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Summary. Closed-form expressions for poroelastic coefficients are derived for anisotropic materials exhibiting single
and double porosity. A novel feature of the formulation is the use of the principle of superposition to derive the governing
mass conservation equations from which analytical expressions for the Biot tensor and Biot moduli, among others,
are derived. For single porosity media, the mass conservation equation derived from the principle of superposition is
shown to be identical to the one derived from continuum principle of thermodynamics, thus confirming the veracity of
both formulations and suggesting that this conservation equation can be derived in more than one way. To provide
further insight into the theory, numerical values of the poroelastic coefficients are calculated for granite and sandstone
that are consistent with the material parameters reported by prominent authors. In this way, modelers are guided on

how to determine these coefficients in the event that they use the theory for full-scale modeling and simulations.

Keywords. Anisotropy, double porosity, poroelasticity, principle of superposition

1 Introduction

A large number of existing reservoirs may be categorized as naturally fractured [5, 15, 16, 21, 22, 24, 25, 26,
32, 33, 34, 44, 45]. By this we usually refer to materials with distributed discontinuities that they exhibit
two very distinct porous networks. Roughly speaking, the first porous network is formed of penny-shaped
cracks or fissures mainly due to tectonic activities, while the second is formed of rounded pores [20]. As for
their characteristics, the fracture networks are characterized by low storage and high permeability, whereas
the porous blocks are characterized by high storage and low permeability [55]. As a result, the behaviors
of fractured reservoirs are considerably different from those of conventional reservoirs [25], which could

be reflected in the soil consolidation, groundwater flow, solute transport, and gas/oil production [3]. Until
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now, the modeling of fractured reservoirs is still one of the most challenging activities in geomechanics and
geosciences.

Over the last 50 years, numerous models with different degrees of sophistication have been proposed for
porous materials, which can be divided into three categories. In the earliest category, a fractured system was
grossly treated as an equivalent single porosity continuum [40], and the existence of fractures or cracks is
reflected in the material coefficients such as stiffness, which may be orders of magnitude different from those
of a homogeneous medium [3]. However, this approach has a number of drawbacks such as the identification
of the representative blocks and the determination of equivalent permeability values [3, 32]. On the contrary,
the second category is known as the explicit (direct) modeling approach such as the discrete fracture network
[6, 23, 27, 48], which allows one to account for each length scale directly within a model. However, the very
large number of micro-fractures in the unconventional reservoir [37] could make the direct simulation of
discrete fracture networks computationally prohibitive [1, 2].

The third category is the double porosity model [4, 50], which assumed that two pore regions overlap in a
computational domain. The main idea is that for every physical point in space, there may be two scales of
porosity, one representing the average porosity in the fracture network and the other in the porous blocks [20].
This idealization may be thought of as an extreme case of the crack density model of Wong [53] when the
micro-fracture density becomes very high. The mathematical basis for this model is known as mixture theory
in which any material in a composite medium that is significantly different from those of other intervening
materials deserves a separate description. This leads to two mass conservation equations, one for each of
the foregoing porosity regions. These equations are coupled by a leakage (source/sink) term [30, 36, 37, 42].
Nowadays, the double porosity concept has been widely used in civil engineering, energy resource engineering,
and many other related fields of engineering [3, 32].

Previous formulations of poroelasticity in double porosity media have assumed isotropy in both deformation
and fluid flow [3, 7, 18, 19, 25, 29, 31, 35, 36, 46, 52, 59]. However, many geologic materials have exhibited
anisotropy in either or both deformation and fluid flow responses [14, 28, 41, 43, 49, 54, 57, 60]. In this
work, we consider a special case of anisotropy known as transverse isotropy, or cross-anisotropy, which is
characterized by a plane on which the response is isotropic and an axis perpendicuar to this plane on which
the response is anisotropic. For a single-porosity medium, the effect of transverse isotropy has already been
incorporated into the poroelasticity equations [17, 49, 58]. For a double-porosity medium, however, its effect

has not been clearly elucidated in light of the limitations imposed by current laboratory testing procedures.
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The aim of this paper is to address the above-mentioned knowledge gap in the poroelasticity of anisotropic
double-porosity media. A novel feature of the mathematical formulation is the use of the principle of
superposition in combination with mixture theory to arrive at the governing mass balance equations. The
mathematical formulation is innovative because it leads to a result that is identical to what has been developed
previously using continuum principles of thermodynamics [58], but following a different route. It is the first
time, to the authors’ knowledge, that these new formulas and interpretations are presented within the context
of poromechanics.

However, we emphasize at the outset that the principle of superposition is applied in this paper at a fixed
hydromechanical state where only mechanical deformation is involved, and not from one hydromechanical
state to another where dissipative processes would render the principle inapplicable. Furthermore, we restrict
the developments to linear elasticity. Nevertheless, even with the assumption of poroelasticity, the parameters
or coefficients of a model are usually arbitrarily assumed in the literature, and their fundamental origins were
not clearly established. In this respect, the results of this paper are useful in shedding light onto the physical
meaning of the governing conservation equations and the relevant poroelastic coefficients.

The paper is organized as follows: Based on mixture theory, mass conservation equations are first
formulated in Section 2 for single porosity media, where the evolution laws for the volume fractions are
derived. To this end, we make use of the principle of superposition for anisotropic single porosity media to
obtain the poroelastic coefficients and compare them with those derived in [17, 58]. In Section 3 we extend
the formulation to anisotropic double porosity media and derive the corresponding poroelastic coefficients
analytically. The elastic moduli for transversely isotropic materials are discussed in Section 4, where the
relevant poroelastic coefficients for two types of rock are also calculated and compared with those derived by

prominent authors [8, 29]. Finally, conclusions are given in Section 5.

2 Single porosity media

In the following discussion and throughout this paper, we assume that the solid deformation is infinitesimal
in the sense that the domain of the problem does not change appreciably. We denote by V' a representative
elementary volume (REV) consisting of a mixture of solid and fluid. Let ¢* and ¢/ represent the volume

fractions of solid and fluid, respectively, defined as

Vs V
¢S:7a ¢f:7f7 (1)
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where V; and V; are volumes of solid and fluid in V', respectively. The closure condition on the volume

fractions is

¢ +¢l =1. (2)

The partial mass densities of the solid and fluid are given by

p*=¢ps,  pl=¢lpy, (3)

where ps and py are the intrinsic mass densities of solid and fluid, respectively. The total mass density of the

mixture is given by the sum

p=p"+p. (4)

We denote the material time derivatives following the motions of solid and fluid by d(-)/dt and d7(-)/dt,

respectively. The mass balance equations for solid and fluid, assuming no mass exchanges between them, take

the form
d S
L+ PV v =0, (5)
df pf
?ﬂ)fVVf:O, (6)

where v and v are the intrinsic velocities of solid and fluid particles, respectively. Written in terms of p,
and py, the conservation equations take the form
de® | ¢°dps

dt +E de

+¢°V.-v=0, (7)

df of Qlfdf/?f

IV .v, =
a or dt + ¢! V-vy=0. (8)

Assuming barotropic flow, the constitutive equation relating density and pressure in the solid is given by

1dps 1 dps
ps dt K, dt’

9)

where ps and K are the intrinsic pressure and bulk modulus in the solid. Substituting in Eq. (7) yields

do* , ¢ dp,
dt K, dt

+¢°V-v=0. (10)
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For the fluid, we take a similar intrinsic constitutive relation of the form

1dfpr 1 dp
pr dt Ky dt ’

where p = p; is the intrinsic pressure in the fluid. Substituting into Eq. (8) gives

dfef  of dfp f
R . =0. 12
a TR a oV ove=0 (12)

We recall that the material time derivative following the fluid motion is related to the material time

derivative following the solid motion through the equation
— = =L V() ¥y, (13)

where vy = vy — v is the relative velocity of fluid with respect to solid. Thus, for the fluid we obtain

d¢!  ¢f dp 1 f
. . V-v= 14
i +det+Kf(Vp) q+V.-q+¢ v=0, (14)

where

q=¢'v; (15)

is the superficial Darcy velocity.

The total Cauchy stress tensor o may be written as the sum of partial stress tensors in the form
o=0¢c, — ¢l pl, (16)

where o is the intrinsic stress in the solid (force in solid per unit area of solid), and 1 is the second-order

identity tensor. We note that the intrinsic solid stress has the form
os=—psl+ss, (17)

where p; is the intrinsic solid pressure and s is the deviatoric component of o ;. However, it is also common
knowledge that part of the total stress tensor o may be ascribed to an effective stress o’ that depends on

solely on the deformation of the solid frame. For linear elasticity, the relation takes the form
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o' =C°:€, (18)

where € is the small strain tensor describing the deformation of the solid frame, and C€ is a rank-four tensor
(with major and minor symmetries) characterizing the elastic isotropy or anisotropy of the porous material,

see Section 4.

o o+pl —pl

(a) (b)

Fig. 1. Superposition in poroelasticity: Phase diagram for a single porosity volume with solid represented by the
shaded area and pores represented by the white area. Volume is subjected to a tensorial stress indicated above each
diagram; number inside the white area is the generated pore fluid pressure.

To determine the component of fluid pressure p that complements the effective stress o’, we make use of
the principle of superposition shown in Fig. 1. In loading configuration (a) of this figure, the porous volume is
subjected to a total stress of (o + pl) with no internal fluid pressure within the pores, thus resembling a dry
condition. In this case, the load is borne completely by the solid frame. In loading configuration (b), on the
other hand, a total stress of —p1 is applied to the same volume that generates an internal fluid pressure p
within it. This second load is borne completely by the solid constituent. Superposition of these two loading
configurations yields the original problem.

Since the internal fluid pressure is zero for loading configuration (a), the strain in the solid matrix can be
calculated as

e =(C) i (o +pl) (19)

where (C¢)™" is the elastic compliance tensor under dry (or drained) condition. For loading configuration (b),
on the other hand, the solid matrix is subjected to isotropic deformation equal to the isotropic strain in the

solid constituent, i.e.,

O —_ Py 2
€ 3L (20)
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The sum of these two strains represents the total strain in the solid frame, i.e.,

b

e=€e9 e =(C) (o +p1) - 3K51' (21)
Pre-multiplying both sides by C¢ yields the effective Cauchy stress,
o'=C°:e=0+pb = o=0c —pb, (22)
where
b-1-S (23)

is the same Biot tensor derived by Zhao and Borja [58]. However, it must be noted that Zhao and Borja
employed continuum thermodynamics to arrive at the above result, whereas the present formulation makes
use of the superposition principle. That the same result is obtained via two different methods is noteworthy

since one result verifies the other, see also the expression derived by Cheng [17]. We note that for isotropic

b:(1—§>1:a1, (24)

S

elasticity the Biot tensor reduces to

where K is the elastic bulk modulus of the solid frame and o« = 1 — K/ K is the familiar Biot coefficient, see
Borja [10]. For rocks, typical values of « range from 0.6 to 0.9 [39].

We next use the same superposition principle to evaluate the remaining dependent variable in the balance
of mass for the solid phase, namely, either the mass density p, in Eq. (7) or the pressure ps in Eq. (10). Let
us first define 6, as the intrinsic volumetric strain in the solid constituent, which can be decomposed into Gga)
and 9§b) following the superposition procedure. For loading configuration (a) shown in Fig. 1, the intrinsic
Cauchy stress in the solid constituent is (o + p1) /¢°, while the intrinsic mean normal stress is (o + p) /¢°,

where o = tr(o)/3. Thus, the intrinsic volumetric strain in the solid (assuming a constant Kj) is

poy - Lotp 1 =¢'p—dlptp p-ps

25
) Ky ¢° K o K (25)
For loading configuration (b) the solid constituent is subjected to the fluid pressure p, so
po) — _ P 2
S KS ( 6)
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Adding the two and taking the material time derivative following the solid motion yields

g, det” e 1 [do
At dt dt  ¢K, | dt

do®
dt |~

o' 2 () (27)

From solid mechanics, we know the intrinsic volumetric strain rate in solid df,/d¢ is related to the change in

ps through the following equation, assuming the solid mass is conserved

a6, 1 dp,

=—— . 28
dt ps dt (28)
After substituting Eq. (27) and Eq. (28) into Eq. (7) and collecting terms, we obtain
p—ps\ do’ 1 (do rdp
1 _ | == = SV -v=0. 2
(+Ks>dt Ks(dt+¢dt +eVev=0 (29)
We note that
% =0 <« 1, (30)
see [58]. Thus, the balance of mass for solid takes the simpler form
de® 1 (do sdp
[ == £ SV .-v=0. 1
dt Ks(dt+¢dt TVov=0 (31)
The final step is to determine an expression for do/dt.
From the effective stress relation Eq. (22), we obtain
1:C¢:€ 1:Ce:1
— 1= "= 32
o (1) (32)

by taking the trace of both sides. Next, by taking the material time derivatives of both sides and solving, we

obtain

do 1:C¢ de 1:Ce:1\ dp

dat 3 ‘dt_(_ 9K, )dt' (33)
Substituting back into Eq. (31) and collecting terms yields

de¢® d 1:C¢ d

L S8 Vv =0, (34)

dt K, dt 3K, ~ dt

where
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1:Ce:1
=1-—¢ — )
B ¢ oK. (35)
For the fluid phase, we add Eq. (14) and Eq. (34) to obtain
de 1 dp
b.—dt+—Mfdt+—Kf(Vp)-q+V~q—0, (36)
where M is the Biot modulus, defined as
18 ¢
MTK K 37

Equation (36) can be used in combination with balance of linear momentum to solve coupled systems with

the u/p formulation [51, 58].

3 Double porosity media

We denote by V' a representative elementary volume (REV) consisting of a mixture of solid with double porosity.
Let ¢°, ™, and ¢™ represent the volume fractions of solid, nanopores, and micro-fractures, respectively,

defined as

p=1r, gm=tm, gl (39)

where Vi, V., and V), are the volumes of solid, nanopores, and micro-fractures contained in V. The closure
condition on the volume fractions is

¢* + ¢ + oM =1. (39)

The pore fractions represent the proportion of pore volume occupied by the nanopores and micro-fractures,

and are given by
_ ¢M
1—¢s°

m ¢m M
T

(40)

The denominator in these two expressions, 1 — ¢°, is the porosity ¢ of the mixture. The closure condition on
the pore fractions is

P+ M =1. (41)

In what follows, we assume that the nanopores and micro-fractures are filled with the same type of fluid,

which could be either liquid or gas. The partial mass densities of the solid, fluid in the nanopores, and fluid
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in the micro-fractures are given by

PP =¢ps, P =0¢"pm, pM=0"pu, (42)

where ps, pm, and pps are the intrinsic mass densities of the solid, fluid in the nanopores, and fluid in the

micro-fractures, respectively. The total mass density of the mixture is given by the sum

p=p°+p"+pM. (43)

Denoting the material time derivatives following the motions of solid and fluids by d (-) /d¢, d™ (+) /d¢,

and dM (-) /dt, the mass balance equations take the form

d S
d’; oV v =0, (44)
d'fﬂ m
d? + "V vy, =", (45)
dM M
dft) + MV vy =M, (46)

where v, v,,, and v, are the velocities of solid, fluid in the nanopores, and fluid in the micro-fractures,
respectively. We assume in the foregoing equations that the solid mass is conserved, and that the nanopores

and micro-fractures exchange mass at the rates if ¢ and ¢™ per unit total volume. For a closed system,

m+cM=0. (47)

Assuming barotropic flow on the solid and fluids once again, we can write the solid mass balance equation

in terms of 6, defined in Section 2 as

d¢®
dt

(ZSS

do,
5 TV V=0, (48)

t
and the fluid mass balance equations in terms of the intrinsic fluid pressures p,, and py; as

do™ o™ dpm, 1 m o
m +Km o +Km(me) Um + V- + "V v_pm, (49)

10



do™ oM dpy | 1 Y o
i Ty @ TRy (VM) kY du 6TV = (%)

184  where

qm = ¢m (Vm - V) ) qm = ¢M (VM - V) (51)
185  are the superficial Darcy velocities; and K,, and Kj; are the intrinsic fluid bulk moduli.

o o o+ pl —p1

(@) (b)

Fig. 2. Statistically distributed pores allow a double porosity structure to be replaced with a single porosity structure
with mean pore fluid pressure p.

186 To derive the effective stress equation, a key aspect is to recognize the statistically distributed nature of
187  the pores, which allows the double porosity structure to be represented by a single porosity structure with
188  a weighted pore fluid pressure. Consider, for example, the superposition shown in Fig. 2. Here, the double
189  porosity structure is replaced with a statistically equivalent single porosity structure with a weighted pore
190  fluid pressure of j given by [11]

p=0Mpar " pom - (52)

191  Thus we can use the results from Section 2 directly by replacing p with p rather than repeating the whole

192 process of Section 2. Specifically, from Eq. (22), we have

oc=0 —pb=0c"—VMpyb—yv"p.b, (53)

193 where b is the same Biot tensor given in Eq. (23). From Eq. (34), we have

do¢® B dp 1:C° de R _

11
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where 3 is already defined in Eq. (35) with ¢/ replaced by porosity ¢. Note here the time derivative of p
generates an additional term which is the time derivative of pore fraction di)™ /dt, and this term is unique to

double porosity formulation.

Remark. An alternative approach that does not explicitly employ volume averaging of the pore pressures, such
as that shown in Eq. (52), is presented in Appendix A. This latter formulation reinforces the understanding
that the principle of superposition does not depend on the sequence of loading, and that there is more than

one way by which one can get to the same result.

In order to evaluate d¢™ /dt and d¢™ /dt of Egs. (49) and (50), we must develop a constitutive law for
dypM /dt. We refer to the phase diagram shown in Fig. 3, where the REV is partitioned into two superimposed
regions representing the nanopore and micro-fracture skeletons. These two regions must be distinguished from
the nanopore and micro-fracture volumes, which are mainly pore spaces occupied by fluids. The nanopore
and micro-fracture skeletons are themselves superimposed solids and pore spaces. Let V;,;, and V;,, s represent
respective portions of the total volume V occupied by the nanopore and micro-fracture skeletons. The

corresponding volume fractions are
= oM=L M =1, (55)

Since both volume fractions are statistically distributed throughout the entire volume, we would require the

porosities are the same for the nanopore and micro-fracture skeletons, i.e.,

m M
-t S 5

which implies that ¢ = 4™ and M = M.

We next consider following trivial decomposition
o=y"o+ Vo, (57)
and assume the following decomposition for o’

o =ymol + Mo, (58)

12
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Fig. 3. Representation of double porosity structure in terms of superimposed nanopore and micro-fracture skeletons
or matrices.

where o7, and o, are effective stresses in the nanopore and micro-fracture skeletons of Fig. 3. Rewriting the

effective stress relation Eq. (53) in the expanded form using above two equations gives

Y™ (0 + pmb) + VM (0 + pub) = ™o, + Mo, (59)

This equation holds for any ™ (and ™), so we must have

oc+pnb=o0,., o+pub=a)y, (60)

which means that

o1, — Pmb =0y — pub. (61)

Taking the trace and applying the material time derivative with respect to solid motion gives

do! do) d d
Om _ doy _ Pm  APM b, (62)
dt dt dt dt
where o], = tr(o7,)/3, oy = tr(e),)/3, and b = tr(b)/3.
In terms of the volumetric strain in the nanopore and micro-fracture skeletons, 6,, and 6,,, respectively,
we assume linear elasticity and rewrite the foregoing equations as

KC

m dt K]e{l dt (63)

A6y, dby  (dpn,  dpu b
o\ de dt ’

where K¢, and K§, are the elastic bulk moduli of the nanopore and micro-fracture skeletons, respectively
(not to be confused with the fluid bulk moduli K, and Kjs). Finally, from Fig. 3, we recognize that if the

height of the REV remains unchanged, we can represent df,,/dt and df,,/dt as

13



224

225

226

227

228

229

230

231

232

233

234

235

236

6., 1 dgM doy 1 dyM

= — = 4
at 1—oM dt °  dt oM dt (64)
Substituting Eq. (64) into Eq. (63) yields the poroelastic equation
dt _C(dt oAt ) (65)
where
1( K& K¢
Cb(l—wM+z/)M> (66)

is a modulus describing the change in internal structure of the material. We remark that a constitutive
law relating the variation of pore fraction ™ with pore pressure difference pys — py, is consistent with the
internal energy equation for double porosity media developed by Borja and Choo [13]. We also note that
only one combined coefficient C is needed to describe the material response, although its physical meaning is
based on the two elasticity constants K, and K7¥;.

Now we can rewrite Egs. (49) and (50) in terms of the primary unknown variables p,,, pas, and €. Recall

that
d¢m d¢s dw]\/[
S—C — 67
dt v dt ¢ dt (67)
and
do™  yde® Ay
@ -V T (68)
Thus, we can combine Eqgs. (54) and (65) to obtain equivalent forms of Eqgs. (49) and (50) as
de 1 dpm dpm "
my: — e *Am : " =
'(/) dr + K,, (va) q ,+V Qm+S M dr +Smm dt O (69)
and
de 1 dpum dpm _ M
My . N _ . . —_ _— =
CL il o (Vpar) - anr + V- aas + Snin =g + Sum—; v (70)
where

14
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BTy g™ W= ¢
Smm - Ks + Km C

_ pYMypM M Mo
SMM - Ks + K7M + C

_ Byt W -9
SmM - Ks + C
o BN WMo

(71)

are storage coefficients. Equations (69) and (70) can then be used in combination with balance of linear

momentum to solve coupled systems based on a u/pas/p., formulation [18, 19, 56].

In calculating the coefficients of Equations (69) and (70), we can further assume that

m /6 (p]V[ - pm) wm /8 (pM - pm) ¢M
K

K,

wm = <1, wM = <1,

(72)

since |par — pm| /K is on the order of intrinsic strain [9]. In this case, the storage coefficients reduce to the

forms By o p
Smm = KS + Ki + E
_ BwaM ¢JVI ?
Svm = 7-7(5 + = Kor + C )
o BUM g

i.e., the matrix of storage coefficients becomes symmetric. Thus, all the coefficients of de/dt, dpys/dt, and

dp,,/dt are “constants” in the sense that they do not depend on the primary unknown variables. Furthermore,

it is also reasonable to assume that the pressures pys and p,, do not affect the density terms in qu; and qy,,

ie., am = dur (VD pret8) and dm = A (VDm, pret8), where pros is the reference (constant) fluid density

and g is the gravity acceleration vector.

Finally, we can combine Egs. (69) and (70) to obtain the total flow equation. The result reads

de 1 dpm 1 dpum 1
b: — — m) * Om
TR TR Vv TR AL
L Vo) a4 Vg = (74)
Ky par) - dm = Pm pM
where M,,, and M, are the Biot moduli defined as
1 B o B(pr — Pm) 1 B 2 M B(py — Pm)
- (2 P ) ym  PAPM T Pm) - roy Y PAPM 7 Pm) 75
Mo, <K+K)w KC 0 My \K TEy)Y e (™)

15
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¢ is the porosity, and q; = q,, + qus is the resultant total flux vector. Eq. (74) is analogous to the pressure

equation of multiphase flow through porous media [47].

4 Poroelastic coeflicients

4.1 Elastic coefficients

Before illustrating how Egs. (69) and (70) may be used, we first consider a transversely isotropic elastic solid

characterized by an elastic moduli tensor C¢ of the form

C*=XN101+2url+a*(1oM+M®1)

+ M OM +2(pp —pr) MO1+160 M), (76)

where (A ® B)ijkl = (A Bji + AuBix) /2, L is the symmetric fourth-order identity tensor, M = n® n is the
microstructure tensor, n is the unit normal vector to the bedding plane, and \°, pr, pr, a®, and b° are the
five material elastic constants. The subscript (-); (bed-parallel BP) pertains to the plane of isotropy, and
subscript (), (bed-normal BN) pertains to the direction perpendicular to the plane of isotropy.

In practice, we do not determine \®, pr,, pur, a®, and b¢ directly from laboratory experiments. Instead,

we obtain these constants indirectly from the following procedure. First, we perform the following matrix

inversion .
i 0 ¢ 0
11 _ 11 7 (77)
0 Cj 0 S5
where 0 represents a 3 x 3 null matrix. The remaining submatrices are
A+ 2urp ¢ A+ a°
Ci, = A€ A+ 2ur A4a® | (78)
A4a®  A°+a® A +2u
where 1 = 2ur, — pr + a® + b°/2, and
pr 0 0
5= 0 pur O (79)
0 0 pr

16
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The compliance submatrices are

1/Eh _th/Eh _Vvh/Ev
1= —vi/Eyn 1/E, —vyn/Ey (80)

_V}Lv/Eh _Vh'u/Eh I/Ev

and
2 (1 + th)/Eh 0 0
92 = 0 /Gy 0 : (81)
0 0 1/th

In the above four submatrices, F, and E; are Young’s moduli in v and h directions, vup, Vyn, and vy,
are Poisson’s ratios, and G, is the shear modulus. These constants are directly measurable in laboratory

experiments [38]. Poisson’s ratios v, and v, are not independent because we have

Vyh Vhoy
= 82
Ev Eh ’ ( )

which guarantees symmetry of the compliance matrix. Note the matrix on the LHS of Eq. (77) is exactly the

Voigt form of C¢ in Eq. (76) when n = e, = [0,0,1]7.

4.2 Comparison of poroelastic coefficients

To further illustrate the use of formulas (69) and (70), we compare the calculated values of the poroelastic
coefficients with those obtained by Berryman and Pride [8] and Khalili and Selvadurai [29]. To this end, we
elucidate the differences in the mathematical formulations adopted in their models. Berryman and Pride
considered an isotropic double porosity material with six basic variables, namely, the mean total stress o,
volumetric strain ¢, fluid pressures py; and p,,, and fluid content variations (3; and (,,. In terms of these

variables, they formulated a set of linear constitutive equations of the form

€ ai; a2 a3 o
~Cn (= | 12 a22 a3 —Pm (> (83)
—Cm a3 azz ass —pMm

where aq; through azz are all constant coefficients. The flow continuity equations are given as [37]
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292

Im

0
%Jrv-quv(pm—pM), (85)

where v is the leakage parameter. This approach is a phenomenological or micromechanical approach for
obtaining the poroelastic coefficients, which is different from what we have presented in Section 3.
In order to rewrite Eqgs. (84) and (85) in terms of the primary unknown variables adopted in our formulation,

we need to move the term o in Eq. (83) to the LHS and the term € to the RHS. The result reads

€ a12 a13

0=—+—pm+—>Pum, (86)
ail ail ail
a12
Cm = 7Cl76 + SmmPm + SmmMPM , (87)
11
and
a3
(v = i + SMmPm + SMMPM - (88)
11
where the storage coefficients are given by
2
a
Smm = A22 — —12
a11
2
as-
SMM = gz — —2 (89)
ail
12013
SmM = SMm = 023 —
ai1

From the above three equations, we identify the scalar Biot coeflicients of the Berryman-Pride isotropic
double porosity model as —aj2/a11 (for nanopores or matrix) and —ai3/a11 (for micro-fractures). As for the
formulation proposed by Khalili and Selvadurai [29], we tune the values of K, (bulk modulus of the porous
blocks), Kj, and K in their formulation so as to obtain the same Biot coefficients —a12/a11 and —aj3/ai; of

the Berryman-Pride model. The result reads

1 K, 1
Ky=—, Ky=—%*  K=—— 90
"7 an P 1+ (ars/ann) * T apn + a2 + ais (90)

while the fluid content variations are given by

o
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and

Cv = Qoe+ EntmPm + Sarvpa (92)
where the storage coefficients are
s :042—</>M+a1—¢m—0<2+¢M+¢m
e Kp KS KTYL
. as — M M
_ 93
SMM K, + s 5 (93)
i g :a2—¢M_Oé2—¢M
mM Mm Ks Kp

and where on = K},/K, — Kp/Ks = —a12/a11 and ay =1 — K}, /K, = —a13/a11. Note that we have modified
the notation for (,, and (js to indicate that the Khalili-Selvadurai constitutive formulation is not the same
as the Berryman-Pride formulation. By substituting these constitutive laws into Eqs. (84) and (85), it is now
possible to compare the poroelastic coeflicients with those used in Egs. (69) and (70).

Table 1 presents a set of input parameters used in these constitutive relations. We consider two types
of material, Chelmsford granite and Weber sandstone, since they are well-characterized by laboratory data.
Tables 2—4 display the results of calculations using the above three double-porosity frameworks. By comparing
these three frameworks, we find that the Biot coefficients of our method are quite different from the other two
methods, which is because we use pore fractions () and ™) as weights to obtain p in Fig. 2, while different
weighting schemes were adopted in [8, 29]. Nevertheless, the total Biot coefficient matches well among the three
methods. The main dependence on the last three rows of Table 2 (i.e. the storage coefficients, ignoring the ¢™
and oM terms) is in the value of C, and by tuning the value of C, we find that the agreement of the storage
coefficients with those of the other two methods is quite good for both the granite and sandstone examples. In
particular, we find the off-diagonal storage coefficients Sasym, Saprm, and $psy, have a negative value for both
rocks, which might also be true for other parameter settings. Furthermore, it must be emphasized that our
approach is the only one that can handle an anisotropic macroscopic system. In terms of the time derivative,
our approach adopts the material time derivative for solid and fluid, while the other two approaches simply
use partial time derivative as an approximation, compare Eqgs. (69) and (70) with Eqs. (84) and (85), for
example. This facilitates an easier extension of our theory to the finite deformation regime since the material

time derivative already carries the convected term.
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Table 1. Material parameters. Note that Berryman and Pride [8] did not provide the values of Ey, Ey, Guh, Vhn, and
Vyh, s0 they were deduced by setting 1 : C®:1/9 = 1/a11. In addition, they determined the values of ai1 through ass

from a large number of other material parameters, see their Table 1 and Table B1.

Parameter Chelmsford granite Weber sandstone
ail (GPafl) 0.125 0.250
aio (GPa_l) —0.040 —0.073
ais (GPa™?) —0.067 —0.150
a9 (GPa_l) 0.041 0.100
asz (GPa™t) —0.0010 —0.0003
azz (GPa™1) 0.070 0.152
K, (GPa) 53.6 37.3
K., = Ky = Ky (GPa) 3.3 3.3
Porosity ¢™ 0.001 0.095
Porosity ¢™ 0.011 0.010
Young’s modulus Ej;, (GPa) 13.0 7.8
Young’s modulus E, (GPa) 8.5 5.0
Shear modulus G,;, (GPa) 4.0 3.0
Poisson’s ratio vy, 0.18 0.15
Poisson’s ratio v, 0.25 0.20
Vector n e. =1[0,0,1]7 e. =1[0,0,1]7
Intermediate modulus C (GPa) 0.5 3.2

Table 2. Double porosity and state variables for the proposed formulation. Note that the storage coefficients are
multipliers of material time derivatives. Furthermore, the results in this table are invariant with respect to the vector
n given in Table 1.

Variable/coefficient Granite Sandstone
tr(¢™b)/3 for nanopores 0.077 0.812
tr(¢yMb) /3 for micro-fractures 0.773 0.081
Intermediate variable (3 0.838 0.788
Storage coefficient S,,,,,, (GPa™!) 0.025 0.079
Storage coefficient Sysys (GPa™?) 0.040 0.036
Storage coefficient Sy, (GPa™')  —0.023 —0.031

Table 3. Berryman and Pride [8] double porosity coefficients.

Coeflicient Granite Sandstone
ay for nanopores 0.318 0.292
o for micro-fractures 0.533 0.600
Storage coefficient s,,,,, (GPa™1) 0.028 0.078
Storage coefficient sprps (GPa™1) 0.034 0.062
Storage coefficient spr,, (GPa™1)  —0.022 —0.044

315 5 Closure
316  We have utilized the principle of superposition to derive poroelastic coefficients for single and double porosity
317 media. The resulting conservation laws are exact for single porosity media and are consistent with those
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Table 4. Khalili and Selvadurai [29] double porosity coefficients.

Coeflicient Granite Sandstone
ay for nanopores 0.318 0.292
a9 for micro-fractures 0.533 0.600
Storage coefficient &, (GPa™1!) 0.027 0.077
Storage coefficient $y7ys (GPa™1) 0.034 0.062
Storage coefficient $,7,,, (GPa™1)  —0.021 —0.043

derived in [17, 58]. For double porosity media, we derived an evolution law for total porosity ¢ by introducing
the weighted pore fluid pressure p = ¥ pys + ¥™p,, in the equivalent single porosity structure, which is
consistent with the results of Borja and Koliji [11]. We then adopted the effective stress concept to derive
an evolution law for the pore fraction ¥™ or ¢¥™. Identical results were obtained by using different loading
paths, thus affirming the invariance of the principle of superposition with respect to sequence of loading.
The resulting formulas for double porosity media require fewer material parameters than those proposed
by other authors while delivering a comparable performance. Thus, the proposed approach is useful whenever
the unknown parameters cannot be readily determined in the laboratory. Provided that the processes
involved are reversible, extension of this work to multi-field coupling, such as thermo-hydro-chemo-mechanical
(THCM) coupling, is possible. However, the principle of superposition cannot be applied to irreversible or
path-dependent processes, such as processes involving elastoplastic deformations. In this case, the formulation
must be complemented by thermodynamical principles to accommodate the effect of plastic dissipation [12].
Nevertheless, the theory presented in this paper is still very useful for a wide variety of applications given the

prominent role of poroelasticity in the scientific literature.
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Appendix A: An alternative superposition

In this Appendix, we derive the effective stress equation using the principle of superposition but with an
alternative sequence of loading on an elementary volume shown in Fig. 4. As noted earlier, the result should
not depend on the sequence of loading, and here we illustrate a more elaborate loading scenario than the one
presented earlier. In loading configuration (a) of Fig. 4, the volume is subjected to a total stress of (o + pps1)
with no internal fluid pressure in either the nanopores or the micro-fractures. The associated strain in the
solid matrix is then calculated as

e = (C)™ (o +pul), (94)

where C¢ is the previously defined drained elasticity tensor for the double-porosity medium. For loading
configuration (b), the solid matrix is subjected to isotropic deformation equal to the isotropic strain in the

solid constituent, and so we write

e® = ;’I’{” 1. (95)

Loading configuration (c) shows the volume under an isotropic stress of —(pys — pm)1 with a pore fluid
pressure of (ppr — pr) acting in the micro-fractures and zero in the nanopores. Because both pore scales are
statistically distributed throughout the entire volume, the loading is equivalent to having all of the pore

spaces subjected to a uniform pressure of Y™ (pps — pyn ), which we further analyze in Fig. 5.

o o+ pul — pml — (pv — pm)1

(a) (b) (©)

Fig. 4. Superposition in poroelasticity: Phase diagram for a double-porosity volume with solid represented by the
shaded area and pores represented by the white area. Volume is subjected to a tensorial stress indicated above
each diagram; numbers inside the white area are the generated pore fluid pressures in the nanopores (p,) and
micro-fractures (par).

In Fig. 5, loading configuration (c) is replaced with loading configuration (d), which in turn is represented

as the superposition of loading configurations (e) and (f). In loading configuration (e), the volume is subjected
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354

355

356

357

358

359

—(1-v™) —yM

— —pm)1
(B2t = Pm) x(par — pm)1 X(pam — pm)1
M x
(pM _pm)
o= +
(©) (d) (e) ®

Fig. 5. Superposition in poroelasticity: Phase diagram for a double-porosity volume with solid represented by the
shaded area and pores represented by the white area. Loading configuration (c) is equivalent to loading configuration
(d), which is represented as the superposition of loading configurations (e) and (f).

to a total load of —(1 — M )(pas — pm)1 With no pressure within the pores. This results in a drained isotropic

deformation of the solid skeleton equal to
e = —(C)7" (L= M) (par —pm)1. (96)

In loading configuration (f), the solid constituent is subjected to an isotropic deformation equal to the

isotropic strain in the solid constituent, which is given by

M —

Adding all four components of strain yields the total strain in the solid frame, equal to

€= @ 4 ) 4 0 4 )
p

= (Ce)—l (o +p1) — 3.

(98)

where p is the same mean pore fluid pressure defined in Eq. (52). Premultiplying both sides by C¢ and noting

once again that C° : € is the effective Cauchy stress o’ yields Eq. (53).
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