous planar fabrics under Brazilian test, *Acta Geotechnica* 15 (2020) 2277–2304.

485 [55] Q. Zhang, Hydromechanical modeling of solid deformation and fluid flow in the transversely isotropic
486 fissured rocks, *Computers and Geotechnics* 128 (2020) 103812.

487 [56] Q. Zhang, J. Choo, R. I. Borja, On the preferential flow patterns induced by transverse isotropy and
488 non-Darcy flow in double porosity media, *Computer Methods in Applied Mechanics and Engineering*
489 353 (2019) 570–592.

490 [57] Y. Zhao, S. J. Semnani, Q. Yin, R. I. Borja, On the strength of transversely isotropic rocks, *International*
491 *Journal for Numerical and Analytical Methods in Geomechanics* 42 (2018) 1917–1934.

492 [58] Y. Zhao, R. I. Borja, A continuum framework for coupled solid deformation-fluid flow through anisotropic
493 elastoplastic porous media, *Computer Methods in Applied Mechanics and Engineering* 369 (2020) 113225.

494 [59] H. Zheng, A.-F. Shi, Z.-F. Liu, X.-H. Wang, A dual-porosity model considering the displacement effect
495 for incompressible two-phase flow, *International Journal for Numerical and Analytical Methods in*
496 *Geomechanics* 44 (2020) 691–704.

497 [60] S. Zhou, X. Zhuang, Phase field modeling of hydraulic fracture propagation in transversely isotropic
498 poroelastic media, *Acta Geotechnica* 15 (2020) 2599–2618.