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Summary. Closed-form expressions for poroelastic coefficients are derived for anisotropic materials exhibiting single7

and double porosity. A novel feature of the formulation is the use of the principle of superposition to derive the governing8

mass conservation equations from which analytical expressions for the Biot tensor and Biot moduli, among others,9

are derived. For single porosity media, the mass conservation equation derived from the principle of superposition is10

shown to be identical to the one derived from continuum principle of thermodynamics, thus confirming the veracity of11

both formulations and suggesting that this conservation equation can be derived in more than one way. To provide12

further insight into the theory, numerical values of the poroelastic coefficients are calculated for granite and sandstone13

that are consistent with the material parameters reported by prominent authors. In this way, modelers are guided on14

how to determine these coefficients in the event that they use the theory for full-scale modeling and simulations.15
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1 Introduction17

A large number of existing reservoirs may be categorized as naturally fractured [5, 15, 16, 21, 22, 24, 25, 26,18

32, 33, 34, 44, 45]. By this we usually refer to materials with distributed discontinuities that they exhibit19

two very distinct porous networks. Roughly speaking, the first porous network is formed of penny-shaped20

cracks or fissures mainly due to tectonic activities, while the second is formed of rounded pores [20]. As for21

their characteristics, the fracture networks are characterized by low storage and high permeability, whereas22

the porous blocks are characterized by high storage and low permeability [55]. As a result, the behaviors23

of fractured reservoirs are considerably different from those of conventional reservoirs [25], which could24

be reflected in the soil consolidation, groundwater flow, solute transport, and gas/oil production [3]. Until25



now, the modeling of fractured reservoirs is still one of the most challenging activities in geomechanics and26

geosciences.27

Over the last 50 years, numerous models with different degrees of sophistication have been proposed for28

porous materials, which can be divided into three categories. In the earliest category, a fractured system was29

grossly treated as an equivalent single porosity continuum [40], and the existence of fractures or cracks is30

reflected in the material coefficients such as stiffness, which may be orders of magnitude different from those31

of a homogeneous medium [3]. However, this approach has a number of drawbacks such as the identification32

of the representative blocks and the determination of equivalent permeability values [3, 32]. On the contrary,33

the second category is known as the explicit (direct) modeling approach such as the discrete fracture network34

[6, 23, 27, 48], which allows one to account for each length scale directly within a model. However, the very35

large number of micro-fractures in the unconventional reservoir [37] could make the direct simulation of36

discrete fracture networks computationally prohibitive [1, 2].37

The third category is the double porosity model [4, 50], which assumed that two pore regions overlap in a38

computational domain. The main idea is that for every physical point in space, there may be two scales of39

porosity, one representing the average porosity in the fracture network and the other in the porous blocks [20].40

This idealization may be thought of as an extreme case of the crack density model of Wong [53] when the41

micro-fracture density becomes very high. The mathematical basis for this model is known as mixture theory42

in which any material in a composite medium that is significantly different from those of other intervening43

materials deserves a separate description. This leads to two mass conservation equations, one for each of44

the foregoing porosity regions. These equations are coupled by a leakage (source/sink) term [30, 36, 37, 42].45

Nowadays, the double porosity concept has been widely used in civil engineering, energy resource engineering,46

and many other related fields of engineering [3, 32].47

Previous formulations of poroelasticity in double porosity media have assumed isotropy in both deformation48

and fluid flow [3, 7, 18, 19, 25, 29, 31, 35, 36, 46, 52, 59]. However, many geologic materials have exhibited49

anisotropy in either or both deformation and fluid flow responses [14, 28, 41, 43, 49, 54, 57, 60]. In this50

work, we consider a special case of anisotropy known as transverse isotropy, or cross-anisotropy, which is51

characterized by a plane on which the response is isotropic and an axis perpendicuar to this plane on which52

the response is anisotropic. For a single-porosity medium, the effect of transverse isotropy has already been53

incorporated into the poroelasticity equations [17, 49, 58]. For a double-porosity medium, however, its effect54

has not been clearly elucidated in light of the limitations imposed by current laboratory testing procedures.55
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The aim of this paper is to address the above-mentioned knowledge gap in the poroelasticity of anisotropic56

double-porosity media. A novel feature of the mathematical formulation is the use of the principle of57

superposition in combination with mixture theory to arrive at the governing mass balance equations. The58

mathematical formulation is innovative because it leads to a result that is identical to what has been developed59

previously using continuum principles of thermodynamics [58], but following a different route. It is the first60

time, to the authors’ knowledge, that these new formulas and interpretations are presented within the context61

of poromechanics.62

However, we emphasize at the outset that the principle of superposition is applied in this paper at a fixed63

hydromechanical state where only mechanical deformation is involved, and not from one hydromechanical64

state to another where dissipative processes would render the principle inapplicable. Furthermore, we restrict65

the developments to linear elasticity. Nevertheless, even with the assumption of poroelasticity, the parameters66

or coefficients of a model are usually arbitrarily assumed in the literature, and their fundamental origins were67

not clearly established. In this respect, the results of this paper are useful in shedding light onto the physical68

meaning of the governing conservation equations and the relevant poroelastic coefficients.69

The paper is organized as follows: Based on mixture theory, mass conservation equations are first70

formulated in Section 2 for single porosity media, where the evolution laws for the volume fractions are71

derived. To this end, we make use of the principle of superposition for anisotropic single porosity media to72

obtain the poroelastic coefficients and compare them with those derived in [17, 58]. In Section 3 we extend73

the formulation to anisotropic double porosity media and derive the corresponding poroelastic coefficients74

analytically. The elastic moduli for transversely isotropic materials are discussed in Section 4, where the75

relevant poroelastic coefficients for two types of rock are also calculated and compared with those derived by76

prominent authors [8, 29]. Finally, conclusions are given in Section 5.77

2 Single porosity media78

In the following discussion and throughout this paper, we assume that the solid deformation is infinitesimal79

in the sense that the domain of the problem does not change appreciably. We denote by V a representative80

elementary volume (REV) consisting of a mixture of solid and fluid. Let φs and φf represent the volume81

fractions of solid and fluid, respectively, defined as82

φs =
Vs
V
, φf =

Vf
V
, (1)
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where Vs and Vf are volumes of solid and fluid in V , respectively. The closure condition on the volume83

fractions is84

φs + φf = 1 . (2)

The partial mass densities of the solid and fluid are given by85

ρs = φsρs , ρf = φfρf , (3)

where ρs and ρf are the intrinsic mass densities of solid and fluid, respectively. The total mass density of the86

mixture is given by the sum87

ρ = ρs + ρf . (4)

We denote the material time derivatives following the motions of solid and fluid by d(·)/dt and df (·)/dt,88

respectively. The mass balance equations for solid and fluid, assuming no mass exchanges between them, take89

the form90
dρs

dt
+ ρs∇ · v = 0 , (5)

91
dfρf

dt
+ ρf∇ · vf = 0 , (6)

where v and vf are the intrinsic velocities of solid and fluid particles, respectively. Written in terms of ρs92

and ρf , the conservation equations take the form93

dφs

dt
+
φs

ρs

dρs
dt

+ φs∇ · v = 0 , (7)

94
dfφf

dt
+
φf

ρf

dfρf
dt

+ φf∇ · vf = 0 . (8)

Assuming barotropic flow, the constitutive equation relating density and pressure in the solid is given by95

1

ρs

dρs
dt

=
1

Ks

dps
dt

, (9)

where ps and Ks are the intrinsic pressure and bulk modulus in the solid. Substituting in Eq. (7) yields96

dφs

dt
+
φs

Ks

dps
dt

+ φs∇ · v = 0 . (10)
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For the fluid, we take a similar intrinsic constitutive relation of the form97

1

ρf

dfρf
dt

=
1

Kf

dfp

dt
, (11)

where p = pf is the intrinsic pressure in the fluid. Substituting into Eq. (8) gives98

dfφf

dt
+
φf

Kf

dfp

dt
+ φf∇ · vf = 0 . (12)

We recall that the material time derivative following the fluid motion is related to the material time99

derivative following the solid motion through the equation100

df (·)
dt

=
d(·)
dt

+∇(·) · ṽf , (13)

where ṽf = vf − v is the relative velocity of fluid with respect to solid. Thus, for the fluid we obtain101

dφf

dt
+
φf

Kf

dp

dt
+

1

Kf
(∇p) · q +∇ · q + φf∇ · v = 0 , (14)

where102

q = φf ṽf (15)

is the superficial Darcy velocity.103

The total Cauchy stress tensor σ may be written as the sum of partial stress tensors in the form104

σ = φsσs − φfp1 , (16)

where σs is the intrinsic stress in the solid (force in solid per unit area of solid), and 1 is the second-order105

identity tensor. We note that the intrinsic solid stress has the form106

σs = −ps1 + ss , (17)

where ps is the intrinsic solid pressure and ss is the deviatoric component of σs. However, it is also common107

knowledge that part of the total stress tensor σ may be ascribed to an effective stress σ′ that depends on108

solely on the deformation of the solid frame. For linear elasticity, the relation takes the form109
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σ′ = Ce : ε , (18)

where ε is the small strain tensor describing the deformation of the solid frame, and Ce is a rank-four tensor110

(with major and minor symmetries) characterizing the elastic isotropy or anisotropy of the porous material,111

see Section 4.112
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Fig. 1. Superposition in poroelasticity: Phase diagram for a single-porosity volume
with solid represented by the shaded area and pores represented by the white area.
Volume is subjected to a tensorial stress indicated above each diagram; number
inside the white area is the generated pore fluid pressure.

solid frame. In loading configuration (b), on the other hand, a total stress of
−p1 is applied to the same volume that generates an internal fluid pressure
p within it. This second load is borne completely by the solid constituent.
Superposition of these two loading configurations yields the original problem.

Since the internal fluid pressure is zero for loading configuration (a), the
strain in the solid matrix can be calculated as

ε(a) = (Ce)−1 :
(
σ + p1

)
, (20)

where (Ce
)−1

is the elastic compliance tensor under dry (or drained) con-
dition. For loading configuration (b), on the other hand, the solid matrix is
subjected to isotropic deformation equal to the isotropic strain in the solid
constituent, i.e.,

ε(b) = − p

3Ks
1 . (21)

The sum of these two strains represents the total strain in the solid frame,
i.e.,

ε = ε(a) + ε(b) = (Ce)−1 :
(
σ + p1

)
− p

3Ks
1 . (22)

Pre-multiplying both sides by Ce yields the effective Cauchy stress,

σ′ = Ce : ε = σ + pb ⇒ σ = σ′ − pb , (23)

where

b = 1− Ce : 1

3Ks
(24)

is the same Biot tensor derived by Zhao and Borja (2020). However, it must be
noted that Zhao and Borja employed continuum thermodynamics to arrive at

Fig. 1. Superposition in poroelasticity: Phase diagram for a single porosity volume with solid represented by the
shaded area and pores represented by the white area. Volume is subjected to a tensorial stress indicated above each
diagram; number inside the white area is the generated pore fluid pressure.

To determine the component of fluid pressure p that complements the effective stress σ′, we make use of113

the principle of superposition shown in Fig. 1. In loading configuration (a) of this figure, the porous volume is114

subjected to a total stress of (σ + p1) with no internal fluid pressure within the pores, thus resembling a dry115

condition. In this case, the load is borne completely by the solid frame. In loading configuration (b), on the116

other hand, a total stress of −p1 is applied to the same volume that generates an internal fluid pressure p117

within it. This second load is borne completely by the solid constituent. Superposition of these two loading118

configurations yields the original problem.119

Since the internal fluid pressure is zero for loading configuration (a), the strain in the solid matrix can be120

calculated as121

ε(a) = (Ce)
−1

: (σ + p1) , (19)

where (Ce)
−1 is the elastic compliance tensor under dry (or drained) condition. For loading configuration (b),122

on the other hand, the solid matrix is subjected to isotropic deformation equal to the isotropic strain in the123

solid constituent, i.e.,124

ε(b) = − p

3Ks
1 . (20)
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The sum of these two strains represents the total strain in the solid frame, i.e.,125

ε = ε(a) + ε(b) = (Ce)
−1

: (σ + p1)− p

3Ks
1 . (21)

Pre-multiplying both sides by Ce yields the effective Cauchy stress,126

σ′ = Ce : ε = σ + pb ⇒ σ = σ′ − pb , (22)

where127

b = 1− Ce : 1

3Ks
(23)

is the same Biot tensor derived by Zhao and Borja [58]. However, it must be noted that Zhao and Borja128

employed continuum thermodynamics to arrive at the above result, whereas the present formulation makes129

use of the superposition principle. That the same result is obtained via two different methods is noteworthy130

since one result verifies the other, see also the expression derived by Cheng [17]. We note that for isotropic131

elasticity the Biot tensor reduces to132

b =

(
1− K

Ks

)
1 = α1 , (24)

where K is the elastic bulk modulus of the solid frame and α = 1−K/Ks is the familiar Biot coefficient, see133

Borja [10]. For rocks, typical values of α range from 0.6 to 0.9 [39].134

We next use the same superposition principle to evaluate the remaining dependent variable in the balance135

of mass for the solid phase, namely, either the mass density ρs in Eq. (7) or the pressure ps in Eq. (10). Let136

us first define θs as the intrinsic volumetric strain in the solid constituent, which can be decomposed into θ(a)s137

and θ(b)s following the superposition procedure. For loading configuration (a) shown in Fig. 1, the intrinsic138

Cauchy stress in the solid constituent is (σ + p1) /φs, while the intrinsic mean normal stress is (σ + p) /φs,139

where σ = tr(σ)/3. Thus, the intrinsic volumetric strain in the solid (assuming a constant Ks) is140

θ(a)s =
1

Ks

σ + p

φs
=

1

Ks

−φsps − φfp+ p

φs
=
p− ps
Ks

. (25)

For loading configuration (b) the solid constituent is subjected to the fluid pressure p, so141

θ(b)s = − p

Ks
. (26)
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Adding the two and taking the material time derivative following the solid motion yields142

dθs
dt

=
dθ

(a)
s

dt
+

dθ
(b)
s

dt
=

1

φsKs

[
dσ

dt
+ φf

dp

dt
− (p− ps)

dφs

dt

]
. (27)

From solid mechanics, we know the intrinsic volumetric strain rate in solid dθs/dt is related to the change in143

ρs through the following equation, assuming the solid mass is conserved144

dθs
dt

= − 1

ρs

dρs
dt

. (28)

After substituting Eq. (27) and Eq. (28) into Eq. (7) and collecting terms, we obtain145

(
1 +

p− ps
Ks

)
dφs

dt
− 1

Ks

(
dσ

dt
+ φf

dp

dt

)
+ φs∇ · v = 0 . (29)

We note that146
p− ps
Ks

= θ(a)s � 1 , (30)

see [58]. Thus, the balance of mass for solid takes the simpler form147

dφs

dt
− 1

Ks

(
dσ

dt
+ φf

dp

dt

)
+ φs∇ · v = 0 . (31)

The final step is to determine an expression for dσ/dt.148

From the effective stress relation Eq. (22), we obtain149

1 : Ce : ε

3
= σ +

(
1− 1 : Ce : 1

9Ks

)
p (32)

by taking the trace of both sides. Next, by taking the material time derivatives of both sides and solving, we150

obtain151
dσ

dt
=

1 : Ce

3
:

dε

dt
−
(

1− 1 : Ce : 1

9Ks

)
dp

dt
. (33)

Substituting back into Eq. (31) and collecting terms yields152

dφs

dt
+

β

Ks

dp

dt
− 1 : Ce

3Ks
:

dε

dt
+ φs∇ · v = 0 , (34)

where153
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β = 1− φf − 1 : Ce : 1

9Ks
. (35)

For the fluid phase, we add Eq. (14) and Eq. (34) to obtain154

b :
dε

dt
+

1

M
dp

dt
+

1

Kf
(∇p) · q +∇ · q = 0 , (36)

whereM is the Biot modulus, defined as155

1

M =
β

Ks
+
φf

Kf
. (37)

Equation (36) can be used in combination with balance of linear momentum to solve coupled systems with156

the u/p formulation [51, 58].157

3 Double porosity media158

We denote by V a representative elementary volume (REV) consisting of a mixture of solid with double porosity.159

Let φs, φm, and φM represent the volume fractions of solid, nanopores, and micro-fractures, respectively,160

defined as161

φs =
Vs
V
, φm =

Vm
V

, φM =
VM
V

, (38)

where Vs, Vm, and VM are the volumes of solid, nanopores, and micro-fractures contained in V . The closure162

condition on the volume fractions is163

φs + φm + φM = 1 . (39)

The pore fractions represent the proportion of pore volume occupied by the nanopores and micro-fractures,164

and are given by165

ψm =
φm

1− φs , ψM =
φM

1− φs . (40)

The denominator in these two expressions, 1− φs, is the porosity φ of the mixture. The closure condition on166

the pore fractions is167

ψm + ψM = 1 . (41)

In what follows, we assume that the nanopores and micro-fractures are filled with the same type of fluid,168

which could be either liquid or gas. The partial mass densities of the solid, fluid in the nanopores, and fluid169
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in the micro-fractures are given by170

ρs = φsρs , ρm = φmρm , ρM = φMρM , (42)

where ρs, ρm, and ρM are the intrinsic mass densities of the solid, fluid in the nanopores, and fluid in the171

micro-fractures, respectively. The total mass density of the mixture is given by the sum172

ρ = ρs + ρm + ρM . (43)

Denoting the material time derivatives following the motions of solid and fluids by d (·) /dt, dm (·) /dt,173

and dM (·) /dt, the mass balance equations take the form174

dρs

dt
+ ρs∇ · v = 0 , (44)

175
dmρm

dt
+ ρm∇ · vm = cm , (45)

176
dMρM

dt
+ ρM∇ · vM = cM , (46)

where v, vm, and vM are the velocities of solid, fluid in the nanopores, and fluid in the micro-fractures,177

respectively. We assume in the foregoing equations that the solid mass is conserved, and that the nanopores178

and micro-fractures exchange mass at the rates if cm and cM per unit total volume. For a closed system,179

cm + cM = 0 . (47)

Assuming barotropic flow on the solid and fluids once again, we can write the solid mass balance equation180

in terms of θs defined in Section 2 as181

dφs

dt
− φs dθs

dt
+ φs∇ · v = 0 , (48)

and the fluid mass balance equations in terms of the intrinsic fluid pressures pm and pM as182

dφm

dt
+
φm

Km

dpm
dt

+
1

Km
(∇pm) · qm +∇ · qm + φm∇ · v =

cm

ρm
, (49)

183
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dφM

dt
+
φM

KM

dpM
dt

+
1

KM
(∇pM ) · qM +∇ · qM + φM∇ · v =

cM

ρM
, (50)

where184

qm = φm (vm − v) , qM = φM (vM − v) (51)

are the superficial Darcy velocities; and Km and KM are the intrinsic fluid bulk moduli.185
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is the mean pore fluid pressure weighted according to the pore fractions. Pre-
multiplying both sides by Ce and noting once again that Ce : ε is the effective
Cauchy stress σ′ gives

σ′ = σ + p̄b =⇒ σ = σ′ − p̄b , (60)

where b is the same Biot tensor given in equation (24).
Superposition in a poroelastic material can be done in many ways, and

in principle they should all lead to the same result. A key aspect is to recog-
nize the statistically distributed nature of the pores, which allows the double
porosity structure to be represented by a single porosity structure with a
weighted pore fluid pressure. Consider, for example, the superposition shown
in Fig. 4. Here, the double porosity structure is replaced with a statistically
equivalent single porosity structure with a weighted pore fluid pressure of p̄
given by (59). Superposition then leads to the second line of equation (58)
and the same Biot tensor b given in equation (24).

(a) (b)

Fig. 4. Statistically distributed pores allow a double-porosity structure to be re-
placed with a single porosity structure with mean pore fluid pressure p̄. Loading
configuration (g) produces the first term on the second line of equation (58), while
loading configuration (h) produces the second term.

We now use the superposition approach to evaluate the intrinsic solid
strain rate θ̇s in equation (50). To this end, we use the simpler superposi-
tion representation shown in Fig. 4 and evaluate the intrinsic solid strain for
loading configuration (g) as

θ(g) =
1

Ks

σ + p̄

φs
=
p̄− ps
Ks

, (61)

where σ = tr(σ)/3 and ps = −tr(σs)/3. Here we made use of the expression
for the total Cauchy stress tensor in terms of the partial stresses as

σ = φsσs − φmpm1− φMpM1 , (62)

and proceeded as in Section 2.

Fig. 2. Statistically distributed pores allow a double porosity structure to be replaced with a single porosity structure
with mean pore fluid pressure p̄.

To derive the effective stress equation, a key aspect is to recognize the statistically distributed nature of186

the pores, which allows the double porosity structure to be represented by a single porosity structure with187

a weighted pore fluid pressure. Consider, for example, the superposition shown in Fig. 2. Here, the double188

porosity structure is replaced with a statistically equivalent single porosity structure with a weighted pore189

fluid pressure of p̄ given by [11]190

p̄ = ψMpM + ψmpm . (52)

Thus we can use the results from Section 2 directly by replacing p with p̄ rather than repeating the whole191

process of Section 2. Specifically, from Eq. (22), we have192

σ = σ′ − p̄b = σ′ − ψMpMb− ψmpmb , (53)

where b is the same Biot tensor given in Eq. (23). From Eq. (34), we have193

dφs

dt
+

β

Ks

dp̄

dt
− 1 : Ce

3Ks
:

dε

dt
+ φs∇ · v = 0 , (54)
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where β is already defined in Eq. (35) with φf replaced by porosity φ. Note here the time derivative of p̄194

generates an additional term which is the time derivative of pore fraction dψM/dt, and this term is unique to195

double porosity formulation.196

Remark. An alternative approach that does not explicitly employ volume averaging of the pore pressures, such197

as that shown in Eq. (52), is presented in Appendix A. This latter formulation reinforces the understanding198

that the principle of superposition does not depend on the sequence of loading, and that there is more than199

one way by which one can get to the same result.200

In order to evaluate dφm/dt and dφM/dt of Eqs. (49) and (50), we must develop a constitutive law for201

dψM/dt. We refer to the phase diagram shown in Fig. 3, where the REV is partitioned into two superimposed202

regions representing the nanopore and micro-fracture skeletons. These two regions must be distinguished from203

the nanopore and micro-fracture volumes, which are mainly pore spaces occupied by fluids. The nanopore204

and micro-fracture skeletons are themselves superimposed solids and pore spaces. Let Vnp and Vmf represent205

respective portions of the total volume V occupied by the nanopore and micro-fracture skeletons. The206

corresponding volume fractions are207

ϕm =
Vnp
V

, ϕM =
Vmf

V
, ϕm + ϕM = 1 . (55)

Since both volume fractions are statistically distributed throughout the entire volume, we would require the208

porosities are the same for the nanopore and micro-fracture skeletons, i.e.,209

φ =
φm

ϕm
=
φM

ϕM
, (56)

which implies that ϕm ≡ ψm and ϕM ≡ ψM .210

We next consider following trivial decomposition211

σ = ψmσ + ψMσ , (57)

and assume the following decomposition for σ′212

σ′ = ψmσ′m + ψMσ′M , (58)
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dV occupied by the nanopore and micro-fracture skeletons. The corresponding
volume fractions are

ϕm =
dVnp
dV

, ϕM =
dVmf

dV
, ϕm + ϕM = 1 . (69)

Since both volume fractions are statistically distributed throughout the entire
volume, the solid components of the nanopore and micro-fracture skeletons
are partitioned as ϕmφs and ϕMφs, respectively; while the fluid components
are distributed as ϕmφ and ϕMφ, where φ is porosity. It follows that

ϕmφ = ψmφ , ϕMφ = ψMφ , (70)

which implies that ϕm ≡ ψm and ϕM ≡ ψM . In other words, the pore fractions
ψ may be interpreted as volume fractions ϕ when the pore spaces are extended
to the domain of pore skeletons.

Fig. 5. Representation of double porosity structure in terms of superimposed
nanopore and micro-fracture skeletons or matrices.

We next consider the trivial decomposition of the Cauchy stress tensor of
the form (see equations (14) and (15) of Borja and Choo (2016))

σ = ψmσ + ψMσ . (71)

Rewriting the effective stress equation (23) in the expanded form

ψmσ + ψMσ = σ′ − (ψmpm + ψMpM )b (72)

suggests that it is possible to define effective stresses σ′m and σ′M in the
nanopore and micro-fracture skeletons as

σ = σ′m − pmb = σ′M − pMb . (73)

Taking the mean normal values and applying the material time derivative
with respect to solid motion gives

σ̇′m − σ̇′M =
(
ṗm − ṗM

)
b (74)

Fig. 3. Representation of double porosity structure in terms of superimposed nanopore and micro-fracture skeletons
or matrices.

where σ′m and σ′M are effective stresses in the nanopore and micro-fracture skeletons of Fig. 3. Rewriting the213

effective stress relation Eq. (53) in the expanded form using above two equations gives214

ψm (σ + pmb) + ψM (σ + pMb) = ψmσ′m + ψMσ′M . (59)

This equation holds for any ψM (and ψm), so we must have215

σ + pmb = σ′m , σ + pMb = σ′M , (60)

which means that216

σ′m − pmb = σ′M − pMb . (61)

Taking the trace and applying the material time derivative with respect to solid motion gives217

dσ′m
dt
− dσ′M

dt
=

(
dpm
dt
− dpM

dt

)
b , (62)

where σ′m = tr(σ′m)/3, σ′M = tr(σ′M )/3, and b = tr(b)/3.218

In terms of the volumetric strain in the nanopore and micro-fracture skeletons, θm and θM , respectively,219

we assume linear elasticity and rewrite the foregoing equations as220

Ke
m

dθm
dt
−Ke

M

dθM
dt

=

(
dpm
dt
− dpM

dt

)
b , (63)

where Ke
m and Ke

M are the elastic bulk moduli of the nanopore and micro-fracture skeletons, respectively221

(not to be confused with the fluid bulk moduli Km and KM ). Finally, from Fig. 3, we recognize that if the222

height of the REV remains unchanged, we can represent dθm/dt and dθM/dt as223
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dθm
dt

= − 1

1− ψM

dψM

dt
,

dθM
dt

=
1

ψM

dψM

dt
. (64)

Substituting Eq. (64) into Eq. (63) yields the poroelastic equation224

dψM

dt
=

1

C

(
dpM
dt
− dpm

dt

)
, (65)

where225

C =
1

b

(
Ke

m

1− ψM
+
Ke

M

ψM

)
(66)

is a modulus describing the change in internal structure of the material. We remark that a constitutive226

law relating the variation of pore fraction ψM with pore pressure difference pM − pm is consistent with the227

internal energy equation for double porosity media developed by Borja and Choo [13]. We also note that228

only one combined coefficient C is needed to describe the material response, although its physical meaning is229

based on the two elasticity constants Ke
m and Ke

M .230

Now we can rewrite Eqs. (49) and (50) in terms of the primary unknown variables pm, pM , and ε. Recall231

that232
dφm

dt
= −ψm dφs

dt
− φdψM

dt
(67)

and233
dφM

dt
= −ψM dφs

dt
+ φ

dψM

dt
. (68)

Thus, we can combine Eqs. (54) and (65) to obtain equivalent forms of Eqs. (49) and (50) as234

ψmb :
dε

dt
+

1

Km
(∇pm) · qm +∇ · qm + SmM

dpM
dt

+ Smm
dpm
dt

=
cm

ρm
(69)

and235

ψMb :
dε

dt
+

1

KM
(∇pM ) · qM +∇ · qM + SMM

dpM
dt

+ SMm
dpm
dt

=
cM

ρM
. (70)

where236
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Smm =
βψmψm

Ks
+
φm

Km
− ωm − φ

C

SMM =
βψMψM

Ks
+
φM

KM
+
ωM + φ

C

SmM =
βψmψM

Ks
+
ωm − φ
C

SMm =
βψmψM

Ks
− ωM + φ

C





(71)

are storage coefficients. Equations (69) and (70) can then be used in combination with balance of linear237

momentum to solve coupled systems based on a u/pM/pm formulation [18, 19, 56].238

In calculating the coefficients of Equations (69) and (70), we can further assume that239

ωm =
β (pM − pm)ψm

Ks
� 1 , ωM =

β (pM − pm)ψM

Ks
� 1 , (72)

since |pM − pm| /Ks is on the order of intrinsic strain [9]. In this case, the storage coefficients reduce to the240

forms241

Smm =
βψmψm

Ks
+
φm

Km
+
φ

C

SMM =
βψMψM

Ks
+
φM

KM
+
φ

C

SmM = SMm =
βψmψM

Ks
− φ

C





, (73)

i.e., the matrix of storage coefficients becomes symmetric. Thus, all the coefficients of dε/dt, dpM/dt, and242

dpm/dt are “constants” in the sense that they do not depend on the primary unknown variables. Furthermore,243

it is also reasonable to assume that the pressures pM and pm do not affect the density terms in qM and qm,244

i.e., qM = qM (∇pM , ρrefg) and qm = qm (∇pm, ρrefg), where ρref is the reference (constant) fluid density245

and g is the gravity acceleration vector.246

Finally, we can combine Eqs. (69) and (70) to obtain the total flow equation. The result reads247

b :
dε

dt
+

1

Mm

dpm
dt

+
1

MM

dpM
dt

+
1

Km
(∇pm) · qm

+
1

KM
(∇pM ) · qM +∇ · qt =

cm

ρm
+
cM

ρM
, (74)

whereMm andMM are the Biot moduli defined as248

1

Mm
=

(
β

Ks
+

φ

Km

)
ψm − β(pM − pm)

KsC
,

1

MM
=

(
β

Ks
+

φ

KM

)
ψM +

β(pM − pm)

KsC
, (75)
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φ is the porosity, and qt = qm + qM is the resultant total flux vector. Eq. (74) is analogous to the pressure249

equation of multiphase flow through porous media [47].250

4 Poroelastic coefficients251

4.1 Elastic coefficients252

Before illustrating how Eqs. (69) and (70) may be used, we first consider a transversely isotropic elastic solid253

characterized by an elastic moduli tensor Ce of the form254

Ce = λe1⊗ 1 + 2µT I + ae (1⊗M +M ⊗ 1)

+ beM ⊗M + 2 (µL − µT ) (M � 1 + 1�M) , (76)

where (A�B)ijkl = (AikBjl +AilBik) /2, I is the symmetric fourth-order identity tensor, M = n⊗n is the255

microstructure tensor, n is the unit normal vector to the bedding plane, and λe, µL, µT , ae, and be are the256

five material elastic constants. The subscript (·)T (bed-parallel BP) pertains to the plane of isotropy, and257

subscript (·)L (bed-normal BN) pertains to the direction perpendicular to the plane of isotropy.258

In practice, we do not determine λe, µL, µT , ae, and be directly from laboratory experiments. Instead,259

we obtain these constants indirectly from the following procedure. First, we perform the following matrix260

inversion261 


Ce
11 0

0 Ce
22


 =



Se
11 0

0 Se
22




−1

, (77)

where 0 represents a 3× 3 null matrix. The remaining submatrices are262

Ce
11 =




λe + 2µT λe λe + ae

λe λe + 2µT λe + ae

λe + ae λe + ae λe + 2µ̃



, (78)

where µ̃ = 2µL − µT + ae + be/2, and263

Ce
22 =




µT 0 0

0 µL 0

0 0 µL



. (79)
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The compliance submatrices are264

Se
11 =




1/Eh −νhh/Eh −νvh/Ev

−νhh/Eh 1/Eh −νvh/Ev

−νhv/Eh −νhv/Eh 1/Ev




(80)

and265

Se
22 =




2 (1 + νhh)/Eh 0 0

0 1/Gvh 0

0 0 1/Gvh



. (81)

In the above four submatrices, Ev and Eh are Young’s moduli in v and h directions, νhh, νvh, and νhv266

are Poisson’s ratios, and Gvh is the shear modulus. These constants are directly measurable in laboratory267

experiments [38]. Poisson’s ratios νhv and νvh are not independent because we have268

νvh
Ev

=
νhv
Eh

, (82)

which guarantees symmetry of the compliance matrix. Note the matrix on the LHS of Eq. (77) is exactly the269

Voigt form of Ce in Eq. (76) when n = ez = [0, 0, 1]T .270

4.2 Comparison of poroelastic coefficients271

To further illustrate the use of formulas (69) and (70), we compare the calculated values of the poroelastic272

coefficients with those obtained by Berryman and Pride [8] and Khalili and Selvadurai [29]. To this end, we273

elucidate the differences in the mathematical formulations adopted in their models. Berryman and Pride274

considered an isotropic double porosity material with six basic variables, namely, the mean total stress σ,275

volumetric strain ε, fluid pressures pM and pm, and fluid content variations ζM and ζm. In terms of these276

variables, they formulated a set of linear constitutive equations of the form277





ε

−ζm
−ζM





=




a11 a12 a13

a12 a22 a23

a13 a23 a33








σ

−pm
−pM




, (83)

where a11 through a33 are all constant coefficients. The flow continuity equations are given as [37]278

17



∂ζm
∂t

+∇ · qm = γ (pM − pm) , (84)

279
∂ζM
∂t

+∇ · qM = γ (pm − pM ) , (85)

where γ is the leakage parameter. This approach is a phenomenological or micromechanical approach for280

obtaining the poroelastic coefficients, which is different from what we have presented in Section 3.281

In order to rewrite Eqs. (84) and (85) in terms of the primary unknown variables adopted in our formulation,282

we need to move the term σ in Eq. (83) to the LHS and the term ε to the RHS. The result reads283

σ =
ε

a11
+
a12
a11

pm +
a13
a11

pM , (86)

284
ζm = −a12

a11
ε+ smmpm + smMpM , (87)

and285

ζM = −a13
a11

ε+ sMmpm + sMMpM . (88)

where the storage coefficients are given by286

smm = a22 −
a212
a11

sMM = a33 −
a213
a11

smM = sMm = a23 −
a12a13
a11





. (89)

From the above three equations, we identify the scalar Biot coefficients of the Berryman-Pride isotropic287

double porosity model as −a12/a11 (for nanopores or matrix) and −a13/a11 (for micro-fractures). As for the288

formulation proposed by Khalili and Selvadurai [29], we tune the values of Kp (bulk modulus of the porous289

blocks), Kb, and Ks in their formulation so as to obtain the same Biot coefficients −a12/a11 and −a13/a11 of290

the Berryman-Pride model. The result reads291

Kb =
1

a11
, Kp =

Kb

1 + (a13/a11)
, Ks =

1

a11 + a12 + a13
. (90)

while the fluid content variations are given by292

ζ̊m = α1ε+ s̊mMpM + s̊mmpm (91)
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and293

ζ̊M = α2ε+ s̊Mmpm + s̊MMpM , (92)

where the storage coefficients are294

s̊mm =
α2 − φM
Kp

+
α1 − φm − α2 + φM

Ks
+
φm

Km

s̊MM =
α2 − φM
Kp

+
φM

KM

s̊mM = s̊Mm =
α2 − φM
Ks

− α2 − φM
Kp





, (93)

and where α1 = Kb/Kp −Kb/Ks = −a12/a11 and α2 = 1−Kb/Kp = −a13/a11. Note that we have modified295

the notation for ζm and ζM to indicate that the Khalili-Selvadurai constitutive formulation is not the same296

as the Berryman-Pride formulation. By substituting these constitutive laws into Eqs. (84) and (85), it is now297

possible to compare the poroelastic coefficients with those used in Eqs. (69) and (70).298

Table 1 presents a set of input parameters used in these constitutive relations. We consider two types299

of material, Chelmsford granite and Weber sandstone, since they are well-characterized by laboratory data.300

Tables 2–4 display the results of calculations using the above three double-porosity frameworks. By comparing301

these three frameworks, we find that the Biot coefficients of our method are quite different from the other two302

methods, which is because we use pore fractions (ψM and ψm) as weights to obtain p̄ in Fig. 2, while different303

weighting schemes were adopted in [8, 29]. Nevertheless, the total Biot coefficient matches well among the three304

methods. The main dependence on the last three rows of Table 2 (i.e. the storage coefficients, ignoring the ϕm305

and ϕM terms) is in the value of C, and by tuning the value of C, we find that the agreement of the storage306

coefficients with those of the other two methods is quite good for both the granite and sandstone examples. In307

particular, we find the off-diagonal storage coefficients SMm, sMm, and s̊Mm have a negative value for both308

rocks, which might also be true for other parameter settings. Furthermore, it must be emphasized that our309

approach is the only one that can handle an anisotropic macroscopic system. In terms of the time derivative,310

our approach adopts the material time derivative for solid and fluid, while the other two approaches simply311

use partial time derivative as an approximation, compare Eqs. (69) and (70) with Eqs. (84) and (85), for312

example. This facilitates an easier extension of our theory to the finite deformation regime since the material313

time derivative already carries the convected term.314

19



Table 1. Material parameters. Note that Berryman and Pride [8] did not provide the values of Eh, Ev, Gvh, νhh, and
νvh, so they were deduced by setting 1 : Ce : 1/9 ≈ 1/a11. In addition, they determined the values of a11 through a33
from a large number of other material parameters, see their Table 1 and Table B1.

Parameter Chelmsford granite Weber sandstone

a11 (GPa−1) 0.125 0.250
a12 (GPa−1) −0.040 −0.073
a13 (GPa−1) −0.067 −0.150
a22 (GPa−1) 0.041 0.100
a23 (GPa−1) −0.0010 −0.0003
a33 (GPa−1) 0.070 0.152
Ks (GPa) 53.6 37.3
Km = KM = Kf (GPa) 3.3 3.3
Porosity φm 0.001 0.095
Porosity φM 0.011 0.010
Young’s modulus Eh (GPa) 13.0 7.8
Young’s modulus Ev (GPa) 8.5 5.0
Shear modulus Gvh (GPa) 4.0 3.0
Poisson’s ratio νhh 0.18 0.15
Poisson’s ratio νvh 0.25 0.20
Vector n ez = [0, 0, 1]T ez = [0, 0, 1]T

Intermediate modulus C (GPa) 0.5 3.2

Table 2. Double porosity and state variables for the proposed formulation. Note that the storage coefficients are
multipliers of material time derivatives. Furthermore, the results in this table are invariant with respect to the vector
n given in Table 1.

Variable/coefficient Granite Sandstone

tr(ψmb)/3 for nanopores 0.077 0.812
tr(ψMb)/3 for micro-fractures 0.773 0.081
Intermediate variable β 0.838 0.788
Storage coefficient Smm (GPa−1) 0.025 0.079
Storage coefficient SMM (GPa−1) 0.040 0.036
Storage coefficient SMm (GPa−1) −0.023 −0.031

Table 3. Berryman and Pride [8] double porosity coefficients.

Coefficient Granite Sandstone

α1 for nanopores 0.318 0.292
α2 for micro-fractures 0.533 0.600
Storage coefficient smm (GPa−1) 0.028 0.078
Storage coefficient sMM (GPa−1) 0.034 0.062
Storage coefficient sMm (GPa−1) −0.022 −0.044

5 Closure315

We have utilized the principle of superposition to derive poroelastic coefficients for single and double porosity316

media. The resulting conservation laws are exact for single porosity media and are consistent with those317
20



Table 4. Khalili and Selvadurai [29] double porosity coefficients.

Coefficient Granite Sandstone

α1 for nanopores 0.318 0.292
α2 for micro-fractures 0.533 0.600
Storage coefficient s̊mm (GPa−1) 0.027 0.077
Storage coefficient s̊MM (GPa−1) 0.034 0.062
Storage coefficient s̊Mm (GPa−1) −0.021 −0.043

derived in [17, 58]. For double porosity media, we derived an evolution law for total porosity φ by introducing318

the weighted pore fluid pressure p̄ = ψMpM + ψmpm in the equivalent single porosity structure, which is319

consistent with the results of Borja and Koliji [11]. We then adopted the effective stress concept to derive320

an evolution law for the pore fraction ψM or ψm. Identical results were obtained by using different loading321

paths, thus affirming the invariance of the principle of superposition with respect to sequence of loading.322

The resulting formulas for double porosity media require fewer material parameters than those proposed323

by other authors while delivering a comparable performance. Thus, the proposed approach is useful whenever324

the unknown parameters cannot be readily determined in the laboratory. Provided that the processes325

involved are reversible, extension of this work to multi-field coupling, such as thermo-hydro-chemo-mechanical326

(THCM) coupling, is possible. However, the principle of superposition cannot be applied to irreversible or327

path-dependent processes, such as processes involving elastoplastic deformations. In this case, the formulation328

must be complemented by thermodynamical principles to accommodate the effect of plastic dissipation [12].329

Nevertheless, the theory presented in this paper is still very useful for a wide variety of applications given the330

prominent role of poroelasticity in the scientific literature.331
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Appendix A: An alternative superposition337

In this Appendix, we derive the effective stress equation using the principle of superposition but with an338

alternative sequence of loading on an elementary volume shown in Fig. 4. As noted earlier, the result should339

not depend on the sequence of loading, and here we illustrate a more elaborate loading scenario than the one340

presented earlier. In loading configuration (a) of Fig. 4, the volume is subjected to a total stress of (σ + pM1)341

with no internal fluid pressure in either the nanopores or the micro-fractures. The associated strain in the342

solid matrix is then calculated as343

ε(a) = (Ce)−1 : (σ + pM1) , (94)

where Ce is the previously defined drained elasticity tensor for the double-porosity medium. For loading344

configuration (b), the solid matrix is subjected to isotropic deformation equal to the isotropic strain in the345

solid constituent, and so we write346

ε(b) = − pm
3Ks

1 . (95)

Loading configuration (c) shows the volume under an isotropic stress of −(pM − pm)1 with a pore fluid347

pressure of (pM − pm) acting in the micro-fractures and zero in the nanopores. Because both pore scales are348

statistically distributed throughout the entire volume, the loading is equivalent to having all of the pore349

spaces subjected to a uniform pressure of ψM (pM − pm), which we further analyze in Fig. 5.350

(a) (b) (c)

Fig. 4. Superposition in poroelasticity: Phase diagram for a double-porosity volume with solid represented by the
shaded area and pores represented by the white area. Volume is subjected to a tensorial stress indicated above
each diagram; numbers inside the white area are the generated pore fluid pressures in the nanopores (pm) and
micro-fractures (pM ).

In Fig. 5, loading configuration (c) is replaced with loading configuration (d), which in turn is represented351

as the superposition of loading configurations (e) and (f). In loading configuration (e), the volume is subjected352

22



(e)(c) (d) (f)

Fig. 5. Superposition in poroelasticity: Phase diagram for a double-porosity volume with solid represented by the
shaded area and pores represented by the white area. Loading configuration (c) is equivalent to loading configuration
(d), which is represented as the superposition of loading configurations (e) and (f).

to a total load of −(1−ψM )(pM − pm)1 with no pressure within the pores. This results in a drained isotropic353

deformation of the solid skeleton equal to354

ε(e) = −(Ce)−1 : (1− ψM )(pM − pm)1 . (96)

In loading configuration (f), the solid constituent is subjected to an isotropic deformation equal to the355

isotropic strain in the solid constituent, which is given by356

ε(f) = −ψ
M (pM − pm)

3Ks
1 . (97)

Adding all four components of strain yields the total strain in the solid frame, equal to357

ε = ε(a) + ε(b) + ε(e) + ε(f)

= (Ce)−1 : (σ + p̄1)− p̄

3Ks
1 , (98)

where p̄ is the same mean pore fluid pressure defined in Eq. (52). Premultiplying both sides by Ce and noting358

once again that Ce : ε is the effective Cauchy stress σ′ yields Eq. (53).359
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