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Online Scheduling of a Residential Microgrid via
Monte-Carlo Tree Search and a Learned Model

Hang Shuai

Abstract—The uncertainty of distributed renewable energy
brings significant challenges to economic operation of microgrids.
Conventional online optimization approaches require a forecast
model. However, accurately forecasting the renewable power gen-
erations is still a tough task. To achieve online scheduling of a
residential microgrid (RM) that does not need a forecast model
to predict the future PV/wind and load power sequences, this
article investigates the usage of reinforcement learning (RL)
approach to tackle this challenge. Specifically, based on the recent
development of Model-Based Reinforcement Learning, MuZero
(Schrittwieser et al., 2019) we investigate its application to the
RM scheduling problem. To accommodate the characteristics
of the RM scheduling application, an optimization framework
that combines the model-based RL agent with the mathematical
optimization technique is designed, and long short-term memory
(LSTM) units are adopted to extract features from the past
renewable generation and load sequences. At each time step,
the optimal decision is obtained by conducting Monte-Carlo tree
search (MCTS) with a learned model and solving an optimal
power flow sub-problem. In this way, this approach can sequen-
tially make operational decisions online without relying on a
forecast model. The numerical simulation results demonstrate
the effectiveness of the proposed algorithm.

Index Terms—Deep reinforcement learning, Monte-Carlo tree
search (MCTS), microgrid, online optimization.

NOMENCLATURE
Superscript, Subscript, Indices and Sets

b, grid Battery and utility grid.

ch, dis Charge and discharge mode of battery.

89 Index and set of dispatchable generators.

K. k Number and index of hypothetical time steps.

L Load power demand.

T,t,T Number, index, and set of time steps.
i,j, N Index and set of buses.

T Set of branches in microgrid.
Maximum and minimum value.
Wind turbine and PV panel.

max, min
wt, pv
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Variables
P, 0O Active power and reactive power.
SoC State of charge of battery.
Lij, vi Square of branch current and bus voltage.
I, 19 Charge and discharge state of battery.
S, X, F State, decision, and reward of microgrid.
S, X, T Internal state, decision, and reward of
microgrid.
Parameters
Peur Renewable energy curtailment cost coefficient.
Tij, Xij Resistance and reactance of power line.
ag, B, cg  Fuel cost coefficient of dispatchable DGs.

P Unit degradation price of battery.

n Efficiency of battery.
E™n EmaX Minimum and maximum energy in battery.
y Discout factor.
At Time resolution.
Functions
C(-),r(-)  Cost function and reward function.
ho(-), g9 (-) Representation and dynamic network.
Jo () Prediction network.
1(+) Loss function.
0, %) Mean value function.
P(s, %) Policy function.
S(, ) Transition function.

I. INTRODUCTION

ICROGRID is a group of interconnected loads and

distributed energy resources within clearly defined elec-
trical boundaries that acts as a single controllable entity with
respect to the grid [2]. It is becoming a widely adopted tech-
nology to utilize distributed energy resources (DERs) as their
capability of reducing greenhouse emissions, improving con-
sumers’ supply reliability, enhancing power grid resiliency,
etc., [3], [4]. For instance, there have been 6610 microgrid
projects representing 31.7 GW of planned and installed power
capacity globally [5], as of March 2020. However, the inter-
mittent and uncertainty of integrated renewable energy bring
significant challenges to the reliable and economic operation
of microgrids. The optimal optimization and control strategies
are the key techniques to ensure the economic operation of
microgrids. As a result, the optimization of microgrids has
obtained extensive research, and a variety of microgrid energy
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management algorithms (see [6] and the references therein)
have been proposed, such as, linear and nonlinear program-
ming methods, dynamic programming and rule-based meth-
ods, meta-heuristic approaches (particle swarm optimization,
genetic algorithm, etc.), artificial intelligence methods (fuzzy
logic, neural network, multi-agent system, etc.), stochastic pro-
gramming, and robust optimization [7]. Besides, researchers
also proposed several other optimization methods [6], [8].
For instance, a novel peer-to-peer optimization method was
proposed in [8], which greatly improved the renewables
consumption by incentivizing microgrids to trade energy.

However, the above microgrid optimization methods are
mainly proposed to solve the microgrid planning prob-
lems (see [7], [9], [10]) or day-ahead scheduling prob-
lems (see [11], [12]). Using these methods, we can make
day-ahead scheduling according to the forecast information
of all the future system state and the statistic distribu-
tion information of the uncertainties in the system. Since
the prediction errors come from both the power genera-
tion side and the demand side, the actual operational deci-
sions are re-optimized sequentially in the intra-day online
optimization process according to the updated short-term fore-
casting information provided by the forecast model of the
system. Model predictive control (MPC) is a traditional online
optimization method that has been applied in microgrids [13],
[14]. But, the performance of the MPC approach depends
on the precision of the forecasting generation/load power
and the fitted statistic distribution information. To reduce the
influence of renewable energy forecast errors on the eco-
nomic operation of microgrids, Shuai et al. [15] proposed a
cost function approximation (CFA) based online optimization
algorithm. However, the CFA based online optimization strat-
egy is still rely on the short-term renewable energy forecast
information.

To obtain optimal online operation decisions, researchers
have made some efforts and proposed several optimization
approaches to reduce the dependence on forecasting
information provided by forecast models of microgrids. A
class of heuristic online algorithms, called CHASE [16],
hCHASE [17], [18], have been proposed recently. The
CHASE algorithm can achieve theoretical performance guar-
antee without any future information. However, the CHASE
algorithm is designed to solve single or multiple homoge-
neous local generators. Then, a more general retrospection-
inspired online scheduling algorithm, hKCHASE, is proposed.
Shi et al. [19] proposed a Lyapunov optimization based online
optimization strategy for microgrids, and simulations demon-
strate that the algorithm can make sub-optimal decisions with-
out any prior statistical knowledge of the stochastic processes.
Ma et al. [20] proposed an online alternating direction method
of multipliers (ADMM) based distributed algorithm for online
optimization of microgrids. The online ADMM algorithm
proposed in [20] does not require any forecast data to pro-
ceed, which avoids problems caused by inaccurate forecasting.
However, simulation results in [20] indicate that there exists
constraint violations. More concretely, the online ADMM
algorithm cannot ensure the active/reactive power constraints
and the voltage constraints be fulfilled at each time period.
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Li et al. [21] proposed an online learning-aided energy man-
agement algorithm and combined it with ADMM algorithm
to facilitate the real-time implementation. Rahbar et al. [22]
developed a dynamic programming (DP) based sequential
online optimization algorithm. The authors of this article
proposed an approximate dynamic programming (ADP) based
microgrid online optimization approaches [23], [24]. After
trained off-line using the day-ahead forecasting information,
the ADP algorithm can obtain near-optimal online decisions
only according to the current system state and the well-trained
value functions.

Although the above online optimization approaches reduced
the dependence on intra-day forecasting information, the his-
torical renewable and load power data are not been fully
utilized in the optimization process. With the rapid develop-
ment of machine learning techniques, researchers have made
some efforts to apply deep learning and model-free reinfroce-
ment learning algorithms to solve microgrid energy manage-
ment problem [25]. Besides, prior research works [26], [27]
indicate that the intelligent agent trained based on histori-
cal data is more general to adapt to the unknown situation
in the future. Thus, in order to learn to operate microgrids
from historical data, researchers proposed the model-free deep
reinforcement learning (DRL) based online optimization algo-
rithms [27]-[29] recently. In [27], [29], the historical data are
used to train the designed Deep Q Network (DQN) and Deep
Deterministic Policy Gradient (DDPG) algorithms to achieve
a good online decision performance.

In this work, we investigate the application of a model-based
deep reinforcement learning (MB-DRL) algorithm developed
by reference [1] to solve the microgrid scheduling problem.
Different from the AlphaGo [30] and AlphaGo Zero [31] algo-
rithms that need to know the dynamics of the environment,
the MB-DRL algorithm, called MuZero, that proposed in [1]
is a more general and more powerful reinforcement learn-
ing algorithm that can achieve superhuman performance in
a range of challenging Atari games. Specifically, the MuZero
algorithm combines a tree-based search policy with a learned
model that consists of three networks (representation network,
dynamic network, and prediction network), and can make
decisions without any knowledge of the underlying dynam-
ics of the environment. It is worth noting that there are many
differences between the microgrid optimization problem and
playing Atari games. For example, there are plenty of equal-
ity and inequality constraints in microgrids, and the action
space of the optimization problem in this work is huge because
the decision variables are multidimensional. These differences
bring significant challenges to the application of the algorithm.
This motivated us to explore the application potential of the
MB-DRL algorithm in solving microgrid online optimization
problems.

This work focuses on the online optimization of a resi-
dential microgrid (RM) under uncertainty. The optimization
problem in this article is formulated as a mixed integer second-
order cone programming (MISOCP) problem. To solve this
problem, we reformulate it as a Markov Decision Process
(MDP), and a MB-DRL based RM scheduling algorithm is
designed. The advantage of the developed algorithm is that
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it can make online decisions sequentially without relying on
the renewable and load power prediction from forecast mod-
els. The main contributions of this work are summarized as
follows:

1) An MB-DRL based RM optimization approach is
developed based on MuZero [1] algorithm, with the aim
of conceiving an online optimization agent that can teach
itself how to optimally operate the RM system through
self-play.

2) To deal with the application challenges brought by a large
number of operational constraints and the huge decision
space, a framework that combines the MB-DRL algorithm
with mathematical optimization techniques is designed.

3) A new representation network architecture is designed.
Different from most Atari games existing large spatial
resolution in observations, the observations of microgrids
have a strong time correlation. Thus, for the represen-
tation network in the proposed scheduling algorithm, we
first utilize three LSTM units to extract features from past
solar power, wind power, and load power, respectively.
Then, the feature vectors are concatenated with the cur-
rent state information and fed into the input layer of a
fully connected neural network.

4) Simulation results demonstrate the developed MB-DRL
approach can learn to solve the complex RM optimization
problem by self-play, and can obtain better online
optimization performance than many state-of-the-art
online optimization algorithms.

The rest of this article is organized as follows. The
online scheduling of the residential microgrid is formulated
in Section II. Section III presents the MB-DRL based online
optimization algorithm. The simulation results are given in
Section IV. Section V concludes the paper.

II. SCHEDULING MODEL OF THE
RESIDENTIAL MICROGRID

The microgrid system investigated in this article is a RM
system with a high penetration of renewable energy, which
consists of PV-based DER units, wind turbine based DER
units, diesel engine generator, energy storage device, electrical
loads, and a smart energy management unit. The microgrid
is connected with the utility grid, so it can purchase power
from the utility grid when the RM suffers from power supply
shortage. On the other hand, the microgrid can also sell its sur-
plus energy to the utility grid. As the uncertainties from both
renewable energy resources and the demand side, an energy
management system (EMS) is needed to coordinate all the
generation and load resources (including the energy storage
system) to ensure the secure and economic operation of the
system. So, one of the functions of smart EMS unit is to make
online energy scheduling decisions according to the actual load
demand and the available generation capacity from all power
sources. In this article, we investigate the designation of a
smart online optimization algorithm to achieve the optimal
operation of the system. In the following section, we formu-
late the optimization model of the RM system as a MISOCP
problem.
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From the perspective of a system operator, the objective
of the online energy management is to make decisions at
each time step in order to minimize the operational cost under
the uncertainties from renewable energy and electricity load,
which leads to the following economic dispatch model:

T
.- id id
min 21 3| 30 P9(PRO)) + Conia (Pl @), P @)
t=At \ge¥

+ Chu (PP(0)) + Cour (PR D) (1)

2
oo (ro) = (w(P00) 4 a0 ) @)

Coria(Phy 00, PS 0)) = (P (0P () = pacar P () At
3)
Chur (P (1)) = p1S0C(1) = SoC(t — AD) )

Ceur(PEn (D)) = peur (PP (1) + P (1) — PP (1) — P*' (1)) At (5)

where E{-} represents the expectational operator. The first term
in (1) represents the fuel cost of all dispatchable generators
during a single time period, which is a quadratic function of
the active power generation P?G(t), as shown in (2). The sec-
ond term of the objective function is the power exchange cost
which can be calculated as shown in (3), where Pﬁ;;i(t) and
Pfer;ld(t) are respectively power purchased and sold by the RM,
and ppuy () and py;(f) are energy purchase and sell price,
respectively. Note that pg.;(f) is usually lower than or equal
to ppuy(?), which is determined by electricity price policies
in different states. The third term in (1) denotes the degrada-
tion cost of the battery system. The degradation cost caused
by charging and discharging can be linearly approximated by
the change between two consecutive SoC [25], [32], as shown
in (4). The last term is the renewable energy curtailment cost
of the system, where PPY(¢) and P"'(f) are respectively the
dispatched power of PV energy and wind energy. PP’ (t) and
P" () are respectively the maximum available PV power and
wind power currently. In the above equations, ¢ is the time
period index.

The RM system also needs to satisfy the following opera-
tional constraints:

P?Gmf" < P?G () < P?G”W, Viel,Vge¥ (6)
2 2 2
(P?G(t)> + (QfG(z)) < (SEG””“") Viel,Vee¥ 7)
0<P"(t) < P""(r),VteTl (8)
(P"®0)” + (Q" ) < (s*"")’ vreT ©)
0<PP() <P"(),VteTl (10)
(P () + (")) < (")’ Ve T (1n
0 < P(Z,};id(l) < Pgrid,max
= by M=y e 12
hsﬂmsﬁW“ 2
O S Qgrld(t) S Qgrid,max, V[ E F (13)
0 < PCh(l‘) < Ich(t)Pch,max
{0 < Pdi‘v(l‘) < [dis(t)Pdis,max Viel (14)
PP(t) = I ()PP (1) — 1" (1) P (1), V1 € T (15)
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Constraints (6)-(7) are the generator capacity constraints of
controllable DGs, and (7) ensures that the reactive power
generation of controllable DGs will not exceed its capacity;
constraints (8)-(11) are the generator capacity constraint of
renewable generators, and the dispachable active generation
power of the PV and wind turbine are limited by the current
available renewable power P"/(r) and PP¥(t), as shown in (8)
and (10); constraints (12)-(13) are the power exchange limi-
tation between the RM and utility grid; constraints (14)-(19)
are the battery storage related constraints, and constraint (14)
ensures the active charge/discharge power will not exceed
power limitations of the battery; constraint (16) avoids simul-
taneous charging and discharging of batteries; constraint (17)
bounds the complex power of the battery, where S”"* is the
capacity of the battery inverter; constraint (18) is the energy
transition constraint of the battery.

Constraints (20)-(23) are the power flow model of the RM,
where P;;(7) and Q;;(¢) are the complex power flowing from
bus i to j. In this work, the branch flow model [33] is adopted
to model the steady-state power flows in the power network,
where (i, j) € T denotes the branch between bus i and j, and
rij +ix;; is the complex impedance of the branch. In (20), the
complex net load of each bus i is represented by P;(f) +iQ; (1),
which is the load power PiL(t) + iQiL(t) minus the genera-
tion power. In the power flow model [;;(t) =| I;;(t) 12 and
vi(t) =| Vi(r) |, where I;;(t) and V;(z) are the branch current
and complex voltage at each bus, respectively. The magnitude
of bus voltage is limited by (22). To formulate the optimization
problem as a convex problem, we relax the quadratic equality
constraint (23) to the following inequality

Pi(0)* + Q1)
vi(1)
Finally, we can make the optimal decisions by solving the
following MISOCP problem:

;i) > V@, ) e X, Vrel (24)

T

S| DS cRo(PROw) + Cona(P . P @)

1=At \ge¥

min =
Xt

+ Cou(PP0) + Car (PRD)

s.t. (6) —(22),and (24) (25)
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where x; is the decision vector at time ¢, and

buy

Py(0), 050, vi(0). (1))

x; = (SPO), S° 0. S (). ™ @), Py 00, Pl 0. 070,
26)

In (26), S?G(t), SPY(1), and S™!(¢) represent the complex power
generation of controllable DGs, PV panels, and wind turbines,
respectively. S”(7) is the complex output power of the battery,
and S°(1) = P (t) +iQ°(1).

In this article, we investigate the online optimization of the
RM system, which means system operators need to make oper-
ational decisions according to the current state information of
the RM. In the following section, we will introduce a data-
driven method, namely the MB-DRL algorithm, to solve the
online optimization problem.

III. MICROGRID ONLINE SCHEDULING VIA MCTS
AND A LEARNED MODEL

In this section, a model-based deep reinforcement learn-
ing based RM online optimization approach is designed
to optimally operate the RM under uncertainties from
renewable energy and demand side. We first reformu-
late the above RM optimization problem as a MDP
problem. Then, the adopted MB-DRL method is introduced.
Finally, a specific online optimization algorithm for the RM
is designed.

A. Problem Reformulation

To facilitate the application of reinforcement learning
approach, the optimization problem shown in (25) is refor-
mulated as a MDP problem. A MDP model includes some
basic elements, namely state variables s;, decision variables
Xz, transition function, and reward function r,(-), which will
be defined in the following section. Note that different from
the variable representation rules in the previous equations, we
will subscript ¢ to represent the variable at time ¢ in the fol-
lowing sections, which is to be consistent with the variable
naming convention in the field of reinforcement learning. For
instance, the state variable is represented by s, rather than s(z).
The state variables of the RM consist of the SoC of the battery,
the active and reactive power demand of each bus PZ.L (1) and
QiL(t), the available PV generation PP"(f), the available wind
power generation P"'(¢), and the electricity price pZ;'yd(t) and
pfer;ld(t). The state variables of the RM at time ¢ are defined
below:

1 = [SoC@), PE®, OF @, P @), P (0, s 0,051 0}
)

The decision variables of the RM at time ¢ is given
in (26). The SoC transition function has been given in (18).
The objective of the online optimization is to minimize
the operational cost of the RM, which is equivalent to
maximize the total rewards of the system. So, we define
the following reward function according to the objective
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Fig. 1. The architecture of the MCTS with a learned model [1].

function shown in (1):

riGsix) = = [ 30 CPO(PROW) + Coia (Pl 0, P )

g€9

+ Coar(PP0) + Car(Plp0) | 28)

where, r:(s;, x;) is the reward of taking decision x; when RM
in state s;.

After reformulated the problem as a MDP problem, the next
step is to design a reinforcement learning algorithm to make
optimal decisions at each time step in order to maximize the
cumulative rewards of the RM.

B. The Model-Based Deep Reinforcement Learning Method

In this work, we adopted the MB-DRL optimization
approach proposed in [1]. In this section, the principle of the
the adopted MB-DRL approach is briefly introduced.

The MB-DRL algorithm proposed in [1], called MuZero,
combines Monte-Carlo Tree Search (MCTS) planning method
with a learned neural network model. Similar to traditional
MCTS, the MuZero algorithm involves iteratively building a
search tree until some predefined computational budget (like
a maximum iteration constraint) is reached, then the search is
halted and the best action is determined according to the visit
count of each action from the root node [34].

The difference between the two algorithms is that a learned
model is introduced in MuZero to improve the performance
of MCTS. Specifically, three different neural networks, which
constitute the learned model, are introduced in the tree search
process, as shown in Fig. 1. The first neural network is
the representation network /gy, which is used to encode past
system states (or observations) until the current time-step f,
(s1,...,8) , into an internal state 3“9. The second one is the
dynamic network gy, which is used to get the next internal
state 5% and the immediate reward 7 after taken an action
3k from an internal state 31;_1. The last neural network is the
prediction network, which is used to get the control policy p*

1077
and value functions v* according to the internal state $¥.

8 =ho(s1, ..., 50 (29)

st = (51 5) (30)

ph v =1 (5F) (1)

In (29)-(31), 6 is the weights of the representation network;
¥ is the weights of the dynamic network; ¢ represents the
weights of the prediction network. The superscript k represents
the variables of the kth hypothetical time-step. For instance,
§£‘ denotes the internal state at the kth hypothetical time-step
during the tree search conducted at the actual time-step ¢. It
is worth noting that the internal state has no semantics of the
environment state attached to it [1]. The purpose of the internal
state is to improve the prediction accuracy of the above control
policies p, values v, and immediate rewards 7 that used in the
tree search process. We can also find that the dynamic network
is actually an environment model approximator, which can
directly compute the next internal state according to the cur-
rent state and the executed action. This makes the MuZero
algorithm belongs to a model based reinforcement learning
algorithm.

The three neural networks are trained off-line using the data
generated by the self-play process of the MuZero algorithm.
And after the neural network model has been well-trained,
the optimal decisions of each time-step can be made forward
through time according to the current state of the environ-
ment, as shown in Fig. 1. At each time-step 7, an MCTS is
performed to build a search tree. Note that an MCTS consists
of a predefined number of simulations, and each simulation
includes three steps, namely selection, expansion, and back-
propagation. The above learned model is utilized in each
simulation to help us to build the search tree. Then the best
decision is sampled according to the visit count of the child
nodes of the root node. The decisions are applied to the envi-
ronment, and the agent gets a new observation of system state
si+1 and the actual reward r,; from the environment. The
above procedure repeats until the end of the game. Here we
just provided a brief description of the MuZero algorithm, and
refer the readers to reference [1] for more details.

C. Proposed MB-DRL based Online Scheduling Algorithm
for the Residential Microgrid

Originally, the MuZero algorithm is proposed to play games
like Atari games and Go. In these games, the action is usually a
single-dimensional variable and discrete values. So the action
space at a single time-step is relatively small. For example, in
Atari 2600 game Breakout, the action space is [‘noop’, ‘fire’,
‘right’, ‘left’, ‘right fire’, ‘left fire’]. However, the actions of
the optimization problem in this article is a multidimensional
continuous vector, as shown in (26). Thus the action space is
huge. This makes us face the ‘curse of dimensionality’ when
applying reinforcement learning method to solve our problem.
Besides, there are plenty of equality and inequality constraints
in the above RM model, which is difficult to directly han-
dle for the MuZero algorithm. How to ensure the decisions
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given by the reinforcement learning agent fulfill the complex
constraints (6)-(22), and (24) is also a big challenge we face.

To solve the challenges, we propose to divide the deci-
sion variables shown in (26) into two categories. The first
category contains the active charge/discharge decision of the
battery P?(r), which is determined directly by the model
based reinforcement learning algorithm. And we discretize the
charge/discharge decision to facilitate the application of MCTS
algorithm. Researchers have proposed a MCTS algorithm that
can deal with continuous actions [35]. The extension, how-
ever, is left for future work. The second category includes the
remaining decisions in (26), which are optimized as a single
time period optimal power flow (OPF) sub-problem, as shown
in (32).

min
X

> CLS(PRO(0) + Cyria(Ph 0. P 1)

g€9

+ Char (PP(0)) + Cour (P )

s.t. (6) —(13), (17), (20) — (22), and (24) (32)

where, x} denotes the decisions optimized in the OPF sub-
problem. P>*(f) is the optimal decision directly given by
the MB-DRL method. The sub-problem (32) can be solve by
second-order cone programming (SOCP) technique. Note that
the active charge/discharge decision is fixed when solving the
OPF sub-problem. The proposed optimization framework that
combines the MCTS with the mathematical optimization tech-
nique will bring two advantages. The first advantage is that the
action space handled by the MCTS is largely reduced. The
second one is that most constraints can be handled by OPF
sub-problem, which avoids letting the MCTS and the neural
network model directly deal with a large number of constraints
and this will greatly help the learning process of the agent.
The schematic diagram of the proposed MB-DRL based online
optimization algorithm for RM is shown in Fig. 2. In the fig-
ure, the charge/discharge decision P(r) given by the MCTS
algorithm is checked by the overcharge/overdischarge limita-
tion unit to ensure the constraint (19) is fulfilled, as shown
in (33).

PP(1), SoC™" < SoC(t + At) < SoC™™

Pb’*(l‘) _ _E ‘(Surf;hét—SOC(l))d’- SoC(t + Af) > SoC™"®™
(S()C(I)*Soil )-Emax.gy  SoC( + Af) < SoC™
(33)

where, SoC(t + Af) can be computed using (18) according to
Pb(7).

The multi-time period optimization problem shown in (25)
is decomposed to multiple single time period sub-problems in
this work according to Bellman’s optimality principle, and the
optimal decisions of each time-step are optimized using MCTS
planning method combined with the learned neural network
model, as shown in Algorithm 1. We assume all the states
of the RM are observable. At time-step ¢, the states of the
RM are collected, and are fed to the representation network to
compute the internal state of the system using (29). Then, the
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Fig. 2. The online optimization process at each time-step.

Algorithm 1 The Proposed MB-DRL Based Online
Optimization Algorithm

1: Load the pre-trained neural network model which includes the
representation network, the dynamic network, and the prediction
network; load the RM system parameters.

2: for t = At,2At, ..., T do:

3: Get the current state information of the system. > (27).

4: Compute the internal state of the RM according to the current
state information and the historical state information. > (29).

5: Create the root node according to the computed internal state,
and set n = 1.

6 while n < N do

7: Perform the selection step start from root node. > (34).

8: Perform the expansion step. > (35)-(37).

9: Perform the backpropagation step. > (38)-(40).

10: n=n+1.

11 end while

12: Get the optimal charge/discharge decision PP*(1) that corre-
spond to the most visited child nodes of the root node.

13: Overcharge/overdischarge check and get the optimal decision
P (p). > (33).

14: Fix the charge/discharge decision of the battery to be PP (1)
and solve the OPF sub-problem (32) to compute the optimal
decisions x;"*.

15: Execute the optimal decisions and calculate the next state
of the RM system.
16: end for

root node is created according to the obtained internal state
fv?. Starting from the root node, a search tree is constructed
by iteratively performing N simulations (see lines 6 to 11 of
Algorithm 1). And the optimal output power of the battery
can be determined according to the visit frequency of the child
nodes of the root node. Then use (33) to make sure the SoC
limitation will not be violated. Finally, the remaining decisions
x; are determined by solving the OPF sub-problem, and the
optimal decisions are executed. In the next time-step, the above
optimization process is repeated.

We can find that the key step is the search tree building
process (see lines 4 to 11 of Algorithm 1). The tree consists
of nodes and edges. Each node is associated with an internal
state 5. For each decision X from § there is an edge (5, X)
that leads to a child node. The information stored in the edge
(5,%) is w = {N(5, %), O, x), P(8, X), R(5, %), S5, X)}. N, O,
P, R, and S represent visit counts, mean value, policy, reward,
and state transition, respectively. For simplicity, 5% and 3% will
be represented by §% and ¥ in the following context. Each
simulation includes the following three steps.
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1) Selection: Starting from the root state 59, the simulation
selects a decision and reaches to the corresponding child node.
The Selection step finishes when the simulation arrives at a
leaf node §. For each hypothetical time-step k = 1,2, ...,
of the simulation, a decision % is selected using (34).

Zg N(§, 5)
1+ N(5, %)

JENG o) +er+1

2

= arg max Q(@)Ac) +P(§,3c) .
X

x | c1 +log

(34)

where, Q(5, X) is the value that takes decision x from state &,
which represents the average reward for taking this decision
(exploitation term). The second part of the right-hand side
of (34) is the exploration term which can encourage the simu-
lation to take decisions that have been less selected. P(5, X) is
the prior probability of taking decision X from state §. ¢; and
¢y are the constant value which is used to balance the exploita-
tion and exploration term. In general, we can set ¢c; = 1.25
and ¢ = 19652, as suggested by reference [1]. For k < [, the
next state and reward are obtained by looking up the state tran-
sition table § = S(5*=!, 3*) and corresponding reward table
* = R, 3%, respectively.

2) Expansion: When the simulation steps to the leaf node of
the tree at the final time-step /, a new child node will be added
to the tree. The state of the new node 5 is computed by the
learned dynamic network as shown in (35). Besides, the cor-
responding reward # is also computed, and the obtained new
internal state and reward will be stored in the corresponding
tables, R(S" 1, &) = #, S 1, &) =5

Moal =gy (3171 ’ 561)

The policy and value correspond to state §' are computed using
the learned prediction network:

plv =/ <3l>

Then, the information stored in the new edge (5%, %) is
initialized to:

®= {N(s’x) —0, Q(@l,fc) - O,P(:v’,fc) - pl}. (37)
3) Backpropagation: At the end of the simulation, the
information of the new leaf node is backpropagated along the
trajectory to update the statistics of all the edges in the sim-
ulation path. For k = [,..., 1, the statistics for each edge
(§=1, %) along the trajectory are updated by:
Q(Akfl Ak) NEL ) (LAY + 6
STLXY) = - —
N(sk_l,xk) +1
N(ELF) = NEL ) 1

where, G* represents the /—k-step estimation of the cumulative
discounted reward, bootstrapping from the value 1/,

I—1—k
sz Z yr;,k+1+r+yl—kvl
=0

(35)

(36)

(38)

(39)
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In (39), y is the discount factor and 0 < y < 1. For the
online optimization problem of this article, the value func-
tions Q(5, x) is unbounded, which makes the pUCT rule shown
in (34) cannot perform properly. To avoid this, a normalized
value Q € [0, 1] is adopted in the pUCT rule. Q is computed
by using the minimum-maximum values observed in the search
tree up to that point:

Q(S‘kil )%k) = Q(gk_l’ )}k) - min&,fceTree Q(f, )AC)

maxs zeTree Q(S" 5() - mini‘,fceTree Q(S, )C)

(40)

In general, the proposed RM online optimization algorithm
utilizes the MCTS algorithm and a learned model to search
over hypothetical future trajectories %!, ..., %% given histori-
cal state observations si, ..., s;, and outputs a recommended
policy m; and value estimation v,. Then, a charge/discharge
decision is sampled from the policy m;, and we use SOCP
technique to obtain the remaining decisions. The process is
repeated till the end of the optimization horizon. Inside the
search tree, the representation network is used to generate an
initial internal state in order to improve the prediction network
performance. The policy and value estimates computed by
prediction network are used by each internal node to select
and build its child nodes, and the dynamic network is adopted
to compute the next state § and reward 7 after taking a decision
X. It can be found that, with the help of the learned model, the
agent does not use forecast information of renewable energy
generation and load power during the decision making pro-
cess, and can make decisions without prior knowledge of the
uncertainties in the microgrid system.

D. Designation of the Neural Network Model

From Algorithm 1, one can find that the learned model is
critical for the proposed algorithm. To obtain a good model,
two things are very important. The first one is to design a
suitable network architecture for the representation network,
dynamic network, and prediction network. The second one is
the off-line training of the designed model. In this subsection,
we will design an appropriate neural network model architec-
ture for the optimization problem in this work, while the model
training method will be presented in the next subsection.

The internal state is computed using the representation
network, which will affect the prediction accuracy of the future
quantities (including policies, values, and rewards). So, the
representation network needs to be carefully designed. In [1],
the convolution neural network and residual blocks are adopted
to play Atari games since the observations have large spatial
resolutions and a strong spatial correlation. However, differ-
ent from Atari games, the observations of the RM system
have strong temporal correlation. For instance, we find strong
correlations between wind/solar power in adjacent time peri-
ods. Considering this, we propose to use Long Short-Term
Memory (LSTM) networks to extract features from the histor-
ical PV generation power, wind power, and load power. Then
the current system state shown in (1) is concatenated with
the extracted features and will be fed to a multi-layer neural
network. The layout of the representation network is shown in
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Fig. 4. The architecture of the designed prediction network and the dynamic
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Fig. 3. The output of the representation network is an Op-
dimensional vector. As we mentioned in Section III-B, the
internal state output by the representation network does not
have any physical meaning. Unlike using the LSTM networks
to directly forecast the PV/wind/load power in [36], there is no
future information of PV/wind/load power is used as the label
data during the training process. Hence, this procedure con-
ducted by the representation network is not forecasting future
power and it can be just regarded as a feature extraction from
historical and current system state.

For the dynamic network shown in Fig. 4, the current deci-
sion stacked with the internal state of the previous hypothetical
step are set as input, and two individual multi-layer neural
networks are adopted to respectively compute the next internal
state and the reward. The output of the reward computing
network is an O,-dimensional vector. The dynamic network
can be regarded as an approximator of the RM system, which
enables the proposed model-based learning algorithm to make
optimal decisions without knowledge of the system dynamics.

The prediction network shown in Fig. 4 also contains two
individual multi-layer neural networks. One is used to com-
pute the probability of each charge/discharge decision being
selected, and the other is to get the value W in (31). The out-
put of the network can estimate the possible total rewards after
current time-step and predict which of the currently available
charge/discharge decisions are likely to work best. The output
of the policy computing network and value computing network
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are an Op-dimensional vector and an O,-dimensional vector,
respectively. Note that the prediction network (as named in [1])
here is used to compute the policy p and value v to help
the agent makes optimal decisions, unlike the neural network
based renewable power forecasting module predicting the
future wind/solar power. Finally, the designed representation
network, dynamic network, and prediction network formed the
model that utilized in MCTS.

E. Training Method of the Proposed MB-DRL Algorithm

To obtain a good online optimization performance, the
model needs to be well-trained off-line first. The model is
trained by reinforcement learning from data of self-play. The
parameters of the representation network, dynamic network,
and prediction network are trained jointly to accurately match
the computed policy, value, and reward, for every hypothet-
ical step k, with corresponding target values observed when
k actual time-steps have elapsed. More specifically, the train-
ing objective is to minimize the following errors by updating
network weights:

(6. 9,9) = XKj[l (revse 78) 2 (2 ) + 2 (00 )

k=0

+e(lorr+ 1912 +1612)] @

where, r.y represents the improved reward target, that is, the
observed reward after an actual time-step. ?f is the predicted
reward that computed by dynamic network. z;y; represents
the improved value target that can be computed by adding
up n step discounted rewards and the corresponding search
value, z; = 71 + Vi + o+ Y g + Y Vi Tk
represents the improved policy target that is generated by an
MCTS search. vf, pf are the predicted value and policy that
computed by prediction networks, respectively. So, the first
three parts of the right-hand side of the equation (41) repre-
sents the errors between the predicted reward/value/policy and
the reward/value/policy target. The errors can be computed
as (42). The last part of (41) represents the L2 regulation term
of the network weights.

I'(r,8) = p((r)" logt

I'(z.q) = ¢(0(2)" logq
P(m,p) =n"logp

(42)

where, © is the reward vector computed by the dynamic
network; p and q are the policy and value vector computed by
the prediction network. o(r) is an invertible function that used
to scale the number r, where o(r) = sign(r)(\/[r] + 1 —1+¢€r)
with € = 1073. The function o(-) is introduced to reduce the
variance of the optimization target, which can help to improve
algorithm convergence [37]. ¢(-) refers to the transformation
function that used to transfer the scalar reward and value
targets to equivalent categorical representations. If we use a
discrete support set of size 2n + 1 with one support for every
integer between -n and n, by applying ¢(b), a real number b
(—n < b < n) can be represented through a linear combination
of its two adjacent integers |b] and [b], so that the original
scalar can be recovered by b = |b|-([b] —b)+[b]-(b— |b)).
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Besides, to maintain similar gradient magnitude across dif-
ferent unroll steps, we adopted the gradient scaling method
proposed in Appendix G of reference [1].

The model training process is shown in Fig. 5. The train-
ing can be split into two independent parts: network training
(producing an improved neural network model) and self-play
(generating RM operation data). The generated self-play data
is stored in the replay buffer, and we sample training data
from the buffer to update the neural network model (see
Eq. (41)—(42)). Then, the updated neural network is stored
in the shared storage, and a random microgrid scenario will
be selected by the self-play units to generate new RM oper-
ation data with the latest network. The process repeated until
the algorithm converged. To speed up the training, network
training and self-play can be performed in parallel. The pseu-
docode of the training method of the proposed algorithm has
been given in Algorithm 2 - Algorithm4 (see Appendix).

IV. NUMERICAL ANALYSIS

In this section, the online optimization performance of the
proposed algorithm is validated on an RM test system shown
in Fig. 6.

In the RM system, the electricity is provided by the dis-
tributed renewable energy, diesel generator, energy storage
system (ESS), and the utility grid. The diesel generator is con-
nected to bus 6, and its upper and lower generation power are
30 kW and 10 kW, respectively. The fuel cost coefficients of
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TABLE I
THE MARKET ENERGY PRICE AND THE SELLING PRICE ($/kWh)

Time periods |8:00 - 14:00(14:00 - 20:00{20:00 - 22:00{22:00 - 8:00
Market energy

. 0.28 0.48 0.28 0.12
price
Selling price 0.14 0.24 0.14 0.06
TABLE 1T

THE NETWORK RESISTANCE AND REACTANCE PARAMETERS

Cable[From bus|[To bus|Resistance (10~2Q)[Reactance (10~2Q)
Ly 1 2 0.922 0.470
Ly 1 3 4.930 2.511
Ls 1 4 3.660 1.864
Ly 4 5 3.811 1.941
Ls 4 6 1.872 6.188
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Fig. 7. The training data profiles of solar power, wind power, and load

power. The historical wind and PV power data [40] and the residential load
data [38] from Jan. 1, 2016 to Nov. 15, 2016 are used as training data set.

the diesel generator are g = 1.04 $/kW?h, Bg = 0.03 $/kWh,
cg = 1.3 $/h. The ESS is a 500 kWh @100kW battery with
a round-trip efficiency of 90.25%, which is connected to bus
3. To ensure the life span of the battery, the minimum stored
energy in the battery is set to be 100 kWh. The degradation
cost coefficient is set to be 0.1 $/kWh [25]. The charg-
ing/discharging power of the battery is divided into 9 levels
(—100, —75, =50, —25, 0, 25, 50, 75, 100) kW. The negative
value represents the charging mode. The load data used in
the simulation are the historical residential load profiles of
Anchorage Alaska State from [38], [39]. To simplify the simu-
lation, we assume that the power demand of each bus accounts
for a fixed proportion of the total demand, and the power fac-
tor of each load is constant. The active power demand ratio
of bus 2 to 6 are 20%, 10%, 30%, 20% and 20%, respec-
tively. Solar power and wind power data are actual historical
data from [40]. The profiles of the data are shown in Fig. 7
and Fig. 8. The dynamic market energy price of Southern
California residential area [41] is adopted, and the selling price
is set to be 50% of the market price, as shown in Table 1. The
power network resistance and reactance parameters are given
in Table II.
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Fig. 8. The testing data profiles of solar power, wind power, and load power.
The historical wind and PV power data [40] from Nov. 7, 2015 to Dec. 31,
2015 and Nov. 16, 2016 to Dec. 31, 2016 are used as testing data set. The
historical load power data [38] from Nov. 16 to Dec. 31, and the historical
load power data [39] from Jan. 1 to Feb. 24 are used as testing data set.

TABLE III
THE NETWORK PARAMETERS OF THE PROPOSED ALGORITHM

l [ Model Architecture I ‘
Representation LSTM: input_dim = 6, hidden_nodes = 32
network Fully connected NN: input_dim = 32x3 + 6 + 6,
Qutput _dim = 10, hidden layers = [32, 32]
Reward network: input_dim = 10 + 1, Output_dim = 10,
Dynamic hidden layers = [32]
network Internal state network: input_dim = 10 + 1, Output_dim
= 10, hidden layers = [32]
Policy network: input_dim = 10, Output_dim = 9, hidden
o layers = [32]
Prediction | value network: input_dim = 10, Output_dim = 10,
network | pidden layers = [32]

In this work, the encoding size of the internal state is set
to 10, which means the internal state computed by repre-
sentation network and dynamic network is a 10-dimensional
vector. The support sizes of the reward and value that com-
puted by the prediction network are also set to 10 in this
simulation. Three independent LSTM units are adopted in the
representation network to extract features from the past 6-h
PV power, wind power, and active load power, respectively.
The network parameters adopted in the simulation are shown
in Table III. The hyperparameters of the algorithm are set as
follows: batch size B = 64, learning rate o« = 0.005, discount
factor y = 0.997, number of simulations per search N = 20,
number of unrolled hypothetical steps K = 5, bootstrapping
steps n = 10, ratio of self-play speed to training speed is 0.1.
All the simulations are conducted on an Intel Core i7-4790 @
3.60 Ghz x 8 Ubuntu based minitower computer with 32 GB
RAM. For the online optimization problem, we use 1 CPU
for training and 7 CPUs for self-play. The code is written in
Python with PyTorch.

A. Training Result of the Proposed Algorithm

During the model training process, the network updating
worker and self-play workers in Fig. 5 are running parallelly
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Fig. 9. The convergence process of the proposed algorithm. Blue solid line
indicates median returns across 5 separate training runs. The dash line is the
result of the MISOCP method under the perfect information. The y-axis rep-
resents the average discounted returns for the 10 validation days. The optimal
discounted returns optimized by MISOCP is —653.258 dollars.

on 8§ CPUs simultaneously with the application of the Ray
package [42]. The proposed algorithm is trained for 30,000
steps to learn the optimal operational strategy. In the training
process, the performance of the algorithm is evaluated every 20
training steps on the selected 10-day validation data set. Fig. 9
illustrates the convergence process of the proposed algorithm
across 5 separate runs. On average, the training process of a
single training run takes about 1 hour and 35 minutes on the
computer mentioned above. It can be seen that the discounted
returns increase rapidly with the training step increasing
from 0 to 2000. After that the discounted returns increase
slowly and finally converge around —665 dollars with small
oscillations.

For each validation day, the optimal discounted returns can
be obtained by using MISOCP optimization method with the
assumption that the perfect RM state information is avail-
able. That means the PV and wind power generation, and load
power of each time-step is known in prior, which is not real-
istic in the actual online optimization process. The obtained
optimal returns are shown in Fig. 9 as the reference to eval-
uate the training performance of the proposed algorithm. As
shown in Fig. 9, the discounted returns of the proposed algo-
rithm approach rather than reach the optimal value. This is
because the proposed algorithm makes the online operation
decisions only according to the current system state, without
accurate information of the future renewable generations and
electricity demand.

B. The Effect of Number of Simulations Per Search on the
Algorithm

Training with a different N (number of simulations per
search) will result in a different neural network model. In this
section, the influence of N on the performance of the proposed
algorithm is analyzed when N is set to 5, 10, and 20, respec-
tively. Also, the convergence performance is evaluated across
5 separate training runs for each N setting, and the results
are shown in Fig. 10. It can be found that a larger number
of simulations per search will improve the performance of the
algorithm. However, the improvement becomes less obvious
when N increases to a certain threshold.
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Fig. 11. Cumulative operation cost of the system on the testing data set.

C. Online Optimization Performance of the Proposed
Algorithm

After the off-line training of the neural network model
is completed, the proposed algorithm can be applied online
to schedule the microgrid, as shown in Algorithm 1.
For the online scheduling application, the trained model
in Section IV-A is loaded and the number of simulations
per search N is set to 20. To validate the effectiveness
of the proposed algorithm, the comparison is conducted
between the proposed algorithm and other state-of-the-art
online optimization approaches, such as deep Q network
(DQN), Lyapunov optimization [19], [43], ADP [24], myopic
policy. In this work, the myopic policy optimizes operation
cost now, but do not explicitly consider the influence of the
current decisions on the cumulative operation cost of the RM
in the future. 100-day data shown in Fig. 8 is used to test
the performance, and the cumulative operational cost of the
system optimized by different algorithms are calculated, as
shown in Fig. 11. The average daily operation cost of the
RM system optimized by the proposed method, Lyapunov
optimization, ADP, DQN, and myopic policy are $ 804.08,
$ 839.65, $ 815.79, $ 874.56, and $ 869.34, respectively.
Besides, the average daily operation cost optimized using the
MISOCP is $ 786.35. The results indicate that the proposed
algorithm outperforms myopic, Lyapunov optimization, ADP,
and DQN algorithms in terms of the daily operation cost on
average by 7.52%, 4.24%, 1.44%, and 8.06%, respectively,
and yields an operation cost that closely follows the optimal
cost (is only 2.25% higher) computed by the MISOCP method
under perfect information.
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TABLE IV
THE PERFORMANCE IMPROVEMENT OF DIFFERENT OPTIMIZATION
METHODS COMPARED TO MYOPIC POLICY ON THE TESTING DATA SET

f’erf ormance Mean | Maximum | Minimum Stal?dqrd
zmprovement devtatzon

Proposed 1 g 300 | 16.68% | 528% | 2.12%

algorithm
Online methods | Lyapunov 5 560 1 g g9q, | 1039 | 1.65%
optimization

ADP 657% | 14.78% | 4.16% | 1.92%

DQN [ -0.65% | -0.14% | 3.45% | 0.77%

Off-Tine method | MISOCP | 10.20% | 23.28% | 6.45% | 3.02%
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Fig. 13.  The distribution of the performance improvement of the proposed

algorithm compared to myopic policy in 5 separate runs.

Using the result optimized by myopic policy as the base-
line, the performance improvement of different methods are
further evaluated, as shown in Fig. 12 and Table IV. Fig. 12
shows the comparison of the performance improvement of the
adopted algorithms. In Table IV, the statistical indicators of
the performance improvement of different online optimization
methods are presented. It can be found that the proposed algo-
rithm obtains the greatest performance improvement among
the online optimization algorithms. The DQN algorithm per-
forms worse than the Lyapunov optimization and the ADP
algorithm. We attribute the poor performance of the DQN
algorithm to the low sample efficiency of the policy, and the
non-stationary environment. Although MISOCP method per-
forms best, it is an off-line optimization algorithm and the
optimal scheduling under perfect information can never be
achieved since we cannot accurately forecast the future state
of the microgrid system.
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TABLE V
THE PERFORMANCE IMPROVEMENT OF THE PROPOSED ALGORITHM
COMPARED TO MYOPIC POLICY IN 5 INDIVIDUAL RUNS

Eerf ormance Mean Maximum Minimum Star.tdqrd
improvement deviation
#l1 8.22% 16.68% -0.17% 3.83%
#2 9.30% 16.68% 5.28% 2.12%
#3 8.60% 16.67% -0.17% 3.99%
#4 9.04% 16.68% 0.33% 2.59%
#5 9.05% 16.68% 4.05% 2.04%
<300 Wind pomer o~ % \L = 002
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Fig. 14. The online energy scheduling results of the proposed algorithm.

D. Repeatability and Feasibility of the Proposed Algorithm

To validate the repeatability of the proposed algorithm, 5
individual off-line training runs are conducted and 5 corre-
sponding neural network models are obtained. Then the online
optimization performance is evaluated by applying each model
on the testing data set individually. The simulation results of
the 5 individual runs are shown in Table V. It can be found
that the proposed algorithm performs very stable.

To validate the feasibility of the decisions made by the
proposed approach, the online scheduling details including the
SoC pattern, power exchange between the RM and utility grid,
charge/discharge power of the battery, and the power output of
diesel generator are shown in Fig. 14. It can be observed that
the proposed algorithm has learned to charge the battery when
the electricity price is low and to discharge when the price
is on-peak, and also learned to dispatch controllable genera-
tors. Besides, the SoC patterns of the other online optimization
algorithms and the optimal pattern are illustrated in Fig. 15.
From the results in Fig. 14 and Fig. 15, it can be found that
the proposed algorithm and the ADP method almost learned
the optimal SoC pattern, while the other online optimization
algorithms performs worse than the two algorithms. Also, the
relaxation gap is calculated by | (Plzj + Ql-zj) /vi —lij | and plot-
ted in Fig. 16. Note that smaller values of the gap mean better
AC power flow feasibility [44]. The maximum gap in Fig. 16
is less than 10~°, which validates the effectiveness of the
scheduling results in Fig. 14. Finally, according to the simula-
tion results, the proposed online optimization algorithm takes
an average of 0.07s to make one single time-step schedul-
ing, which can fulfill the time requirements of the real-time
application. The average time consumption of the Lyapunov
optimization, ADP, DQN, and myopic policy to make one sin-
gle time-step scheduling are 1.18s, 1.71s, 0.0038s, and 1.56s,
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Fig. 15. The SoC optimized by the other algorithms.
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Fig. 16. The relaxation gaps of the power flow.

Algorithm 2 The Training Process of the RM Online
Optimization Algorithm

1: Initialize the neural networks of the model; set the total number
of training steps N7, number of simulations per search N, dis-
count factor y, batch size B, replay buffer size W, unroll steps K,
bootstrapping steps n, ratio of self-play speed to training speed
vy, and other hyperparameters. Initialize the training step index
ng = 0.

2: Initialize self-play workers, training worker, replay buffer worker,
and shared storage workers, then launch workers. > Self-play
workers run on several CPUs in parallel.

3: while ny < N7 do:

1) D < SELF-PLAY().
self-play workers.
2) REPLAY BUFFER.ADD(D).
operation data in the replay buffer.
3) (0,7, ¢) < SHARED STORAGE.LATEST(). > Get latest
model parameters.
4) B < REPLAY BUFFER.SAMPLE().
data B from the replay buffer worker.
5) (Bnews Unew, Pnew) < NETWORK TRAINING(O, ¥V, ¢, B,
ng) > Update the latest model.
6) SHARED STORAGE.ADD(Opew, Onew, Pnew) > Save the
updated model parameters in the shared storage worker.
7) ng=ng+1
4: end while
5: Return the latest neural network model.

> Generate RM operation data by

> Save the generated

> Sample batch

respectively. It can be found that the online optimization effi-
ciency of the proposed algorithm is higher than most of the
above algorithms.

Authorized licensed use limited to: University of Rhode Island. Downloaded on June 14,2021 at 01:37:19 UTC from IEEE Xplore. Restrictions apply.



SHUAI AND HE: ONLINE SCHEDULING OF RESIDENTIAL MICROGRID VIA MONTE-CARLO TREE SEARCH AND LEARNED MODEL 1085
Algorithm 3 SELF-PLAY
Input: The model; the PV power, wind power, and load power 18: for ng, €1,2,...,N do
scenario; the training index ng; 19: node < Yroor-
Output: The generated RM operation data. > The  20: history = y, SearchPath = [node].
procedure includes 3 parts: get the latest model from the shared — 21: while node is not leaf node do
storage, play game, save game to replay buffer 22: Select the child node with highest UCB score, and get
1: Load (0, 9, ¢). > Get the latest model from the shared storage the charge/discharge decision xy. > (34).
2: Randomly select a day from the training data set and load the 23: history.append(fck)
data. > PV/wind sequence, load sequence, and price sequence.  24: node <— new child node.
3: Reset the RM simulation environment, and get the initial state  25: SearchPath.append(node).
50- 26: end while
4: fort=0,1,2,...,T —1 do: > T = 24 in this work.  27: parent <— SearchPath[-2].
5: Internal state §; < hg(sz, S¢—1, .-, 50) > (29). 2s: Using the dynamic network, compute the reward %
6: Create root node yypor With state 5;. and the next internal state $*1 after taking decision
7: Run MCTS(Yroots 0,9, ¢y x). 1 x is the decision history. history[-1] from parent. > (35)
8: Select Pp () that leads to the most visited child of root node.  29: Using the prediction network, compute the policy pk+1
9: Overcharge/overdischarge check. > (33). and value VA1 > (36)
10: Solve the OPF sub-problem to get the remaining decisions. 30: According to sl gk pk+1 ,and VA1 update parameters
11: Apply the optimal decision to the RM, and get actual reward of the node and expand node.
ry and the next state sy 1. > (18), (28).  31: for node in reversed(SearchPath) do
12: Store search statistics. > visit counts, root value, etc.  3p. value = vk
13: end for 33: node.value = node.value + value.
14: If the ratio of replay buffer data size to the shared storage data  34. node.visit count = node.visit count +1.
size is greater than vy, pause the self-play worker for 0.5 seconds. 35 value = node.reward + y * value. > (38) -(40)
15: Return generated RM operation data. > (80, X0, 70> V0> S1),  36: end for

(Sl7x17”17V1752):
16:
17: function MCTS(y,001, 0, 9, ¢, x)

37: end for
38: end function

Performance improvement of MPC method (%)

H=4 H=10 H=24

Fig. 17.  Violin plot of the performance improvement of the MPC method
compared to myopic policy.

E. Comparison of the Proposed Algorithm and Model
Predictive Control (MPC) Method

In this section, the simulations of the online scheduling
using classical MPC method are conducted and compared to
the proposed algorithm. MPC makes online decisions accord-
ing to the near future prediction information from a forecast
model. For the MPC method, the prediction errors of the
PV/wind power and load are set to 10%, and 3%, respectively.
The looking forward window (H) of the MPC method are set
to 4h, 10h, and 24h, respectively. Fig. 17 shows the online
optimization performance improvement of the MPC method
under different H values. As shown in Fig. 17, the average
online optimization performance improvements of the MPC
method compared to myopic policy are 0.13%, 4.03%, and
5.84%, respectively. It can be found that, the performance
improvement of the MPC method increases with the increase

of H. However, it still underperforms the proposed algo-
rithm (9.30% as shown in Table IV), even if the forecasting
information of PV/wind/load power in the next 24 hours are
utilized. Besides, the average time consumption of the MPC
method (H = 24h) to make one single time-step scheduling
is 3.83s, which is much longer than the time needed by the
proposed algorithm.

V. CONCLUSION

This article investigates the optimization algorithm for the
online optimization of an RM under uncertainties, which is
based on a newly developed MB-DRL algorithm, MuZero [1].
It combines a Monte-Carlo tree search method with a
learned neural network model which consists of representa-
tion network, dynamic network, and prediction network. To
deal with the huge decision space and constraints in the RM
model, a framework was proposed to combine the MB-DRL
method with the SOCP technique. With the consideration of
the characteristics of the optimization problem in this work,
the representation network is redesigned to adopt LSTM units
to extract features from historical RM state data and feed into
a fully connected neural network. The parameters of these
networks are updated by gradient descent using the operation
data generated by the self-play mechanism during the training
process. Numerical simulation results show that the proposed
approach can learn to operate the microgrid by itself from data
of self-play, and can make online decisions without depen-
dence on renewable and load power prediction information
from forecast models. Besides, the proposed algorithm out-
performs the state-of-the-art online optimization methods,
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Algorithm 4 Network Training

Input: The model parameter 0, %, ¢, B; the training index ny.
Output: The updated model.

1:

[SSIN o)

IS

: Load (9, 9, ).
: Get the training data B.
: According to the batch data B, compute the evaluation of the

Set the learning rate and the optimizer.
rate in this article.
> Get the latest model from the shared storage

> Constant learning

value, reward, policy, and internal state using the model (6, ¥, ¢).

: Get the target from the batch B, then calculate the cross entropy

loss using (41) and (42).

: Update the model parameters using the Adam optimizer.
. If the ratio of replay buffer data size to the shared storage data

size is less than vy, pause the network training worker for 0.5
seconds.

: Return the updated model.

including the DQN, Lyapunov optimization, ADP, myopic
policy, and MPC method.

APPENDIX

See the Algorithms 2—4.
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