Revisiting Adversarially Learned Injection Attacks Against
Recommender Systems

Jiaxi Tang"
Simon Fraser University
British Columbia, Canada
jlaxit@sfu.ca

ABSTRACT

Recommender systems play an important role in modern informa-
tion and e-commerce applications. While increasing research is
dedicated to improving the relevance and diversity of the recom-
mendations, the potential risks of state-of-the-art recommendation
models are under-explored, that is, these models could be sub-
ject to attacks from malicious third parties, through injecting fake
user interactions to achieve their purposes. This paper revisits the
adversarially-learned injection attack problem, where the injected
fake user ‘behaviors’ are learned locally by the attackers with their
own model - one that is potentially different from the model under
attack, but shares similar properties to allow attack transfer. We
found that most existing works in literature suffer from two major
limitations: (1) they do not solve the optimization problem precisely,
making the attack less harmful than it could be, (2) they assume
perfect knowledge for the attack, causing the lack of understanding
for realistic attack capabilities. We demonstrate that the exact so-
lution for generating fake users as an optimization problem could
lead to a much larger impact. Our experiments on a real-world
dataset reveal important properties of the attack, including attack
transferability and its limitations. These findings can inspire useful
defensive methods against this possible existing attack.
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1 INTRODUCTION

A good recommender system is a key factor to users’ information
seeking experience as it enables better content discovery and more
accurate information retrieval. Over the past decade, most work
aims to improve the utility/accuracy of recommendation models.
Many methods have been developed, such as neighborhood-based
methods [38], factorization-based approaches [23, 37], and the more
recent deep neural network (a.k.a deep learning) models [9, 19].
However, due to the reliance on user contributed judgments and
subjective rating data [6], recommender systems can be misused and
attacked with malicious purposes. Once this happens, the credibility
of a recommender system will be largely affected, which could lead
to a significant economic loss.

1.1 Injection Attack against Recommender
Systems

In this work, we focus on injection attack (a.k.a. data poisoning
attack) as illustrated in Fig. 1, where the malicious party has knowl-
edge about the data used by a recommender system (e.g., by crawl-
ing the publicly available data) and creates fake user profiles with
carefully chosen item preferences (e.g., clicks) to influence the rec-
ommender with malicious goals. Assuming such knowledge about
the data is reasonable, for example: users’ ratings and reviews on
Amazon’s product are public!, which account for the personalized
product recommendations; users’ social relationship (followings
and followers) on Twitter is public, which influence friend recom-
mendations; users’ answers on questions and upvotes on answers
are public on Quora, which constitute the personalized feed. As
long as there are enough incentives, the availability of a dataset
from certain platforms is not unreachable to the malicious party. It
was reported that every one-star increase in user ratings on certain
product can lead to a 5 to 9 percent increase in product seller’s rev-
enue’. Therefore, malicious injection attacks are easily motivated
and can have huge consequences for a company’s bottom line.

In the literature, early studies on performing injection attack
against recommender systems are inspired by heuristics. To boost
certain item(s)’ availability of being recommended, Lam and Riedl
[25] proposed to give high ratings for the targeted item and average
ratings on other random items; Burke et al. [5] further considered to
use popular items instead of random items to ensure that fake users
can have more neighborhoods thus have more impacts. However,
since these attacks were created heuristically, the threat of injection
attacks may not be fully realized. First, the fake users generated

!http://jmcauley.ucsd.edu/data/amazon
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fake- 1-star-reviews-now-what


https://doi.org/10.1145/3383313.3412243
https://doi.org/10.1145/3383313.3412243
https://doi.org/10.1145/3383313.3412243
http://jmcauley.ucsd.edu/data/amazon
https://www.forbes.com/sites/ryanerskine/2018/05/15/you-just-got-attacked-by-fake-1-star-reviews-now-what
https://www.forbes.com/sites/ryanerskine/2018/05/15/you-just-got-attacked-by-fake-1-star-reviews-now-what

RecSys '20, September 22-26, 2020, Virtual Event, Brazil

local/surrogate

normal data

Tang, et al.

target/victim

recommender (visible to attacker) recommender
outcome
1 10 |1 1 (black-box)
0 [0 |1 0
train Targg; i|rt:;m(s)
0o |1 |0 0 recommended)
Sage i1 10 11 11
00 i1 .10
fake data

Figure 1: An illustration of the threat model for injection attack against recommendation models. This assumes the dataset is
available to the attacker but the target model is unknown. To achieve their malicious goals, e.g., influencing certain item(s)’
availability of being recommended, the attacker will craft fake user profiles locally with a surrogate model and inject them to

the target recommender before it is trained.

are highly correlated with each other and sometimes even self-
forming clusters [6], making them easily detectable by standard
techniques [28]. What’s more, heuristic methods heavily rely on
background knowledge, hence, a method designed for one malicious
purpose is hard to be used for another. Finally, heuristic methods
do not directly optimize the adversarial goals, which limits their
usability and threat.

Recently, we have witnessed a huge impact of adversarial attacks
through adversarial machine learning that optimizes an adversarial
objective, irrespective of the model type and tasks [29]: In web
search, an adversary can change web contents to get high search
engine’s rankings [7]; In crowd-sourcing, an adversary can provide
useless answers for profits [30]; In social networks, an adversary
can modify node relationships for a desired node property [43]; In
image recognition, an adversary can make perturbations on image
pixels and have a wanted recognition result [17, 24].

Despite the success of adversarial learning in other domains,
there’s very sparse research on adopting adversarial learning to
attack recommender systems. In the security arms race, a limited
knowledge of the attack leads to a more dangerous state of existing
systems. In this work, we aim to revisit this direction by investigat-
ing the challenges and limitations of using adversarial learning to
attack recommender systems. In the next two sections, we will have
the same viewpoint as adversaries to understand how the attack
can be performed. After defining the threat model in Section 2, we
found that existing works do not solve the problem properly, caus-
ing the attack less powerful than it could have been. In Section 3,
we propose a more precise but less efficient solution to generate the
attack, accompanied by two efficient approximations to the solution.
In Section 4, we explore the attack’s impact on a real-world dataset
and identify its weakness and find the clues of such attacks. We
hope that these findings can help us better understand the attack
thus develop defensive techniques.

2 BACKGROUND

In this section, we first cover essential basics of the recommenda-
tion task and define the threat model. Some notations will also be
introduced to facilitate the presentation. Then we briefly revisit
existing solutions and their limitations, which encourage us to
propose a more precise approach in the next section.
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2.1 Recommendation Goal

The goal of system under-attack is to recommend relevant items
to cater users’ needs. In such a system, there is a set of users
U = {u1,uz, ..,u|y|}, a set of items I = {iy, io, .., i|_7|} (e.g., prod-
ucts, videos, venues, etc.), and feedback/interaction data (e.g., user
purchased a product, watched a video, checked-in at a venue). The
feedback that users left in the system can have different types. It
can be either explicit (i.e., the user explicitly shows how she/he likes
an item, such as giving a five star rating) or implicit (i.e., a signal
implicitly reflect user’s positive preferences, such as purchasing
a product), but the later is much more prevalent than the explicit
feedback in real systems [21, 32] thus is considered in this work. We
use X € {0, 1}|YIXIT1 to denote the binarized implicit data, with 1
for a positive feedback and 0 for an unknown entry. A recommen-
dation model built on users’ historical data can make predictions
R e RIUXIZI The learning objective of a recommendation model
is to provide relevant items of each user with the highest predicted
relevance scores.

2.2 Threat Model

The threat model is illustrated in Figure 1. To attack the target
recommender deployed in the system (a.k.a. victim model), the
attacker will use their own local model (a.k.a. surrogate model), to
craft fake users and inject them into the original training data of
victim model. Below, we elaborate the threat model from several
perspectives.

Attacker’s goal. The adversary’s goal can be either non-targeted,
aiming to hamper the effectiveness of the recommendation model
by forcing it to make bad recommendations, or targeted, where the
adversary wishes to increase or decrease a target item(s)” availability
of being recommended. Similar to most other works [5, 13, 14, 25]
in literature, we mainly focus on targeted attack, which is the most
common case under recommendation context: attackers want to
influence normal users’ recommendations for profits. Specifically
to targeted attack, we consider the promote (or push) attack: given
a target item, attacker’s goal is to increase its chance of being
recommended by victim model. Alternatively, there is nuke attack,
where attackers aim to “nuke” a target item, make it less able to
get recommended. Although we don’t explicitly discuss the nuke
attack in this work, similar techniques can be used.
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Attacker’s knowledge. We assume the attacker has (full or par-
tial) knowledge about the dataset used to train the target (victim)
recommendation model. Because user feedback is public in many
systems (e.g., followings and followers on Twitter), this is a rea-
sonable assumption for a worst-case attack. Any knowledge about
victim model (e.g., model parameters, model type, etc) is optional,
because attackers can first attack their own local (surrogate) model
with the poison fake users, hopeing that these fake users can be
also used to attack the target (victim) model. This kind of attack
transfer is possible if two models share similar properties [33].
Attacker’s capability. As shown in Fig. 1, the attacker will learn
fake users through a surrogate model and inject their rating profiles
to the training set of the victim model. The attacker will achieve
their malicious goal after the victim model consumes these fake
users. This suggests that the attack happens at training time of the
victim model, instead of test time. The later is known as evasion
attack and is more commonly studied in adversarial learning [17,
24, 33, 34]. While in recommendation, test time attack requires
attackers to hack into other normal users’ accounts and change
their preferences, which is a cybersecurity issue and is beyond
the scope of our work. On the other hand, allowing adversaries to
create fake users and let them be consumed (trained) by the victim
model is a more practical attack scenario.

2.3 Adversarial Injection Attack: a bi-level
optimization problem

Different from heuristic approaches [5, 25], the injection attack
considered in this paper directly learns fake user behaviors as an
optimization problem. Recall that the adversaries will learn fake
users to attack their own surrogate model as a first step. Given a
well-trained surrogate model that is under-attack and a set of fake
users V = {v1,02, .., 0} }, the fake data X e {0, 1HVIXILT winl
be learned to optimize an adversarial objective function L,4y

min Lyav(Rg+), (1)
X

subject to 0" = arg min (Ltrain(xy Ryg) + Ltrain(g, EG))y (2)
0

where 0 denotes a set of surrogate model’s parameters, Ry is sur-
rogate model’s predictions on normal users with parameter 6 and
Lirain denotes surrogate model’s training objective. As shown, one
optimization problem (i.e., Eq. (2), called inner objective) is embed-
ded (nested) within another (i.e., Eq. (1), called outer objective), this
forms a bi-level optimization problem [12]. In machine learning, the
bi-level optimization has been considered for hyperparamter opti-
mization [8, 16], few-shot learning and meta-learning [15, 18, 36].
We formulate the learned injection attack as a bi-level optimization
problem because of the definition of the threat model introduced
in Section 2.2, although we found this formulation is not explicitly
discussed in literature. The inner objective® shows that after fake
data X are injected, the surrogate model will first consume them
(i.e., train from scratch with the poisoned dataset), we then obtain
the trained model parameters 6*. The outer objective shows that
after fake data are consumed, we can achieve the malicious goal

3Note that although here we separate the training objective for normal data and for
fake data to have a clear presentation, in reality, these two data are arbitrarily mixed
together and cannot be distinguished.
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Algorithm 1 Learning fake user data with Gradient Descent

1: Input: Normal user data X; learning rate for inner and outer
objective: & and 1; max iteration for inner and outer objective:
LandT.

2. Output: Learned fake user data for malicious goal.

3: Initialize fake data X(®) and surrogate model parameters 9

4 fort =1to T do

5: forl=1toLdo

6: Optimize inner objective with SGD: o) — gU-D) _ 4.

VB (Ltrain(xv Rg(lfl)) + Ltrain(X(t)v ﬁ(@t{){_l)))

7. end for

8 Evaluate L,4y(Rp1)) and compute gradients V 2 Laav

9:  Update fake data: X® = ProjA(}?(t_l) -n-Vg Lagy)

10: end for
11: Return: X(T)

defined on normal user’s predictions Ry«. Note that different ad-

versarial objectives can be used for different malicious purposes. In

this paper, we focus on promoting target item k to all normal users,

so an exemplary adversarial objective can be the cross-entropy loss:
exp(r

( p(ruk) (3)

Laav(R) = - Z log Diel exp(rui))'

uel

The objective will be minimized if normal user’s prediction on
target item k is greater than other items, so that the malicious goal
of promoting target item will be achieved, as a result.

To solve the bi-level optimization problem in Egs. (1) to (2), one
could try every possible X, obtain the associated §* and evaluate
L.4v(Rg+). But the search space is exponentially large as 2l VIXIL,
So this brute-force approach can hardly be used with limited re-
sources. A more computationally-efficient way is to use gradient-
based approaches, such as Gradient Descent, to iteratively update
fake data X with gradient V b L4y, which we formally present
in Algorithm 1. At each iteration ¢t € {1,..., T} for updating fake
data, we first retrain the surrogate model by performing parameter
updates for L iterations (line 7). Then we update fake data (line
10) with Projected Gradient Descent (PGD), with Proj,(-) as the
projection operator that projects the fake data onto feasible set (i.e.,
Xpi € {0, 1} in our case). After the final iteration T where fake data
X is learned to minimize L.4v, they are able to attack the sur-
rogate model, and we hope they can also attack the target (victim)
model in a similar way: once trained on the poisoned dataset, it
will cause a small adversarial loss £,4y-

2.4 Limitations in Existing Studies and Our
Contributions

There are a few studies [11, 13, 14, 26] in the literature tried to
regard the injection attack as an optimization problem and learn
fake data for adversarial goals. However, we found there exist two
major limitations in existing works. In below, we illustrate these
limitations, as well as our contributions in this work.

Lacking exactness in gradient computation. As we can see from Al-
gorithm 1, solving the inner objective for surrogate model training
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is simple and conventional, while the challenge comes from obtain-
ing the adversarial gradient V3 L,4y to update fake data. In the
literature, existing works either tried to estimate this gradient [11],
or tried to directly compute it [13, 14, 26]. But under the problem
formulation in Eqs. (1) to (2), they all lack exactness in gradient
computation. More specifically, by applying chain rule, the exact
adversarial gradient can be written as:
0Lagy + 0Lagy . 6_9*
= 20 X
The first part (partial derivative 0 L,4y/ X ) assumes X is indepen-
dent to other variables, while the second part suggests 0* can be also

v D% Ladv = 4

a function containing X. Among all existing studies [11, 13, 14, 26],
we found the second part in Eq. (4) has been completely ignored.
This suggests the final surrogate model parameters 0" is indepen-
dent from fake data X , but it is obviously incorrect. In Section 3,
we show the first part doesn’t exist in many surrogate models and
when it exists, the second part also contributes significantly to the
total gradient. This suggests the approximation of gradient V b Loy
with its partial derivative is largely biased, therefore can lead to
sub-optimal solutions.

Our contributions. In Section 3, we present the computation of
exact adversarial gradient in Eq. (4) and show two efficient ways to
approximate this gradient. On a synthetic and a real-world dataset,
we empirically demonstrate the effectiveness of both approaches
and the undesirable results of only computing the partial derivative
for approximation, as used in existing works [11, 13, 14, 26].

Lacking vital experimental studies. Another major limitation in
all previous experimental studies [11, 13, 14, 26], is that the target
model is set to be identical to the surrogate model, which is known
as “white-box attack”. One could think this is an extreme case
where target model is visible to the adversary and this can serve
as a upper bound of the attack capability. Our analysis shows that
this attack may not be carried over to the realistic case where the
target model is different from the surrogate model. Knowing this,
the attacker would design the more effective attack by learning fake
user data using a surrogate model that is tranferable to a different
target model. The ultimate goal is to defend against attacks, which
requires considering more practical settings and understanding of
the attack’s characteristics and limitations, in order to inspire better
defensive strategies.

Our contributions. In Section 4, we leverage a user-venue check-
ins dataset to study how attack crafted from one surrogate model
can transfer to another victim models and examine the key factors
that influence the transferability. More importantly, we analyze
the limitations of this adversarially-learned injection attack, which
could inspire useful defensive techniques.

3 SOLVING THE BI-LEVEL OPTIMIZATION
PROBLEM

In this section, we focus on line 9 of Algorithm 1 and describe
how to compute the adversarial gradient in Eq. (4) exactly (in Sec-
tion 3.1) and provide two approximated solutions (in Section 3.2
and Section 3.3). First of all, we will use Weighted Regularized
Matrix Factorization (WRMF) [21, 32], a fundamental and represen-
tative factorization-based model for recommendations with implicit

321

Tang, et al.

feedback, as an example of the surrogate model and demonstrate
how the exact adversarial gradient can be computed. However, the
exact gradient computation is neither time-efficient nor resource-
efficient. We thus introduce two orthogonal ways to approximate
the gradient computation to achieve a good balance between effec-
tiveness and efficiency. On a synthetic toy dataset, we empirically
evaluate how good are the approximated solutions.

Before diving into details, we briefly introduce the WRMF model
and the toy dataset used in this section. In WRMF, a set of user
latent factors P € RIUXK and jtem latent factors Q € R XK are
used to make predictions R = PQT on normal data X. When fake
data X are injected, let F € RIVIXK denotes the user latent factors
andR = F Q7 denotes the predictions for fake users. Under this
formulation, 6 = {P, Q, F} and the surrogate training objective is:

Lirain(X, RB) + Ltrain()?a ﬁ&) =
Z Wui(xui - P;,I—Qi)z + Z in(*vi - F;—Qi)z

u,i v,

+ 2 (P12 + IFI + 1Q1)

©)

where wy; and wy,; are instance weights to differentiate observed
and missing feedback from the normal and fake data, respectively
(e.g., wyi = 2 when x; = 1 and wy; = 1 when xy; = 0, similar for
Woi), A is the hyperparameter to control model complexity.

Synthetic data. To facilitate our understanding of exact and
approximated solutions for computing adversarial gradient, we syn-
thesize a toy datset that is more controllable. Specifically, each data
point in X is generated by x = pv ", where both v € R? and ue R
are sampled from Ny(0,1) with d << min(|U|, |V|). By generating
data point for Vx € X, the synthesized dataset is presumably to
have low-rank, similar to other real-world recommendation datsets.
Lastly, we binarize X to transform it into implicit feedback data
by setting a threshold €. By controlling the value of (|U|, |V|,d, €),
we are able to have arbitrary-size synthetic datasets with different
ranks and sparsity levels.

3.1 Exact Solution

In this subsection, we compute the exact adversarial gradient V b Laav
when WRMEF is used as the surrogate model. It’s worth noting that,
WRMF’s predictions on normal users R = PQT are not directly
dependent on fake data X, therefore L.4v(R) is not differentiable

w.r.t. X or equivalently, we can specify 9Lute = 0. In fact, this is

a common case for most embedding-based recommendation mod-
els [19, 20, 37], in which data (X and )?) are only used for computing
training objective (as labels), and are not involved in computing
predictions (R and ﬁ)

Without loss of generality, we assume the inner objective is
optimized for only once (i.e., L = 1), then o = {p(D), Q(l), FD}is
the final parameter set used in adversarial objective L,4,(Rg)) =
LadV(P(l) ~Q(1)). Also, we can formulate (V) = opt(G(O), Vo Lirain)s
here opt(,) denotes the transition function from U= 10 9. As
in Algorithm 1, under the context of Stochastic Gradient Descent
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Figure 2: (a) Computational graph for a single calculation of adversarial objective L,4, with surrogate model. We use solid
black arrow to denote the forward computation flow and use dashed red arrow to denote the gradient backpropagation flow,
from L4, to X. (b) The proposed surrogate model in this paper, the model can be also viewed as item-based autoencoder.

(SGD), this will become
00 = opt (00, Vi (Lirin(X, Ro) + Lusain(X, Rg) )

= 9(0) —a-Vy (Ltrain(X, RQ(O)) + Ltrain(i’ EQ(O)))-

Now we can easily compute the adversarial gradient V b L4y when
using WRMF and T = 1, by applying chain rule:

Vo rg = Hats | 0Lay 90" 0Lugy 90
X ~adv aX 00* oxX 86D 9xX ©

oL - =
= 59?;1)‘] : ( - av)} V@ (Ltrain(X, R@(O)) + Ltrain(Xs RQ(O))))-

Similarly, when T > 1, we just need to accumulate the gradient

0 Lagy 000

Velaw= ), == )
X “Tadv )
1€[LL] a0l ox
In the above summation, 669)(?1) is trivial to obtain, as shown in Eq. (6),
while %ﬁ;‘f{ can be done in a sequential manner. That is, after
having gf(;‘f;’) we can acquire %‘g'ﬁ)v by
0Logy  0Lag, 90U+D N
960~ agU+)  gp T .
69(l+1) R ( )
9000 (1 - aVgVo(Lirain(X, Ryy) + -Etrain(X,R9<t))))-

In Figure 2a, we show the overall computational graph of the pro-
cedure for calculating the adversarial gradient V> L, 4. Note that
this procedure applies to most embedding-based recommendation
models, not limit to WRMF, if their inner objectives are also op-
timized with SGD (or variants of SGD, such as Adam [22]). It’s
worth mentioning that despite the differentiations showed in Eq. (6)
and Eq. (8) contain the computation of Hessian matrix, automatic
differentiation [18] provides us a convenient way to solve them.

To study the effectiveness of attack using the above exact solu-
tion, we design a proof-of-concept experiment on a synthetic data
set to learn fake user data using WRMF as the surrogate model
under a white-box attack setting.

Setup. Based on the synthetic data generation method we de-
scribed previously, we create a toy dataset with 900 normal users,
100 fake users and 300 items. That is, |Y| = 900, |'V| = 100, and
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|Z| = 300 in the following experiments. When generating data, we
set its ‘rank’ d to be 20 and binarization threshold € to be 5, the
data sparsity is 88% under this setting. The model we use is WRMF
with latent dimensionality K = 16 and with its training objective
showed in Eq. (5). In terms of instance weight, we empirically set
wyi = 20 when xy,; = 1and wy; = 1 when x,; = 0, as this gives the
best recommendation performance. Same weight also applies for
wyi. Finally, surrogate model (i.e., the inner objective) is optimized
with Adam for 100 iterations (L = 100) and fake data (i.e., the outer
objective) is optimized for 50 iterations (T = 50).

Implementation details. Recall that after updating the fake
data with the exact adversarial gradients, we have to project them
onto feasible region (i.e., X,; € {0,1}). To achieve this, the most
straightforward way is using a threshold:

. 1 ifx>p,
Proj,(x) = { 0 else. g

Empirically, one can apply grid-search for the value of p for larger
attack influence. In our experiments, we use p = 0.2.

Results. First of all, to evaluate the performance of the surrogate
model as well as the performance of learned injection attack, we
use hit ratio truncated at 10 (HR@10) as the metric. To evaluate
surrogate model’s recommendation performance, we randomly re-
serve 1 interacted item per user (denoted as test item), measure
HR@10 on this test item and average it for all normal users. To eval-
uate the attack performance, we use the same strategy but measure
HR@10 on target item. Fig. 3 shows the results for both performance
we care about. From Fig. 3(a), we can see when using WRMF as
the surrogate model and its exact adversarial gradients to solve
the bi-level optimization problem in Egs. (1) to (2), the adversar-
ial objective L, 4y is successfully minimized over iterations. From
Fig. 3(b), we notice the attack performance (i.e., HR@10 on target
item) is also getting better along with L, 4,. More interestingly, we
found the attack doesn’t change much to WRMF’s recommendation
performance (i.e., HR@10 on test item).

With the experiment showed above, we illustrate the effective-
ness of the learned injection attack when (1) using WRMF with
Adam as surrogate model and (2) using the exact adversarial gradi-
ents accumulated for all iterations [ € {1, ..,L} in inner objective
optimization. Ideally, we can substitute WRMF with other type of
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Figure 3: On our synthesized toy dataset, we report the mean and standard deviation for (a) adversarial objective and (b) HR@ 10
for test and target item over iteration T. The experiment is repeated for 5 times with different initializations.

surrogate models (or an ensemble of several models) to achieve
the best attack performance against most victim models. This ef-
fective approach has been tried in other domains [31], but remains
under-explored for injection attack against recommender systems.

Nevertheless, this method has a big drawback due to its high
complexity in both time and space. Originally, when optimizing the
inner objective, we perform forward and backward propagation
to update surrogate model parameters 6, and we only keep the
latest values of these parameters. While if we want to compute the
exact gradient (as shown in Fig. 2a), we need to store the param-
eter values 0) for each single iteration [ € {1,..,L}. So the space
complexity grows linearly with the number of total iterations L. That
is, if surrogate model size || = m, then a total of O(Lm) space is
needed. As for time complexity, we need extra time to compute
59U+D)

800

mode algorithmic differentiation [3], time complexities of both of
these computations are proportional to the model size m. Thus
the time complexity also grows linearly with L, and an additional
O(Lm) time is needed to have all the gradients accumulated, for a
single update of fake data. As a result, computing the exact gradient
V5 Ladv is impractical when having a large surrogate model op-
timized for many iterations, which is very common in real-world
recommendation scenarios. That’s why in the next, we show two
approximations of the exact gradient V& L4y

I
and % for each [ € {1,..,L}. According to the reverse-

3.2 Approximated Solution i: Unrolling fewer
steps

A straightforward solution is unrolling fewer steps when accumu-
9 Ladv () .

619:(?) . %,W € {L,L - 1,...,1}. When computing the

exact gradient with Eq. (7), one can sum the gradient from [/ = L

back to [ = L — 7, instead of [ = 1. In other words, Eq. (7) will be

approximated as:

Velaw™ ),

le[L-7,L

lating

0Lygy 000 o)
| 900 ox

where 7 € [1, L] denotes the unroll steps. This requires we keep
surrogate model parameters only for the last 7 steps, and backprop-
agate adversarial gradients only within last = steps. Therefore, it
reduces both time and space complexity from O(Lm) to O(rm). We
can choose the unroll steps 7 according to the available resources,
but theoretically, a larger 7 leads to a better approximation.
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Results. In Fig. 4(a), we show the results of the same experiment
in previous subsection, this time varying the number of unroll steps
7. When 7 = 100, we have the same results as in Fig. 3. When using
WRMF (optimized with Adam) as surrogate model, we can get better
attack performance (measured by a higher HR@10 for target item
or a lower L,4y) when we unroll more steps, as expected. Notably,
even unrolling a few steps (e.g., %5 of total steps), we can achieve
a reasonable attack performance with an approximation factor of
0.65 (0.368 vs. 0.568 in HR@10 for target item). Though promising
results are achieved on this synthetic dataset, we’d like to point
out the approximation factor is not guaranteed and can vary from
different datasets and from different surrogate models.

3.3 Approximated Solution ii: Using special
surrogate models

By unrolling fewer steps, we still need extra time and space. While
in this subsection, we revisit another way adopted by existing
works [13, 26], to approximate the gradient by its partial derivatives:

Vi Luay = (10)

Using this approximation, we don’t need to unroll any step (or
7 = 0) and it requires almost no extra time or space.

Recall that adversarial objective £,4, is defined as a function

of predictions on normal data R (see Eq. (3) for an example). And

in Section 3.1, we equating ==& = 0, since when optimized with
SGD-based approaches, WRMF’s predictions are not depend on
the data, neither X nor X, but only dependent on its parameters
R = PTQ.However, Li et al. [26] showed when WRMF is optimized
with alternating least square (ALS, or block coordinate descent),
then its predictions are explicitly condition on the data, thus we
can have non-zero partial derivatives. In short, when the training
of WRMF with ALS is converged, its corresponding predictions for

Rand R are:

ri_P(PT +M)—1PTx,~

7| T |FI\|F Fl |x]
where r; and 7; are the i-th column of R and ﬁ similar denotation
also applies to x; and x;. Holding P and F as constant, we can then

compute the desired partial derivatives 9L &ﬁdv . g—g. Us-

ing the similar idea, Fang et al. [14] showed the partial derivatives
exist when using random walk with restart (RWR) as surrogate

P
F
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(a) WRMF as surrogate model
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(b) ItemAE as surrogate model
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Figure 4: On our synthesized toy dataset, we vary the unroll step 7 and report the mean and standard deviation of HR@10
for target item (blue bars) and adversarial objective (red lines). In subfigure (a), WRMF with Adam is used as the surrogate
model, while in subfigure (b) ItemAE is used as the surrogate model. Experiments are repeated for 5 times with different

initializations.

model. However, a limitation of these approaches is that both WRMF
solved with ALS and RWR are not well-supported by existing ma-
chine learning libraries (such as TensorFlow [1] or PyTorch [35]),
which are mostly designed for models optimized with SGD-based
approaches. Therefore it’s non-trivial to compute all the desired
derivatives (both partial derivative in Eq. (10) and the accumulated
gradients in Eq. (9)) with automatic differentiation [18].

In this paper, we offer another surrogate model. Acknowledging
the limitation and inspired by previous works, we want the model
predictions explicitly condition on data (in other words, X and X
should be on the computational graph when calculating R) and
is optimized with SGD-based methods. Moreover, this surrogate
model is composed with neural networks, thus hopefully, can better
transfer attacks to other deep recommenders. The resulting sur-
rogate model is shown in Fig. 2b. Similar to WRMF, we retrieve
the user latent representations (red circles) from a user embedding
table. While the item latent representations (blue circles) for item
i are computed using a feed-forward layer with data x; and x; as
inputs. This makes L,4, differentiable w.r.t. X (red dashed line),
thus allows us to have non-zero partial derivatives.

It’s worth to note that the model sketched in Fig. 2b can be also
viewed as item-based autoencoder (ItemAE). After concatenating
normal and fake data for item i, i.e., x;' = [x;;X;], ItemAE first
uses an encoder network E parameterized by 0 to project this
high-dimensional input to a lower-dimensional latent space z;
E(x;r; 0g), where z; € RK is the latent code (representation) of input
x; with dimensionality K. ItemAE also uses a decoder network D
parameterized by 0p to reconstruct the input from its latent code
r;r = D(z;;0p). In [39, 42], ItemAE has been investigated for its
recommendation performance, but in our paper, we found ItemAE
could also help us to obtain a desired partial derivative for learning
injection attacks.

Results. In Fig. 4(b), we can see the attack performance when
using a ItemAE, optimized by Adam for 100 iterations and with
network architecture (|U| — 64 — 32 — 64 — |U]), as surrogate

model*. When using only partial derivative 9Laty 4, approximate
Vs L4y (i.e,, unroll step 7 = 0), the attack is weaker, but we benefit
from having no extra time and space. Moreover, since two approxi-
mation we discussed are orthogonal to each other, we can still add
an unroll step 7 > 0 for ItemAE to obtain better attack performance,

“#Note that the attack performance in Fig. 4(b) is not comparable with the performance
in Fig. 4(a), as the attacks are evaluated on different victim models.
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as shown in Fig. 4(b). We observe that by incorporating a large un-
roll step 7, significantly better performance is achieved compared
to purely based on the partial derivatives (PD). This demonstrate
that the potential of the injection attack is unfulfilled by ignoring
the second term in Eq. (4). Surprisingly, we found using the exact
gradient (r = 100) doesn’t give the best attack performance. We
conjecture this is because the optimization problem in Egs. (1) to (2)
is non-convex, therefore it can be minimized to a better local min-
ima when gentle noises are injected. This is a common phenomena
when training non-convex model with SGD, which injects noises
but facilitates training.

3.4 Summary

Finally, we finish this section by providing a brief summary. To
solve the bi-level optimization problem with gradient-based ap-
proaches, the key is to obtain the adversarial gradient V 2 Laav
G.Cidv
o0xX
and accumulated gradients on surrogate model parameters 6. The
computation of exact gradient requires high time and space com-
plexity. But we can either use partial derivative to approximate
the gradient (special surrogate model is required) or unroll fewer
steps when accumulating gradients. Existing works [11, 13, 14, 26]
only considered the first approximation method, making the attack
weaker than it could be. Underestimating adversary is dangerous in
the context of a security arms race [4, 40]. This is one of the major
motivations of this revisiting study.

in Eq. (4), which is composed with a partial derivative term

4 EMPIRICAL STUDIES

Conducted on a real-world dataset, experiments in this section are
divided into two parts. Firstly, we analyze attack transferability
from surrogate models (introduced in Section 3) to different types
of victim recommenders. Next, we aim to identify the limitations
of this adversarially learned injection attack. Source code and pro-
cessed dataset are publicly available online®.

4.1 Setup

Dataset. For the real-world dataset, we use Gowalla® constructed
by Cho et al. [10], containing implicit feedback through user-venue
check-ins. It has been widely adopted in previous works [2, 41] for
point-of-interest recommendation. Following [41], we process the
raw data by removing cold-start users and items of having less than

Shttps://github.com/graytowne/revisit_adv_rec
®http://snap.stanford.edu/data/loc-Gowalla html
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Table 1: The recommendation performance (without attack) and configuration of each model.

Model Recall@50 Configuration
WRMF+SGD 0.2885 Latent dimensionality: 128
WRMF+ALS 0.2898 Latent dimensionality: 128
ItemAE 0.2862 Network architecture: (|U| — 256 — 128 — 256 — |U|)
NCF 0.2878 Latent dimensionality: 256; 1 layer NN with size 128
Mult-VAE 0.2905 Network architecture: (|[1| — 512 — 256 — 512 — |1 ])
CML 0.2872 Latent dimensionality: 256; margin in hinge loss: 10
ItemCF 0.2191 Jaccard similarity; number of nearest neighbors: 50

15 feedbacks. The processed dataset contains 13.1k users, 14.0k
venues (items) and has a sparsity of 99.71%. We randomly hold
20% of the data for the test set and use the remaining data for the
training set. As there are more than 1 test items, we use Recall@50,
instead of hit ratio, to measure recommendation performance.
Evaluation protocol. To have a fair study for attack transferability
under black-box setting, each attacking method generates a fixed
number of fake users (1% of real users, i.e., |'V|=0.01|U|=131) that
has the greatest attack impact on the surrogate model. We then com-
bine each fake data with normal data and let different victim models
trained from scratch with the combined poison data. For the attack
performance on Gowalla, we randomly sample 5 items together as
a target item set and measure the HR@50 on the target item set (it
is considered as a hit if one of these items appears in the ranked
list). With more target items involved, the attack performance will
be more significant and stable.

4.2 Analyses on Attack Transferabilities

In the subsection, we aim to explore the key factors that influence
the attack transfer from one surrogate model to other victim models.
For the attacking methods, we use the ones described in Section 3.
That is, the compared methods are:

e RandFilter: A basic attacking method proposed by Lam
and Riedl [25]. Though the original version is for explicit rat-
ings, we adapt this method on implicit feedback data by hav-
ing each fake user click the target item(set) and some other
randomly chosen items (called filter items). This method
serves as a heuristic baseline.

e WRMF+ALS: Using WRMF optimized with ALS as surrogate
model to craft fake users. Same as [13, 26], only the partial
derivative is used as adversarial gradient.

e WRMF+SGD: Proposed in Section 3.1, this method uses WRMF
optimized with Adam as surrogate model. When accumulat-
ing adversarial gradients, we approximate the exact adver-
sarial gradient by unrolling 10% of total training steps.

e ItemAE: Proposed in Section 3.3, this method uses item-
based autoencoder optimized with Adam as surrogate model.
The special design of ItemAE allows us to obtain non-zero
partial derivatives. Thus, when accumulating adversarial gra-
dients, we unroll either 0 steps (using only partial derivative)
or 10% of total training steps.

For the victim models, we carefully choose the following commonly
used recommenders:

e NCF [19] Neural collaborative filtering (NCF) is a popular

framework that explore non-linearities in modeling complex

user-item interactions. We adopt NeuMF as the instantiation
of NCF.
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e Mult-VAE [27] Variational autoencoder with a multinomial
likelihood (Mult-VAE) is the state-of-the-art model for rec-
ommendation with implicit feedback. It exploits VAE to learn
robust user representations and shows much better perfor-
mances than other factorization-based methods.

e CML [20] Collaborative metric learning (CML) minimize the
euclidean distance in latent space for a relevant user-item
pair and increase the euclidean distance for an irrelevant pair.
It is adopted here to see whether difference in score functions
(i-e., euclidean distance in CML versus dot-product in WRMF
and ItemAE) can influence attack transfer.

o ItemCF [38] Presumably, all above victim models are based on
user/item embeddings, which is a similar properties shared
by our surrogate models. Therefore, we choose the item-
based collaborative filtering (ItemCF), a classic neighborhood-
based approach, to see if attack can transfer to a victim model
with different model type.

To rise reproducibility, in Table 1 we report the recommendation
performance (without attack) and the configuration of each model
used in this section. Note that we did not tune each model ex-
haustively but roughly grid search for the hyperparameters untill
a reasonable recommendation performance is reached, because
comparing recommendation performance is not our main focus.
Besides the aforementioned victim models, we also measure the
attack performance when the victim models are identical to the
surrogate models (i.e., WRMF and ItemAE).

Fig. 5 shows the results for attack performance of each method
under black-box setting. The sampled items are constrained to be
popular items, thus has a relatively high HR@50 before attack
happens. As expected, when WRMF and ItemAE are selected as the
victim models, they are affected most when the same models (i.e.,
WRMF+SGD and ItemAE) are used as the surrogate models. For the
heuristic method RandFilter, it could achieve the malicious goal
sometimes but gives unstable attack performances across different
victim models. The attack generated by WRMF+SGD transfers well
to all other models, but the results are much worse in most cases
when using WRMF+ALS, which is adopted in existing works. As for
ItemAE, unrolling more steps (ItemAE) does not give better attack
performance and not provide better attack transferability in most
cases than only using the partial derivative (ItemAE(PD)). Also,
ItemAE(PD) shows significant attack influence when the victim
model is Mult-VAE, the common structure of the two models may
be reason. Lastly, we found that the difference in score functions
(i.e., euclidean distance in CML versus dot-product in our surrogate
models) does not affect the attack too much. This finding suggests
on the latent space, the injected fake users actually ‘pull’ the target
items towards normal users, such that both cosine distance (from
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(a) Attack performance for different methods. (b) Fake data distribution. (c) Fake users in latent space.

Figure 5: (a): On Gowalla dataset, the black-box attack performance for different attacking methods on different victim models.
For each result, we report the mean and standard deviation over 4 individual runs with different initializations. (b): In terms
of distribution, there’s isn’t large discrepancy from the learned fake data and the normal data. (c): Fake users in latent space,
PCA is used to project user embeddings to a 2-dimensional latent space.

Table 2: Attack performance of WRMF+SGD on each victim model for target item set with different popularity.

Target item Method HR@50 for target item set

popularity WRMF  ItemAE NCF Mult-VAE CML ItemCF

head Clean 0.1014 0.1043 0.1177 0.0957 0.1159 0.1498

WRMF+SGD 0.1405 0.1268 0.1254 0.1682 0.1595 0.2554

Clean 0.0345 0.0371 0.0287 0.0225 0.0251 0.0218

UPPEr OIS0 | ypmE4SGD | 0.0590  0.0457  0.0577 0.0371 0.0482  0.0807

lower torso Clean 0.0070 0.0064 0.0106 0.0093 0.0101 0.0167

WRMF+SGD 0.0287 0.0211 0.0264 0.0123 0.0252 0.0227

tail Clean 0.0005 0.0005 0.0018 0.0025 0.0019 0.0069

WRMF+SGD 0.0183 0.0139 0.0175 0.0114 0.0174 0.0194
dot-product) and euclidean distance become smaller. However, the cold items are farther away from normal users on the latent space,

difference in the choice of the victim model (i.e., using ItemCF as thus brings more difficulties for the attack.

victim model) can deteriorate the attack impact a lot, except for the Learned fake users are detectable. Next, we aim to find if there
case when WRMF+SGD is used to generate the attack. are any clues of the learned fake users. When target items are
head items, we first take a look on what items are clicked by those
4.3 Limitations of the Attack learned fake users in terms of the clicked item’s popularity and the

corresponding density. Fig. 5b gives the results for RandFilter and
WRMF+SGD attack. For reference, we also plot for a sub-sample of 500
normal users. From the figure, we can see the clicked items from
RandFilter attack have totally random popularity, as expected.
But the fake user distribution of WRMF+SGD attack has marginal
difference from normal users (labeled as Normal), suggesting the
difficulty of identifying the fake data from the distribution dis-
crepancy. We then alter to seek clues from latent space with the
help of PCA. In Fig. 5c, we plot the fake users from RandFilter
and WRMF+SGD attack in the latent space of WRMF and MultVAE.
From the first row of Fig. 5¢, we verified the claim in [6] that fake
users generated with heuristic approach (here the RandFilter) can
self-forming clusters in latent space. Notably the fake users from
WRMF+SGD attack, although not form cluster in the latent space of
WRMF, is suspect in the latent space of MultVAE. This suggests
the learned fake users may still self-form clusters in certain latent

As mentioned, only knowing the severity of the attack is not al-
ways useful for defending against the attack. In this subsection,
we discuss two major limitations we identified from the proposed
injection attack, with the goal of providing insights to further un-
derstand this type of attack and inspire defensive techniques.

Less effective on cold items. Note that in the previous subsection,
we showed the attack effectiveness only on a set of randomly sam-
pled popular item. In Table 2, we present the results for WRMF+SGD
attack on various victim models, but this time target item sets are
sampled to have different popularities. We define head item as the
items with total clicks (#clicks) above 95 percentile. Similar def-
initions also apply for upper torso (75 percentile < #clicks < 95
percentile), lower torso (75 percentile < #clicks < 50 percentile) and
tail (#clicks < 50 percentile). From Table 2, we can see the attack
from WRMF+SGD, though still boost the target item sets, is less effec-
tive for the target items with less popularity. In other words, the
cold items are much harder to get promoted. Perhaps this is because
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spaces, once we are able to identify some fake users, their neighbors
in latent space are also suspectable.

5 CONCLUSION

In this paper, we revisit the problem of adversarially-learned injec-
tion attack against recommender systems. By modeling the attack-
ing problem as a bi-level optimization problem, we point out the
issue in existing solutions, propose the exact solution to solve the
problem and verify its effectiveness on a synthetic dataset. Since
the exact solution is neither time-efficient nor resource-efficient,
we also introduce two approaches to approximate the exact solu-
tion. On a real-world dataset, we conduct extensive experiments to
evaluate the transferability and limitations of the attack, with the
hope that these empirical analyses can inspire effective defensive
strategies in the future.
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