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Local Domain Adaptation for Cross-Domain
Activity Recognition

Jiachen Zhao', Fang Deng

Abstract—Sensor-based human activity recognition (HAR) aims
to recognize a human’s physical actions by using sensors attached
to different body parts. As a user-specific application, HAR of-
ten suffers poor generalization from training on an individual to
testing on another individual, or from one body part to another
body part. To tackle this cross-domain HAR problem, this article
proposes a domain adaptation (DA) method called local domain
adaptation (LDA), whose core is to align cluster-to-cluster distri-
butions between the source domain and the target domain. On
the one hand, LDA differs from existing set-to-set alignment by
reducing the distribution discrepancy at a finer granularity. On
the other hand, LDA is superior to the class-to-class alignment
because it can provide more accurate soft labels for the target
domain. Specifically, LDA contains three main steps: 1) groups
the activity class into several high-level abstract clusters; 2) maps
the original data of each cluster in both domains into the same
low-dimension subspace to align the intracluster data distribution;
3) predicts the class labels for target domain in the low-dimension
subspace. Experimental results on two public HAR benchmark
datasets show that LDA outperforms state-of-the-art DA methods
for the cross-domain HAR.

Index Terms—Domain adaptation, human activity recognition,
transfer learning, wearable sensor.

I. INTRODUCTION

ENSOR-BASED human activity recognition (HAR) aims
S to identify humans’ actions using the data collected by
sensors worn on a human body, which has many potential
applications in the fields of human-computer interaction [1],
healthcare [2], ubiquitous computing [3], etc. Fig. 1 shows the
diagram of sensor-based HAR, where inertial measurement units
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Fig. 1. Diagram of sensor-based HAR. Five IMUs are placed on the chest,
left arm, right arm, left leg, and right leg to record the motion pattern of each
position to identify the human body motion further. (Figure source: https://www.
tiankong.com)

(IMU) are installed on different positions of the human body and
used to record the motion patterns of the torso and limbs. Then,
the collected data can be used to monitoring daily activity to
provide personalized recommendations or assist patients with
chronic impairments. Comprehensive surveys in [4] and [5]
provide more technical details on sensor-based HAR.

It is a typical scenario in real life that designers can only
collect limited labeled data from a certain number of individ-
uals, but designers need to identify the actions of many other
people. For example, smart bracelet manufacturers cannot label
all consumers’ data to train their HAR model but need to identify
every user’s activity. Another common scenario is that people
usually put their smartphones in different positions of the body
over time, such as in the left hand or the right pocket of the pants.
Many existing papers [6], [7] pointed out that a HAR model
trained on certain persons or certain positions (i.e., the source
domain) does not generalize well to other persons and positions
(i.e., the target domain). Such problems are called cross-person
HAR and cross-position HAR, respectively. Moreover, both
problems are referred to as cross-domain HAR. To clearly show
the negative effect of domain discrepancy, we perform simple
cross-person HAR experiments on the DSADS dataset proposed
in [8]. We use the signal of the accelerometer and gyroscope
mounted on the torso, and train a nearest neighbor classifier on
the data of one object to recognize the other objects’ actions.
We also adopt 10-fold cross-validation to get robust results. As
shown in the accuracy variation matrix in Fig. 2, the diagonal
elements display the average self-action recognition accuracy
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Fig. 2. Classification accuracy matrix of cross-person activity recognition

without considering the differences between individuals.

of 91.87%, while the cross-person accuracy is only 57.71%.
This result shows it is necessary to adapt the classifier for each
individual.

DA methods have been applied to cross-domain HAR with
some success. Such as Hong et al. [9] presented a semipopulation
approach for cross-person HAR. Wang ef al. [6] proposed a
deep siamese neural network for cross-position HAR. Wang
et al. [10] proposed an extreme learning machine based method
for cross-location HAR. Different from traditional classification
methods, DA takes the distribution discrepancy between do-
mains into account. Therefore, the main idea of DA methods is to
reduce the distribution discrepancy by learning domain-invariant
representations. The most related DA methods of this article are
transfer component analysis (TCA) [11] and stratified transfer
learning (STL) [12]. TCA is one of the most classic methods,
which maps the original features to a reproducing kernel Hibert
space (RKHS). In the RKHS, the maximum mean discrepancy
distance (MMD) between domains is minimized. However, TCA
has restricted performance because it tries to map all the source
samples and the target samples into the same subspace, where
may still exist obvious distribution discrepancy. TCA can be
regarded as a global domain adaptation method that matches
the set-to-set distributions. To overcome the drawbacks of TCA,
STL performs class-to-class distribution alignment based on the
predicted soft labels of the target domain. However, it is usually
difficult to give accurate soft labels at the class level.

Different from the abovementioned works, this article takes a
compromise between the set-to-set and the class-to-class align-
ment, then proposes a novel cluster-to-cluster distribution align-
ment method called local domain adaptation (LDA). LDA avails
the hierarchy of human activity categories. For example, sitting,
lying, and standing can be summed into “static activity cluster,”
“walking, running, cycling” belong to “dynamic cluster.” By
performing cluster-to-cluster distribution alignment, LDA can
reduce the distribution discrepancy at a finer granularity than

TCA, and can match the distribution based on more accurate
soft labels for the target domain than STL. Specifically, LDA
divides all individual activity classes into several prespecified
abstractactivity clusters based on human knowledge. Then, LDA
trains multiple classifiers on the source domain and predicts
the cluster labels on the target domain with voting decision.
Finally, LDA maps the samples in the same cluster in both
domains into the same subspace and predicts the class label
for the target domain. Furthermore, we propose autoclustering
LDA (ACLDA) by introducing a clustering technique named to
group the activity classes into clusters instead of that predefined
clusters.

To sum up, our study has three main contributions as follows.

1) We propose a novel domain adaptation method LDA for
cross-domain HAR, whose main idea is to align the distri-
butions of source and target domains at the cluster level.
Taking a compromise between set-to-set and class-to-class
alignment methods, LDA relieves the obvious disadvan-
tages of both methods.

2) We improve LDA by canceling the process of artificially
defining clusters and propose ACLDA. ACLDA can find
the local clusters automatically and then performs the local
transfer without human intervention. Therefore, ACLDA
has the potential to solve a wider range of DA problems.

3) We conduct comprehensive experiments for cross-persons
HAR on two public datasets. The experiment results
demonstrate the effectiveness of LDA and ACLDA.

The rest of this article is organized as follows. Section II
reviews the related works. Section III presents the proposed
LDA and ACLDA. Section IV reports the experiment results.
Finally, Section Vconcludes this article.

II. RELATED WORKS

A considerable number of researchers have investigated
sensor-based HAR [13]. Bulling ef al. [14] introduced the
general-purpose process pipeline for designing and evaluating
activity recognition systems. Anguita ef al. [15] built a multiclass
support vector machine model on a smartphone platform to
implement six-class locomotion activities recognition. Several
deep learning methods, such as the one-dimensional convolu-
tional neural network [16] and recurrent neural network [17]
were also used in HAR system. However, such deep models
often require higher computation time and memory resources.
All the abovementioned works assume that the persons in the
test set and the training set are the same, so the data follows the
same distribution. However, it is too expensive, even impossible,
to collect and label data from consumers or patients using
the product. To capture the interpersonal variability, one can
increase the amount of training data from different persons or
use person-independent features. The former is costly, and the
latter is a tradeoff between a discriminative feature set and a
generic feature set. Differently, this article aims to tackle this
challenge via a transfer learning method.

The main idea of transfer learning (TL) is to capture the
knowledge from a source domain D, to solve the learning task in
a target domain D;, where two domains are different but related.
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For the classification task, transfer learning is also named as
domain adaptation. Its goal is to learn a classifier from the source
domain to classify the samples in the target domain [18], [19].
Throughout this article, we do not distinguish the differences
between TL and DA. Generally, DA problem has two types
of settings: unsupervised DA, which assumes that only source
samples are labeled; supervised DA, which assumes that parts of
target samples are labeled. In this article, we consider the more
challenging unsupervised setting.

Recently, several researches investigates how to apply transfer
learning methods to solve cross-domain HAR problems, includ-
ing cross-sensor-modalities [20], [21], cross-sensor-installation-
position [6], [12], cross locations [22], [23], and cross persons
[24]-[26]. Deng et al. [27] proposed the TLRKELM model for
HAR, whose main idea is to train a reduced kernel extreme learn-
ing machine on the source domain and use it to classify the target
samples, then label the high confident samples and add them to
the training set. Zhao ef al. [28] proposed TransEMDT model
to recognize different persons activities based on a smartphone.
Both TLRKELM and TransEMDT belong to the instance-based
transfer learning methods. In contrast, our method is feature
based and distinguishes from existing works by taking a compro-
mise between set-to-set alignment and class-to-class alignment,
to perform the cluster-to-cluster alignment.

III. PROPOSED METHOD

In this section, we first formulate the cross-domain HAR
problem, then introduce the framework of LDA, and present
how to modify LDA into ACLDA at last.

A. Problem Definition

We formulate the cross-domain HAR as an unsupervised
domain adaptation problem, which means that the samples in
the source domain are labeled, i.e., Dy = {x;,y; }i~;, but the
target domian have no ground-truth labels, i.e., Dy = {z;}]_;,
where z; and y; are the feature vector and ground-truth label of
ith sample; m and n are the sizes of D, and D;. Furthermore,
both domains share the same feature space X; = A} and label
space YV, = Y, but have different conditional and marginal dis-
tributions Qs(ys|f£s) 7é Qt(ytlxt)s Ps(xs) = R(It)- The goal
is to learn a classifier f:z; — y; from source domain to classify
the data in the target domain. In this article, we consider two
types of cross-domain HAR: cross-person HAR, which means
the data from different persons serve as different domains, and
cross-position HAR, which means the data from different body
parts of the same person serve as different domains.

B. LDA Framework

As shown in Fig. 3, LDA works as follows.

1) Group the source samples into several predefined abstract
activity clusters based on the ground-truth class label.
Therefore, each source sample is labeled at both the cluster
level and class level.

2) Predict the cluster label for each target sample using a
multiposition multiclassifier voting technique. Here, the
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Fig. 3. Framework of LDA. (1) Generate the abstract activity cluster la-
bels (As, Bs,Cs) on the source domain artificially (LDA) or automatically
(ACLDA). (2) Predict the cluster labels for candidate samples (in the dotted
circle) leaving out the residual samples (out of the dotted circle). (3) Perform
local transfer and predict the class labels for the candidate samples. (4) Predict
the class labels for the residual samples using the source domain and candidate
samples.

samples that get voting consistency will be regarded as
candidates and will be used to perform the local transfer
in the following steps, but other samples are left out as
residual samples.

3) Perform local transfer between source samples and target
candidates with the same cluster label, and then predict
the class labels for target candidates.

4) Use the source domain and target candidate samples to
predict the class labels of the residual samples. The details
of LDA are shown in the following sections.

C. Abstract Activity Clustering

Our method is a divide-and-conquer-like algorithm that
breaks down a problem into subproblems. In preprocessing
steps, we divide all individual activities into several high-level
abstract activity clusters. The abstract activity cluster is a subset
of activities that shares an identical abstract feature and distin-
guishes from other clusters. For example, all types of actions
can be divided into dynamic actions (including walking, run-
ning) and static actions (including sitting, standing) according
to whether this action involves movement. An abstract activity
cluster consists of several individual classes, and an individual
class belongs to only one cluster. We use “cluster of classes”
to describe this relationship, so that one sample will have two
labels, one is class label (such as sitting), the other is cluster
label (such as a static activity). In this article, we use y; and
z; to represent class labels and cluster labels for a sample z;,
respectively. The clusters can be artificially defined, or auto-
matically generated based on the geometric distances between
individual activities.
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Why do we introduce the abstract activity cluster? Direct
cross-person HAR at the individual activity level cannot get
good accuracy (as shown in Fig. 2), but it can achieve acceptable
performance at the activity cluster level because the distance
between different clusters of the same person is larger than that
between the same clusters of a different person [29]. If samples in
both domains have the cluster label, we can make an intracluster
knowledge transfer to improve the classification accuracy.

The next key question is how to predict the cluster label
for the target domain. For the source domain, we can use the
class labels to categorize samples into the corresponding abstract
clusters. For the target domain, we introduce a voting technique
to predict the cluster label. For the cross-position HAR, we use
multiple base classifiers with the same input features to vote.
For the cross-person HAR, we not only change the classifier but
also change the sample features. Specifically, we build multiple
classifiers for every IMU in different body positions. Therefore,
every classifier can make a prediction individually and combine
their predictions via voting. For example, if we build KNN and
random forecast two classifiers for three IMUs on the torso, right
arm, and right leg, there will be six classifiers participating in
the voting.

First, we train M base classifiers f;(-),i =1,..., M on the
source domain {z,z,} to predict the cluster labels {z;} for
the targel domain. M classifiers give M predicted cluster labels
[fi(x;)]M, for each target sample 1:3 Then, we compute the
most frequenl value Mode([f;(z¢)]M ). If Mode([f;(z¢)]}L
is larger than M / 2, the final result of majority voting on z; w1ll
be Mode([f;(z¢)]},). Otherwise, =; will be viewed as a residual
sample without a credibly voted cluster label. Specifically, the
target samples those have majority consistent voting results are
called candidates x,,, and they are divided into predefined
abstract clusters. Other samples are called residuals z,.; and
do not have cluster labels. We give the residuals a pseudolabel
—1. Therefore, the predicted cluster label of a target sample x;
is

, if major holds (1)
ortherwise.

5= {gide([fs EN)e

It is worth noting that the base classifiers can be any kind
of classifier and the feature subset can be changed to adapt to
different numbers of IMUs. In the ideal case, several IMUs
are placing in different positions of the human body, so that
we can perform major voting method on different classifiers
of different positions. However, when there is only one IMU,
we can do a little modification to make our methods sill work.
We can separate the signals of the three sensors (accelerometer,
gyroscope, and magnetometer) in one IMU, and create multiple
classifiers for every sensor data.

D. Local Transfer

Via dividing the abstract action cluster in Section III-C, the
similar activities in the source domain and the target domain are
categorized in the same cluster, and each sample in the target
domain either has a cluster label or becomes a residual sample.
In this section, we transfer the knowledge between the same

clusters in two domains, as called local transfer. In particular,
we try to find a feature mapping that projects the original samples
into a latent space where the data distributions in different
domains are close to each other. The basic assumption of our
method is that, in the same cluster, the samples have more
common features and distribute in a similar subspace. Therefore,
the local transfer can reduce the distribution difference more
effectively.

To present our method, we first define some notations.
De={z1,...,om}~P and Dy = {x1,...,zo}~Q denote
the source and target domains, respectively, following the
marginal distributions P and (). Then, we define a kernel func-
tion k(z;, =) and the corresponding reproducing kernel Hilbert
space (RKHS) is H. The project function from the sample space
to the RKHS is denoted by ¢(x) = k(z,-). We use maximum
mean discrepancy (MMD) to measure the distribution distance
of two distinct domains. The MMD between two domains can
be presented as

1 & 1 ’
MMD (De, Dy) = || —> " (z:) — = > _(z5)| - @

i=1 j=1

H

Different from [11], [30], we aim to minimize the sum of
MMD distances between all the same clusters in the D, and
D; instead of just minimizing the global MMD between two
domains. Assuming that we predefine n¢ clusters, the MMD
between two clusters with the same cluster label from different
domains will be

MMD (C},CF) =

> i) -

z;eck

> ¢(xj)

|"| I"Izeck

e
where C¥ and C¥ mean the kth cluster in the source domain and
the target domain, respectively. It can also be written as

MMD (c’_:, cgf) = Tr(K*LF) 4)

where Tr means matrix trace. The computation is shown in

ez |+]ee]
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where K* is the kernel matrix on C¥ and CF, L* is the coefficient
matrix, i.e.,

|c‘°| =z ifxy, x5 € C
1 k
Lf}_ = |c‘°|2 ifz;,z; € C (6)

—-I—k-l-lzq Otherwise

To this end, minimizing MMD distance is to find a kernel
matrix that minimize Tr(K* L), but solving K is an expensive
semidefinite programming problem. Therefore, a mapping ma-
trix W e RP*(C2+ICED) g introduced to present kernel matrix
in a low-rank form as

K* = K*WwTK* %)
where D is the dimension of low-dimensional subspace. In the
low-dimension kernel matrix, the kernel evaluation between two
samples x;, z; is J::,-J- = kxiWWTkxj, where kg, is the jth
column of K. The W maps the empirical kernel presentation
in the RKHS into a low-dimensional space, the embedding of a
sample in the latent space is W7 k,,.

In the latent space, the MMD distance between two clusters
can be rewritten as

MMD (C5,CF) = Tr (R*L¥) "
= Tr(WTK*LFK*W).

While minimizing the MMD distance in (8), we also need to pre-
serve the data variance of the target domain to reduce overtrans-
fer. The explicit variance can be formulated as WT K*HK*W,
where H € RUCZHICENX(CSI+(CED) s the centering matrix as
defined in [31]. Now the objective function can be formulated
as

K
. T T
min Y Te((W¥)” K*LFK*W*) 4 p* Te(W*) W)

(WHTKFHFK*WE =1 ©)

where Tr((W*)" K*L* K*W*) indicates the MMD distance,

the regular term i Tr((W*)” W) penalizes the complexity of
mapping function, and p* is a tradeoff parameter. The constraint
(WFTK*H*K*W* =T can preserve the inherent variance
of the data. W's are independent with each other in 9, so we
can solve each W separately. Similar to the transfer component
analysis and Fisher discriminant analysis, the solution of W is
the D largest eignvectors of (K*L*K* + ul)"'K*H*K*.

Algorithm 1 shows the overall steps of LDA. Line 1 and Line
2 are the abstract activity clustering step in LDA and ACLDA.
Line 3 predicts the cluster label for the candidate samples in the
target domain. Line 4 to Line 8 performs the local transfer for
each cluster and predict the class label for the candidate samples.
Line 9 predicts the class label for the residual samples. Finally,
Line 10 concatenates the predicted labels for {3%,,} and {£ }
and gets all predicted labels for D;.

Algorithm 1: (Autoclustering) Local Domain Adaptation.

Input: Labeled data from source person Dy = {xs,ys},
unlabeled data from target person D; = {z.}, the
number of dimensions D, the number of clusters nc.

Output: The labels for the target person {y; }.

1: (LDA) Define the abstract activity clusters based on
the source domain data using the expert knowledge,
and get C* = {5, 25} k=1,....n¢

2: (ACLDA) Group the classes into n¢ clusters with
Algorithm 2.

3:  Perform multi-positions multi-classifiers voting on D,
llSi[lg Eq (1) and get Cf = {Ifam can} k=

and {Tpes }-
4: for k=1:nc do
5: Construct kernel matrix K* on =¥ and =&, and
compute the coefficient matrix }L'lc and centering
matrix H¥.

6: Eigen-decompose (K*L*K* + ul)"'K*H*K*
and take the d largest eign-vectors to construct the
transformation matrix W*.

Map z* and z* | into the same subspace using W*.
Predict the class labels for {zn} to get {75, }.

Predict the class labels for zs to get {7%.}.

Concatenate {7%,} and {4~} to get all predicted

labels for D,

Return: {7, }

Fwed

E. Autoclustering LDA

To overcome the shortcoming that LDA needs human knowl-
edge, we introduce a clustering technique to generate the activity
clusters automatically. We refer this version of LDA to as
ACLDA. Algorithm 2 presents the details of the clustering step
of ACLDA.

In the first step, we compute the distance between two cate-
gories using the average distance between the samples in two
categories as

Dist(8;, ;) = 2= lrer tulla S -
where S; and S; are the sample set of the ith and jth class, s,
and zs; are samples in S; and S;.

In the second step, we use aggregative clustering to group the
classes. The aggregative clustering aims to contract a hierarchy
of clusters from bottom to up [32]. It only takes the closet pairs
of objects or low-level clusters into a higher level group, until all
the objects are linked together into a single tree, and then cuts
the tree into the specified clusters. Note that other clustering
methods can take replace of aggregative clustering here, such
as spectral clustering. Once the activity clusters are generated
using Algorithm 2, the subsequent algorithm process of ACLDA
is the same as LDA.

Unlike LDA that involves human knowledge, ACLDA gen-
erates the clusters according to the geometric distance between
samples, so each cluster may not have a clear abstract meaning.
The expert can only use his knowledge to define the cluster, so

(10)
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Algorithm 2: Group the Classes Into Clusters.
Input: Labeled data from the source persons
De = {zs,ys}, The number of clusters ng.
Output: The cluster labels for the source persons z,.

1: Compute the mean of the pairwise distance between
any two classes of samples in the source domain using
Eq. (10), and get the distance matrix D between
classes.

2: Perform aggregative clustering or spectral clustering
based on D to get the cluster labels z; for the source
domain.

Return: C; = {4, 2.}

the clustering results keep the same for all persons. However,
different persons usually have their action characteristics. Be-
sides, the best number of clusters for each person may also be
different. To this end, the clustering process is person-dependent
and dataset-dependent. Beyond defining the stationary cluster,
ACLDA can automatically identify suitable clusters and search
for the best number of clusters. The number of cluster ne is a
key parameter for ACLDA. However, the range of n. is small,
using a validation dataset and optimizing classification accuracy
on it can suffice to find good ng¢.

IV. EXPERIMENTS

In this section, we evaluate LDA and ACLDA on two public
datasets: the daily and sports activities dataset (DSADS) [8] and
the physical activity monitoring dataset (PAMAP2) [33]. First,
we present details of the experimental setting, then discuss the
experimental results, and analyze the parameter sensitivity at
last.

A. Experiment Setting

Following the related works [9], [20], [34], we conduct two
types of cross-domain HAR tasks: 1) cross-person HAR, where
different domains contain data collected from different persons,
2) cross-position HAR, which means that different sensor posi-
tions belong to different domains.

The DSADS and PAMAP2 are two widely-used HAR
datasets. DSADS involves 19 activities, each performed by eight
objects. The data are collected from five IMUs mounted on the
torso, right arm, left arm, right leg, and left leg. PAMAP2 con-
tains 18 different physical activities performed by nine subjects
wearing three IMUs (arm, chest, and leg). In both datasets, the
subjects perform the activities in their style without specific re-
strictions, so both datasets are suitable to evaluate a cross-person
HAR algorithm. Additionally, both datasets contain more than
one sensor position, so we can use it to do cross-position HAR
experiments. Note that for the PAMAP2 dataset, we select a
subset containing six persons and nine activities because of the
data missing.

Similar to existing literatures [14], [35], we classify the activ-
ity data based on manual features instead of the raw time-series
data. Specifically, we standardize the data using z-score and

combine the data from three axes of one sensor together using
v/ T2 4+ y? + 22 to reduce the interference caused by different
installation attitudes of sensors. Then, we segment the data with
a 5s-window-size, 3s-step-length moving window. Finally, 27
features are extracted for each data window with the toolbox
Seglearn [36].

Here are some implementation details of LDA and ACLDA.
Table I shows the definitions of abstract activity clusters used
in LDA. According to the motion and environment contexts,
nineteen classes in DSADS are grouped into five clusters, while
nine classes in PAMAP?2 are grouped into three clusters. For
ACLDA, the number of clusters n is chosen by grid search
method, the best nge for DSADS dataset and PAMAP2 dataset
is 13 and 6. In the multiclassifier voting step, we use three
classifiers, 1-NN, SVM, and random forest. 1-NN classifier is
used as the final classifier to predict the class label of candidates
and residuals.

We construct a comparative study to illustrate the effective-
ness of LDA. The comparison methods include baseline meth-
ods, i.e., 1-nearest neighbors (1-NN), support vector machine
(SVM), and random forests (RF); dimension-reduction-based
method, i.e., principal component analysis (PCA); domain adap-
tation methods, i.e., transfer component analysis (TCA), which
aims to align the marginal distribution of both domains [30],
subspace alignment (SA), which maps both domains into a
subspace spanned by eignvectors [37], and stratified transfer
learning (STL), which performs intraclass marginal distribution
[38].

For the random forest, the number of trees is 20. PCA, TCA,
SA, and STL are all dimensionality reduction-based methods, so
we test and report their performances under different dimension
settings, and 1-NN serves the final classifier. To provide robust
experiment results, we repeat all the experiments 20 times by
randomly selecting the persons in both domains and report the
average results. We use the classification accuracy and F1 score
of the target domain as the evaluation metric.

B. Results and Discussion

Tables II and III report the classification results from the
proposed methods and comparison methods on the cross-person
and cross-position HAR tasks. The tasks are named by “source
domain — target domain”. For example, “One — One” means
a cross-person HAR task that the source domain is from one
person, and the target domain is from another person; “RA —
LA” means a cross-position HAR task that the source domain is
the data from the right arm and the target domain is from the left
arm. All the tasks are repeated 20 times with randomly selecting
source persons and target persons. We also report the P-values
between the results of ACLDA and STL to show the statistical
significance.

Table II shows that LDA and ACLDA outperform other meth-
ods in most cases on cross-person HAR experiments. Mean-
while, ACLDA achieves better accuracy than LDA. Compared
with the direct classification methods (1-NN, 3-NN, and RF),
LDA and ACLDA obtain higher accuracy in most cases, which
indicates that the proposed methods can perform a stable positive
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TABLE I
DEFINITIONS OF ABSTRACT ACTIVITY CLUSTERS IN LDA

Data set Cluster # classes | Class labels in the cluster (Class label 1ID)
Static activities 3 Lying (Al); Sitting (A2); Standing (A3).
PAMAP2 Locomotion activities 4 Walking (A4); Running (A5); Cycling (A6); Nordic walking (A7).
Upstairs/Downstairs 2 Ascending stairs (A8); Descending stairs (A9).
. Sitting (A1); Standing (A2); Lyi back (A3),
Static activities 5 1_ ne ( _) _n ing (A2) y?ng |_:|n ack (A3) .
Lying on right side (A4); Standing in an elevator still (A7).
Upstairs/Downstairs 3 Ascending stairs (AS5); Descending stairs (A6); Moving around in an elevator (AR).
Walking in a parking lot (A9);
. L Walking on a treadmill with a speed of 4 km/h in flat (A10);
Locomotion activities 4 . L . R ..
DSADS Walking on a treadmill with a speed of 4 km/h in 15 deg inclined positions (A11);
Running on a treadmill with a speed of 8 km/h (A12).
Exercising on a stepper (A13); Exercising on a cross trainer (Al4);
Sports with fitness equipment 4 Cycling on an exercise bike in horizontal position (A15);
Cycling on an exercise bike in vertical position (A16).
Sports without fitness equipment 3 Rowing (A17); Jumping (A18); Playing basketball (A19).
TABLE I
ACCURACY AND F1 SCORES FROM LDA, ACLDA AND THE BASELINE METHODS ON CROSS-PERSON HAR TASKS
Method INN SVM RF PCA TCA SA STL LDA ACLDA P-value
Data set Task Ace | F1 | Ace | F1 | Ace | F1 | Acc | F1 | Ace | F1 | Ace | F1 | Acc | F1 | Acc | F1 | Ace | FI Acc F1
One—One | 57.91(55.89 | 58.15|55.98 | 57.09 [ 53.19 | 57.88 | 55.89 | 58.59 | 56.76 | 57.83 | 55.83 | 60.63 | 58.45 | 63.11 | 60.67 | 64.27 | 61.94| <0.01 | <0.01
Two—Two |62.65|61.66|64.23|63.23|66.98 |64.87|62.63 |61.64|62.59|61.07|62.66|61.68 | 68.43|66.95|71.48|70.60 |74.23| 72.30 | <0.01 | <0.01
DSADS Three—Three | 68.02 | 67.70 | 69.87 | 69.56 | 68.04 | 67.75 | 68.01 | 67.79 | 68.70 | 67.72 | 68.02 | 67.80 | 71.29 | 70.60 | 74.98 | 74.73 | 76.67 | 75.72 | <0.01 | <0.01
’ One—Two |56.92|55.10(57.90|56.83 | 52.94 | 50.13 | 57.28 | 56.33 | 57.54 | 56.69 | 57.27| 56.32 | 62.10 | 60.18 | 64.05 | 62.78 | 64.59 | 63.02 | <0.01 | <0.01
One—Four |58.30(57.48 |59.44|58.78 |59.61 |57.35|58.32 | 57.48 | 58.64 | 57.97 | 58.35 | 47.49 | 63.29 | 61.77 | 63.15 | 61.69 | 62.89 | 60.27 | <0.05 | <0.05
One—Six | 60.31|59.77 |61.32| 60.79 | 59.50 | 57.73 | 60.29 | 59.76 | 60.33 | 59.78 | 60.45 | 59.90 | 66.31 | 65.65 | 67.06 | 66.41 | 68.12 | 67.33 | <0.01 | <0.01
One—One | 68.44 [66.81 | 70.23 | 69.39 | 66.82 [63.10 | 68.54 | 65.26 | 69.15 | 66.22 | 68.51 | 65.23 | 67.91 | 62.85 | 69.30 [ 63.91 | 72.23| 69.23 | <0.01 | <0.01
Two—Two |72.91|71.08 (7393 (72.72|74.55|73.76|72.97 | 71.10|73.27|71.36 | 72.92| 71.10 | 76.89 | 74.23 | 77.11 | 76.96 | 75.45 | 74.50 | <0.05| <0.05
P Three—Three | 75.10 | 73.58 | 76.66 | 75.00 | 73.10 | 72.98 | 75.11 | 73.67 | 75.29 | 73.57 | 75.11 | 73.59 | 76.61 | 74.76 | 78.75 | 77.88 | 79.79 | 77.68 | <0.01 | <0.01
One—Two |69.15|65.96|70.77|67.07 |68.11 |65.81 | 69.71 | 65.99 (69.37 | 66.36 | 69.18 | 66.02 | 68.25 (6585 | 72.98 | 71.34 | 73.38 | 72.66 | <0.01 | <0.01
One—Four | 68.45|68.42|69.58 | 66.59 | 67.41 |64.89 | 68.47 | 65.98 | 68.98 | 68.09 | 69.43 | 66.78 | 68.97 | 65.69 | 70.67 | 67.63 | 73.44 | 72.02 | <0.01 | <0.01
One—Six | 68.76|66.78 | 70.34 | 67.23 | 68.22 | 67.02 | 68.23 | 66.03 | 69.02 | 67.93 | 68.78 | 66.73 | 69.34 |67.80| 72.72 | 71.21 | 74.07 | 73.11 | <0.01 | <0.01
Average [65.57]64.18]66.86] 65.26 [ 65.19[63.21] 65.62[ 63.91 [ 65.96 | 64.46 [ 65.71] 63.20 | 68.33 [ 66.23[ 70.44 | 68.81 [71.60[ 69.98 [ - [ - |
TABLE III
ACCURACY AND F1 SCORES FROM LDA, ACLDA AND THE BASELINE METHODS ON CROSS-POSITION HAR TASKS!
Method INN SVM RF PCA TCA SA STL LDA ACLDA P-value
Dataset | Task | Ace | FI | Acc | F1 [Ace [ FI | Acc | F1 [Acc | FI |Acc | F1 [Acc | FI |Acc | F1 [Acc | FI | Acc | FI
RA—LA|57.27|5595|59.25|57.08 | 62.19 | 60.82 | 56.30 | 55.61 | 57.61 | 56.15 | 57.73 | 55.09 | 64.70 | 63.03 | 65.32 | 64.75 | 65.77 | 64.42 | <0.05 | <0.05
DSADS | RL—LL | 63.36 |61.79 | 64.37 | 63.81 | 62.98 | 61.30 | 63.35 | 61.77 | 64.21 | 62.06 | 63.40 | 61.65 | 69.86 | 68.26 | 67.25 | 67.06 | 68.54 | 66.70 | <0.05 | <0.05
RA—T [42.56|41.01|43.65 |42.66 | 44.67 |43.81 | 42.35 |40.52 | 42.75 | 40.24 | 42.59 | 40.20 | 44.02 | 42.61 | 45.36 | 44.39 | 46.77 | 44.04 | <0.01 | <0.01
L—C |3849|37.41|41.25|39.36 | 40.67 [ 39.70 | 37.57 | 36.54 | 38.88 | 37.18 | 38.72| 37.29 | 41.39 | 41.18 | 43.25 | 42.51 | 44.04 | 42.69 | <0.01 | <0.01
PAMAP2| C—A |3571(33.89(34.25|31.49|36.73 | 35.51 | 36.32 | 34.42 | 37.45 | 36.29 | 37.48 | 36.32 | 39.48 | 37.59 | 39.05 | 37.15 | 40.86 | 38.94 | <0.05 | <0.05
A—L | 3418|3232 (35.08 [34.72|37.21 |36.39 | 34.57 | 33.48 | 37.86| 35.65 | 35.13 | 32.45 [ 39.02| 37.32 | 40.78 | 39.26 | 41.64 | 40.01 | <0.01 | <0.01
| Average [45.26]43.72] 46.30 [ 44.85 | 47.40 [46.25 [ 45.07 [ 43.72| 46.46 | 44.50 [ 45.84 | 43.83 [ 49.74 [ 48.33[50.16 [ 49.18 [ 51.27[4946] - [ - |

transfer in the cross-domain HAR problem. On the cross-person
HAR problem, Compared with the best comparison method
STL, LDA shows 2.11% improvement on the accuracy and
2.58% improvement on the F1 score. This indicates that transfer
learning at a cluster level is effective for the cross-person HAR
problem. Moreover, ACLDA performs 1.16% better than LDA
on the accuracy, and 1.17% better on the F1 score. This veri-
fies the effectiveness of automatic clustering step of ACLDA.

I For the task names on the DSADS, RA, LA, RL, LL, and T stand for right
arm, left arm, right leg, left leg, and torso, respectively. Similarly, L, C, A stand
for leg, chest and arm on the PAMAP2.

Table III also shows the similar results on the cross-position
HAR. Another interesting finding is that the performances of
all methods on cross-position HAR are lower than those on the
cross-person HAR. This is because less sensor data are used in
the cross-position HAR.

TCA, SA, STL, LDA, and ACLDA are all based on subspace
learning, which aim to minimize the distribution discrepancy
between domains by projecting the original features into a sub-
space. TCA and SA aim to minimize the set-to-set distribution
discrepancy, but their performances may decline when the cross-
domain divergence is large. Conversely, STL performs based
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Fig.4. Confusion matrix (%) of ACLDA on One — One tasks on the PAMAP2
dataset. Row labels refer to the real classes and column labels refer to the
predicted classes.
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Fig. 5. F-Measure of One — One HAR tasks on the DSADS dataset. Class
ID can be found in Table I.

on the predicted soft labels for the target domain and achieves
better results than TCA and SA. However, STL heavily relies on
the accuracy of soft labels. Differently, LDA and ACLDA per-
form cluster-to-cluster distribution alignment. Compared with
set-to-set alignment, LDA reduces the distribution discrepancy
at a finer granularity; compared with class-to-class alignment,
LDA gives more accurate soft labels and guarantees the number
of candidates at the cluster level. These characteristics lead
to the best performance among compared subspace-based DA
methods.

To analyze the performance of LDA and ACLDA further,
we present the confusion matrix and F1 score (F measure) bars
in Fig. 4 and Fig. 5, respectively. Fig. 4 shows the ACLDA
confusion matrix of One — One tasks on the PAMAP2 dataset.
We can find that ACLDA can achieve an accuracy more than
90% for lying, walking, and cycling. However, there is some
misclassification between sitting and standing. Besides, some
ascending and descending samples are classified as walking.
These errors are the primary source of overall errors. In ad-
dition, there are some samples from all kinds of dynamic
activities that are misclassified as standing, which can be ex-
plained by the fact that standing often happens during dynamic
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Fig. 6. Comparison of the accuracy of ACLDA (proposed), STL (best com-
parison) and 1-NN (baseline) on 20 random experiments on two datasets. The
left column and right column show the accuracy on DASDS and PAMAP2. A
marker at the top left of the dashed line indicates an experiment that the method
of vertical axis outperforms the method of horizontal axis.

activities. The source domain selection technique or a more
discriminate feature extraction method can reduce the misclas-
sification. Fig. 5 shows the F1 score of each class in the DSADS
dataset. The average F1 score of 1-NN, LDA, and ACLDA are
0.574,0.666, and 0.662, respectively. LDA and ACLDA improve
the classification accuracy for most classes. For example, for
activities A5, A6, A8, Al5, and Al6, the F1 scores of LDA
and ACLDA are 0.24 and 0.26 higher than that of the baseline.
However, LDA and ACLDA may also perform badly for a few
activities, such as activity A18.

To verify the empirical robustness of proposed methods,
we compare the accuracy of ACLDA (proposed), STL (best
comparison) and 1-NN (baseline) on 20 random One — One
experiments. Fig. 6 shows the result. Fig. 6(a-1) and (a-2) shows
that, among 20 experiments on each dataset, there is only one
experiment in which the accuracy of ACLDA is lower than
1-NN. However, as shown in Fig. 6(b-1) and (b-2), STL en-
counters 4 and 13 negative transfer experiments on the DSADS
and PAMAP?2. Fig. 6(c-1) and (c-2) compare the performance of
ACLDA and STL directly, we can see that ACLDA outperforms
STL in 31 experiments among 40 experiments. These compar-
isons indicate that ACLDA can achieve stable positive transfer
and improve the accuracy of cross-position HAR in most cases.

C. Parameter Analysis

The number of reduction dimensions is a free parameter for
LDA and other comparison DA methods, so we evaluate the
impact of reduction dimensions by varying it from 20 to 200.
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Fig. 7.

Parameters analysis. (a) and (b) Accuracy of proposed methods and comparison methods under different dimensions on the DSADS dataset and the

PAMAP2 dataset. (c) Accuracy under different numbers of target persons on the PAMAP2 dataset. (d) Accuracy of ACLDA on the DSADS dataset with different

numbers of clusters ne.

Fig. 7(a) and (b) show the accuracy with different dimensions on
the DSADS and PAMAP2. On both datasets, ACLDA achieves
the best accuracy under every dimension setting, which indicates
that our methods are robust to the dimension for the cross-person
HAR tasks. However, TCA, SA, and PCA may be worse than
baseline methods when the dimension is low. For example, SA
and PCA need more than 180 dimensions to realize positive
transfer, which indicates that PCA cannot find “the cross-person
feature”. Another interesting finding is that the performance of
PCA and SA is very similar because SA essentially performs
PCA on both domains to implement knowledge transfer.

To show the impact of the target sample size, we plot the
accuracy curves under different target persons on the PAMAP2
dataset in Fig. 7(c). We choose the data of one person as a source,
and to predict more than one persons’ activities separately. We
find that ACLDA still achieves the best performance among
all methods, with an average accuracy of 77.34%. Besides,
ACLDA’s worst accuracy is only 1.41% worse than its best, and
the accuracy does not fall when the number of target persons
increases. These results indicate that ACLDA is not sensitive to
the size of the target domain.

The number of clusters ne is another free parameter of
ACLDA. Fig. 7(d) shows the accuracy curve against the number
of clusters n¢e on the DSADS dataset. ACLDA achieves positive
transfer in all cases when n¢ is varying. It achieves the highest
accuracy 67.28% when n¢ = 13, but when n¢ is small as 3 or
large as 19, the accuracy falls down to 61.28% and 64.14%,
respectively. The experiments on the PAMAP2 dataset also
obtain similar results. This can be explained by the fact that, if
n¢ is small, the cluster label prediction will be accurate, but the
number of classes and samples in each cluster will be largely
resulting in a poor local transfer. On the contrary, when ng¢ is
equal to the number of classes, it results in a bad prediction for
the candidate samples, so that the subsequent local transfer may
be performed on between wrong classes.

To assess the time complexity of our methods, we compare
the running time on a random Three — Three cross-person HAR
tasks on PAMAP2 dataset. The running platform is MATLAB on
a personal laptop with Intel Core i7-4710MQ CPU @ 2.50 GHz
and 8.00 GB RAM. The running time is shown in Table IV. STL,
LDA (ours), and ACLDA (ours) have significantly greater time
complexity than other methods, because these three methods
involve ensemble process. ACLDA takes more time than LDA
is because ACLDA need to predict the cluster labels for source

TABLE IV
TiME COMPLEXITY COMPARISON (S)

Data set | KNN | SVM | RF | PCA | TCA | SA | STL | LDA | ACLDA
PAMAP2 | 0.24 | 427 | 1.63 | 0.19 | 0.58 [0.30| 10.66 | 12.71 | 13.67
DSADS | 2.67 | 36.38 |3.97| 1.22 | 400 | 1.78 | 53.68 | 57.18 | 63.88

domain. To reduce the time complexity of our method, we can
use simpler and fewer base classifiers.

V. CONCLUSION

This article proposes LDA and ACLDA, two new approaches
for cross-domain HAR. LDA(ACLDA) first groups the activities
into abstract clusters, then maps the original features into a
low-dimensional subspace where the MMD distance between
two clusters with the same label from different domains is min-
imized. Finally, LDA(ACLDA) predicts the target class labels
in the subspace. Compared with set-to-set DA, LDA(ACLDA)
takes advantage of the soft labels of candidates from the target
domain, so align the distribution in finer granularity. Compared
with class-to-class DA, LDA(ACLDA) gives more confident soft
labels, so is more robust. Cross-person and cross-position HAR
experiments on two public datasets demonstrate the superior of
LDA(ACLDA). Here are two possible future research directions.
On the one hand, we will combine our method with deep neural
networks into a united framework, which can take the advantage
of neural networks to perform feature extraction. On the other
hand, it is a good direction to generalize our method beyond
HAR problems to other domain adaptation problems.
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