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Abstract—This work investigates quantitative supervisory con-
trol with local mean payoff objectives on discrete event systems
modeled as weighted automata. Weight flows are generated as
new events occur, which are required to satisfy some quantitative
conditions. We focus on the mean weight over a finite number
of events, which serves as a measure to reflect the stability or
robustness of the weight flows. The range of events to evaluate
the mean payoff is termed the window, which slides as new events
occur. Qualitative requirements such as safety and liveness are
also necessary along with quantitative requirements. Supervisory
control is employed to manipulate the operation of the system so
that the requirements are satisfied. We consider two different
scenarios based on whether the window size is fixed or not.
Correspondingly, we formulate two supervisory control problems,
both of which are solved sequentially by first tackling the
qualitative issues and then the quantitative ones. The automaton
model of the system is then transformed to a two-player game
between the supervisor and the environment, where safety and
liveness are enforced. Based on the intermediate results, several
quantitative objectives are then defined to formulate two games,
which correspond to the two proposed supervisory control
problems. Finally we synthesize provably correct supervisors by
solving the games and completely resolve both problems.

Index Terms—discrete event systems, automata, supervisory
control, mean payoff, algorithmic game theory

I. INTRODUCTION

In the context of discrete event systems (DES), supervisory
control is a central topic. The plant under control is usually
modeled as a finite discrete structure and a specification is
given as the desired behavior of the plant. The supervisor
restricts the behavior of the plant by enabling or disabling
some events so that the specification is achieved [6], [44].

Ever since supervisory control theory was initiated, it has
been thoroughly investigated in various models of DES,
including automata [41], [49], Petri nets [11], [26], [27]
and other structures [12], [45]. As an important extension,
supervisory control under partial observation has attracted con-
siderable attention, for recent references, see, e.g., [1], [2], [5],
[9], [16], [38], [39], [47]. Particularly, a uniform supervisory
control approach was proposed in [48] to enforce a series of
properties on partially-observed DES. Other mechanisms of
supervisory control have also been developed, such as decen-
tralized control [22], [46], distributed control [21], supervisor
reduction [24], control of timed DES [36], learning based
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supervisor synthesis [10], [50], compositional control [31],
control under attacks [25], [30], [43] and so on. In parallel with
qualitative analysis, quantitative supervisory control has also
been studied, where some quantitative measures are introduced
to evaluate the supervisor’s performance. A classic topic is
optimal supervisory control/stabilization, see, e.g., [14], [15],
[29], [32], [33] for works covering different perspectives.

In many engineering applications, the system generates or
consumes certain resources during its operation. It is critical
to ensure that the long-run average rate or total amount of
resource generation/consumption remains reasonable. Super-
visory control may be employed to enforce such objectives.
Specifically, optimal makespan or throughput supervisors were
discussed in [40], [42], which considered timed automata and
limit average time of strings. More recently, some works
investigated optimal supervisory control under a game the-
oretic framework [19], [34], [35], however, they all focus on
asymptotic properties while ignore transient properties.

Consider supervisory control in power management systems
for hybrid electric vehicles (HEVs), see, e.g., [28]. The super-
visory controller tunes the torque so that either a positive or
negative torque is demanded from the powertrain according
to the driving mode. Power is either generated by the electric
machine or absorbed from the driveline to charge the battery.
Specifically, the rate of power supply should remain high
enough for the stable operation of the vehicle.

Another example is data transmission through a communi-
cation network modeled as a DES. Each packet transmission
can be modeled as an event while the event weights could
represent how many bits are contained in each packet. The
information flow is generated when packets are transmitted
through the network. At each stage, the sender transmits
certain packets according to the receiver’s capacity. After those
packets are successfully received, the sender moves on to the
next stage to start another round of transmission. Inspired by
the flow control mechanism in the communication network, we
may imagine that there is a sliding “window” over the network,
where the window size indicates the available time slots to
send packets. The window size may vary dynamically at each
stage depending on the real time network status. Unfortunately,
the network is not trustworthy and some packets may be lost
due to malfunction or disturbances. Therefore, the integrity of
data would be seriously affected if a high volume of data is
transmitted in a small number of windows and the packets
in those windows are lost. In that sense, it makes sense to
bound the amount of bits transmitted per window to improve
the robustness of network flows against disturbances.

Motivated by the above situations, we explore local mean
payoff supervisory control on weighted discrete event systems
in this paper. Each event is associated a weight which represent
certain resource of interest. With the occurrence of events,



weight flows are generated, also under the control of the
supervisor. Specifically, we consider two supervisory control
scenarios where the supervisor regulates the local mean payoff
to reduce fluctuation beyond pre-specified bounds within a
finite number of events. For both scenarios, qualitative re-
quirements like safety and liveness are also required, i.e., no
undesired state is reached and the system never terminates. The
horizon to evaluate the mean payoff is called as the window
which is sliding with new events occurring.

In the first scenario, the supervisor ensures that local mean
payoff over a finite number of transitions lies above certain
threshold, which is termed a desirable window. Then we
consider a variant called N-step desirable window which
requires that the weight flows satisfy the bounds within a
window of fixed size N. This naturally comes from practical
situations where stable or robust flows should be achieved
in uniformly bounded steps or when the surveillance of flow
status is taken every fixed time units.

Both problems are solved in a sequence. As a first step, we
transform the system model from a weighted automaton to a
two-player game between the supervisor and the environment.
Then we introduce the generic definition of weighted bipartite
transition system (WBTS), which is the game graph. Then a
special WBTS is constructed, where we define some relevant
concepts so as to tackle the safety and liveness issues.

Though the two problems look similar at first glance, they
are solved in totally different manners to resolve quantitative
issues. Two different games are formulated, corresponding
to the two problems. In the first case, results from rotal
payoff games [4] are leveraged to compute the supervisor’s
winning region and an algorithm is proposed to synthesize
supervisors. In the second case, window payoff functions are
defined and another game is formulated. Then we derive the
final solution based on properly unfolding the game graph.
Herein we provide systematic methods to synthesize winning
strategies for both games and show that if the supervisor has
strategies to win the game, then there exist solutions to the
corresponding local mean payoff supervisory control problem.
Note that the solutions to the two problems are incomparable,
thus one solution is not applicable to the other problem.

Under the framework of local mean payoff supervisory
control in this work, the supervisor issues the current com-
mand based on the mean payoff within a limited lookahead,
generating a path. Then it issues a new sequence of decisions
“within the window” upon the occurrence of a new event and a
new path is generated. Limited lookahead supervisory control
has been studied in DES [8], where the supervisor is only
capable of observing limited future events. This is similar
to our framework in the sense of evaluating the supervisor’s
decisions within a limited horizon. However, only qualitative
specifications like safety and nonblockingness are considered
in existing works of limited lookahead supervisory control, so
our framework is significantly different from theirs.

The problem formulations and solution procedures in this
work are also inspired by the literature in algorithmic game
theory in computer science [3], especially quantitative games
like mean payoff games [3] and mean payoff games with
window objectives [7]. Some works leverage results from

algorithmic game theory to investigate problems in DES, such
as [17], [19], [34], [35]. However, they either consider different
supervisory control objectives like limit mean payoff or total
payoff [19], [34], [35] or investigate a totally different problem
like opacity enforcement [17]. To the best of our knowledge,
this paper is the first to consider local mean payoff supervisory
control problems under full observation in DES. A more recent
paper [20] adopted a similar setting while investigated local
mean payoff supervisory control under partial observation.
The following sections are organized as follows. Sec-
tion II describes the system model. Section III formulates
two problems: supervisory control under desirable windows
and supervisory control under N-step desirable windows. In
Section IV we transform the proposed problems into two-
player games and introduce the weighted bipartite transition
system, based on which those problems are partially solved
and the qualitative requirements are enforced. Section V
completely solves the first proposed problem by introducing
and solving a quantitative game. In Section VI, we formulate
and analyze another game to completely solve the second
proposed problem. Finally, Section VII concludes the paper.
A preliminary version of this paper with partial results
appears in [18], which only considers the second problem
discussed in this work. The improvements of the current work
are two-fold: a new problem of local mean payoff supervisory
control is discussed under “unfixed” desirable windows; some
necessary proofs and further analysis concerning the second
problem are provided as well, which are missing in [18].

II. SYSTEM MODEL

We consider a quantitative discrete event system modeled
by a weighted finite-state automaton:

G= (XaEvfa)COaw)

where X is the finite state space, E is the finite set of events,
f:XxE — X is the partial transition function, xg € X is
the initial state and w : E — Z is the weight function that
assigns an integer vector to each event. The weight reflects
change of the quantitative resource associated with each event,
which may be positive or nonpositive. The domain of f can
be extended to X x E* in the standard manner [6] and we still
denote the extended function by f. The language generated by
Gis Z(G)={s€E": f(x0,5)!} where ! means “is defined”.
The function o is additive and its domain can be extended to
E* by letting w(e) =0, w(se) = o(s)+ w(e) for all s € E* and
e € E. In this work, we denote by W the maximum absolute
value of event weights in G, i.e., W = rneeg(|a)(e)|.
e

In G, if f(x1,e) = x for some xj,x, € X and e € E, then
we write x| — x» for simplicity. A run is a finite or infinite
sequence of alternating states and events in the form: r = x| 4,
X LN X,. A run is initial if it starts from the initial
state of G. We denote by Run(G) and Run;,¢(G) the set of runs
and infinite runs in G, respectively. For index 1 <i <n, we
call x; SN e—">xn+1 a suffix of r and x; SN i>)c,-+1 a prefix
of r. In addition, for indexes j and m such that 1 < j <m <n,

ej €jtl1 em . .

we call x; — xj 1 — - —> Xpq1 a fragment of r, which is



a run by itself. Furthermore, we let r(j,m) stand for the run
fragment starting from x; and ending in X, .
el e €n—1 . .

Arunr=x; —xy — --- — X is a cycle if x; =x,, and r
is a simple cycle if Vi,j € {1,2,---n—1}, i# j=xi#x;. If r
is a cycle, the corresponding string eje; - --e,—1 forms a loop,
while the loop is called simple if r is simple. A run is acyclic
if none of its fragments is a cycle, otherwise, it is cyclic.

We discuss safety in a state-based manner and let X,,; C X be
the set of unsafe states in G. The readers may refer to [13] for
how to convert a language-based specification to a state-based
one on an automaton. Marked states usually represent states
of particular interest and concern language nonblockingness,
which is not the focus of this work. Therefore state marking is
not included in our system model. Instead, we consider a weak
version of liveness: G is live if its language .Z(G) is live, i.e.,
Vs € Z(G), Ju € E, s.t. suc Z(G). That is, a transition is
always defined out of any state in G thus every finite run may
be extended to a infinite one. This condition is not restrictive
as it may be relaxed by adding observable self-loops at states
where no active events are defined. We will omit the word
“weak” in the following context when there is no confusion.

The system G is controlled by a supervisor which dy-
namically enables and disables events so that some specifi-
cation is achieved [6]. Formally, a supervisor is a function
S: Z(G) — 2F and we denote by S the set of supervisors.
The event set E is partitioned as E = E.UE,., where E, is the
set of controllable events and E,. is the set of uncontrollable
events. A control decision y € 2F is admissible if E,. C v, i.e.,
no uncontrollable event is disabled. Denote by I' the set of all
admissible control decisions. In this work, all events are ob-
servable and only admissible control decisions are considered,
so controllability is preserved. We use S/G to represent the
controlled system under S, and accordingly denote by .Z(S/G)
the language generated in S/G and Run(S/G) the set of runs in
S/G, respectively. As marked states are not involved in G, we
do not consider the standard nonblokingness of supervisors [6].
In the remainder of the work, a supervisor is called safe and
(weakly) live if its supervised system is both safe and live.

Given r = x| "-‘> X B 1 in G, its (total
welght/payoﬁ‘ is Y7, w(e;) and its mean weight/payoff is

- Z wle
weight within a sliding “window” provides a measure of
stability or robustness of the flows, while the window size
reflects the length of the horizon within which we evaluate
those properties. In contrast to the conventional limit mean
payoff which evaluates the “global” asymptotic performance
of the system, we focus on the local mean payoff in this work.
Note that the local mean payoff is an approximation of the
limit mean payoff since the former will essentially become
the latter when the size of the windows approaches infinity.

In this work, we require the local mean weight to be above
a given threshold and consider two scenarios: one is over
a bounded number of events and the other is over a fixed
number of events. Correspondingly, we have the following two
definitions to evaluate the local mean payoff.

). As illustrated in the introduction section, the mean

Definition 1 (Desirable Window). Given G and mean payoff

. e e e .
bound v € Z, a finite run r =x; = xp = -+ X xi1 in G

1
forms a desirable window if 3¢ < m such that 7 Z o(e;) > .
i=1
A desirable window is formed if the mean payoff turns to be
no less than a given bound within a finite number of events. On
the other hand, we say r in Deﬁnition 1 forms an undesirable

window if V1 < ¢ <m, Zco e;) < v. If we interpret an

=1
undesirable window as deV1at10n from the preferred reference
or disturbance of the normal performance, then it should be
compensated or mitigated by supervisory control.

Definition 2 (N-Step Desirable Window). Given system G,
fixed window size N € NJr and mean payoff bound v € Z, a
finite run r = x1 S —>xN+1 in G forms an N-step
4

i=1

desirable window if 3¢ < N such that

N\»—k

As is seen, an N-step desirable window is a special desirable
window since the length of the desirable window is fixed.
In the remainder of the work, we assume N > 2 to avoid
the case where a one-step desirable window can be trivially
determined by checking each individual event weight in G.
Both Definition 1 and Definition 2 are defined for finite runs.
Then we let the windows slide with new event occurrences
and evaluate the local mean weight for infinite runs.

Definition 3 (Desirable-Window Infinite Run). Given system
G and mean payoff bound v € Z, a run r = x; L, D.e
Runinr(G) is a desirable-window infinite run if 3i > 1 such
that ¥j > i, 3m; > 0, we have that run fragment r(j,j+m;)
forms a desirable window.

Definition 4 (N-Step Desirable-Window Infinite Run). Given
system G, maximum window size N € NT and mean payoff
threshold vE 7, a run r=x; - xp =2 ... € Runiy;(G) is an
N-step desirable-window infinite run if 3i > 1 such that Vj > i,
we have that r(j,j+N) forms an N-step desirable window.

Both Definition 3 and Definition 4 characterize local mean
payoff objectives defined over a finite number of events, which
are in contrast to the limit (global) mean payoff objective
defined over infinite number of events in [19]. Furthermore, it
may be tolerable to accept violations of the mean payoff bound
for a finite number of times in some applications. Therefore,
it seems more practical to enforce the local mean payoff
objective after the system has been operating for a while. That
is why we require that desirable windows (N-Step desirable
windows) be perpetually achieved from certain position x;, not
necessarily the initial state xo of G, in Definition 3 (Defini-
tion 4). In other words, both Definition 3 and Definition 4 are
independent of finite run prefixes. When the system is live,
desirable or N-Step desirable windows may appear infinitely
often. Again we assume that N > 2 in Definition 4.

Notice that the inequalities in both Definitions 1 and 2 are
1 i=(
the same as 7 Z(w(ei) —v) >0, i.e., we may subtract v from

i=1
each event weight and equivalently evaluate whether the mean
payoff is above 0. In the following discussion, we just assume



v = 0 without loss of generality. Mean payoff of runs with
sliding windows of length three is illustrated in Figure 1. As
is seen, the local mean payoff is evaluated every three events
and the window slides to the next position after event e occurs.

initial
state

current . N specification

state
local mean payoffs?

threshold - - - === -
!
sliding window of length 3
Fig. 1. Sliding windows and the local mean payoffs

III. PROBLEM FORMULATION

When safety is violated or the local mean payoffs of some
runs lie outside the prescribed bound, supervisory control
is employed to mitigate those issues. In this section, we
formulate two local mean payoff supervisory control problems:
supervisory control under desirable windows and supervisory
control under N-step desirable windows. In both problems,
supervisors enforce qualitative and quantitative specifications.

Problem 1 (Supervisory Control under Desirable Windows).
Given system G with unsafe state set X,; and mean payoff
bound v € 7, design a supervisor S € S such that: (i) S/G is
both safe and live; (ii) for all r € Runi,£(S/G), r is a desirable-
window infinite run.

In addition to safety and liveness, Problem 1 requires that
every infinite run in the supervised system is a desirable-
window infinite run. Then we fix the size of the desirable
windows and formulate Problem 2 as follows.

Problem 2 (Supervisory Control under N-Step Desirable
Windows). Given system G with the unsafe state set X,; and
fixed window size N € NT, design a supervisor S € S such
that: (i) S/G is both safe and live; (ii) for all r € Ri,r(S/G),
r is an N-step desirable-window infinite run.

Remark 1. Given an infinite run r as in Definition 3, suppose
xj with j > 1 is the first position where a nonnegative total
payoff (desirable window) is achieved, i.e., ¥']_, ®(e;) >0 and
{;1 o(e;) <0 for al% j' < j. By some derivation, we know that
Z{:j, w(e)>0> Z{:_ll w(e;) holds for any j < j, otherwise
it contradicts with x; being the first place where a desirable
window is achieved. So any run fragment r(j', j) also forms
a desirable window. This fact is called inductive property and
we will apply it in the following sections.

Though the two problems only differ in whether the length
of desirable windows is fixed, they will be addressed in
completely different methods in terms of satisfying the quan-
titative properties. In what follows, we first solve Problem 1,
then proceed to Problem 2. For each problem, we tackle the
qualitative requirements before the quantitative ones. We close
the discussion of this section with the following example.

Example 1. Consider the weighted automaton G in Figure 2,
with the only unsafe state xg. The set of controllable events
is E. ={a,b,c,d,e, f} and the set of uncontrollable events is
Eye = {u1,up,u3,us,us,ug}. The weight of each event is drawn
along with the event in the figure.

Obviously, the run x; L x, i) x5 x i) .-~ IS not a
desirable-window infinite run since non of its fragment is a
desirable window. If we fix the window size as N = 3, then
the run xi u—2>x(, i>x7 ”—3>x1 u—2>x6 i)m By isa 3-step
desirable-window infinite run. However, xi i) X3 5 X4 Ly
X5 N X1 i> X3 5 X4 =N X5 o .. s not a 3-step desirable-
window infinite run as its fragment xs Z%xl LN X3 — x4 is not
a 3-step desirable window due to ®(ug) <0, w(ugb) <0 and
o(ugbc) < 0. Moreover, unsafe state xg is reached under some
strings. Hence supervisory control is necessary to restrict the
behaviors of G. We will solve Problem 1 and Problem 2 on G
in the remaining sections of the paper.

d,-5

G

Fig. 2. The weighted automaton G in Example 1

IV. WEIGHTED BIPARTITE TRANSITION SYSTEM

In order to solve Problem 1 and Problem 2, we transform the
automaton model in Section II to a two-player game between
the supervisor and the system (environment). This section
tackles the logical requirements and sets the basis for solving
the above problems. The weighted bipartite transition system
(WBTS) is defined as the game graph, then a special WBTS is
proposed, which resolves the safety and liveness requirements.

Definition 5 (Weighted Bipartite Transition System). A
weighted bipartite transition system (WBTS) with respect to
system G is a tuple T = (Qy,Qz,E.T, fyz, fzy, ®,0) such that:

o Oy CX is the set of states where the supervisor plays;

o 07 CX XTI is the set of states where the environment
plays, we let Sta(z) and Ctr(z) denote the two components
of z€ Qz, so z=(Sta(z),Ctr(2));

o E is the set of events;

o I is the set of control decisions;

o fyz: Qy xI'— Q7 is the transition function from Qy states
to Q7 states where fory € Qy, Y€ @' and z € Qz, we have
that f"Z(ya ’)/) = <y7 ’}/)’

o foy: 0z X E — Qy is the transition function from Qgz states
to Qy states where for z=(y,Y) € Qz, e €E and y' € Qy,
we have that fr(z,e) =y < e YAl = f(y,e)];

o w:E — 7 is the event weight function inherited from G
and labels f.y transitions;

e Yo € Qy is the initial state and yy = xo.

The above concept is inspired by Bipartite Transition Sys-
tem defined in [48]. A WBTS T presents a game between



the supervisor and the environment. A Qy state (Y-state)
is where the supervisor plays by making control decisions.
Since the supervisor has full observation, Y-states are from
the system’s state space X. We call a y € Qy safe if y ¢ Xy;,.
A Qz state (Z-state) consists of a Y-state plus a control
decision, where the environment plays by “selecting” enabled
events to occur. A fy, transition is defined from Y -states to Z-
states to remember the most recent decision of the supervisor.
We use Cr(y) ={ye€T: f;z(»,7)!} to stand for the set of
control decisions defined at y € Qy. f;, is defined from Z-
states to Y-states which are the reachable states in G under
the executed events. Since the supervisor is unable to choose
which event to occur, all enabled events are defined at a
Z-state. Essentially, we explicitly separate the processes of
making a control decision and executing enabled events in
T. Finally, o is the same weight function inherited from G
and labels the events associated with f;,.

Given a WBTS T, a run in T is of the form r =y, LN
71 e—l>y2~~ ﬁ>zn 2 Ypi1. We write y € r and z € r if y
(respectively z) is a Y-state (respectively Z-state) in r. We
also denote by Run,(T) (respectively Run.(T)) the set of runs
whose last states are Y-states (respectively Z-states). A run is
called initial if its first state is the initial state of 7. We also
denote by Run;,s(T) as the set of infinite runs in 7.

Consider a run r in a WBTS 7, we say it generates a run
1 4, V2 RN yn+1 in G when the control decisions and
Z-states are removed. By Definition 5 and simple induction,
we know that the generated run is in G as Vi > 1, y; € X
and f(yi,e;) = yi+1 € X. This shows the relation of the game
structure model and the automaton model.

Then it is natural to consider the strategies for both players
in the game. Generally, both players make new decisions based
on the history of all previous states and decisions, i.e., runs.
In a WBTS T, we define the supervisor’s strategy (control
strategy) as T, : Runy(T) — T and the environment’s strategy
as 7, : Run,(T) — E. We denote the set of all supervisor’s and
environment’s strategies by Il and I1,, respectively. A player
selects a transition at its position following its strategy.

From a Y-state y in T, if the supervisor plays 7, and the
environment plays 7., a unique run is formed. We define
Run(m;,y,T) = {y A Dy, By et 2 Ynin €
NT.Vi<n,y = m(y RS Ly yyen ﬂziq ei;l>y,~)} as the
set of runs starting from y and consistent with control strategy
T, i.e., the control decisions are specified by ;. Similarly, we
define the runs consistent with the environment’s strategies.

The f,, transitions in a WBTS reflect the events enabled
under control decisions, while f;, transitions reflect the execu-
tions of the enabled events. By Definition 5, a control strategy
in T works in the same mechanism as a standard supervisor
in supervisory control theory [6]. In the following discussion,
we will use the terms “supervisor” and “supervisor’s strategy
(control strategy)” interchangeably. Given a control strategy 7
and string s, we will use notations like 7;/G, m,(s) to stand
for the supervised system under 7; and the control decision
made by 7, on occurrence of s.

Intuitively, a strategy has memory if the player makes
different decisions when the same state is visited again,

otherwise, it is called memoryless. In a WBTS T, a control
strategy 7, is of finite memory if it can be encoded as a de-
terministic finite-state Moore automaton Ay = (M, 5, O5,mg)
where M is the finite set of states representing the memory;
Om M x (Qy UQz) — M is the transition function for memory
update; & : M x Qy — Q7 reflects the supervisor’s choice of
successor states. If the supervisor plays strategy 7, at y € Qy
with the current memory m € M, then it chooses z = & (m,y)
as the successor. After the supervisor makes the decision, the
memory of its strategy is updated to m’' = §,,(m,y). Formally,
we may extract a control strategy 7w, from Ay such that
7175-()’1 1) <1 e.l> Y2 h) Zn—1 %;1> yn) = Y, fyZ(yn7Yn) ==
Zn+1 = O5(Om(mo, Y1212 *Zu—1),¥n) where the domain of J,
can be extended to (Qy UQz)* naturally. Strategy 7, is mem-
oryless if |M|= 1, i.e., the supervisor’s choice only depends
on its current state. The memory of an environment’s strategy
is characterized analogously. The readers may refer to [3] for
more details concerning memory of game strategies.

Given a control strategy 7y ina WBTS T, let s=ejer---¢, €
Z(n;/G) and the occurrence of s induces a run r(s) =

7s(€) €] 75 (eq) ey en ms(erex--en) .
Yo —— 20 Y2 —— 20— — Yy ————> 7, in T.

We denote by Y (s) and Z(s) the last Y-state and Z-state of
r(s), respectively. Formally speaking, if a control strategy 7
is in a WBTS T, then Vs € £ (7,/G), m(s) € Cr(Y(s)).

Let Q be a set of states in a WBTS T, then the supervisor’s
attractor with respect to Q is defined recursively as:

A”VST,O(Q) =0

Attrl; 1 (Q) = {y € Oy \Attr];(Q) : Ty Lozst ze Artrf(0)}
Ufz € 0z\Anrl;(Q) : V2 5 y,y € Arir{ (0)}

Autr{ (Q) = | JAnr{;(Q) )

i>0

By definition, the supervisor reaches Q from Artr!,(Q) by
i events for sure regardless of the environment’s strategies.
Therefore, Attr! (Q) is the largest set of states from which the
supervisor is able to reach Q within finitely many transitions
regardless of the environment’s strategies. On the other hand,
the supervisor is unable to reach Q from states outside of
Attrl (Q); otherwise it contradicts the definition of the at-
tractor. It is well known that the attractor can be computed
in linear time provided the game graph is finite [3], thus
it takes O(n(T)) to compute Attr! (Q) where n(T) denotes
the number of transitions in 7. Note that we only add new
states that are not in AttrsTJ.(Q) in each stage of calculating
AttrT (Q). The environment’s attractor with respect to Q is
defined analogously and denoted by Attr! (Q).

Given a WBTS T and a set of states Q in T, we introduce
a rank function ¢ : Qy UQz — N associating with every state
the stage at which it is added to the attractor Attr! (Q),

o(g) = (2)

o if g¢ Attrl (Q).
Here we define the rank for the supervisor’s attractor and the
rank for the environment’s attractor is defined analogously.
Since the attractor is calculated in a finite number of steps,
o is always finite and may be obtained when the attractor

{i if g € AttrT(Q) for some i >0



is calculated. Intuitively, the rank also reflects the “distance”
between a state g and the “destination” Q. A similar and more
involved concept was proposed in [37] for product automata.

The smaller o(q) is, the “closer” ¢ is to Q and o(q) =0
if ¢ € Q. Accordingly, for any Y-state g € Artr! (Q)\ Q, if the
supervisor always makes decisions to reach successor g’ with

o(q) > o(q’), then we claim that the supervisor eventually
reaches Q after a finite number of steps. Otherwise, there will
be an infinite sequence of states ¢,q1,q2, - € Attr! (Q)\ O
such that o(q) > o(q1) > o(g2)---, which is infeasible for
finite 0(g). This further implies that the supervisor always
has a strategy to reach Q from Artr! (Q)\ Q, by choosing
successor states with a decreasing rank. This observation will
play a role in solving Problem 1 in the next section.

Given a WBTS T, a Y-state y is called a rerminal state if
it has no successor states. When there are no active events
defined at y in G, the supervisor is unable to make control
decisions and y is terminal ,i.e., Cr(y) = 0. Moreover, T is
called complete if Yy € Qy, y has successors. In addition, a Z-
state z is terminal if e € E, s.t. f,y(z,¢)!, i.e., the supervisor
disables all events. Terminal states should be avoided since
they contradict with the liveness requirement: there should
always be events defined out of a state in the supervised
system. If T is complete, then the supervisors in 7 are always
able to make decisions, resulting in a live system.

For a complete WBTS T, we may explicitly “extract” a
unique supervisor from it if we specify a control decision at
each Y-state in 7. We denote this supervisor by Sr which
is realized by an automaton Gy = (Qy,E,&,y). Here & :
Qy x E — Qy is the transition function such that Yy € Qy,
Ve € E: &(y,e) = foy(fi2(3,7),e) if y is chosen at y and
e € Y and Y is chosen at y. yg is the initial Y-state of T.
We may compute the language of the supervised system as
Z(St/G) = Z(St x G) where X is the standard product
operation between automata [6].

Given two WBTSs T1 (Qy,07.E.L, f,,, f}, @', y)) and

=(07,07.E.T, f1,, /2, 0%,¥;), we say that T is a subgame
of T, denoted by Ty C T, if Q) C 0%, Q), C 02 and for all y €
Qy.z2€ Q). yel, e€E, we have f,.(v,y) =z= f.(»,7) =2
and f)(z,e) =y = f3(z,€) = y. Here the relation of the two
weight functions does not really matter. Given a WBTS T and
a set of states Q C Qy UQz, we denote by T' =T | Qif T'C T
and Q is the state space of 77, i.e., the game on T is restricted
to a subgame T’ whose state space is Q.

Then we propose Algorithm 1 to construct the maxi-
mum complete WBTS without terminal Z-states or unsafe
Y-states, with respect to automaton G. It is denoted by
T, = (0y,07,E.T, yz, s @,0). The “maximum” is in the
graph mergmg sense, i.e., for any complete WBTS T without
terminal Z-states or unsafe Y-states, we have T C T,,. For
simplicity, we denote by |T;,| the number of states in 7,, and
by n, the number of edges in 7j,,.

Algorithm 1 is inspired by the algorithm of constructing
the All Enforcement Structure in [48]. The major difference
is that the system in [48] is partially observed while it is fully
observed here, so there is no need to consider unobservable
reaches under control decisions in this work. The main idea
of Algorithm 1 is to recursively build the state space of T, in

Algorithm 1: Build 7;, w.r.t. G
Input : G
Output : 7, = (0}

,07,E, L, /3%, [, @,50) wrt. G

1 0y ={y}. 07 =0

2 DoDFS(yo,G);

3 while there exist Y-states that have no successor do

4 Remove all such Y-states and their predecessor
Z-states, take the accessible part;

5 return 7,,;

Procedure: DoDFS(y,G)

6 for yeI' do

7| 2= f(07)
if Sta(z) ¢ Xys and z is not a terminal state then

9 add transition y —> zto ﬂ,

10 if z ¢ Q7 then

1 0y = QyU{zh:

12 for e € y do

13 ¥ = fy(z,0);

14 add 7z %y to . its weight is @ (e);

15 if y ¢ O} then

16 oy =0y U{y'};

v | L L DoDFS(y',G);

a depth-first search manner until no more states are added.
Notice that we only include non-terminal Z-states without
unsafe state components, as done in line 8. We prune away
Y -states without successors as well as their preceding Z-states
in line 4, so that the final structure is complete. Following
a similar argument with Theorem V.I in [48], we show the
correctness of Algorithm 1 as follows.

Proposition 1. Any control strategy in T,, is safe and live.

Proof. Similar to the proof of Theorem VI in [48] and we
just sketch the idea here. By Definition 5, Sta(z) tracks the
reachable states under control decision Ctr(z) for z € QY.
Then by Algorithm 1, if for all z € %, we have Sta(z) ¢ X,
and Je € E such that ;;’(z,e)!, i.e., no unsafe states in G are
reached and events are always enabled at z, then any control

strategy in 7,, is always safe and live. O

Remark 2. We briefly analyze the complexity of Algorithm 1.
First the procedure DoDFS may result in a structure that
has, in the worst case, |X|-2/F<l +-|X| states (Z-states plus Y-
states), where 2\Fel is the maximum number of feasible control
decisions. The complexity of the pruning process is quadratic
in the size of the returned structure after DoDF'S. Thus the
overall complexity of Algorithm 1 is O(|X |*-22/Eel),

Safety and liveness for Problem 1 and Problem 2 have
been enforced. Before proceeding to tackle the quantitative
requirements, we end this section with the following example.

Example 2. We revisit Example 1 and build T,, for the system,
following Algorithm 1. First, the DoDF S procedure returns the
WBTS shown in Figure 3. The rectangular states are Y -states
while the round rectangular states are Z-states. As is seen,
dashed Z-states (x3,Y), (x2,%) and (xe,%;) are not included



during the procedure DoDF'S at line 8 since they are terminal.
The shaded Z-state (x3,7i1) is not included either (at line 8)
since xg is an unsafe state. Due to the absence of (xs,Y11),
Y-state xg has no successor. After that, Y-state xg is removed
by the while loop in Algorithm 1, so is (x7,Y|,), the resulting
T is shown in Figure 4. We may verify that every control
strategy in T,, is both safe and live. However, not all of them
satisfy the quantitative conditions in Problem 1 or Problem 2,
thus further analysis is necessary.

Fig. 4. T,, in Example 2

V. SUPERVISORY CONTROL UNDER DESIRABLE WINDOWS

With safety and liveness enforced in Section IV, we resolve
the quantitative requirements of Problem 1 in this section.
Several objectives are derived and a new game is formulated

between the supervisor and the environment. Then we leverage
results from total payoff games in the literature to solve the
game, which in turn solves Problem 1.

To solve Problem 1, the supervisor should only allow runs
with desirable windows on G. In parallel, we characterize n-
step desirable windows on T,, for a given window size n € N

Runy(Ty,n) ={r € Run(T,,) : r =y UN 21 RN Voo Lny Vntls
1 14
-7 L oe) >0} 3)

When the window size is not given a priori, we define the
desirable-window finite runs on T,, as:

Runy(T,) ={r € Run(T,,) : r =y , 71 e—‘)yz LN Vil
1 14
neNt 3 <nst ZZw(ei) >0} 4)
i=1

Then it comes to infinite runs in 7,, and we introduce the
desirable-window objective as:

Wy(Tn) ={r € Runins(Tp) :r=y1 D521 S yp---,3i > 1

-1
s.t.Vj>i,30>1: % Y o(ej.p) >0} )
p=0

Comparing Equation 3 with Equation 4, we find that if
desirable-window finite runs are successively formed on an
infinite run, then such infinite run is included in Wy(T,,). The
supervisor is said to achieve W;(T,,) if it has a strategy 7
such that any infinite run consistent with 7, is in Wy(7,).
In other words, the supervisor perpetually forms desirable-
window finite runs on 7,,. Correspondingly, we formulate a
new game on T,,, where the supervisor wins by achieving the
desirable-window objective while the environment wins by
preventing the supervisor from achieving it. In fact, infinite
runs in Wy(T,,) generate desirable-window infinite runs in
the original system G. In what follows, we will study how
to achieve W;(T,,) and show that Problem 1 is solved by
supervisors achieving Wy (T,,,).

Before proceeding to solve Problem 1, we briefly review
the concept of total payoff games [4], which is involved in the
following analysis. Given a run r =y y—]> 71 e—l>y2 e ﬁ) Zn Ln,
Ynt1 in T, its total payoff is Y ; w(e;). Notice that the total
payoff game is an infinite game where the supervisor wins if
it has a strategy to form infinite runs with nonnegative (limit)
total payoffs. Then we define the following objective:

Tot(T,,) ={r € Runijns(T) : r =y1 A, o = ya---,

n
limsup )" o(e;) > 0} (6)

n—ee =]
The supremum in (6) ensures that the limit sum is well defined.
Conversely, the environment wins the total payoff game if
it has a strategy to prevent the supervisor from achieving
(a subset of) Tot(T,,). It is shown in [4] that memoryless

strategies are sufficient to win the total payoff game.

We have formulated a game with objective W, (T,,). Note
that our game on T, with W,;(7,,) may be viewed as a special
form of the bounded window mean payoff game in [7], where



the transitions from the supervisor’s states in 7,, have zero
weight. Results from total payoff games are employed in [7]
to calculate the winning regions for bounded window mean
payoff games. Since we are dealing with a similar objective,
we leverage results from [7] and total payoff games [4] to solve
our game. Later on we also propose an algorithm to synthesize
supervisors from the game, which is not discussed in the
literature [7]. Two lemmas (Lemma 10 and Lemma 11 in [7])
are repeated below in our context to establish the connection
between a total payoff game with desirable windows; detailed
proofs are omitted since they directly follow the lemmas in [7].

Lemma 1. If the supervisor wins for Tot(T,) from a state
in Ty, then it may play the same strategy to form (|T,|—1)-
(|Tn|- W 4 1)-step desirable windows from that state.

Suppose 7 is a supervisor’s winning strategy for Tot(Tj,).
The main idea for showing Lemma 1 is to decompose any run
consistent with 7, into its acyclic part and cyclic part (some
cycles). Then by inspecting the total payoff of run prefixes,
we can bound the length of the desirable windows.

Lemma 2. [f the environment has a strategy to win the total
payoff game from a state in T, then it has a strategy T, to
ensure that for every run starting from that state and consistent
with T,, there exists a position in the run such that all suffixes
from that position have negative total payoff.

Lemma 2 can be proved by contradiction. The idea is that
if this lemma does not hold, then any run consistent with 7,
may be decomposed as a sequence of run fragments with a
nonnegative total payoff, which implies that the total payoff
of the run is also nonnegative, thus a contradiction with 7,
being a winning strategy for the environment.

We term the set of states where the supervisor achieves
W, (T,,) as the (supervisor’s) winning region for Wy(T,,) and
denote it by V/de. Based on Lemmas 1 and 2, we slightly adapt
Algorithm 4 and Algorithm 5 in [7] to present our Algorithm 2
for computing #,%". Specifically, we introduce an index I to
label states in V/sdw, which reflects when a state is added to
V/de and plays a role in supervisor synthesis later on.

Algorithm 2 computes the set of states where the en-
vironment forms undesirable windows via the procedure
NegWindow. Since the desirable-window objective does not
depend on the prefixes of runs, the environment should re-
peatedly forms undesirable windows to force the supervisor to
lose the game. We denote by W"¢ the set of states where the
environment forms infinite runs with negative total payoff, thus
W,(T,,) is violated. Obviously, the supervisor should avoid
states returned by NegWindow. In other words, states not in
NegWindow(T,,) and their attractor states contribute to the
supervisor’s winning region Wsd”’. At the beginning, we as-
sume no state is winning for the supervisor in line 1. Then we
continually reduce the environment’s potential choices which
prevent the supervisor from achieving the desirable-window
objective and W"* may be shrunk each time NegTotal(T,,)
is called. As a result, more states are declared winning
for the supervisor by recursively calling NegTotal(T,,) and
calculating the attractor of those states, until no new states
are added to the winning region #,%". This is essentially the

Algorithm 2: Compute the winning region for W, (7,,)

Input 2Ty
Output : the supervisor’s winning region %" and
two sequences of states
n=0, #%0)=0;
#"%8(0) = NegWindow(T,,);
while 7" (n) # (O U Q) \ W™ () do
output W (n);
W (n4-1) < AterTn (O UQZ)\ #/7% m)):
output # ' (n+1);
for g € # " (n+ 1)\ #,%(n) do
L Label ¢ with o(q) =n+1;
W78 (n+1) < NegWindow(T,y, |
(OGP U\ (n+1)));
10 | n<n+1l;
11 Return #% = Wdv (n);
Procedure: NegWindow(T)
12 0=07,%=0

o 0 NN NN R W N -

13 repeat
1 1\ a7 NES
14 WS = UAttreTL(QY A )(NegTotal(T |
(QF VO ))):
15 b+ 041,

16 until 7"¢ = 7",
17 Return #/"¢ = /",

computation of a fixed point. In line 8, we index each new
state by the first time it is added to 74"

Now we take a closer look at the procedure NegWindow.
By Lemma 2, it suffices to compute the environment’s at-
tractor for the set of states from which the environment
achieves a negative total payoff. The routine NegTotal calls
the pseudopolynomial value iteration method developed in [4]
(Algorithm 2 and the strategy mentioned in Section 4.3) and
returns the states where the environment wins the total payoff
game on the current game graph. The idea of the leveraged
algorithm is to proceed through nested fixed points and the
technical details concerning the algorithm are omitted here.

Remark 3. We briefly discuss the complexity of Algorithm 2.
Here we denote by n, the number of edges in T, and O
the complexity of procedure NegTotal, i.e., the complexity of
solving a total payoff game. First the complexity for procedure
NegWindow is O(|T,|-(ne + Q)) since we take at most |T,,|
times of computation and each computation takes (n,+ Q)).
Then the overall complexity of Algorithm 2 is O(Q+|T,y|-(n. +
Tl (e +))) = O(|Tou|? (e + ©))). A software tool called
PRISM-games developed in [23] efficiently solves total payoff
games, which also helps us to implement Algorithm 2.

The correctness of Algorithm 2 in computing %, is shown
similarly to Algorithm 4 and Algorithm 5 in [7]. The main
idea is that the environment prevents the supervisor from
winning for W, (7,,) by denying a nonnegative total payoff
from states not in #,%". So the desirable-window objective is
never achieved from those states, while the supervisor wins
the game from #,%*. The proof is omitted here.



By running Algorithm 2, we collect two sequences of states:

(/18] = W (0), W (L), -, W () @)
[Wsdw] = Wsdw(o), Wneg(l)’ e 7‘/Vsdw(n) (8)

As T, is finite and Algorithm 2 always terminates, both
sequences are finite. Interestingly, they form two “chains’:
H ) C A () and W (j) © (i) for any i, j, 0 <
i < j<n. Also we know that #"¢(0) = NegWindow(T,,),
W (n) = W and W (k) = AuerTn((QF U Q) \ #7748k
1)) for every 1 <k <n by Algorithm 2. When the supervisor’s
winning region 7, is not empty and the initial state of T}, is
included in 79", we denote by T4 =T,, | #,4*, whose state
space is # . Otherwise we let val-’; be empty. When Tv‘fi‘;
is not empty, Algorithm 3 is presented below to synthesize a
supervisor that wins the game and achieves W;(7,,).

Algorithm 3: Synthesize a supervisor that achieves the
desirable-window objective

Input T, [#"%], [#]
Output : a supervisor achieving W, (T,,)
1 Syn(yo, Tm);
2 Extract the supervisor from the remaining subgame;
Procedure: Syn(y,T,,)
3ifye #n QY has not be specified a control decision
in the current structure then
4 suppose o(y) =k, so y € # 4 (k);
5 if y € AttrIn ((QpU Q) \ # "% (k—1)) and
yE\(QF U\ #7% (k— 1)) then
6 choose y € Cr,, (y) such that o (y) > o (f;7(y,7))
L and f2(y.7) € Attrfn((Q) UQI)\ #/75 (k — 1));
7 if ye (QUQZ)\ #"8(k—1) then
8 apply the method developed in [4] to solve a total
payoff game on the subgame
T (O U Q) \ #"(k—1) and determine the
L decision Y specified at y in the total payoff game;
9 remove all control decisions defined at y except 7,
and take the accessible part;
10 2= fi:(%,7)s
11 for e € y do
2 [ L Syn(f2(z.e),Tn):;

Intuitively, Algorithm 3 specifies a control decision at each
Y-state in #?" to lead the supervisor to states where it
can perpetually achieve desirable-window runs. More specifi-
cally, every Y-state belongs to some W(k) and two cases
are categorized. First, if the current state y is not yet in
(QyuO%)\ #"8(k — 1)), then in line 6 the supervisor
makes a decision to reach a successor that has a lower rank
and is in ArtrIn((QF U Q%) \ # " (k—1)). Note that by the
definition of the attractor (Equation 1) and the discussion in
Section IV, ¥ will contribute to leading the supervisor towards
(QFUOF)\ #"8(k— 1) ultimately. On the other hand, if the
supervisor is already in ((Qy U Q%) \ # "8 (k—1)), then it
chooses the decision specified by solving the total payoff game
through the method in [4] (Algorithm 2 and Section 4.3), as in
line 8. The supervisor follows the decision as it is playing the

total payoff game. Since the environment wins the total payoff
game from #"¢(k—1) by Algorithm 2, the supervisor wins
the total payoff game from (QF UQ%)\ #"¢(k—1). Also by
Lemma 1, the supervisor may play the same strategy wining
the total payoff game to achieve W, (7,,). Therefore, the control
decision ¥ specified at line 8 contributes to achieving Wy (7j,).
Since Procedure Syn runs on the attractor of the supervisor,
the environment is unable to force the supervisor out of #,%".
Syn is recursively called until a control decision is specified at
every Y-state. Finally a supervisor is returned in line 2, which
is memoryless since making a decision following the attractor
requires no memory, as shown in [3] and it is sufficient to win
a total payoff game by memoryless strategies, following [4].

Theorem 1. There exists a supervisor that solves Problem 1
if and only if Tff; is not empty.

Proof. (“if”) When va}; is not empty, we denote by S a
supervisor returned by Algorithm 3. Then for any Y-state
y € V/de, we know that there exists 1 < k < n such that
y € WA (k) = AttrIn (O UQE)\ #7 (k—1)). Then for any
infinite run r starting from y and consistent with S in 7;,, we
have that r € Wy(T,,) by Algorithm 3. Thus, the run generated
by r in the supervised system S/G is a desirable-window
infinite run, which implies that S solves Problem 1.

(“only if”) We show it by contrapositive. When Tf}; is
empty, we know that in 7,, for any control strategy 7, there
exists an initial run r consistent with 7, such that r ¢ W, (T,,,).
This further implies that the run generated by r in the
supervised system under 7, is not a desirable-window infinite
run. That is, no matter what strategy the supervisor plays, the
second condition in Problem 1 is not satisfied. Therefore there
does not exist a supervisor solving Problem 1. O

Theorem 1 shows the correctness and completeness of our
method to solve Problem 1. We are always able to synthesize
a supervisor provided that val‘; not empty. At the end of this
section, we present an example to illustrate the process of
computing the winning region and synthesizing supervisors.

Example 3. We continue Example 2 to completely solve
Problem 1 for the system G in Example 1. First it is easily
seen that x; 4 X2 i> X1 & iin Figure 2 is not a desirable-
window infinite run since @(ad) < 0, thus supervisory control
is necessary to restrict the behaviors of G.

Based on the intermediate results in Example 2, we run Al-
gorithm 2, which returns the supervisor’s winning region V/de
exactly the state space of T, in Figure 4. In other words, the
supervisor achieves the desirable-window objective from every
state in Figure 4, thus we are flexible for supervisor synthesis.
Next, we run Algorithm 3 and choose control decision Y, at
x1. The resulting supervisor S is extracted from T,, following
the argument in Section IV and it is shown in Figure 5. We
may verify that every infinite run in S/G is a desirable-window
infinite run, so S correctly solves Problem 1.

VI. SUPERVISORY CONTROL UNDER N-STEP DESIRABLE
WINDOWS

After solving Problem 1, we investigate how to synthesize
supervisors for Problem 2 in this section. For this purpose, we
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Fig. 5. A supervisor solving Problem 1

first transform the local mean payoff condition in Problem 2
to a properly defined objective for the supervisor on T,
obtained in Section IV. Correspondingly, a new two-player
game is formulated, then analyzed. Finally, we characterize
the supervisor’s winning region for the game and obtain its
winning strategies, which completely solves Problem 2.

A. Compute the Supervisor’s Winning Region

In T,,, we define the N-step desirable-window objective
W4(T,n,N) for both players as:
={reRun(T,):r=y l>Z1 e—1>y2---,3i2 1

1 -1
st.Vj>i, 3 <N, 7 Y w(eji,) >0}
p=0

Wy (T, N)

9

Then we form a new game on 7, where the supervisor wins
by achieving W;(T,,,N), which implies that the supervisor
perpetually forms runs in Runy(T,,,N), see Equation 3. Notice
that runs in W;(7,,N) generate N-step desirable-window infi-
nite runs. So if the supervisor achieves Wy (T,,,N) then it also
solves Problem 2. To further evaluate W;(7,,,N), we introduce
the window payoff functions in T,,.

Definition 6 (Window Payoff Functions). In T,, with window
size N € NT, for 0 <i <N, define the window payoff function
recursively as h; : Qy U QY — 7 where

Vg€ 0y UQ07 ho(q) =0

Vg€ Qy,V1<i<N:hi(q)= max {hi(z):

€0 yel fe(a,7) =2}
min {w(e)+hi_1(y):

YEQY e€E
f(g.e) =y}

The window payoff functions track the best worst-case total
weights that the supervisor may achieve from a state in 7},
within at most N event occurrences. The supervisor aims to
achieve a nonnegative total payoff (also mean payoff) within
the next N enabled events, while the environment aims to
spoil that goal by achieving a negative payoff. If the current
state ¢ is a Y-state (supervisor’s position), we maximize the
value of h;(q) for each 1 <i < N by choosing successor
states. Notice that we do not increase the index i since an
Jfy: transition corresponds to a control decision but not an
event occurrence. Otherwise, if ¢ is a Z-state (environment’s
position), we minimize the total payoff to-go so as to calculate
hi(g), where we increase the index as an Z”; transition indicates
one event occurrence. This “min-max” way of defining /;(g) is
due to calculating the worst possible sum of weights after the

Vge Q7 V1 <i<N:hiq)=

occurrence of enabled events, and choosing the best possible
sum of weights for the supervisor to achieve Wy(T,,N).
By definition, the value of %;(¢) depends on the values of
the window payoff functions for the successor states of q.
Therefore, we are able to track a run from ¢ in T,,, whose
control decisions and i event occurrences lead to A;(q).

If a state ¢ in T, is with h;(g) > 0 for some 1 <i <N, then
there is an N-step desirable window (Equation 3) starting from
g. Therefore, the supervisor achieves Wy (T,,N) by reaching
such states infinitely often and the environment should prevent
the supervisor from doing so. Thus both players are playing
a Biichi-like game [3]. The determinacy of Biichi games [3]
states that only one player wins the game from each state on
the game graph. We denote by #;"?" the set of states where the
supervisor wins the game for W,;(7,,N), termed as winning
region. For the supervisor, a state in #{"%" is called winning
while a state not in %" is called losing. The complement
of #/" is the environment’s winning region for preventing
the supervisor from achieving W, (T,,,N).

Algorithm 4: Compute the supervisor’s winning region
for the N-step desirable-window objective

Input Ty N
Output : the supervisor’s winning region %"
W =0, n=1, W) =0y uQy;

while W"dW # QU Q and ;7' 0 do

W, =WinLocal(Ty,,N);

Wity = Attrn (), W o 5oy

Tm — Tm L [(Q’;;UQZ)\W]’ n_n+17
Return 7%,
Procedure: WinLocal(T,,,N)
Wy = StableWindow(Tn,N);
8 if W, =0y UQy or #y =0 then

L Wy =Wy
10 else
u L T, T | # #, =WinLocal(T,,,N);
12 return #,;

Procedure: StableWindow(T,,,N)
13 for g € QY U Q7 in the current structure do
14 L ho(q)=0;
15 fori=1:N do
16 for g € 07 do
17 L calculate %;(g) by Definition 6;
18 for g € Oy do
19 L calculate %;(g) by Definition 6;
20 return ¥, = {q € Oy UQY : 31 <i <N s.t. hi(q) > 0};

A 1 A W N -

2

Compared with conventional Biichi games [3], we need to
ensure that states in {g € Oy UQ% : hi(q) >0 for 1 <i <N} are
not only reached infinitely often but also consecutively. This
is due to Equation 9 where a nonnegative weight sum should
be enforced repeatedly without any break. For this reason,
Algorithm 4 is proposed to recursively compute the supervi-
sor’s winning region for Wy (7,,,N). It generalizes the standard
divide-and-conquer algorithm for solving Biichi games [3].

Initially at line 1, each state in 7, is viewed as a potentially
losing state for the supervisor. In line 3, we call procedure



WinLocal to compute state set " from which the supervisor
achieves W;(T,,,N). Then in line 4, we add new winning states
to the supervisor’s winning region #;. Since Wy(T,,,N) does
not depend on the finite prefixes of runs consistent with the
supervisor’s strategies, if the supervisor is winning from #,
it also wins from the attractor of %', i.e., #,, calculated
in line 4. Hence, the environment must avoid entering %},
and remain in the subgame described by line 5 to preserve
the chance of winning the game. States removed in line 5
may be viewed as the increment of the supervisor’s winning
region at each iteration. After that, we iterate on the remaining
subgame and call again procedure WinLocal to find more
winning states for the supervisor; note that 7,, gets updated
in lines 5 and 11. In this manner, if the supervisor wins the
game for W;(T,,,N) from a state in %", then it also does
so from all its successor states, which are contained in ”//s"dw
as well. Algorithm 4 essentially computes the greatest fixed
point. When it terminates, the states not in V/S”dw are where the
environment can falsify the window mean payoff objective.

Procedure StableWindow computes the value of window
payoff functions for each state in the current game structure
and returns % in line 20. Then the supervisor may always play
the strategy prescribed by h;(g) > 0 (following the decisions
leading to h;(g)) to ensure a nonnegative sum of weights
within N event occurrences from its current state. In general,
the supervisor has memory as it needs to “remember” how
hi(q) > 0 is achieved from a state ¢ each time it makes a
decision, and it suffices to record at most N states, which is
shown in the next subsection.

Theorem 2. Algorithm 4 correctly computes the supervisor’s
winning region for Wy(T,,,N).

Proof. Let V/S”dw be the set of states where the supervisor
achieves W;(T,,,N). We show that a state ¢ is returned by
Algorithm 4 if and only if g € #{"¥". That is, there exists a
control strategy 7, € I, such that for all &, € I1,, the run
from ¢ and generated under (7, 7, ) is in Wy (T, N).

“Only if”: Algorithm 4 returns U,>0%,;,,. By the definition
of attractor and Algorithm 4, we have that Wi O =0
and V/I,’ N#,; =0 for any i # j. Let g € Uy>o#,%,, then there
exists a unique n such that g € #,},.. By construction, the
supervisor has a strategy to reach and stay in %' U iy
W9, forever afterwards. Since the runs consistent with the
supervisor’s strategy are infinite, the supervisor will eventually
enter some 7/1,1, 0 < /¢ < n. After that, the supervisor always
forms nonnegative weight sums within N event occurrences,

thus achieves Wy(T;,,N) which further implies that g € 7"

“If”: Suppose that ¢ € #,""; we show that g € U,>0#,",, by
contradiction. If g ¢ U,>0#.,., then the environment always
has a strategy from g to avoid reaching U, >0 %, thus spoils
W4(T,n,N). That is, from any run starting from ¢, there exist
some states along it, whose window payoff functions are
negative for all 1 <i < N. So the environment may remain
outside U,>0%#,;,, and visit such states infinitely often to
prevent the supervisor from achieving Wy (T,,,N). However,
this means that the supervisor fails to achieve W;(7,,,N) from
g, which contradicts with g € #"". O

By Theorem 2, if the supervisor’s winning region #/""
is not empty and the initial state of T, is included in #/"®",
then the supervisor has strategies to win the game and achieve
W4(T,,,N) from the initial state. If this is the case, then we
denote by T"¥ =T, | #{"", whose state space is #,"".
Otherwise we let 7" be empty.

Theorem 3. There exists a supervisor that solves Problem 2
if and only if T™ is not empty.

win

Proof. (“If”) When T7" is not empty, we know that from
the any state in TM',‘ff;V, there exists a control strategy 7, such
that for all environment’s strategy 7., the run starting from the
state and consistent with (7, 7,) is in W, (T,,,N). Therefore, a
N-step desirable-window infinite run is generated by r (7, 7,)
in m;/G, which implies that 7 solves Problem 2.

(“only if”) We show it by contrapositive. When Tv'v’fflw is
empty, then by Theorem 2, we know that for any control
strategy 7, there exists an initial run r consistent with 7
in T,,, such that r ¢ Wy(T,,,N). This further implies that the
run generated by r in the supervised system is not a N-step
desirable-window infinite run. So regardless of the supervisor’s
strategy, there exist runs in the supervised system that violate
the second condition of Problem 2, which means that there
does not exist a supervisor solving Problem 2. O

Tndw

Up till now, we have shown the soundness and completeness

of Algorithm 4 for computing the supervisor’s winning region.
We will discuss supervisor synthesis on TM’}fle in the next
subsection if the winning if vaidnw is not empty.
Remark 4. We briefly discuss the complexity of Algorithm 4.
First for procedure StableWindow, each edge is visited at
most N times to compute window payoff functions, so its
complexity is O(n, -N). Then in procedure WinLocal, we call
StableWindow for at most |T,,| times, so its complexity is
O(|Ty|-ne - N). Finally, we call procedure WinLocal for at
most |T,,| times in Algorithm 4 and computing the attractor
is linear in n,. Therefore, the total (worst case) complexity of
the algorithm is O(|Ty|-(ne + |Tn|-ne - N))) = O(|Ty|*ne - N).

Example 4. We continue Example 2 and solve Problem 2
where we set the window size N = 3. Based on the
game graph constructed in Example 2, we follow Algo-
rithm 4 to compute the winning region of the supervisor
for Wy(T,,,N). First, we calculate the values of window
payoff functions for each state in T, and the results are
shown as follows. For simplicity, here we associate a 4-
dimensional vector with each state q € Qy U Q7 and the
values are ho(q) through h3(q). xo : [0,—5,—4,—1], (x0,%0) :
[07_57_47_1]’ X1 - [0713434}’ (xlayl) : [0’13374}’ (xlayz) :
[O,—17—67—5], (X17’)/3) : [0,—1,—67—5], (xl,}/4) : [0,174,4],
xp 0 [0,=5,—4,—1], (x2,%) : [0,—5,—4,—1], x3:[0,2,6,2],
(X3,’]/5) : [0,2,6,2}, X4 . [0,4,0,1], (X4,’}/g) : [0,4,0,1], X5 .
[0,—4,-3,0], (xs5,79) :[0,—4,-3,0], x¢:[0,3,3,4], (x6,%):
[0,3;3;4L X7 : [0a071a4] and (x777/10) : [ana 174]'

After one iteration of procedure StableWindow, states
(x1,7), (x1,73), X2 and (x2,%) are not in Wy since the values
of their window payoff functions are negative for all i > 1.
All states reachable from x| in Figure 6 are returned by



StableWindow, thus included in W), after procedure WinLocal.
Although both xo and (xo, V%) have negative h; for all i > 1, they
are still included in %”dw since they are in the supervisor’s
attractor of xi. Notice that W] = AttrIn (W) in this
example. Finally vafflw is shown in Figure 6 whose state space
constitutes the supervisor’s winning region in this example.

Fig. 6. ﬂﬂfflw with the supervisor’s winning region in Example 4

B. Synthesize Winning Supervisors

We proceed to discuss supervisor synthesis in this subsec-
tion. The counterpart of Algorithm 3 is proposed, which is
more complicated due to the memory of supervisors solving
Problem 2. At the beginning we define first desirable-window
decision sequences to characterize how the supervisor achieves
a nonnegative weight sum within the next N event occurrences
from the current Y-state. Here we denote by #,cq; = U,,ZOV/},”
the union of each Wp” obtained from line 3 of Algorithm 4.

Definition 7 (First Desirable-Window Decision Sequences). In
Tw’ji‘flw, at Y-state y € Wipcal, @ sequence Y1y ---v; € I with j <
N forms a desirable-window decision sequence if there exists

_.n el Yi € J —
arunr=y-—zy —yy--- =z —yj such that ¥;_, o(ex) =
hj(y) where j=min{l <i <N :hi(y) > 0}.

A supervisor achieves the N-step desirable-window ob-
jective Wy(T,,,N) in two steps. First it issues decisions to
reach a state in %#,.,;. Then it may repeatedly play strategies
prescribed by StableWindow in Algorithm 4 to perpetually
ensure a nonnegative weight sum within N event occurrences.
To be more specific, at some Y-state y € #,.q, there should
exist a first desirable-window decision sequence so that the
supervisor achieves a nonnegative sum, otherwise it contradicts
with y € #},cq1. Then due to the inductive property (Remark 1
in Section III), the supervisor may play another first desirable-
window decision sequence from y; described in Definition 7,
and it continues in this manner afterwards. In the above
process, the supervisor keeps a memory bounded by N at each
Y-state, which reflects how it selects successor states (control
decisions) to achieve a nonnegative weight sum. The memory
may be reset immediately after a nonnegative weight sum is
achieved within the next N event occurrences.

Consequently, we “unfold” the WBTS and introduce the
extended weighted bipartite transition system (EWBTS) w.r.t.
a WBTS T as a tuple: T = (QF,05,E,T, [, f5,8,0,y).
Here we have Qf = Qy x N and QE = 0z x N. With a slight
abuse of notation, we also call Q%-states as Y-states and Q%-
states as Z-states. [, : QF xI'— Q% and f%: QF X E — Qf are
the transition functions. Specifically, fy.((y,n),7) (respectively
f5((z,n),e€)) is of the form (fy.(y,7),0(y,n,7)) (respectively
((fey(z,),8(z,n,¢€)), where & : (QEUQE) xNx (TUE) - N
is some function that updates the integer component of the
states. The exact form of & is left unspecified here and will
be defined when we introduce a special EWBTS. y{§ = (y0,0)
is the initial state. Tr also describes a game between the
supervisor and the environment, thus the strategies for both
players are defined analogously. Similarly with the WBTS,
we say that Tg is complete if ¥(y,n) € 0%, Cr,.((y,n)) # 0.

From the definition of the EWBTS, if we restrict the
domains of f and f7 to Qy and Qz, respectively, then they
are reduced to fy, and f;, in a WBTS, respectively. However,
function & has not been defined yet and it is left to count the
number of times that a state in the WBTS is revisited when
the game graph is unfolded. Then we introduce the unfolded
weighted bipartite transition system (UWBTS) as follows. For
simplicity, we write (y,n) € QF as y* and (z,n) € Q% as
Z". Given a state ¢¢ in a EWBTS Tg, we let Pre;E (¢¢) and
PregE (¢°) denote, respectively, the set of Y-states and the set
of Z-states that may reach ¢°, excluding ¢¢ itself. Here we
also let |-| be cardinality of a set.

Definition 8 (Unfolded Weighted Bipartite Transition System).
An unfolded weighted bipartite transition System (UWBTS)
is an EWBTS of a complete WBTS T. It is a tuple U =
(Ql?lv [Z]7Eara yuyfz";nauaw?ylé) Where (l) vyn € Q¥|CU(yn)|:
1; (ii) V" € QJ, Ve € E: fy(z,)! < f4(2",e)\; (iii) VY" € OF :
n=|{y" € Pre(y") : i € N}| and V2" € QY: n' = |{z" €
PréY (") : i € N}|; (iv) the terminal states of U are either
terminal Z-states or Y -states of the form y" with n > 1.

Given a UWBTS U, item (i) in Definition 8 states that
there is a unique control decision defined at each Y-state y"*
in U. Item (ii) illustrates that if f;; is defined at z € Q7 in the
complete WBTS T, then it should also be defined at 7" € QlZ].
Item (iii) specifies how function &, is updated with transitions,
i.e., the integer component of a state is n if there are n states
in its predecessors that have the same Y-or Z-state component.
Item (iv) implies that any branch of the UWBTS ends a
repeated Y-state of a Z-state without outgoing transitions.

Given a UWBTS U, we may also extract a supervisor
from it. First we merge each Y-state y" with n > 1 and
its predecessor state y’, which results in a new EWBTS,
denoted by U. In other words, U comes from removing states
" e QY : Cy(y") = 0} from U, then making any transition
that originally reaches y" go to the corresponding y* in U.
Therefore, U is a complete EWBTS. In addition, there is
a unique control decision at each Y-state in U, which also
indicates a unique control strategy (supervisor) in U. We
denote this supervisor by Sy which is realized by an automaton
Gy = (QY,E,&,y2). Here ) is the initial Y-state of U;



g: QYI7 X E — QY0 is the transition function such that Vy" € QYU,

Ve € E: E(y'e) = F4(FL07,Coy")),e) if e € Cyly). The
language of the supervised system is .2 (Sy /G) = .Z (Sy x G).

Algorithm 5: Synthesize a supervisor solving Problem 2

Illpllt vag, B %ocul, N
Output : a supervisor Sy solving Problem 2

= {oh:
2 U+ Unfold(T"" N);
3 Return Sy;
Procedure: Unfold(T"¥ N)

win

+ while [3y" € 0 s.1. Cy(y") =0] v [32" "€ 0Y such that

Je e Ctr(z) : é’;(z, e)! in Tyin but f13,(z" ,e)=! in U] do
5 for y" € Qy s.t. Cy(y") =0 do
6 if y ¢ %ocal then
7 Let n; = n, augment U with
/
Yy " zrlll RN Yyl BN zfn'” RN yfr;’rll where

ym+1 € Wiocal» and for 1 <i<m+1, we have
=z EP”ez()’, ):Zi=z, i>0},

L nz—|{yl € PreY (1) : 5y = yi, > 0}];
8 if y € #ycai then
/
9 Findaruny"y—]m e—')y 2, .. —>yJ’ from

y such that ;---7; is a first desirable-window
decision sequence, let ny =n ;

10 if A0 < j, s.t. there exists a run
e €j P
yZ/ W ﬂ/ LN y(f:ll' __-/>y;f1 in U then
11 Augment the current U with
y- n/. e; .
Yy N an e—1>y;'2- REEN z/ —]>yjf11 where

fOI'1<l<j, we have
ni= {7 € Pré) (y") : z =z, i > 0},

L = {5} € Pref/(z") : i = yi, A2 0} ;
12 else
13 Find ¢ < j such that there exists
e;j P
vy R n‘ e—)y;lfll —")y’;’ in U;
14 Augment the current U with
b7 I e Y1 n,_, e
Y RN Z’1’1 .1>yg / ]1 y?f

where for 1 <i< E we have
= {7 EP”ez()’l ) Zi=2z;, >0},

= {3} € Prél (&) : i =31, 71> 0}]
(the augmented part is subsumed into the

L L L existing structure at y?‘ ) ;

15 | for 2 € QY s.t. JeeT(z): T(z,e)! in Tyin but
ffy(znl,e) is not defined in the current U do

16 for ec Ctr(z ), such that f2(z,e) is defined in
T,vin but Z“y(z” ,e) is not defined in U do

17 Agument the current U with 5 " where
y=fiy(z,e) and

n=I7€Prl () : 5=y, i>0];

Inspired by the idea of solving the non-blocking supervisory
control problem under partial observation in [47], we propose
Algorithm 5 which constructs a UWBTS U from Té’glw, merges

the repeated Y-states and returns a supervisor. The procedure

Unfold recursively adds new states and transitions from the
initial state yg. As discussed earlier, a supervisor achieves
W,(T,,,N) by first entering #},.,; and then repeatedly playing
first desirable-window decision sequences. Specifically, we
distinguish two cases. If the supervisor has not yet reached
Wocal at the current Y-state y" , i.e., the corresponding y in
T,, does not belong to #j,cq, then we augment the current
U in line 7 to lead the supervisor to #,.,. Otherwise if
the supervisor has entered %,.,, then in line 9 we find a
first desirable-window decision sequence ;7> ---¥; from state
y with ;(y) > 0. Since all states in %}, are winning for the
supervisor, such a sequence always exists.

For a first desirable-window decision sequence, we con-
sider two cases and augment U correspondingly from line 9.
First, if the whole sequence ¥17>---7; is not in U, then we
augment U in line 11. Second, if part of the decision string
YeYos1---Y; (€ < j) already exists in U, then we augment U
in line 14 so that the augmented part is finally subsumed into
U. This is essentially the merging process mentioned in last
paragraph. Due to the inductive property, we ensure that an
N- step desirable Window Will be formed from any Y-state in
yr I z?l Ay LR v i/ at line 9 so that we may start
finding another first desirable-window decision sequence from
y?j. Meanwhile there may be Z-states whose successors are
not fully included in U, then we augment U in line 17. We
also update the index of states in the process, which repeats
until no more states are added to U. The number of states in
U actually reflects the supervisor’s memory, which is bounded
by 2-|T;,|-N since at most 2-N Y-states and Z-states are added
from each state in vadw when U is extended by Definition 7,
and the state space of T/ is at most |T,,|. A state in Ty;'l‘,iw
is examined at most once in Algorithm 5 and the unfolding is
is bounded by the length of a first desirable-window decision
sequence, thus the algorithm terminates after all states in 7,"4"
are checked and the unfolding is finished.

Theorem 4. If a supervisor is synthesized by Algorithm 5,
then it solves Problem 2.

Proof. Suppose Sy is returned by Algorithm 5. We run
Algorithm 5 when the supervisor has strategies to achieve
W, (T,,,N). More specifically, the supervisor first make deci-
sions to enter states in #,., and then always make desirable-
window decision sequences to remain in #,.,. By construc-
tion of U, the supervisor always reaches some state after
which it may perpetually plays first desirable-window decision
sequences to achieve N-step desirable windows. Hence, every
infinite run in U belongs to W, (T,,,N) (Equation 9). Since Sy
is extracted from U, every infinite run in Sy/G is a N-step
desirable-window infinite run. Sy is already safe and live by
Proposition 1, so it solves Problem 2. O

Based on Theorems 2, 3 and 4, we have shown the
correctness and completeness of the whole procedure from
computing the winning region to synthesizing the supervisor. It
is always possible to synthesize a supervisor solving Problem 2
following Algorithm 4 and Algorithm 5.

Remark 5. We briefly discuss the complexity of Algorithm 5.

In the procedure Unfold, there are at most |T"M"| states



between a state in Tv:,’fflw and states in Wjpcai- Then at most
2 - N states are extended from each state in T%zw when we
take first desirable-window decision sequences. Next, at most
|71§ng\ states in U are “merged” to extract the supervisor Sy.

Therefore Algorithm 5 is of complexity O(N - |T,,|).

Example 5. We continue Example 4 and synthesize a winning
supervisor from Zﬁfflw following Algorithm 5. First, we unfold
TM’,‘fle and let the supervisor play Yy from the initial state x.
By the occurrence of uy, we reach Y-state x| in Wjocai- Next
we choose first desirable-window decision sequence 7y, at x|
(hl(xl) > 0), Y5 at x3 (hl(X3) > 0), B oar x4 (h]()C4) > 0),
¥ at xg (hi(xg) > 0) and 0 at x7 (hi(x7) = 0). Then we
follow lines 15 to 17 in Algorithm 5 to augment U by adding
successor states for the newly added Y -states and Z-states.
Notice that at Y-state xs, the only first desirable-window
decision string is YoYsys by which the supervisor achieves
h3(xs) = 0. This further implies that when x; is visited again,
the supervisor has to make a different decision Y. Hence,
we augment U with xs - (x5,7) — X2 LN (x1,74) —2 xg
since xg o, (x6, %) 25 x7 already exists after the augmentation
from xg. We continue construction until no more states are
added to U. Finally, a UWBTS U is constructed and shown in
Figure 7. The corresponding supervisor Sy is extracted from U
following the earlier argument in this section and it is shown
in Figure 8. As is seen, Sy has memory since it alternates
between enabling b and disabling b at x|. We may verify that
Sy correctly solves Problem 2 as every infinite run in Sy /G

is a 3-step desirable-window infinite run.

b =g u R
(1, 1) ((xo, )’o;‘
uz[

u

y7~{e}

Ug

Fig. 8. A supervisor Sy solving Problem 2

VII. CONCLUSION

We investigated, for the first time, a supervisory control
framework which requires the local mean payoff within a
fixed number of events be bounded by given thresholds.
Specifically, two problems were formulated, depending on the

window length. In order to solve these problems, the weighted
bipartite transition system (WBTS) was introduced as a first
step to transform the problems to a two-player game between
the supervisor and the environment, where the qualitative
conditions were resolved. Then we proposed several objectives
for the supervisor and formulated two different games on the
corresponding WBTS. Both games were analyzed and the
algorithms for solving the games were proposed in sequence.
We showed that the synthesized winning strategies are prov-
ably correct for the original supervisory control problems.
Our results can be naturally extended to the multidimensional
case where we consider weight vectors, and the details are
not included here. For future work, it would be of interest to
explore the same set of problems under partial observation.
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