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Abstract—This article addresses the team-triggered fixed-time
consensus problems for a class of double-integrator agents subject
to uncertain disturbance. Compared with the finite-time results,
the convergence time of the fixed-time results is independent
of the initial conditions. Furthermore, a novel team-triggered
control (TTC) strategy is presented. This control strategy incor-
porates the event-triggered control (ETC) and self-triggered
control (STC). The ETC and STC are proposed to achieve the
fixed-time consensus of second-order multiagent systems (MASs),
and no Zeno behavior occurs. The TTC scheme, derived by com-
bining the ETC scheme and the STC scheme, is able to relax
the requirement of continuous communication and thus lower-
ing the energy consumption of communication while ensuring
the performance of the system. The effectiveness of the proposed
algorithms is validated by numerical simulations.

Index Terms—Fixed-time consensus, multiagent systems
(MASs), self-triggered control (STC), team-triggered con-
trol (TTC).

I. INTRODUCTION

OVER the recent years, the fixed-time consensus control
has received increasing attention in multiagent systems

(MASs) [1], [2], including first-order [3], second-order [4],
and high-order MASs [5]. Besides, the disturbances [6],
chained-form dynamics [7], and nonlinear dynamics [8] are all
considered. Moreover, different from the finite-time consensus
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results [9]–[11], the fixed-time results are more practical when
the initial conditions are sufficiently large or unknown.
However, in the aforementioned studies, continuous update

of controllers is required. Furthermore, due to the limited
resources of the embedded processors [12], event-triggered
control (ETC) strategies were developed for MASs [13]. The
event-triggered consensus was reached for single-integrator
agents in [14]. Furthermore, the input saturation was discussed
in [15]. Subsequently, the event-triggered consensus results
were extended to double-integrator agents in [16]. For the gen-
eral linear MASs, the consensus problems were solved in [17].
However, there exists a problem that each agent requires
monitoring its neighbor’s states continuously. To amend the
drawback, the self-triggered control (STC) was also presented
to avoid continuous communication in [14], [17], and [18], and
another research line for the event-triggered function design
was proposed in [19]–[21], where continuous communication
was avoided. In [20], both the ETC and STC were investi-
gated for a class of identical linear MASs. In [21], the convex
optimization problems were addressed via ETC under the bal-
anced directed graphs. Moreover, the adaptive mechanism was
considered in the ETC in [22].
Considering the convergence rate with ETC, the finite-time

control of sensor networks was obtained in [23] and the
finite/fixed-time consensus of first-order MASs was obtained
in [24]–[28]. Moreover, the finite-time consensus of general
linear MASs was reached in [29]. In [24]–[26], the finite-
time consensus results of linear MASs were obtained via
ETC. Then, the results were extended to nonlinear disturbed
MASs in [27]. In [28], the event-triggered fixed-time con-
sensus of leader–follower MASs was achieved. In [24], [28],
and [29], the Zeno behavior cannot be excluded. Moreover,
the ETC of the above works requires to monitor its neigh-
boring states continuously. Later, improved ETC frameworks
were developed for the finite-time consensus [30], [31] and
the fixed-time consensus [32]–[34], and continuous communi-
cation was not required. The finite-time consensus results of
first-order MASs were obtained in [30], and the results were
extended to the fixed-time consensus with nonlinear uncertain-
ties in [32] and [33]. Nevertheless, the existing event-triggered
fixed-time consensus results are mainly based on first-order
MASs. In [34], the fixed-time consensus was achieved via ETC
with continuous communication and the finite-time consensus
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was reached via STC. To avoid continuous monitoring, the
authors assumed that the leader’s input is zero in [35].
More recently, a hybrid-triggered sampling control was

proposed in [36]–[38], which incorporates the time-triggered
sampling control and the ETC, and the communication strat-
egy is switched between the event-triggered sampling and
the time-triggered sampling. The hybrid-triggered control was
presented in [36] for networked systems, and the stochas-
tic cyberattacks were considered in [37]. Later, the quantized
stabilization problem was solved for fuzzy systems via hybrid-
triggered control in [38]. For the MASs, there are also some
hybrid event-time-driven consensus results [39]–[41], and the
event detections are performed discontinuously. The hybrid
event-time-driven consensus problems were addressed in [39]
and [40], and the time delay was considered in [39]. Then,
the corresponding results were extended to double-integrator
networks in [41]. Moreover, a team-triggered control (TTC)
framework was presented in [42], which incorporates the ETC
and the STC, and the communication strategy is switched
between the event-triggered sampling and the self-triggered
sampling. Hence, the energy consumption of communication
can be reduced due to the existence of self-triggered sampling,
and the system performance can be ensured.
Motivated by these existing studies, this article investigates

the problem of the fixed-time consensus for second-order
MASs with uncertain disturbance via TTC and STC. The
contributions are listed as follows. First, a new control frame-
work is proposed based on the backstepping design method
and a hyperbolic tangent function to avoid the communication
loop problem in [4] and [6] and the Zeno behavior in [24],
[28], and [29]. Second, different from the existing event-
triggered finite-time results [24]–[26], [29] and fixed-time
results [28], [34] with continuous communication, our team-
triggered and self-triggered fixed-time approaches not only
reduce the energy consumption of communication but also
ensure system performance. Third, the discontinuous problem
of the sign function existing in [24], [26], [27], [30], [31], [34],
and [35] is avoided. Fourth, compared with the existing event-
triggered finite/fixed-time consensus [24]–[35], we obtain the
fixed-time consensus of double-integrator agents via STC, and
a new TTC strategy is proposed.
The remainder of this article is outlined as follows. In

Section II, some basic notations are introduced. The corre-
sponding results are presented in Section III. Section IV shows
an example. The conclusions and future outlook are given in
Section V.

II. PRELIMINARIES

A. Algebraic Graph Theory

Consider an undirected graph G = (N, E), where N is the
set of nodes and E is the set of edges. The adjacency matrix
is A = [aij] ∈ RN×N with

aij

{
> 0, if (j, i) ∈ E
= 0, otherwise.

The degree matrix is D = diag[d1, . . . , dN] with di =∑N
j=1,j$=i aij. The Laplacian matrix L = [lij] ∈ RN×N is defined

as L = D−A. In addition, the graph G is connected if a path
exists between any two nodes.

B. Definition and Lemma

Assume that the origin is an equilibrium point of the
following system:

{
ẋ(t) = f (t, x(t))
x(0) = x0

(1)

where f (t, x(t)) : R+ × R → R is an unknown nonlinear
function.
Definition 1 [43]: The origin of (1) is globally finite-time

stable if it is asymptotically stable and there exists a settling
time T > 0, such that the solution x(t, x0) can reach the origin
in T(x0). If ∃Tmax > 0, such that T ≤ Tmax for any initial
conditions, it is fixed-time stable.
Lemma 1 [44]: For an undirected connected graph G, the

eigenvalues of L are 0, λ2, . . . , λN and satisfy 0 < λ2 ≤ . . .

≤ λN . Furthermore, if 1Tx = 0 with x = [x1, x2, . . . , xN]T ,
then xTLx ≥ λ2xTx.
Lemma 2 [43], [45]: If there exists a Lyapunov function

V(x(t)) satisfying

V̇(x(t)) ≤ −c1Vρ(x(t)) − c2Vω(x(t))+ ι

with c1 > 0, c2 > 0, ι > 0, ρ ∈ (0, 1), and ω ∈ (1,∞), the
origin of system (1) is practical fixed-time stable. Moreover,
the residual set of the solution is
{

lim
t→T

x(t)|V(x(t)) ≤ min

{

c
− 1

ρ

1

(
ι

1 − θ

) 1
ρ

, c
− 1

ω
2

(
ι

1 − θ

) 1
ω

}}

where θ ∈ (0, 1) is a scalar. The settling time T satisfies

T ≤ Tmax :=
1

c1θ(1 − ρ)
+ 1

c2θ(ω − 1)
.

Furthermore, if ι = 0, the origin of system (1) is fixed-time
stable, which is definited in Definition 1, and Tmax will be
rewritten as (1/[c1(1 − ρ)])+ (1/[c2(ω − 1)]).
Lemma 3 [4]: Let ζ1, ζ2, . . . , ζN ≥ 0. Then

N∑

i=1

ζ
ρ
i ≥

(
N∑

i=1

ζi

)ρ

, 0 < ρ ≤ 1

N1−ω

(
N∑

i=1

ζi

)ω

≤
N∑

i=1

ζω
i ≤

(
N∑

i=1

ζi

)ω

, 1 < ω ≤ ∞.

Lemma 4 [46]: For any y ∈ R, we have

0 ≤ |y| − y tanh(ϑy) ≤ κ

ϑ

where ϑ + 1 and κ = 0.2785.

C. Background

The second-order MASs have N agents, and the dynamics
of agent i is given as

ẋi(t) = vi(t)

v̇i(t) = ui(t)+ )i(xi(t), vi(t), t) (2)
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where xi(t), vi(t), and ui(t) are the position, velocity, and
control input of agent i, respectively, )i(xi(t), vi(t), t) is the
uncertain disturbance.
Assumption 1: The uncertain disturbance of agent i is

bounded by a non-negative constant )̄ as follows:

|)i(xi(t), vi(t), t)| ≤ )̄. (3)

Assumption 2: The communication graph is a connected
undirected graph.
Definition 2: The practical fixed-time consensus is that there

exist sufficiently small positive constants δ1 and δ2, and a value
T such that |xi(t) − xj(t)| ≤ δ1 and |vi(t) − vj(t)| ≤ δ2 when
t ≥ T . Moreover, ∃Tmax > 0, s.t., T ≤ Tmax for arbitrary initial
conditions.

III. MAIN RESULTS

In this section, a new TTC strategy is presented. The ETC
scheme is developed first for second-order disturbed MASs
with continuous communication. Then, the TTC scheme,
derived by combining the ETC scheme and the STC scheme,
is able to relax the requirement of continuous communication.
Moreover, in order to make a comparison, we also present an
STC scheme.

A. Event-Triggered Fixed-Time Consensus

The design of the algorithm has the following two steps.
First, based on the backstepping design method, the virtual
velocity υ̂i(t) is constructed to make agents reach an agree-
ment within a fixed time. Second, ui(t) is constructed to ensure
true velocity vi(t) can track virtual velocity υ̂i(t) within a fixed
time. The fixed-time consensus results without event-triggered
sampling have been presented in [47]. Herein, the specific
design ideas are as follows.
First, the virtual velocity υ̂i(t) is designed as

υ̂i(t) = −α1χ
β
i (t) − α2 tanh(ϑχi(t))+ ς (4)

where χi(t) is that

χi(t) =
N∑

j=1

aij
(
xi(t) − xj(t)

)
(5)

and α1, α2, and ς are positive constants, ϑ has been introduced
in Lemma 4 and can be chosen as required, and β ∈ (2,∞)

is the ratio of positive odd numbers.
Then, define the error ei(t) as follows:

ei(t) = vi(t) − υ̂i(t)

= vi(t)+ α1χ
β
i (t)+ α2 tanh(ϑχi(t)) − ς (6)

subsequently, we design the controller ui(t) to guarantee the
true velocity vi(t) can track the virtual velocity υ̂i(t) within a
fixed time, which is constructed as follows:

ui(t) = −α1βχ
β−1
i

(
tiki

)
zi
(
tiki

)

− α2ϑ
(
1 − tanh2

(
ϑχi

(
tiki

)))
zi
(
tiki

)

− α3e
γ
i

(
tiki

)
− α4 tanh

(
ϑei

(
tiki

))
, t ∈

[
tiki , tiki+1

)

(7)

where zi(t) is that

zi(t) =
N∑

j=1

aij
(
vi(t) − vj(t)

)
(8)

and α3 and α4 are positive constants, γ ∈ (1,∞) is the ratio
of positive odd numbers, and tiki (tiki+1) is the latest (next)
triggering time of agent i.
The measurement error is designed as

Ei(t) = α3e
γ
i

(
tiki

)
+ α4 tanh

(
ϑei

(
tiki

))

+ α1βχ
β−1
i

(
tiki

)
zi
(
tiki

)

+ α2ϑ
(
1 − tanh2

(
ϑχi

(
tiki

)))
zi
(
tiki

)

− α3e
γ
i (t) − α4 tanh(ϑei(t)) − α1βχ

β−1
i (t)zi(t)

− α2ϑ
(
1 − tanh2(ϑχi(t))

)
zi(t). (9)

The triggering function of agent i is

ϕi(t) = |Ei(t)| − ηα3
∣∣eγ

i (t)
∣∣ − ηα4 (10)

where η ∈ (0, 1) can be chosen as required. Thus

tiki+1 = inf
{
t > tiki |ϕi(t) ≥ 0

}
(11)

and the controller of agent i is updated at its own sampling
time sequence ti0, t

i
1, . . .

Theorem 1: For the MASs (2) with uncertain disturbance,
if the following inequalities hold:

α2 > ς + 3

α4(1 − η) > )̄ (12)

with

3 = min

{
Nα4κ

ϑ(1 − θ)
(
α4(1 − η) − )̄

) ,

N
1
2

(
α4κ

α3ϑ(1 − θ)(1 − η)

) 1
γ+1

}

the practical fixed-time consensus is obtained under the con-
troller (7) and the triggering function (10).
Proof: First, we will show that the true velocity vi(t) can

track the virtual velocity υ̂i(t) within a fixed time, and we have

ėi(t) = ui(t)+ )i(xi(t), vi(t), t)+ α1βχ
β−1
i (t)zi(t)

+ α2ϑ
(
1 − tanh2(ϑχi(t))

)
zi(t)

= −
(
Ei(t)+ α3e

γ
i (t)+ α4 tanh(ϑei(t))

)

+ )i(xi(t), vi(t), t). (13)

Construct the Lyapunov candidate function

V1(t) =
1
2

N∑

i=1

e2i (t). (14)

In the following, the concept of Filippov solutions should be
applied [48], [49]. In [2], [25], [30], and [32], the similar
results based on Filippov solutions were given.
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According to the triggering condition and Lemmas 3 and 4,
the derivative of (14) can be written as

V̇1(t) =
N∑

i=1

ei(t)ėi(t)

≤
N∑

i=1

|ei(t)|
(
ηα3

∣∣eγ
i (t)

∣∣ + ηα4
)
− α3

N∑

i=1

eγ+1
i (t)

− α4

N∑

i=1

|ei(t)| + )̄

N∑

i=1

|ei(t)| +
Nα4κ

ϑ

≤ −α3(1 − η)

N∑

i=1

|ei(t)|γ+1

−
(
α4(1 − η) − )̄

) N∑

i=1

|ei(t)| +
Nα4κ

ϑ

≤ −α3(1 − η)N
1−γ
2

(
N∑

i=1

e2i (t)

) γ+1
2

−
(
α4(1 − η) − )̄

)
(

N∑

i=1

e2i (t)

) 1
2

+ Nα4κ

ϑ

≤ −α3(1 − η)N
1−γ
2 (2V1(t))

γ+1
2

−
(
α4(1 − η) − )̄

)
(2V1(t))

1
2 + Nα4κ

ϑ
. (15)

According to Lemma 2, ei(t) converges into the region

|ei(t)| ≤ ‖e(t)‖ ≤ 3

= min

{
Nα4κ

ϑ(1 − θ)
(
α4(1 − η) − )̄

)

N
1
2

(
α4κ

α3ϑ(1 − θ)(1 − η)

) 1
γ+1

}

in a settling time T1, which satisfies that

T1 ≤ T̄1 = 1
c1θ(1 − ρ)

+ 1
c2θ(ω − 1)

=
√
2

θ
(
α4(1 − η) − )̄

)

+ 2

α3θ(1 − η)(γ − 1)N
1−γ
2 2

γ+1
2

. (16)

It is noteworthy that when |ei(t)| ≤ 3, one has that vi(t) =
−α1χ

β
i (t) − α2 tanh(ϑχi(t))+ ς + ei(t).

Construct the Lyapunov candidate function

V2(t) =
1
2
xT(t)Lx(t).

Based on Lemmas 2 and 3, we obtain

V̇2(t) = xT(t)Lẋ(t)

=
N∑

i=1

χi(t)vi(t)

≤ −α1

N∑

i=1

χ
β+1
i (t) − α2

N∑

i=1

|χi(t)|

+ ς

N∑

i=1

|χi(t)| +
N∑

i=1

|χi(t)||ei(t)| +
Nα2κ

ϑ

≤ −α1N
1−β
2

(
N∑

i=1

χ2
i (t)

) β+1
2

− (α2 − ς − 3)

(
N∑

i=1

χ2
i (t)

) 1
2

+ Nα2κ

ϑ

≤ −α1N
1−β
2 (2λ2V2(t))

β+1
2

− (α2 − ς − 3)(2λ2V2(t))
1
2 + Nα2κ

ϑ
(17)

where λ2 denotes the second smallest eigenvalue of L.
According to Lemma 2, the residual set can be calculated as
{

lim
t→T1+T2

x(t)|V2(t) ≤ min

{

(2λ2)−1
(

Nα2κ

ϑ(1 − θ)(α2 − ς − 3)

)2

,

N
2λ2

(
α2κ

α1ϑ(1 − θ)

) 2
β+1

}}

(18)

and T2 satisfies

T2 ≤ T̄2 =
1

c1θ(1 − ρ)
+ 1

c2θ(ω − 1)

=
√
2

(α2 − ς − 3)θ
√

λ2

+ 2

α1(β − 1)N
1−β
2 θ(2λ2)

β+1
2

. (19)

Therefore, the practical consensus will be achieved, and the
total

T = T1 + T2 ≤
√
2

θ
(
α4(1 − η) − )̄

)

+ 2

α3θ(1 − η)(γ − 1)N
1−γ
2 2

γ+1
2

+
√
2

(α2 − ς − 3)θ
√

λ2
+ 2

α1(β − 1)N
1−β
2 θ(2λ2)

β+1
2

.

Moreover, one has vi(t) = υ̂i(t) + ei(t) ≤ | − α1χ
β
i (t) −

α2 tanh(ϑχi(t)) + ς | + 3. Hence, vi(t) enters into a small
neighborhood of ς . In addition, we can choose the suitable
vi(t) in practical applications because ς and 3 can be chosen
as required.
Global Stability Analysis: First, when t ∈ [0,T1], according

to (4) and (6), ei(t) and υ̂i(t) are bounded. From (2), (4),
and (6), we have

ẋi(t) = ei(t) − α1χ
β
i (t) − α2 tanh(ϑχi(t))+ ς. (20)

Because ei(t) is bounded when t ∈ [0,T1], xi(t) is bounded
by the input-to-state stable property [50]. Moreover, vi(t) is
bounded based on the definition of vi(t). Then, when |ei(t)| ≤ 3,
the practical consensus is obtained in a settling time T2. Hence,
the practical consensus is obtained in a settling time T .

Theorem 2: For the MASs (2) with uncertain disturbance,
the interevent interval is lower bounded, and thus no Zeno
behavior occurs.
Proof: From the definition of χi(t), one has that∑N
i=1 χ2

i (t) = xT(t)L2x(t). Based on Lemma 1, we have the
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following results:

λNxT(t)Lx(t) ≥
N∑

i=1

χ2
i (t) ≥ λ2xT(t)Lx(t). (21)

Hence, we can obtain |χi(t)| < ‖χ(t)‖ ≤ √
2λNV2(0) with

V2(0) = (1/2)xT(0)Lx(0).
According to the definition of zi(t), we can also obtain

|zi(t)| =

∣∣∣∣∣∣

N∑

j=1

aij
(
vi(t) − vj(t)

)
∣∣∣∣∣∣

≤

∣∣∣∣∣∣

N∑

j=1

aij
(
ei(t) − ej(t)

)
∣∣∣∣∣∣
+ 2α2

N∑

j=1

aij

+ α1

∣∣∣∣∣∣

N∑

j=1

aij
(
−χ

β
i (t)+ χ

β
j (t)

)
∣∣∣∣∣∣

≤ ‖e(t)‖1 + (lii − 1)‖e(t)‖2 + 2α1lii‖χ(t)‖β
2 + 2α2lii

≤ 4i1 (22)

where 4i1 = (lii − 1+ N(1/2))(2V1(0))(1/2) + 2α2lii +
2α1lii(2λNV2(0))(β/2), and λN denotes the largest eigenvalue
of L.
According to (9), we obtain

D+|Ei(t)| ≤
∣∣Ėi(t)

∣∣

=
∣∣∣∣
(
−α3e

γ
i (t) − α4 tanh(ϑei(t))

)′

−
(
α1βχ

β−1
i (t)zi(t)

)′

−
(
α2ϑ

(
1 − tanh2(ϑχi(t))

)
zi(t)

)′∣∣∣∣

≤
∣∣∣−

(
α3γ e

γ−1
i (t)+ α4ϑ

(
1 − tanh2(ϑei(t))

))
ėi(t)

−
(
α1βχ

β−1
i (t)+ α2ϑ

(
1 − tanh2(ϑχi(t))

))
żi(t)

− zi(t)χ̇i(t)
(
α1β(β − 1)χβ−2

i (t)

− 2α2ϑ
2 tanh(ϑχi(t))

×
(
1 − tanh2(ϑχi(t))

))∣∣∣

≤ 42|ėi(t)| + 43|żi(t)| + 44z2i (t)

≤ 42
(|ui(t)| + )̄

)
+ 42

∣∣∣α1β(2λNV2(0))
β−1
2 + α2ϑ

∣∣∣

× |zi(t)| + 43|żi(t)| + 44z2i (t)

≤ 42
(|ui(t)| + )̄

)
+ 4243|zi(t)| + 44

∣∣∣z2i (t)
∣∣∣

+ 43





∣∣∣∣∣∣

N∑

j=1

aij
(
ui(t) − uj(t)

)
∣∣∣∣∣∣
+ 2lii)̄





≤ 42

(∣∣∣ui
(
tiki

)∣∣∣ + )̄
)
+ 4i14243 + 4 2

i144

+ 43





∣∣∣∣∣∣

N∑

j=1

lijuj
(
tjkj(t)

)
∣∣∣∣∣∣
+ 2lii)̄





≤ ψ
(
tiki , t

j
kj(t)

)
(23)

where 42 = |α3γ (2V1(0))[(γ−1)/2] + α4ϑ |,
43 = |α1β(2λNV2(0))[(β−1)/2] + α2ϑ |, 44 = |(α1β(β −

1)(2λNV2(0))[(β−2)/2] + 2α2ϑ
2)|, ψ(tiki , t

j
kj(t)

) = 42(|ui(tiki)| +
)̄) + 43(|

∑N
j=1 lijuj(t

j
kj(t)

)| + 2lii)̄) + 4i14243 + 4 2
i144,

and ψ(tiki, t
j
kj(t)

) has a maximum value ψ̄ . Moreover, tjkj(t)
denotes the latest triggering time of agent j, and D+ is the
right derivative. Since Ei(tiki) = 0, based on (23), we have

|Ei(t)| ≤
∫ t

tiki

∣∣Ėi(s)
∣∣ds

≤
∫ t

tiki

ψ
(
tiki , t

j
kj(t)

)
ds. (24)

From the triggering function (10) and (24), one has
∣∣∣Ei

(
tiki+1

)∣∣∣ = ηα3

∣∣∣eγ
i

(
tiki+1

)∣∣∣ + ηα4

≤
∫ tiki+1

tiki

ψ
(
tiki , t

j
kj(t)

)
ds (25)

which yields tiki+1 − tiki ≥ ([ηα4]/[ψ(tiki, t
j
kj(t)

)]) ≥
(ηα4/ψ̄) > 0, this completes the proof.
Remark 1: The residual set (18) and equality (25) indi-

cate that the convergence region and interevent interval are
determined by ϑ . Besides, ψ(tiki, t

j
kj(t)

) and ϑ are positively
correlated as shown in the equations after (23). Therefore,
with the expansion of ϑ , the convergence region and the
interevent interval will narrow down. Moreover, for differ-
ent actual systems, we can select different ϑ to obtain better
control properties. Hence, the parameter ϑ can be chosen
according to the specific situation.
Remark 2: The previous studies [24]–[28], [30], [32], [33]

have discussed the finite/fixed-time consensus problems of
first-order MASs via ETC. Herein, we consider the second-
order MASs.
Remark 3: For the ETC, continuous communication is

required to monitor the triggering condition. In the follow-
ing, in order to save limited resources, we will present a
TTC scheme and an STC scheme, such that communication
frequency is reduced with the system performance ensured.

B. Team-Triggered Fixed-Time Consensus

First, define

6i(t) = α1βχ
β−1
i (t)zi(t)+ α2ϑ

(
1 − tanh2(ϑχi(t))

)
zi(t).

(26)

Then, define Yi(t) = |Ei(t)|+[η/(1+ η)]|6(t)|, similar to (23),
one has

D+Yi(t) ≤
∣∣Ėi(t)

∣∣ + η

1+ η

∣∣6̇(t)
∣∣

≤ 42|ėi(t)| +
(1+ 2η)43

1+ η
|żi(t)| +

(1+ 2η)44

1+ η
z2i (t)

≤ (1+ 2η)43

1+ η



|
N∑

j=1

aij
(
ui(t) − uj(t)

)
| + 2lii)̄





+ 42
(|ui(t)| + )̄

)

+ 4243|zi(t)| +
(1+ 2η)44

1+ η

∣∣∣z2i (t)
∣∣∣
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≤ 42

(∣∣∣ui
(
tiki

)∣∣∣ + )̄
)
+ 4i14243 +

(1+ 2η)4 2
i144

1+ η

+ (1+ 2η)43

1+ η





∣∣∣∣∣∣

N∑

j=1

lijuj
(
tjkj(t)

)
∣∣∣∣∣∣
+ 2lii)̄





≤ ψ̃
(
tiki , t

j
kj(t)

)
(27)

where

ψ̃
(
tiki, t

j
kj(t)

)
= 42

(∣∣∣ui
(
tiki

)∣∣∣ + )̄
)
+ 4i14243

+ (1+ 2η)4 2
i144

1+ η
+ (1+ 2η)43

1+ η

×





∣∣∣∣∣∣

N∑

j=1

lijuj
(
tjkj(t)

)
∣∣∣∣∣∣
+ 2lii)̄



.

The team-triggered function of agent i is that

7i(t) =





ϕi(t), if η

1+η

∣∣∣6i

(
tiki

)∣∣∣ + σ ≥ χ̄
(
tiki

)

∫ t
tiki

ψ̃
(
tiki , t

j
kj(t)

)
ds+ η

1+η

∣∣∣6i

(
tiki

)∣∣∣ − χ̄
(
tiki

)
, otherwise

where χ̄(tiki) = [η/(1+ η)]|α3e
γ
i (t

i
ki
) + α4 tanh(ϑei(tiki)) +

6i(tiki)|, σ can be chosen as required (a very small positive
constant). Thus

tiki+1 = inf
{
t > tiki |7i(t) ≥ 0

}
. (28)

When [η/(1+ η)]|6i(tiki)| + σ ≥ χ̄(tiki), it is the event-
triggered condition in Theorem 1. When [η/(1+ η)]|6i(tiki)|+
σ < χ̄(tiki), it is the self-triggered condition that tiki+1 occurs
at most τi time units after tiki for agent i, where

τi =
χ̄

(
tiki

)
− η

1+η

∣∣∣6i

(
tiki

)∣∣∣

ψ̃
(
tiki , t

j
kj(t)

) ≥ σ

ψ̃
(
tiki, t

j
kj(t)

) .

Hence, no Zeno behavior occurs because ψ̃(tiki, t
j
kj(t)

) is upper
bounded. For all t ∈ [tiki , t

i
ki
+ τi], if there is an event trig-

gered in one of its neighbors, update ψ̃(tiki, t
j
kj(t)

) with the latest
states. Otherwise, agent i waits until tiki+1. It can be shown that
the team-triggered condition has the same effect as the single
event-triggering condition, which can guarantee that ϕi(t) ≤ 0.
The proof is presented in the following.
When [η/(1+ η)]|6i(tiki)| + σ < χ̄(tiki). The triggering

function enforces
∫ t

tiki

ψ̃
(
tiki , t

j
kj(t)

)
ds+ η

1+ η

∣∣∣6i

(
tiki

)∣∣∣ ≤ χ̄
(
tiki

)
. (29)

Similar to (24), we obtain

|Ei(t)| +
η

1+ η
|6(t)| ≤

∫ t

tiki

ψ̃
(
tiki , t

j
kj(t)

)
ds

+ η

1+ η

∣∣∣6i

(
tiki

)∣∣∣

≤ χ̄
(
tiki

)
. (30)

According to (9) and (26), we have |Ei(t)|+|6(t)|+|α3e
γ
i (t)+

α4 tanh(ϑei(t))| ≥ |α3e
γ
i (t

i
ki
) + α4 tanh(ϑei(tiki)) + 6(tiki)| =

[(1+ η)/η]χ̄(tiki). Together with (30), we have

|Ei(t)| ≤ η

1+ η

(|Ei(t)| +
∣∣α3e

γ
i (t)

∣∣ + |α4 tanh(ϑei(t))|
)
. (31)

Inequality (31) implies that |Ei(t)| ≤ ηα3|eγ
i (t)| + ηα4.

Together with the case [η/(1+ η)]|6i(tiki)| + σ ≥ χ̄(tiki), we
obtain that the triggering condition based on 7i(t), which can
guarantee ϕi(t) ≤ 0. The proof is completed.
Under the team-triggered rule and previous analysis, we

obtain the following results based on Theorem 1.
Theorem 3: For the MASs (2) with uncertain disturbance,

if the following inequalities hold:

α2 > ς + 3

α4(1 − η) > )̄ (32)

the practical fixed-time consensus is reached with the con-
troller (7) via the TTC, and the settling time T = T1 + T2.

Remark 4: For
∫ t
tiki

ψ̃(tiki , t
j
kj(t)

)ds + [η/(1+ η)]|6i(tiki)| −
χ̄(tiki), we only use ψ̃(tiki , t

j
kj(t)

), 6(tiki), and e(tiki) to deter-
mine tiki+1, which means that continuous communication is
avoided in the case of the STC. Hence, for the TTC, the energy
consumption of communication is reduced.
Remark 5: Under the TTC strategy, there is a tradeoff

between the convergence rate, communication cost, and trig-
gering times, which will be shown in the following and the
simulation results.

C. Self-Triggered Fixed-Time Consensus

In order to make a comparison, we also present a STC
scheme.
Consider the following condition:

∫ t

tiki

ψ
(
tiki , t

j
kj(t)

)
ds ≤ ηα4 (33)

which can guarantee that ϕi(t) ≤ 0. The detailed proof is
shown as follows.
Based on inequality (24), we have

|Ei(t)| ≤
∫ t

tiki

ψ
(
tiki, t

j
kj(t)

)
ds. (34)

Substituting (34) into (33), we have

|Ei(t)| ≤ ηα4 ≤ ηα3
∣∣eγ

i (t)
∣∣ + ηα4. (35)

Hence, the proof is completed. !
Define

:i

(
tiki , t

j
kj(t)

)

=






∫ t
tiki

ψ
(
tiki , t

j
kj(t)

)
ds − ηα4, if η

1+η

∣∣∣6i

(
tiki

)∣∣∣ + σ ≥ χ̄
(
tiki

)

∫ t
tiki

ψ̃
(
tiki , t

j
kj(t)

)
ds+ η

1+η |6i

(
tiki

)
| − χ̄

(
tiki

)
, otherwise.

Thus, the following self-triggered rule is given.
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Fig. 1. States evolutions of five agents under the ETC.

Self-Triggered Rule: For each agent i, if exists a positive
constant ξi such that

ξi =






ηα4

ψ

(
tiki ,t

j
kj(t)

) , if η
1+η

∣∣∣6i

(
tiki

)∣∣∣ + σ ≥ χ̄
(
tiki

)

χ̄
(
tiki

)
− η

1+η

∣∣∣6i

(
tiki

)∣∣∣

ψ̃

(
tiki ,t

j
kj(t)

) , otherwise.

Then, the next triggering time tiki+1 occurs at most ξi time
units after tiki , that is, t

i
ki+1 ≤ tiki + ξi. For all t ∈ [tiki, t

i
ki
+ ξi],

if one of its neighbors triggered, update ψ(tiki , t
j
kj(t)

) with the
latest states.
Similar to the team-triggered rule [the triggering condition

based on 7i(t)], one has that the self-triggered condition [the
triggering condition based on :i(tiki, t

j
kj(t)

)] has the same effect
as the single event-triggering condition, which can also guar-
antee that ϕi(t) ≤ 0. Hence, the following results are obtained
as Theorem 3.
Theorem 4: For the MASs (2) with uncertain disturbance,

if the following inequalities hold:

α2 > ς + 3

α4(1 − η) > )̄ (36)

the consensus is obtained with the controller (7) via the STC,
and T = T1 + T2. Based on the self-triggering rule, we have

ξi ≥ min





ηα4

ψ
(
tiki , t

j
kj(t)

) ,
σ

ψ̃
(
tiki , t

j
kj(t)

)




 > 0.

Hence, no Zeno behavior occurs.

Fig. 2. States evolutions of five agents under the TTC.

Remark 6: In [29] and [31], the finite-time event-triggered
consensus problems of general linear MASs were tackled.
Moreover, in [34], the fixed-time consensus was achieved via
ETC and can only ensure that the position information is
consistent. However, continuous communication is required
in [29] and [34]. Guo and Chen [35] assumed that the
leader’s input is zero under intermittent communication. In
this article, we propose the TTC and STC to reduce the
energy consumption, and ς can be chosen as required,
implying that we can choose the suitable vi(t) in practi-
cal applications. Moreover, the uncertain disturbance was
considered.
Remark 7: For the STC, :i(tiki, t

j
kj(t)

) is completely inde-
pendent of real-time status values. Hence, compared
with the TTC, the STC can avoid continuous monitor-
ing completely. However, more triggering times may be
required.
Remark 8: The STC needs numerous triggering times and

calculations in order to guarantee a fast convergence rate. It is
important for us to make a tradeoff between communication
cost and triggering times. Herein, we proposed three differ-
ent triggering mechanisms, and we can choose the appropriate
triggering mechanism as required.

IV. SIMULATION RESULTS

Consider a connected network topology of five agents with
the following Laplacian matrix:
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Fig. 3. States evolutions of five agents under the STC.

L =





2.5 −1.5 −1 0 0
−1.5 3.5 −1 0 −1
−1 −1 3.6 −1.6 0
0 0 −1.6 3.1 −1.5
0 −1 0 −1.5 2.5




.

Moreover, the dynamics of agent i is

ẋi(t) = vi(t)

v̇i(t) = ui(t)+ 0.6 sin(vi(t))+ 0.8 cos(xi(t)) (37)

and the uncertain disturbance satisfies Assumption 1 with
)̄ = 1.4. λ2 and λN are 1.7 and 5.82. Assume that
x(0) = [4.2 2.5 0.2 − 0.5 2.6]T and v(0) =
[−60 2 34 45 − 25]T .

Under the controller (7), we set α1 = 0.5, α2 = 2, α3 = 2.5,
α4 = 3, α = 13/5, γ = 7/5, η = 0.5, ϑ = 80, ς = 1.6, θ =
0.2, and σ = 0.001. The parameters satisfy the inequality (12).
Fig. 1 shows the state evolutions of five agents under the ETC,
and vi(t) converges into a small neighborhood of ς .

In order to relax the requirement of continuous commu-
nication, the team-triggered function and the self-triggered
function are proposed to replace the event-triggered function.
Fig. 2 shows the state evolutions of five agents under the
TTC, and vi(t) converges into a small neighborhood of ς .
Fig. 3 shows the state evolutions of five agents under the STC.

TABLE I
TRIGGERING TIMES UNDER THE ETC, TTC, AND STC

Fig. 4. Triggering instants of five agents under the ETC.

Fig. 5. Triggering instants of five agents under the TTC.

Comparing Fig. 1 with Fig. 2, we find that the systems have a
faster convergence rate under the TTC even though the com-
munication is intermittent. The faster convergence is likely due
to increasing numbers of triggering. Moreover, the STC has
the fastest convergence.
Figs. 4–6 show the corresponding triggering instants. The

triggering times under the ETC, the STC, and the TTC are
listed in Table I. In the simulations, the sampling interval
is chosen as 0.001 s. From Table I, we can find that the
STC needs the most triggering times. Because the communica-
tion is intermittent in STC and the continuous communication
is required in our ETC, the STC needs more triggering
times to offset the defects from discontinuous communica-
tion. According to Tables I and II and Figs. 1–3, we can
find that TTC and STC can ensure the system performance
with intermittent communication at the cost of more triggering
times.
Table II shows that the self-triggered case is abundant in

the TTC, which means that energy consumption is reduced
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Fig. 6. Triggering instants of five agents under the STC.

TABLE II
TRIGGERING TIMES UNDER THE TTC

substantially. Furthermore, compared with the ETC or the STC
(Table I), the TTC not only leads to a tradeoff between the
convergence rate, communication cost, and triggering times
but also ensures the system performance.

V. CONCLUSION

The fixed-time consensus problem of second-order MASs
with uncertain disturbance is considered via TTC. First, an
ETC is proposed, and no Zeno behavior occurs. Then, the
TTC and STC are presented, where the energy consumption
is reduced substantially and the system performance is guar-
anteed. Moreover, in the simulation results, the TTC has a
tradeoff between the convergence rate, communication cost,
triggering times, and calculated amount. The effectiveness
of the proposed algorithms is demonstrated by numerical
simulations.
In this article, the results are based on the undirected topol-

ogy, and the directed topology is more practical. Moreover,
we only consider the linear MASs with uncertain disturbance.
In addition, future work will focus on the team/self-triggered
fixed-time consensus problem for nonlinear MASs under
directed topology.
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