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Distributed Tracking in Heterogeneous Networks
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Abstract—This article investigates distributed coordi-
nated tracking problems of networked heterogeneous
systems. Based on asynchronous sampling information,
distributed sampled-data protocols are employed to re-
alize leader-following synchronization and containment
tracking in networked heterogeneous systems. In asyn-
chronous sampled-data protocols, each node has differ-
ent sampling instants with other nodes and only samples
itself information at its own sampling instants. By utiliz-
ing the input-delay approach and Lyapunove–Krasovskii
functional approach, some sufficient conditions for guar-
anteeing the coordinated tracking are presented. First,
quasi-synchronization criteria are obtained for networked
heterogeneous oscillator systems with a dynamic leader
over the directed graph. Second, in the presence of mul-
tiple heterogeneous leaders for networked heterogeneous
systems, sufficient conditions of quasi-containment track-
ing are derived. In a word, all followers can converge into
a bounded level of convex hull spanned by the leader(s).
The upper bounds of tracking errors are estimated for
both quasi-synchronization and quasi-containment track-
ing. Finally, two numerical examples are given to verify the
theoretical results.

Index Terms—Asynchronous sampling, containment
control, harmonic oscillators, heterogeneous networks,
leader-following control.
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I. INTRODUCTION

R ECENTLY, the problem of distributed cooperative control
for networked systems has become a hot topic due to

its broad potential applications in spacecraft formation control,
flocking, and sensor networks. Synchronization and consensus
are the most ubiquitous phenomena in distributed cooperative
control andhavegained a great attention among researchers from
various disciplines. For example, synchronization in complex
networks and coupled systems [1]–[3], consensus in integrator
multiagent systems [4]–[6], linear multiagent systems [7], [8],
and nonlinear multiagent systems [9] have been widely investi-
gated in recent years.
In reality, the presence of leader(s) can generalize the appli-

cations as a distributed system can be guided by one leader or
multiple leaders. Under the situation that there exists a single
leader for distributed systems, a multiagent consensus problem
with an active leader is studied in [5] by a neighbor-based
local controller. Leader-following consensus of second-order
multiagent systems with both fixed and switching topologies
was addressed in [6]. By applying a variable structure approach
in [10], a distributed coordinated tracking problem was studied.
In the presence of multiple leaders, the corresponding coordina-
tion problem is called the containment control problem where
the followers will asymptotically converge into the convex hull
spanned by the leaders. In the pioneering work [11], a hybrid
stop-go control policy was presented to drive all the followers
to the convex polytope spanned by the leaders. In [12], the dis-
tributed containment control problem was studied for a group of
mobile autonomous agents with multiple stationary or dynamic
leaders under both fixed and switching topologies. In [13], the
containment control problem of first-order multiagent systems
was investigated over both fixed and switching topologies. To
solve the containment control problem for second-order multi-
agent systems, two distributed containment control algorithms
only based on the position measurements were proposed in [14].
For general linear multiagent systems, the distributed contain-
ment control problems were studied in [15] based on the relative
outputs of neighboring agents and in [16] based on distributed
observer-type protocols.
Because of individual difference, external disturbance, and

parameter uncertainty, the nodes in the practical networks are
often governed by different dynamics. These kinds of net-
works are called heterogeneous networks. The heterogeneity of
such networks can lead to the failure of synchronization [17].
Consequently, it is worth exploring distributed coordinated
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performance for heterogeneous networks. To synchronize het-
erogeneous networks, weighted average state of all nodes is
adopted as synchronization target [17], [18]. By introducing the
known reference signals directly, impulsive consensus in het-
erogeneous complex networks was studied in [19]. By hypoth-
esizing the presence of a leader in [20], the robust cooperative
tracking problem was studied for heterogeneous second-order
nonlinear systems based on a distributed discontinuous control
algorithm. As noted from above, heterogeneous networks need
one or more targets to lead all the nodes. Thus, leader-following
networks are the natural ways to study the coordinated control
problems for the heterogenous networks [21], [22], [23]. Re-
cently, the containment control problem of heterogeneous linear
multiagent systems has been studied based on output regulation
framework in [24]. In [25], the containment control has been
addressed for heterogeneous second-order multiagent systems,
where the position topology and velocity topology are different.
Recent work [26] has investigated the output containment prob-
lem of heterogeneous linear multiagent systems by designing a
protocol based on internal model principle.
It should be noted that the majority of the aforementioned

results concerning leader-following control are focused on the
continuous-time control protocols. Due to the digital technology
of controller implementation and low communication cost, the
sampled-data protocols usually are used for coordination for net-
worked dynamical systems [27], [28]. Since the networks only
sample information at some discrete sampling instants rather
than continuous intervals by adopting sampled-data control,
sampling rate and sampling period are critical for achieving co-
ordination performance. Therefore, various sampling schemes
are designed to coordinate the networked systems, such as de-
terministic sampling controls [29], [30] and stochastic sampling
controls [31]. It is worth pointing out that most sampled-data
control protocols for networked systems are synchronous, that
is, all the nodes are sampled at the same sampling instants.
Synchronous sampling protocol is not reasonable for heteroge-
neous networks since each node has different dynamics with
each other. It is reasonable to expect that each node should
only be sampled at its own sampling instants but need not
be sampled at sampling instants of other nodes in heteroge-
neous networks. Results in [23] showed that quasi (bounded)
leader-following consensus can be achieved for heterogeneous
multiagent systems by an asynchronous sampled-data proto-
col. Compared with the extensive study of the synchronous
sampled-data coordinated control, the asynchronous sampled-
data coordinated control for networked systems especially for
heterogeneous dynamical networks so far received very little
attention.
In this article, the distributed tracking problems for hetero-

geneous dynamical networks are addressed by asynchronous
sampled-data protocols. The main contributions can be sum-
marized as follows. First, both leader-following synchroniza-
tion with a single leader and containment tracking with multi-
ple leaders are studied for heterogeneous dynamical networks,
which generalize the homogeneous dynamical networks. Sec-
ond, asynchronous sampled-data protocols are designed to solve

the leader-following synchronization and containment track-
ing in heterogeneous networks. Since networked systems are
heterogeneous, each node should update information at its own
rate, that is, the sampling instants of all the nodes in hetero-
geneous networks should be asynchronous. Based on asyn-
chronous sampled-data protocols, sampling instants for different
oscillators are independent of each other. In addition, in the par-
tial literatures on asynchronous sampling, different nodes have
independent sampling sequences, and each node samples itself
information at its own sampling instants but also simultaneously
samples information of each of its neighbors synchronously.
Different from this case, this article considers complete asyn-
chronous sampling protocols for the heterogeneous dynamical
networks. In other words, each oscillator only samples itself
information at its own sampling instants and utilizes each of
its neighbors the latest completed sampling information, which
is sampled at its neighbor’s own sampling instants. Third,
based on asynchronous sampled-data protocols, theoretical anal-
ysis and sufficient criteria of quasi-synchronization and quasi-
containment tracking for heterogeneous dynamical networks are
derived. It should be pointed out that the asynchronous protocols
lead to the new heterogeneities. The heterogeneities arising from
both nonidentical nodes’ dynamics and asynchronous sampling
protocols are analyzed synthetically. The upper bounds of quasi-
synchronization errors and quasi-containment tracking errors
are estimated analytically. Furthermore, the theoretical results
can be applied to the electrical networks.
Notations: LetR be the set of the real numbers, 1N and 0N be

theN × 1 column vectors of all ones and all zeros, respectively,
O and I be the zero matrix and identity matrix with appropri-
ate dimension, respectively. diag{A1, A2, . . . , An} stands for
a block-diagonal matrix with square matrix Ai being its ith
diagonal block matrix.AT means transpose for a real matrixA.
The symbol ∗ in a symmetric matrix represents the symmetric
elements. A symmetric matrix P > 0 means that P is positive
definite. Let λmin(P ) and λmax(P ) be theminimal andmaximal
eigenvalue of a symmetric square matrix P , respectively. For a
point x ∈ Rn and a set C ⊆ Rn, denote the distance between x
and C by d(x, C) = infy∈C ‖x− y‖, where ‖ · ‖ is the Euclidian
norm.

II. PRELIMINARIES AND PROBLEM FORMULATIONS

A. Communication Graphs

Denote by G = (V, E ,A) the directed graph, where V =
{ν1, ν2, . . . , νN} and E ⊆ V × V are the sets of nodes and
edges, respectively. A directed edge from νj to νi of G is
represented by eji = (νj , νi). The set of neighbors of node νi
is Ni = {νj |eji ∈ E}. A = [aij ]N×N ∈ RN×N is a weighted
adjacency matrix with (i, j)th entry aij ≥ 0, and it is assumed
that aii = 0 and aij > 0 if eji ∈ E . A directed path from νj
to νi is a sequence of distinct nodes {ν!1 , ν!2 , . . . , ν!r} with
ν!1 = νj and ν!r = νi such that (ν!i , ν!i+1) ∈ E , i = 1, 2, . . . , ".
A digraph G has a spanning tree if there exists at least one node
that has a directed path to all the other nodes in G. The Laplacian
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matrix L = [lij ]N×N of G is defined as lii =
∑

j (=i aij and
lij = −aij for i (= j.

B. Model Formulations

Consider a heterogeneous networked system coupled by N
heterogeneous harmonic oscillators. The dynamics of the ith
oscillator is given by

{
ẋi(t) = vi(t)

v̇i(t) = −ω2
ixi(t)− ui, i = 1, 2, . . . , N

(1)

where constant ωi is the frequency of the ith node, xi(t), vi(t)
∈ R are the position and velocity states of the ith node, respec-
tively, and ui ∈ R is the control protocol to be designed for the
ith node, i = 1, 2, . . . , N . It is assumed that ω1,ω2, . . . ,ωN are
N nonidentical constants. Therefore, network (1) is heteroge-
neous.

Remark 1: Different from homogeneous networks studied
in [3] and [32]–[34], the heterogeneous networks (1) cannot
achieve complete synchronization if the network only relies on
a static control. Therefore, by applying complicated dynamic
controllers, complete synchronization was studied for heteroge-
neous networks in [19]. Otherwise, quasi-synchronization may
be reached for heterogeneous networks if only by the internal
coupling without any external controllers [17].
Consider the following leader as a synchronization signal:

{
ẋ0(t) = v0(t)

v̇0(t) = −ω2
0x0(t)

(2)

where ω0 is the frequency of the leader, and x0(t), v0(t) ∈ R
are the position and velocity states of the leader, respectively.
Throughout this article, the leader is assumed to start from a
bounded region, that is, there exists a compact C0 such that
[x0(0), v0(0)]T ∈ C0 ⊂ R2.
In order to drive the heterogeneous networked system (1)

to synchronize with leader (2), controllers ui(t) should be
designed. Because of the robustness and low communica-
tion cost, sampled-data control is widely used for the com-
munication in complex networks or multiagent systems [28],
[29], [31], [32]. Most studies on sampled-data communication
are based on an assumption that all nodes are sampled syn-
chronously. Since the network is heterogeneous, all noniden-
tical nodes may have different sampling schemes. Therefore,
it is reasonable to adopt an asynchronous sampled-data con-
trol input. Specifically, suppose that agent i is sampled at the
sampling instant tik, k = 0, 1, 2, . . ., where 0 = ti0 < ti1 < ti2 <
· · · < tik < · · · with limk→∞ tik = ∞ and 0 < tik+1 − tik ≤ hi,
i = 0, 1, 2, . . . , N . Here, h0, h1, . . . , hN are N + 1 positive
constants and represent the upper bounds of sampling intervals.
Let h = max{h0, h1, h2, . . . , hN}. The control input ui(t) of
node i will update the information at sampling instants of itself
and its neighbors, and will keep a constant by the zero-order
hold before any new sampling information arrives during the
sampling interval [tik, t

i
k+1), k = 0, 1, 2, . . .. In what follows,

all the oscillators are assumed to have different sampling rates,
namely, the following distributed asynchronous sampled-data

protocol is adopted:

ui(t) = α
∑

j∈Ni

aij
[
vi
(
tik
)
− vj

(
tjkj(t)

)]

+ αbi
[
vi
(
tik
)
− v0

(
t0k0(t)

)]
(3)

for t ∈ [tik, t
i
k+1), k ∈ N, i = 1, 2, . . . , N , where α is coupling

strength, bi are pinning gains with the property that bi > 0 if
the ith node can receive information from the leader (otherwise
bi = 0), kj(t) = max{k|tjk ≤ t} represents that node j has al-
ready completed the kj(t)th sampling at any time t.

Remark 2: For t ∈ [tik, t
i
k+1), node i has completed kth sam-

pling vi(tik), whereas tik may be not a sampling instant for
its neighbor node j ∈ Ni. In other words, sampling sequence
{tik}∞k=1 of node i is independent of sampling sequence {tjk}∞k=1
of node j. Therefore, the control input ui(t) of node i only
can use the latest completed sampling information from itself
and its neighbors at time t. In addition, the latest completed
sampling information of itself and its neighbors may be sampled
at different moments.

Remark 3: If tik = tjk = tk for all i, j = 1, 2, . . . , N , then all
the oscillators sample the information at the same rate, that
is, the sampled-data protocol is synchronous [28], [29], [31].
In [13], [28], and [35], each node i has its own sampling instants
{tik}∞k=1, however, the sampling information of its neighbor
node j ∈ Ni need be available at each tik. Therefore, they
are essentially the synchronous sampling cases. Besides, the
literature [35] considers asynchronous sampling delays. In view
of the heterogeneity of oscillators, this article employs complete
asynchronous sampling protocols,where each agent i only needs
to be sampled at its own sampling instants and does not need
to be sampled at its neighbors’ sampling instants. In particular,
agent i is sampled at tik and its neighbor agent j is sampled at
tjkj(t)

in protocol (3). The design of the distributed asynchronous
protocol (3) can be introduced to the stochastic sampling control,
event-triggered sampling control, and impulsive control. In this
way, one can extend the synchronous sampling sequences to the
asynchronous cases, which are more consistent with the reality.

Definition 1 (see [22]): The heterogeneous networked sys-
tem (1) and leader (2) are said to reach quasi-synchronization
with a level ε > 0 if ‖xi(t)− x0(t)‖ and ‖vi(t)− v0(t)‖ con-
verge into a compact set C as t → ∞ for any initial val-
ues of followers (1) and bounded initial values of leader
(2), i.e., limt→∞ d(xi(t)− x0(t), C) = 0 and limt→∞ d(vi(t)−
v0(t), C) = 0, i = 1, 2, . . . , N , where C = {e ∈ R : |e| ≤ ε}.

Lemma 1 (Jensen’s Ineuality [36]): For any positive definite
matrix M ∈ Rn×n and a scalar ρ, and vector function z :
[0, ρ] → Rn such that the integrations in the following are well
defined, then one has

ρ

∫ ρ

0
zT (t)Mz(t)dt ≥

(∫ ρ

0
z(t)dt

)T

M

(∫ ρ

0
z(t)dt

)
.

III. LEADER-FOLLOWING CONTROL WITH A LEADER

In this section, synchronization tracking of heterogenous net-
worked systems with a dynamic leader is addressed.
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For heterogeneous networked systems (1)–(2), define
synchronization errors x̂i(t) = xi(t)− x0(t), v̂i(t) = vi(t)−
v0(t). Combining (1) and (2) with protocol (3) derives error
systems





˙̂xi(t) = v̂i(t)

˙̂vi(t) = −ω2
i x̂i(t)− α

∑
j∈Ni

aij
[
v̂i
(
tik
)
− v̂j

(
tjkj(t)

)]

− αbiv̂i
(
tik
)
+ ri(t), t ∈ [tik, t

i
k+1)

(4)

where

ri(t) =
(
ω2
0 − ω2

i

)
x0(t)− α

∑

j∈Ni

aij
[
v0

(
tik
)
− v0

(
tjkj(t)

)]

− αbi
[
v0

(
tik
)
− v0

(
t0k0(t)

)]
, i = 1, 2, . . . , N.

Remark 4: To the authors’ knowledge, the heterogeneous
harmonic oscillator systems have been rarely studied. Consider-
ing the existence of the asynchronous sampled-data protocols,
the heterogeneities are induced from both the nonidentities of
nodes’ dynamics and the asynchronization of nodes’ sampling.
Though the models of harmonic oscillators seem relatively sim-
ple, heterogeneous harmonic oscillators cause additional terms
that cannot be counteracted each other in the corresponding
error systems. The similar consequences are caused by the asyn-
chronous sampling. Heterogeneous harmonic oscillator systems
have similar complex structures with other linear or nonlinear
heterogeneous systems. For the other heterogeneous multiagent
systems, the leader is usually assumed to be bounded at any
time [22], [23]. Due to the dynamic properties of harmonic
oscillator, the assumption on the leader is weakened to be only
started from the bounded set in this article.
Let τi(t) = t− tik for t ∈ [tik, t

i
k+1), i = 1, 2, . . . , N . Hence,

0 ≤ τi < hi. By introducing the term τi(t), it follows from (4)
that for t ∈ [tik, t

i
k+1)






˙̂xi(t) = v̂i(t)

˙̂vi(t) = −ω2
i x̂i(t)− α

∑N
j=1 lij v̂j (t− τj(t))

− αbiv̂i (t− τi(t)) + ri(t), i = 1, 2, . . . , N

. (5)

Define B = diag{b1, b2 . . . , bN} and H = L+B = [Hc
1 ,

Hc
2 , . . . , H

c
N ], where Hc

1 , H
c
2 , . . . , H

c
N are N column vectors

ofH . DenoteHn = [0N , . . . , 0N︸ ︷︷ ︸
n−1

, Hc
n, 0N , . . . , 0N︸ ︷︷ ︸

N−n

]. Let x̂(t) =

[x̂1(t), x̂2(t), . . . , x̂N (t)]T , v̂(t) = [v̂1(t), v̂2(t), . . . , v̂N (t)]T .
Then, error systems (5) can be further rewritten as follows:

{
˙̂x(t) = v̂(t)

˙̂v(t) = Wx̂(t)− α
∑N

n=1 Hnv̂ (t− τn(t)) + r(t)
(6)

where W =diag{−ω2
1 ,−ω2

2 , . . . ,−ω2
N} and r(t)=[r1(t), r2(t),

. . . , rN (t)]T . Let y(t) = [x̂T (t), v̂T (t)]T . Then, one can obtain
the following compact systems for t ≥ 0:

ẏ(t) = W̃y(t)− α
N∑

n=1

H̃ny (t− τn(t)) + R̃(t) (7)

where

W̃ =

[
ON IN

W ON

]
, H̃n =

[
ON ON

ON Hn

]
, R̃(t) =

[
0N
r(t)

]
.

Assumption 1: The leader has a directed path to each fol-
lower oscillator.

Proposition 1: r(t) is bounded for any initial values
[x0(0), v0(0)]T ∈ C0 of leader (2).

Proof: It is easy to obtain the solution of (2) for any given
initial values [x0(0), v0(0)]T ∈ C0

x0(t) = x0(0) cos (ω0t) +
v0(0)
ω0

sin (ω0t)

v0(t) = −ω0x0(0) sin (ω0t) + v0(0) cos (ω0t).

Therefore, x0(t) and v0(t) are bounded. Thus, there exists a
constant δ > 0 such that ‖R̃(t)‖ = ‖r(t)‖ ≤ δ. !
Assume that the initial values of (7) are of form

y(s) = φ(s) =
[
x̂T (0), v̂T (0)

]T
, s ∈ [−h, 0]. (8)

Construct the Lyapunov–Krasovskii functional

V (t, y(t)) = V1 (t, y(t)) + V2 (t, y(t)) + V3 (t, y(t)) (9)

where V1(t, y(t)) = yT (t)Py(t)

V2 (t, y(t)) =
N∑

n=1

∫ t

t−hn

ea(s−t)yT (s)Qny(s)ds

V3 (t, y(t)) =
N∑

n=1

2hn

∫ 0

−hn

∫ t

t+θ
ea(s−t)ẏT (s)Rnẏ(s)dsdθ

with positive definite matrices P > 0, Qn > 0, and Rn > 0,
n = 1, 2, . . . , N .
For delay system (7), the following result holds.
Proposition 2: If there exist positive constants a and b such

that the Lyapunov–Krasovskii functional (9) along the trajecto-
ries of (7) satisfies the following condition:

U(t) = V̇ (t) + aV (t)− bR̃T (t)R̃(t) < 0 (10)

then the solutions of (7) with initial values (8) satisfy the fol-
lowing inequality:

yT (t)Py(t) ≤ e−atV (0, y(0)) +
bδ2

a

(
1− e−at

)
.

Proof: The proof is similar to [37] and thus is omitted. !
Based on Proposition 2, the following result holds.
Theorem 1: Suppose that Assumption 1 holds. For given

constants a > 0 and hn > 0, quasi-synchronization is reached
in heterogeneous coupled harmonic oscillators (1)–(2) with the
asynchronous sampled-data protocol (3), if there exist matrices
P > 0,Qn > 0,Rn > 0, S1, S2, and a constant b > 0 such that

Ψ =





Ψ11 Ψ12 Ψ13 Ψ14 S2

∗ Ψ22 O Ψ24 S1

∗ ∗ −ψq − 2ψr ψr O

∗ ∗ ∗ −2ψr O

∗ ∗ ∗ ∗ −bI




< 0 (11)
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where n = 1, 2, . . . , N

Ψ11 = aP +
N∑

n=1

Qn − 2
N∑

n=1

e−ahnRn + S2W̃ + W̃TST
2

Ψ12 = P + W̃TST
1 − S2

Ψ13 =
[
e−ah1R1, e

−ah2R2, . . . , e
−ahNRN

]

Ψ14 =
[
e−ah1R1 − αS2H̃1, . . . , e

−ahNRN − αS2H̃N

]

Ψ22 = 2
N∑

n=1

h2
nRn −

(
S1 + ST

1

)

Ψ24 =
[
−αS1H̃1,−αS1H̃2, . . . ,−αS1H̃N

]

ψq = diag
{
e−ah1Q1, e

−ah2Q2, . . . , e
−ahNQN

}

ψr = diag
{
e−ah1R1, e

−ah2R2, . . . , e
−ahNRN

}
.

Proof: Taking the derivative of V (t) along the trajectory of
(7) and substituting the derivative of V (t) into U(t) derive

U(t) ≤ 2yT (t)P ẏ(t) + yT (t)

(
aP +

N∑

n=1

Qn

)
y(t)

−
N∑

n=1

[
e−ahnyT (t−hn)Qny (t−hn)+2h2

nẏ
T(t)Rnẏ(t)

]

−
N∑

n=1

2hne
−ahn

∫ t

t−hn

ẏT (s)Rnẏ(s)ds−bR̃T (t)R̃(t).

(12)

Simple calculation yields the following inequality:

2hn

∫ t

t−hn

ẏT (s)Rnẏ(s)ds ≥ hn

∫ t

t−hn

ẏT (s)Rnẏ(s)ds

+ (hn − τn(t))

∫ t−τn(t)

t−hn

ẏT (s)Rnẏ(s)ds

+ τn(t)

∫ t

t−τn(t)
ẏT (s)Rnẏ(s)ds. (13)

Appling Jensen’s inequality of Lemma 1, one has

2hn

∫ t

t−hn

ẏT (s)Rnẏ(s)ds

≥ [y(t)− y (t− hn)]
T Rn [y(t)− y (t− hn)]

+ [y (t− τn)− y (t− hn)]
T Rn [y (t− τn)− y (t− hn)]

+ [y(t)− y (t− τn)]
T Rn [y(t)− y (t− τn)] . (14)

Defining the vectorial variable

η(t) =
[
yT (t), ẏT (t), γT

1 (t), γ
T
2 (t), R̃T (t)

]T

where γ1(t) = [yT (t−h1), yT (t−h2), . . . , yT (t− hN )]T and
γ2(t) = [yT (t − τ1(t)), yT (t− τ2(t)), . . . , yT (t− τN (t))]T .
Combining (11)–(14) yields U(t) ≤ ηT (t)Ψη(t) < 0.

It follows from Proposition 2 that yT (t)Py(t) < bδ2/a with
a exponential decay rate a as t → ∞, that is, ‖y(t)‖2 <
bδ2/[aλmin(P )] as t → ∞. Therefore, quasi-synchronization in
(1) and (2) is achieved with the upper bound bδ2/[aλmin(P )].!

Corollary 1: Suppose that Assumption 1 holds. For given
constants a > 0 and h > 0, quasi-synchronization is reached
in heterogeneous coupled harmonic oscillators (1)–(2) with
the asynchronous sampled-data protocol (3), if there exist
matrices P > 0, Q > 0, R > 0S1, S2, and a constant b > 0
such that





Φ11 Φ12 e−ahR Φ14 S2

∗ Φ22 O Φ24 S1

∗ ∗ −e−ah(Q+ 2R) Φ34 O

∗ ∗ ∗ Φ44 O

∗ ∗ ∗ ∗ −bI




< 0 (15)

where Φ12 = Ψ12,Φ24 = Ψ24

Φ11 = aP +Q− 2e−ahR+ S2W̃ + W̃TST
2

Φ14 =

[
1
N

e−ahR− αS2H̃1, . . . ,
1
N

e−ahR− αS2H̃N

]

Φ22 = 2h2R−
(
S1 + ST

1

)

Φ34 =

[
1
N

e−ahR,
1
N

e−ahR, . . . ,
1
N

e−ahR

]

Φ44 = diag
{
− 2
N

e−ahR,− 2
N

e−ahR, . . . ,− 2
N

e−ahR

}
.

Proof: Choose the Lyapunov–Krasovskii functional

V (t, y(t)) = Ṽ1 (t, y(t)) + Ṽ2 (t, y(t)) + Ṽ3 (t, y(t)) (16)

where Ṽ1(t, y(t)) = yT (t)Py(t)

Ṽ2 (t, y(t)) =

∫ t

t−h
ea(s−t)yT (s)Qy(s)ds

Ṽ3 (t, y(t)) = 2h
∫ 0

−h

∫ t

t+θ
ea(s−t)ẏT (s)Rẏ(s)dsdθ.

Taking the derivative of V (t) along the trajectory of (7) and
substituting the derivative of V (t) into U(t) obtains

U(t) ≤ 2yT (t)P ẏ(t) + yT (t)(aP +Q)y(t)− bR̃T (t)R̃(t)

− e−ahyT (t− h)Qy(t− h) + 2h2ẏT (t)Rẏ(t)

− 2he−ah

∫ t

t−h
ẏT (s)Rẏ(s)ds. (17)

Defining the vectorial variable

η̃(t) =
[
yT (t), ẏT (t), yT (t− h), γT

2 (t), R̃T (t)
]T

.

The remainder proof is similar toTheorem1andhence is omitted
here. !

Remark 5: Corollary 1 only depends on the maximal upper
bound of sampling intervals and only needs to find solutions
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P,Q,R, S1, S2 by solving linear matrix inequality (LMI) (15),
which is more simple than LMI (11) in Theorem 1.

Remark 6: From Corollary 1, for given constants a > 0 and
h > 0, one can find the minimum and maximum of α de-
noted by α and α, respectively, by solving (15). Then, quasi-
synchronization can be reached in heterogeneous coupled har-
monic oscillators (1)–(2) with the asynchronous sampled-data
protocol (3) for any α ∈ [α,α] by [38, Lemma 4].

Remark 7: Since leader (2) is dynamic and sampled-data
protocol (3) is asynchronous, v0(tik) usually is not equal to
v0(t

j
kj(t)

), that is, the norm ‖r(t)‖ will not approach zero for
error systems (5). Therefore, only quasi-synchronization can
be reached by adopting asynchronous sampled-data protocol
even if network (1)–(2) is homogeneous. If network (1)–(2) is
homogeneous and protocol (3) is synchronous, then complete
synchronization is achieved in (1)–(2).

IV. CONTAINMENT CONTROL WITH MULTIPLE LEADERS

In this section, containment control for heterogeneous net-
worked oscillator systems is investigated. Assume that the
directed graph G is composed of N heterogeneous follower
oscillators andM heterogeneous leader oscillators.Without loss
of generality, we assume that oscillators indexed by 1, 2, . . . , N
are followers and by N + 1, . . . , N +M are leaders. Denote
the sets of followers and leaders by F = {1, 2, . . . , N} and
L = {N + 1, N + 2, . . . , N +M}, respectively. The leaders
are assumed to not be affected by other oscillators, that is,
the leaders have no neighbors. Each follower has at least one
neighbor.
Consider a networked heterogeneous system coupled by

N +M nonidentical nodes

{
ẋi(t) = vi(t)

v̇i(t) = −ω2
ixi(t)− ui, i = 1, 2, . . . , N +M

. (18)

According to the definition, the control input of each leader
is set as zero, that is, ui(t) = 0, i = N + 1, N + 2, . . . ,
N +M .
This section aims to address the containment control problem

of heterogeneous coupled oscillators with multiple dynamic
leaders (18) by designing a distributed asynchronous sampled-
data protocol for the followers.

Definition 2 (see [39]): A set C ⊆ Rn is convex if (1−
λ)x+ λy ∈ C for any x, y ∈ C and λ ∈ [0, 1]. The convex hull
Co(X) spanned by a finite set X = {x1, x2, . . . , xq} is the
minimal convex set containing all points ofX , that is, Co(X) =
{
∑q

i=1 σixi|xi ∈ X,σi ≥ 0,
∑q

i=1 σi = 1}.
Definition 3: Quasi-containment tracking in heteroge-

nous networked oscillator systems (18) is said to be
reached if there exists a positive constant ε such that
for all i ∈ F , d(xi(t),Co(xN+1, . . . , xN+M )) ≤ ε and
d(vi(t),Co(vN+1, . . . , vN+M )) ≤ ε hold. If ε = 0, then
accurate containment tracking is reached.

To achieve containment tracking in heterogeneous network
(18), the following distributed asynchronous sampled-data pro-
tocol is proposed for the follower oscillators:

ui(t) = α
N∑

j=1

aij
[
vi
(
tik
)
− vj

(
tjkj(t)

)]

+ α
N+M∑

r=N+1

air
[
vi
(
tik
)
− vr

(
trkr(t)

)]
(19)

for t ∈ [tik, t
i
k+1), k ∈ N, i = 1, 2, . . . , N , where α is coupling

strength, air are pinning gains with the property that air > 0
if the ith node can receive information from the rth leader
(otherwise air = 0), r ∈ {N + 1, N + 2, . . . , N +M}.

Note that the leaders have no neighbors, the Laplacian matrix
L of the directed graph G can be rewritten as a partitionedmatrix

L =

[
L1 L2

OM×N OM×M

]
∈ R(N+M)×(N+M) (20)

where L1 ∈ RN×N and L2 ∈ RN×M .
Assumption 2: For each follower oscillator, there exists at

least one leader that has a directed path to the follower.
Lemma 2 (see [12]): Under Assumption 2, all the eigenval-

ues of L1 have positive real parts. Moreover, each entry of
−L−1

1 L2 is nonnegative and the sum of each row of −L−1
1 L2

is 1, that is −L−1
1 L21M = 1M .

Set

xf = [x1, x2, . . . , xN ]T , xl = [xN+1, xN+2, . . . , xN+M ]T

vf = [v1, v2, . . . , vN ]T , vl = [vN+1, vN+2, . . . , vN+M ]T

Wf = −diag
{
ω2
1 ,ω

2
2 , . . . ,ω

2
N

}

Wl = −diag
{
ω2
N+1,ω

2
N+2, . . . ,ω

2
N+M

}
.

Note that ui(t) = 0 for i ∈ L, one has
{
ẋl(t) = vl(t)

v̇l(t) = Wlxl

. (21)

Combining (18) and (19) yields





ẋf (t) = vf (t)

v̇f (t) = Wfxf − α
∑N

n=1 H
1
nvf (t− τn(t))

− α
∑M

m=1 H
2
mvl (t− τN+m(t))

(22)

where the columns ofH1
n are zero vectors except thenth column,

which is the same as the nth column of L1; the columns ofH1
m

are zero vectors except the mth column, which is the same as
the mth column of L2. Denote

W̃f =

[
ON IN

Wf ON

]
and H̃1

n =

[
ON ON

ON H1
n

]
.

Let x(t) = xf (t) + L−1
1 L2xl(t) and v(t) = vf (t) +

L−1
1 L2vl(t). According to Definition 4, containment tracking in

heterogenous coupled oscillator network (18) will be reached if
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x(t) and v(t) asymptotically converge to zero. By calculating,
one has

{
ẋ(t) = v(t)

v̇(t) = Wfx(t)− α
∑N

n=1 H
1
nv (t− τn(t)) + s(t)

(23)

where

s(t) =
(
L−1
1 L2Wl −WfL

−1
1 L2

)
xl(t)

+ α
N∑

n=1

H1
nL

−1
1 L2vl (t− τn(t))

− α
M∑

m=1

H2
mvl (t− τN+m(t)) .

Similar to Proposition 1, s(t) has the following property.
Proposition 3: s(t) is bounded for given initial values of the

leaders L, that is, there exists " > 0 such that ‖s(t)‖ ≤ ".
Based on the previous analysis in Section III, one can establish

the following results where the detailed proof is omitted here.
Theorem 2: Suppose that Assumption 2 holds. For given

constants a > 0 and hn > 0, quasi-containment tracking is
reached in heterogeneous coupled harmonic oscillators (21)–
(22) with the asynchronous sampled-data protocol (19), if there
exist matrices P > 0, Qn > 0, Rn > 0, S1, S2, and a constant
b > 0 such that





Ω11 Ω12 Ω13 Ω14 S2

∗ Ω22 O Ω24 S1

∗ ∗ −ψq − 2ψr ψr O

∗ ∗ ∗ −2ψr O

∗ ∗ ∗ ∗ −bI




< 0

where

Ω11 = aP +
N∑

n=1

Qn − 2
N∑

n=1

e−ahnRn + S2W̃f + W̃T
f ST

2

Ω12 = P + W̃T
f ST

1 − S2

Ω13 =
[
e−ah1R1, e

−ah2R2, . . . , e
−ahNRN

]

Ω14 =
[
e−ah1R1 − αS2H̃

1
1 , . . . , e

−ahNRN − αS2H̃
1
N

]

Ω22 = 2
N∑

n=1

h2
nRn −

(
S1 + ST

1

)

Ω24 =
[
−αS1H̃

1
1 ,−αS1H̃

1
2 , . . . ,−αS1H̃

1
N

]
.

Corollary 2: Suppose that Assumption 2 holds. For given
constants a > 0 and h > 0, quasi-containment tracking is
reached in heterogeneous coupled harmonic oscillators (21)–
(22) with the asynchronous sampled-data protocol (19), if there
exist matrices P > 0, Q > 0, R > 0, S1, S2, and a constant

b > 0 such that




Λ11 Λ12 e−ahR Λ14 S2

∗ Λ22 O Λ24 S1

∗ ∗ −e−ah(Q+ 2R) Λ34 O

∗ ∗ ∗ Λ44 O

∗ ∗ ∗ ∗ −bI




< 0 (24)

where Λ12 = Ω12, Λ24 = Ω24

Λ11 = aP +Q− 2e−ahR+ S2W̃f + W̃T
f ST

2

Λ14 =

[
1
N

e−ahR− αS2H̃
1
1 , . . . ,

1
N

e−ahR− αS2H̃
1
N

]

Λ22 =
[
2h2R−

(
S1 + ST

1

)]

Λ34 =

[
1
N

e−ahR,
1
N

e−ahR, . . . ,
1
N

e−ahR

]

Λ44 = diag
{
− 2
N

e−ahR,− 2
N

e−ahR, . . . ,− 2
N

e−ahR

}
.

Remark 8: Similar to Remark 6, one can derive the mini-
mum and maximum of α denoted by α and α, respectively,
by solving (24). Then, quasi-synchronization can be reached in
heterogeneous coupled harmonic oscillators (21)–(22) with the
asynchronous sampled-data protocol (19) for any α ∈ [α,α].

Remark 9: Based on Remark 7, s(t) cannot vanish even
if network (18) is homogeneous. Therefore, if the asyn-
chronous sampled-data protocol (19) is adopted, then only quasi-
containment tracking can be achieved for network (18) whatever
it is heterogeneous or homogeneous.

Remark 10: There are two basic forms of tracking control.
One is the leader-following control with one leader, and the
other is the containment control with multiple leaders. They
look similar in form, however, the leader-following control refers
to node-to-node and the containment control refers to group-
to-group. It is worth mentioning that the leaders’ dynamics in
system (18) are also heterogeneous for the containment control.

V. NUMERICAL EXAMPLES

A. Quasi-Synchronization With a Dynamic Leader

Example 1: Consider the heterogeneous network (1)with the
coefficient matrix W = diag{−1.5,−1.2,−5.5,−0.85}. Set
ω0 = 1 for leader (2).
Suppose that the graph topology is a directed network as

shown in Fig. 1(a), where the follower oscillators are labeled
by 1, 2, 3, 4 and the leader is labeled by 0. Therefore the pinning
matrix B = diag{1, 0, 0, 0}. Solving LMI in Corollary 1 with
a = 0.1 and h = 0.15 derives an allowable interval of coupling
strength [0.42, 1.31]. Set α = 0.9. For the sake of simplicity,
this example considers the asynchronous periodic sampling
case. Design the sampling periods of oscillators are h0 = 0.05,
h1 = 0.1, h2 = 0.15, h3 = 0.12, and h4 = 0.09. Take initial
values [x0(0), v0(0)]T = [0.25, 0.5]T for the leader, and x(0) =
[29,−18, 12,−8]T and v(0) = [2, 10, 5, 8]T for the follower
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Fig. 1. Network topologies.

Fig. 2. Trajectories xi(t) of all oscillators, i = 0, 1, . . . , 4.

Fig. 3. Trajectories vi(t) of all oscillators, i = 0, 1, . . . , 4.

oscillators. The state trajectories of position and velocity of both
the leader and the followers are depicted in Figs. 2 and 3, respec-
tively. By Corollary 1 and Figs. 2 and 3, quasi-synchronization
tracking is successfully reached in heterogeneous network (1)
and leader (2), that is, the follower oscillators can track the
leader with a bounded error as the network is heterogeneous.
If ω0 = ω1 = · · · = ω4 = 1, then the networked system (1)–(2)
is homogeneous. By employing asynchronous sampled-data
protocol (3), the curves of the norm ‖r(t)‖ for heterogeneous
and homogeneous networks are drawn in Fig. 4(a) and (b),
respectively.According toRemark 7 andFig. 4(b),‖r(t)‖ cannot
approach zero even if the network is homogeneous.

B. Containment Tracking With Two Dynamic Leaders

Example 2: Consider the heterogeneous network (18)
composed of six nodes with a directed topology, as shown in

Fig. 4. Curves of ‖r(t)‖ of (a) heterogeneous networks and (b) homo-
geneous networks.

Fig. 5. Trajectories xi(t) of all oscillators, i = 1, 2, . . . , 6.

Fig. 1(b). Four follower oscillators are labeled by 1, 2, 3, 4 and
two leader oscillators are labeled by 5,6. The coefficientmatrices
of the follower and the leader oscillators are set as Wf =
diag{−1.5,−1.2,−5.5,−0.85} and Wl = diag{−1,−2},
respectively.
Similarly, solving LMI in Corollary 2 with a = 0.1 and

h = 0.15 derives an allowable interval of coupling strength
[0.21, 1.23]. Set coupling strength α = 1. For the sake of sim-
plicity, this example also considers the asynchronous periodic
sampling case. Take the same asynchronous sampling periods
and initial values as in Example 1 for four follower oscillators.
Choose the sampling periods h5 = 0.05, h6 = 0.02 and initial
values xl(0) = [0.25, 0.15]T , vl(0) = [0.5, 0.3]T for two leader
oscillators. The state trajectories of position and velocity of
heterogeneous network (18) with the asynchronous sampling
protocol (19) are shown in Figs. 5 and 6, respectively. If one
takes Wf = −I4 and Wl = −I2, then network (18) becomes
homogeneous. However, ‖s(t)‖will not tend to zero by Remark
9. The curves of the norm ‖s(t)‖ for heterogeneous and homo-
geneous networks are sketched in Fig. 7(a) and (b), respectively.
Therefore, only quasi-containment tracking can be achieved if
asynchronous sampled-data protocol is applied.

Remark 11: r(t) and s(t) indicate the network hetero-
geneities arising from the nonidentity of nodes’ dynamics and
the asynchronism of sampling. Fig. 7(a) shows more oscillation
than Fig. 4(a) due to the influence of multiple heterogeneous
leaders. When the networks are homogeneous, the nonidentity

Authorized licensed use limited to: IEEE Editors-in-Chief. Downloaded on June 14,2021 at 20:38:05 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: DISTRIBUTED TRACKING IN HETEROGENEOUS NETWORKS WITH ASYNCHRONOUS SAMPLED-DATA CONTROL 7389

Fig. 6. Trajectories vi(t) of all oscillators, i = 1, 2, . . . , 6.

Fig. 7. Curves of ‖s(t)‖ of (a) heterogeneous networks and (b) homo-
geneous networks.

of nodes’ dynamics vanishes and only the asynchronism of
sampling exists. Therefore, Figs. 4(b) and 7(b) show the similar
oscillation.

C. Application to Electrical Networks

Consider a group of LC oscillators

cz̈i +
1
li
zi = 0 (25)

where zi denotes the voltage of the ith oscillator, c > 0 is the
commoncapacitance, li is the inductance of the ith oscillator, i =
1, 2, . . . , N +M , F = {1, 2, . . . , N}, and L = {N + 1, N +
2, . . . , N +M}.
Certain two LC oscillators are coupled by LTI resistors with

conductances aij . By Kirchhoff’s current law, an electrical
network with asynchronous coupling can be described as fol-
lows [40]:

żi(t) = wi(t)

ẇi(t) = − 1
cli

zi(t)−
1
c

N∑

j=1

aij
[
wi

(
tik
)
− wj

(
tjkj(t)

)]

− 1
c

N+M∑

r=N+1

aij
[
wi

(
tik
)
− wr

(
trkr(t)

)]
(26)

i = 1, 2, . . . , N . Therefore, network (26) is similar to network
(18) with protocol (19). Therefore, the theoretical results of this
article can be applied to the electrical network (26).

VI. CONCLUSION

In this article, the problems of both leader-following syn-
chronization and containment tracking of networked hetero-
geneous systems were investigated. Based on asynchronous
sampled-data, two distributed protocols were adopted to realize
coordinated tracking. All the nodes have different sampling
instants with each other, and each node only samples the in-
formation itself at its own sampling instants. In the case of
asynchronous sampling protocol and one single dynamic leader,
all the nonidentical followers can track the leader with an upper
bound, which can be estimated. In the presence of multiple
heterogeneous leaders for networked heterogeneous systems,
the asynchronous sampling protocol is still effective to ensure
that all the nonidentical followers can converge into a bounded
level of convex hull spanned by heterogeneous leaders. Numer-
ical simulations were given to illustrate the effectiveness of the
theoretical results. The theoretical results have the applicability
to the electrical networks. Possible extensions of the present
work for event-triggered sampling, stochastic sampling, and
time-varying topology will be explored in the future. Especially,
future work will mainly focus on the asynchronous control
for the event-triggered sampling control, stochastic sampling
control, and impulsive control.
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