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Optimal Investment in Prevention and Recovery for
Mitigating Epidemic Risks

C. Derrick Huang ,1 Milad Baghersad ,1 Ravi S. Behara ,1

and Christopher W. Zobel 2,∗

The worldwide healthcare and economic crisis caused by the COVID-19 pandemic highlights
the need for a deeper understanding of investing in the mitigation of epidemic risks. To ad-
dress this, we built a mathematical model to optimize investments into two types of mea-
sures for mitigating the risks of epidemic propagation: prevention/containment measures and
treatment/recovery measures. The new model explicitly accounts for the characteristics of
networks of individuals, as a critical element of epidemic propagation. Subsequent analysis
shows that, to combat an epidemic that can cause significant negative impact, optimal invest-
ment in either category increases with a higher level of connectivity and intrinsic loss, but it is
limited to a fraction of that total potential loss. However, when a fixed and limited mitigation
investment is to be apportioned among the two types of measures, the optimal proportion of
investment for prevention and containment increases when the investment limit goes up, and
when the network connectivity decreases. Our results are consistent with existing studies and
can be used to properly interpret what happened in past pandemics as well as to shed light on
future and ongoing events such as COVID-19.

KEY WORDS: COVID-19; epidemic risk mitigation; optimal investment; prevention and containment;
treatment and recovery

1. INTRODUCTION

Within a few short months, COVID-19 has rav-
aged the world, resulting in millions of people in-
fected and, among them, deaths in the hundreds of
thousands. Countries and regions tried many differ-
ent measures to mitigate and control the disease with
varying levels of success—while some, most notably
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New Zealand, Taiwan, and Vietnam, showed signifi-
cant success, others instead suffered badly. The dev-
astating social and economic impacts of the pandemic
crisis in these harder hit countries highlight the im-
portance of investing in the containment and treat-
ment of contagious diseases. However, finding the
optimal combination of investments in epidemic pre-
vention and treatment is a complex problem, due
to such factors as the uncertainty associated with a
novel disease, the nonlinear nature of an epidemic,
the nonadditive effects of interventions, and bud-
getary limitations (Alistar, Long, Brandeau, & Beck,
2014; Coşgun & Büyüktahtakın, 2018). The ongoing
impacts of COVID-19, along with worldwide trends
of increasing globalization, population mobility, and
interconnectivity, emphasize the need for critical un-
derstanding of how to invest in mitigating the risks
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of future epidemics (Saker, Lee, Cannito, Gilmore,
& Campbell-Lendrum, 2004).

Understanding how an epidemic spreads is vi-
tal to containing it. For over a century, researchers
have used mathematical models to examine how
communicable diseases propagate through a popula-
tion. The susceptible-infected-removed (SIR) model,
the classical compartmental model in mathemati-
cal epidemiology developed by Kermack and McK-
endrick (1927), divides the population into three
classes (compartments): individuals who have not
yet been infected (susceptible), those who are cur-
rently infected, and those who are now immune or
have died. Since then, a number of modifications and
improvements have been made to the original SIR
model, motivated by the growing number of out-
breaks in recent years such as the 2002−2004 SARS
(severe acute respiratory syndrome) outbreak and
the 2009 H1N1 pandemic. Brauer (2017) provides a
comprehensive review of the available models.

One of the important additions to the basic SIR
model, among others, is modeling the transmission
of infection as a stochastic process, which captures
the fact that in most outbreaks a few infected indi-
viduals usually spread the infection to many people,
while most other infected individuals either do not
spread it or only spread it to a few others (Brauer,
2008; Riley et al., 2003). This highlights the impor-
tance of modeling the connections between individu-
als in the context of epidemic propagation. Network
analysis, because of its ability to capture the realis-
tic settings of population structure, has received sig-
nificant attention for modeling epidemic propagation
during the past decades.

In a population network, individuals are repre-
sented by vertices (nodes) and connections/contacts
between individuals are given by edges. An infec-
tion thus can be transmitted from one vertex to
another through edges. One of the most common
network types in the literature is a random graph,
where nodes are added to the network by randomly
connecting to any other existing nodes with a uni-
form probability (Barabási & Albert, 1999). Ran-
dom graph networks have been used to model epi-
demic propagation in different settings; for example,
SIR epidemics by Volz (2008) and Miller (2011) and
the susceptible-infectious-susceptible spread by Par-
shani, Carmi, and Havlin (2010) and Shang (2012).

Despite their wide popularity, however, random
graph models are unlikely to represent population
networks in reality. Instead, “popular” individuals

(i.e., those with already large number of connections)
are more likely to receive more connections, and
those with few connections are likely to remain less
connected. This “preferential attachment,” where a
new node is likely to connect to the nodes with an
already large number of connections, will result in a
network composed of a majority of nodes that have
limited connections and a small number of “hubs”
with large number of links. Such a network topol-
ogy, first proposed by physicists Barabási and Albert
(1999), results in a “scale-free network” and has been
successfully used to simulate numerous industry net-
works such as the Internet (Kim & Altmann, 2012)
and the power grid (Chassin& Posse, 2005), as well as
social networks such as journal citations (McGuigan,
2018) and academic collaborations (Dorogovtsev &
Mendes, 2002). In particular, studies in human sexual
contact (Liljeros, Edling, Nunes Amaral, Stanley, &
Åberg, 2001; Schneeberger et al., 2004) and the exis-
tence of “supercarriers” in epidemics (Brauer, 2008;
Riley et al., 2003) like COVID-19 (Hamner et al.,
2020; Jones & Maxouris, 2020; Kwon, 2020; Stieg,
2020) show that this network topology applies well in
the case of epidemic propagation. Therefore, in this
study, we adopt the structure of a scale-free network,
where network growth is based on preferential at-
tachment, to evaluate investments for mitigating epi-
demic risks.

Epidemic propagation models have been used
extensively in evaluating the effectiveness of differ-
ent types of interventions and investments. Accord-
ing to the World Health Organization (WHO), epi-
demics happen in four phases: emergence, localized
transmission, amplification, and reduced transmis-
sion (WHO, 2018). Governments can intervene and
mitigate the impact by preventing further propaga-
tions of epidemics (during the emergence and local-
ized transmission phases) and/or reducing propaga-
tion through treatment and recovery (T & R; during
the amplification and reduced transmission phases).
However, finding an optimal set of interventions with
budgetary constraints and different community struc-
tures is challenging.

Several studies have used compartmental mod-
els to study the optimal investment allocation prob-
lem (Mylius, Hagenaars, Lugnér, & Wallinga, 2008;
Ren, Ordóñez, & Wu, 2013). Among them, Bran-
deau, Zaric, and Richter (2003) considered optimal
resource allocation in a basic susceptible and infected
epidemic model in several distinct populations. Al-
istar et al. (2014) studied the optimal prevention
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and treatment resources allocation in HIV epidemic
control, using a susceptible-infected-treated model,
to minimize the reproduction number R0. However,
these compartmental models do not consider the
effect of the network structure of the population, a
significant factor of disease transmission.

Another stream of research focuses on the eval-
uation of a limited set of strategies to counter epi-
demics in different settings using network analy-
sis and/or simulation (Zhang, Zhong, Gao, & Li,
2018). Among such efforts, Fu, Small, Walker, and
Zhang (2008) evaluated epidemic thresholds using
network analysis with infectivity and immunization
and found that the targeted immunization scheme is
more effective than the proportional scheme. Their
results show that without an effective vaccine or
treatment, lockdown of infected sections of the pop-
ulation is the best option to contain the epidemic.
Siettos, Anastassopoulou, Russo, Grigoras, and My-
lonakis (2016) used a small-world network model
with an agent-based simulation to evaluate several
policies for the containment of the Ebola virus
disease. More recently, Nicolaides, Avraam, Cueto-
Felgueroso, González, and Juanes (2020) used a hu-
man mobility model and simulation to study the ef-
fectiveness of hand-hygiene, recommended byWHO,
in mitigating flu-like virus transmission through the
air transportation networks. They showed that in-
creasing hand-washing rate in influential locations
can reduce the risk of pandemic by around 40%.

The COVID-19 crisis highlights the need to
understand the measures that can be most effective
against an epidemic, given the size of the impact,
characteristics of epidemic transmission, the (net-
work) structure of a population, and the budgetary
and economic constraints. The losses are staggering:
the pandemic and the associated fiscal actions and
lockdowns have resulted in $11.7 trillion, or close to
12% of global GDP, of negative economic impacts as
of September 2020 (International Monetary Fund,
2020), and Cutler and Summers (2020) estimated
$16 trillion of loss in the United States alone if the
disease runs its course. It is critical for decision-
makers in governments and other organization to
respond with measures that save lives, support vul-
nerable people and businesses, minimize the fallout
on economic activity, and speed up the recovery
(Carlsson-Szlezak, Swartz, & Reeves, 2020; Nagara-
jan, 2020). The current study, therefore, sets out to
identify optimal prevention and treatment invest-
ments for mitigating epidemic propagation through a
population network. In support of this, we introduce

a new objective function to minimize risk due to
an epidemic and adopt the preferential-attachment
network to model the population network for the
purpose of disease transmission. The investment
functions that we incorporate are in general forms
and can represent different types of prevention and
treatment strategies. The proposedmodel thus allows
for comparing the effectiveness of different kinds of
investments in mitigating the risk of epidemic. The
results of the study, consistent with studies of prior
epidemic events, provide a decision framework for
policymakers facing a pending pandemic.

2. RESEARCH MODEL

We model the epidemic propagation based on
individual-to-individual transmission within a “net-
work of contact,” which can be an organization, a
community, a city, a metropolitan area, a country, or
something even larger. Such a network of contact is
assumed to be closed at the time of an examination;
that is, all individuals can have contact with others in
the same network but not with those outside of the
network. The disease propagates throughout the net-
work via individual-to-individual transmissions, and
those who contract it may be asymptomatic, need
rest before recovery, require treatment to recover, or
succumb to the disease. The total loss, L, due to an
epidemic includes all possible consequences due to
individuals contracting the disease, such as the cost
of care, lost productivity, loss of life, etc. Adopting a
commonly used risk measure (Aven, 2010; Boholm,
2019), we calculate the risk Z of an epidemic as the
product of the probability p of individuals contract-
ing the disease and the resulting loss L:

Z = pL (1)

At the network level, Equation (1) captures the
sum of the risks of the entire population in the net-
work. We use L0 and p0 to denote the intrinsic loss
and infection probability observed in an epidemic
without any intervention or mitigation, and Z0 =
p0L0 is thus the associated intrinsic risk of epidemic
propagation in the network. Because the objective of
any intervention or mitigation is to reduce the nega-
tive impact of an epidemic, Z0, p0, and L0 represent
the maximal risk, infection probability, and potential
loss of an epidemic, respectively.

To examine how an epidemic can be propa-
gated throughout the network (i.e., how individu-
als in this network can get infected, or the behavior
of p), it is necessary to understand the structure of
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the network of contacts. Every individual has contact
with a certain number of other individuals, and the
combination of individuals (“nodes” or “vertices”)
and contacts (“links” or “edges”) form the network.
As discussed earlier, the prevalent model for such
a network is based on “preferential attachment”—
individuals with an already large number of connec-
tions are more likely to receive more connections,
and those with fewer connections are likely to re-
main less connected—and this results in the “scale-
free network” topology, composed of the majority of
nodes with limited connections and a small number
of “hubs” with large number of links. To find p, the
probability of a node in the network being infected
by the epidemic, we adopt the derivation of the epi-
demic spread in such a network (see Appendix 1 for
details):

p = βμ
1
λ . (2)

Eq. (2) implies that epidemic spreading is deter-
mined by three factors: μ, the degree of connectiv-
ity of the node in the network; λ, the likelihood that
the node may be exposed to the disease from its con-
nections; and β, the susceptibility that the individual
may be infected by the disease when exposed to it.
To focus on overall network behavior in the discus-
sion below, the same (average) value is used for each
parameter across all nodes in the given network. In
addition, all three factors are normalized to the inter-
val between 0 and 1.

We consider two general categories of risk miti-
gationmeasures—prevention/containment and treat-
ment/recovery. Prevention and containment (P&C)
measures aim at reducing the rate at which individ-
uals contract and/or spread the disease, while T&R
lessen the impact of the disease on those who con-
tract it. In other words, to mitigate the epidemic risk
of the network, one can make an investment of Sp in
P&C—to reduce p, the probability of transmission—
or an investment of SL in T&R—to reduce L, the po-
tential loss as a result of the disease. Thus, p = p(Sp)
and L = L(SL). (When no investment is made, Sp
= SL = 0, and we have p0 = p(Sp = 0) and L0 =
L(SL = 0) as the intrinsic infection probability and in-
trinsic loss, respectively, of the epidemic propagation
in the network). The benefit achieved with mitigation
investments is then

W = (Z0−Z) − (Sp + SL) (3)

and the task of finding an optimal investment is
to maximize W, which itself is a function of p (thus
β, μ, and λ) and L. In what follows, we attempt to

analyze the optimal investments made by a rational
decisionmaker (or by rational decisionmakers collec-
tively) in P&C versus in T&R to mitigate the risk of
epidemic propagation in a network of individuals.

3. MODELING MITIGATION INVESTMENT

3.1. Investing in P&C

We first examine the case when an investment is
only made in P&C (i.e., Sp > 0 and SL = 0). Note
that the P&C investment Sp affects (i.e., reduces) the
disease exposure rate λ in Eq. (2) but not the suscep-
tibility β, which reflects the nature of the disease, or
the connectivity μ, which is determined by the topol-
ogy of the network. As such, we can rewrite Eq. (2)
as follows (see Appendix 1 for details):

p = βμ1+ εpSp, (4)

where εp is a parameter describing the effectiveness
of investment Sp. And therefore,

R = βL0 μ1+ εpSp, (5)

W = βμL0 − βL0μ
1+ εpSp − Sp, (6)

where we use L0 since SL = 0. Before finding the op-
timal solution for the P&C investment, it is necessary
to verify the boundary conditions of Eq. (6). First, the
initial condition has to hold that the benefit increases
when the very first investment is made (otherwise it
makes no sense to even invest in such measures). In
other words,

∂W
∂Sp

∣∣∣∣
Sp=0

≥ 0. (7)

Inserting Eq. (6) into Eq. (7) and rearranging the
terms, we have

βεpL0μ (−lnμ) ≥ 1. (8)

This initial condition Eq. (8) will be revisited
later. Additionally, in order to find the maximum W,
it is necessary that the second derivative of W with
respect to Sp is negative. To check, we note that

∂2W

∂Sp
2 = − βL0

(
εp

μ
μ1+ εpSp + (εplnμ)2μ1+ εpSp

)
(9)

is indeed negative, as the terms inside the parenthe-
sis are both positive. Therefore, W will yield its max-
imum when we optimize Sp by setting:

∂W
∂Sp

= − βL0εp (lnμ)μ1+ εpSp − 1 = 0. (10)
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Rearranging the terms and solving for S∗
p, the op-

timal investment in P&C, we have

S∗
p =

(
1

εp (−lnμ)

)
ln (βεpL0μ (−lnμ)). (11)

Since S∗
p is always positive, the argument in the

logarithm has to be greater than 1. This yields the
same equation as the boundary condition Eq. (8).
Rearranging the terms, we get

L0 ≥ 1
βεpμ(−lnμ)

≡ L. , (12)

Therefore, we have the following proposition.

Proposition 1. Investment in P&C only makes sense
when the intrinsic loss of the epidemic without mitiga-
tion is larger than a critical amount L. .

This proposition outlines the importance of care-
fully investigating the nature of an epidemic (i.e.,
β) and the network characteristics (i.e., μ) to avoid
“overinvestment,” because not all epidemics are
worth protecting against. Unless the intrinsic loss of
epidemic is greater than a critical amount L. , one is
better off not investing in P&C at all. Note that L. is
a decreasing function of the connectivity μ. In other
words, the more connected the network is, the lower
the threshold is for making P&C investment.

We examine first the behavior of optimal P&C
investment in relationship with the intrinsic loss of
epidemicL0. To do so, we differentiate S∗

p in (11) with
respect to L0:

∂S∗
p

∂L0
= 1

εpL0 (−lnμ)
> 0 (13)

and

∂2S∗
p

∂L0
2 = −1

εpL0
2 (−lnμ)

< 0. (14)

Therefore, we have the following proposition.

Proposition 2. The optimal investment in P&C is a
strictly increasing concave function of the intrinsic loss
of the epidemic without mitigation.

It is not hard to see why Proposition 2 holds in
practice. When the intrinsic loss of the epidemic is
high, one would likely attempt a higher level of risk
mitigation with investment in P&C. However, the
pace of increase in investment cannot keep up with
the increasing level of potential intrinsic loss. Fig. 1
illustrates how S∗

p varies with respect to L0.
Next, we examine the relationship between the

optimal P&C investment and the connectivity, μ.

Fig 1. Optimal prevention and containment investment with re-
spect to potential loss (Sp* and L0 scaled to some maximum loss
value).

Taking the derivative with respect to μ in Eq. (11)
and rearranging the terms, we get

∂S∗
p

∂μ
= ln (βεpL0 (−lnμ)) − 1

εp(lnμ)2
. (15)

An examination of this result shows that when
L0 is sufficiently large (greater than or equal to
e(βεp(−lnμ))−1), Eq. (15) is always positive, and S∗

p
increases with μ. However, for a small L0 value, the
numerator of Eq. (15) turns negative for high values
of μ and eventually drives S∗

p to 0 when μ is large
enough (Fig. 2). Therefore, we also have the follow-
ing proposition.

Proposition 3. The optimal P&C investment increases
with the average connectivity of the network when
the intrinsic loss of the epidemic, in the absence of
mitigation, is high. However, if this intrinsic loss is
small, it is better to stop investing in P&C when the
connectivity becomes too high.

Proposition 3 implies that, when the potential
epidemic intrinsic loss is high, one should invest more
in P&Cwhen the individuals in the network are more
connected (thus more exposed to possible transmis-
sion). This effectively means that the highly con-
nected individuals (the “hubs”) should invest more
in prevention than the sparsely connected nodes, ac-
cording to this proposition. Assuming, however, that
the potential loss faced by each individual node is
similar for all nodes, then it is likely that the hubs will
instead invest less than the optimal amount for their
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Fig 2. Optimal prevention and containment investment with re-
spect to connectivity (Sp* and L0 scaled to some maximum loss
value).

level of connectivity, thus jeopardizing the safety of
the whole network. This moral hazard issue will be
further discussed in Section 4.2.

Finally, we examine the property of S∗
p by rewrit-

ing Eq. (11) as

S∗
p = Z0lnc

c
, (16)

where Z0 = βμL0, and c ≡ Z0εp(−lnμ). To find the
maximum of S∗

p, we differentiate Eq. (16) with re-
spect to c and set it to 0:

∂S∗
p

∂c
= Z0 (1 − lnc)

c2
= 0. (17)

(Eq. (16) does yield a maximum of S∗
p since

∂2S∗
p

∂c2 < 0.) So, when 1 − lnc = 0, or c = e (= 2.718…,
the exponential constant), we have the maximum of
S∗
p:

S∗
p ≤ Z0lne

e
= Z0

e
(18)

Since e−1 ≈ 0.368, we have the following propo-
sition.

Proposition 4. The optimal P&C investment to mit-
igate epidemic propagation risks will never exceed
0.368·Z0, the intrinsic epidemic risk without any mit-
igation measures.

Proposition 4 places an upper limit on the opti-
mal P&C investment. In other words, any investment
higher than 0.368·Z0 is deemed unjustifiable. Note

that this upper limit applies to all values of potential
intrinsic loss L0 and connectivity μ, since it is derived
independently of and in parallel with Propositions 2
and 3. This important result will be further discussed
in Section 5.

3.2. Investing in T&R

Instead of focusing on P&C, one can instead in-
vest in T&R tomitigate the risk of epidemic propaga-
tion. The T&R investment will reduce the potential
loss, L, due to the spread of the epidemic, although
the chance of getting infected, p, stays constant.

Studies have attempted to identify the proper
form for describing the impact of investing in reduc-
ing the total loss due to a disaster or catastrophic
event. Among them, Mackenzie and Zobel (2016)
propose four different deterministic reduction func-
tions and find that the logarithmic allocation func-
tion yields the best fit with data from actual disaster
recovery. In this study, therefore, we adopt this best
match function to describe the effect of reducing the
potential loss of epidemic L by making T&R invest-
ment SL as follows:

L = L0 (1 − kln (1 + εLSL)), (19)

where εL is a parameter describing the effectiveness
of investment SL, and k ∈ (0, 1) is a normalization
such that kln(1 + εLSL) is less than 1 (Mackenzie &
Zobel, 2016). Inserting Eq. (19) into Eq. (3), we have

W = βμL0 − βμL0 (1 − kln (1 + εLSL)) − SL =
βμkL0ln (1 + εLSL) − SL. (20)

Similar to the P&C case, we want to ensure that
the initial condition holds such that the benefit in-
creases when the very first investment is made. In
other words,

∂W
∂SL

∣∣∣∣
SL= 0

≥ 0. (21)

Applying this condition to Eq. (20) and rearrang-
ing the terms, we get

L0 ≥ 1
βμkεL

≡ L
ˆ

(22)

In other words, one will not invest in T&R un-
less the intrinsic loss is higher than a critical value Ḽ.
To look for the optimal investment in T&R, we dif-
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ferentiate Eq. (20) with respect to SL and set it to 0:

∂W
∂SL

= βμkεLL0

1 + εLSL
− 1 = 0. (23)

Note that this yields the maximum W since
∂2W
∂SL

2 < 0. Solving for SL, we have the optimal T&R
investment S∗

L as:

S∗
L = βμkεLL0 − 1

εL
. (24)

We first note that S∗
L is a linear function of both

L0 and μ. That is, the optimal T&R investment in-
creases linearly with both intrinsic loss and connec-
tivity. To further investigate the property of S∗

L, we
rewrite Eq. (24) using Eq. (22) as follows:

S∗
L = βμk(L0 − L

ˆ
). (25)

Since all β, μ, and k are between 0 and 1, the
product βμk ∈ (0, 1), and we have the following
proposition.

Proposition 5. Investment in T&R should only be
made if the potential loss of an epidemic without mit-
igation is larger than a critical value Ḽ. In addition,
the optimal T&R investment is a fraction of the dif-
ference between the intrinsic loss and the critical loss
value Ḽ.

Proposition 5 provides important guidance for
investing in T&R. First of all, only those epidemics
with the intrinsic loss higher than some critical value
are worth T&R investments. This amount, Ḽ as noted
in Eq. (25), is inversely proportional to the connec-
tivity of nodes in the network. When the intrinsic
loss of the epidemic is deemed higher than Ḽ, the
optimal investment in T&R is still only a fraction of
the difference between the intrinsic loss and Ḽ. It is
thus worthwhile to carefully examine all the relevant
factors—connectivity in the network, effectiveness of
the T&R effort, and the likelihood of anymembers of
the network catching the disease—to determine the
best level of recovery and treatment investment.

3.3. Allocation of Risk Mitigation Investments
Among Prevention/Containment and
Treatment/Recovery

To mitigate epidemic risks, one may decide to in-
vest simultaneously in both P&C and T&R. In real-
ity, there is always a limit to which mitigation invest-
ments can bemade. Such a limit not only includes any

formal budgets to spend on curbing epidemics (as di-
rect investments) but also the “acceptable” economic
impact caused by mitigation policies. In this section,
we examine the optimal allocation to these two in-
vestments in order to maximize the benefits due to
such a limit.

We assume that the limit of total mitigation in-
vestment due to budgetary and economic constraints
is S, which will be split between P&C investment and
T&R investment, that is, S = Sp + SL. We use sp = Sp
/S and sl= SL /S to denote the proportions of invest-
ment allocated to P&C and T&R, respectively. Then,
the total benefitW can be expressed as (with sl = 1 −
sp):

W = βμL0 − βL0 (1 − kln (1 + εLS(1 − sp)))

μ1+ εpspS − S. (26)

To find the optimal allocation ratio sp (and thus
sl), we take the derivative ofW with respect to sp and
set it to 0. After collecting terms, we have:

−lnμ + lnμln (1 + εLS(1 − sp))

− 1
1 + εLS(1 − sp)

= 0. (27)

Note that L0 is not in Eq. (27). That is, sp (and
thus sl) does not depend on L0. This is a somewhat
surprising result, as one might expect to see impact
of intrinsic loss on the allocation of total mitigation
investment limited by budgetary and economic con-
straints between these two investments. But it is not
the case here.

A careful examination of Eq. (27) reveals that
no closed-form solution of sp is possible. To investi-
gate how the allocation varies with key parameters
such as the total investment limit S and the connec-
tivity μ, we can use the implicit function technique to
derive the relationships without knowing the closed-
form solution of sp. Taking the derivative of sp with
respect toμ using this technique and collecting terms,
we get

∂sp
∂μ

=
(
1 + εLS(1 − sp

)
)
(
ln

(
1 + εLS(1 − sp

)) − 1)

εLμS
((
1 + εLS(1 − sp

))
lnμ) + 1)

. (28)

Examining the sign of Eq. (28), we note that
when |lnμ|is larger than 1 (i.e., n > 1), ∂sp

∂μ
is always

negative. Therefore, we have the following proposi-
tion (see Appendix 2 for proof).

Proposition 6. With a fixed limit of total mitigation in-
vestment due to budgetary and economic constraints,
the intrinsic loss of the epidemic does not affect the
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Fig 3. Allocation ratio of total spending versus investment limit.

allocation between prevention/containment and treat-
ment/recovery. In addition, if an average individual in
the network connects to more than one other member,
the more connections it has, the less portion of the limit
should be allocated to P&C investment.

Since it is more than likely that an average in-
dividual would have contact with more than one
other individual in the same network, Proposition 6
states that the allocation to P&C investment given a
fixed limit of total mitigation investment will decline
with increasing connectedness. This result seems rea-
sonable, considering that reducing the likelihood of
transmission becomes more difficult and costly when
there are a large number of connections to defend
against, and investing in T&R can be a more effec-
tive approach when P&C is hard to achieve.

We now examine how allocation varies with a
fixed limit on the total mitigation investment. To do
so, we take the derivative of sp with respect to S. Af-
ter manipulation, we arrive at the following relation-
ships:

sp ∝ 1 − 1
S

; sL ∝ 1
S

. (29)

These relationships, shown in Fig. 3, give the fol-
lowing proposition (the proof is in Appendix 3).

Proposition 7. When the limit of total mitigation in-
vestment due to budgetary and economic constraints
is small, one should focus on T&R investment. As the
constraint relaxes, a higher portion should be allocated
to P&C, while allocation to T&R decreases at a rate
inversely proportional to the increasing limit of miti-
gation investment.

Proposition 7 states an important principle in
allocating investment to mitigate epidemic among
P&C and T&R. When the total investment limit is
small, it would be difficult and ineffective to defend
against the likelihood of transmission via all the con-
nections, and it is better to focus on reducing the im-
pact by investing in T&R programs. The higher the
limit is, however, the more realistic and economical
it gets to effectively target P&C. And when the abil-
ity to invest in mitigation is very high, it would make
sense to focus on containing the epidemic and pre-
venting transmission altogether to reduce the num-
ber of individuals infected (thus lowering the overall
loss).

4. DISCUSSION

4.1. Interpretation of Modeling Results

We reiterate the assumptions of several key fac-
tors in this study. The intrinsic loss L0 is the total
(economic) loss associated with an epidemic in a pop-
ulation network (city, country, community, etc.) if the
disease spreads naturally (i.e., without any mitiga-
tion), including such items as loss of human lives,
cost to the healthcare system to test and treat the
infected, productivity lost due to infection (patients,
healthcare providers, etc.), and opportunity cost due
to providers’ (such as hospitals) inability to treat
other patients. Although some of these impacts may
be difficult to measure or subject to ethical debate
(such as the use of statistical value of human lives),
they are real and assumed to be quantifiable in this
study. As an example, Cutler and Summers (2020) es-
timated the total loss due to COVID-19 at more than
$16 trillion in the United States. On the other hand,
mitigation investments Sp and SL are made to pre-
vent the spread or treat the disease. Some invest-
ments are direct, such as those for vaccines, thera-
peutics, and hospital capacity. There are also indirect
investments incurred due to the consequences of mit-
igation measures. For instance, social distancing pol-
icy requires closing or limiting the operations of cer-
tain businesses, resulting in economic impact not di-
rectly paid for initially. It is with this understanding
that we now discuss the propositions developed in
this study.

Proposition 1 states that investment in P&C only
makes sense when the intrinsic loss of the epidemic
is larger than a critical amount L. . In other words,
when the intrinsic loss is potentially low enough, it
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is advisable to let the disease run its course. Inter-
estingly, the critical value L. is a decreasing function
of μ (see Eq. (15)), implying that a highly connected
community has a lower threshold for prevention in-
vestment. This makes sense because a disease is much
more likely to become an epidemic in highly con-
nected urban hubs (like New York City) or densely
populated countries (like Taiwan), presenting in a
high intrinsic loss that necessitates mitigation mea-
sures. This is also consistent with Proposition 2, which
states that the optimal investment in P&C is a strictly
increasing concave function of the intrinsic loss of the
epidemic. So to prevent and contain a transmittable
disease, it is necessary to spend more when the in-
trinsic loss is higher, but the spending increase cannot
keep pace with the potential loss as it becomes very
high (see also the discussion of Proposition 4).

Proposition 3 states that when the intrinsic loss
is high, the optimal investment in P&C increases as
the network connectivity increases. The SARS epi-
demic, the first pandemic of the 21st century when it
appeared in 2002, spread through 26 countries, infect-
ing 8,098 people and resulting in 774 deaths.1 Its po-
tential negative impact (as a result of the high fatality
rate and difficulty of treatment) prompted countries
such Taiwan, a highly connected island nation of over
23 million people (density of over 1,700 per square
mile), to invest significantly in P&C infrastructure
to coordinate their public health and medical ser-
vices across the country for future epidemics, con-
sistent with Proposition 3. This investment has been
tested and modified through the pandemics of H1N1
(2009–2010) and Ebola (2014–2016) (Kao, Ko, Guo,
Chen, & Chou, 2017) and is proven to be effective in
dealing with the current case of COVID-19 (more in
Section 4.2).

On the other hand, Proposition 3 states that
when the intrinsic loss is small, it may be advisable
to not invest in P&C in a highly connected commu-
nity. Prevention of a transmittable disease is always
difficult in densely populated or highly connected
areas; when the disease is less potent or lethal, it
may be better to allow the infection to spread in-
stead of trying to contain it. For instance, before the
varicella vaccine was developed for chickenpox, peo-
ple in some communities intentionally exposed them-
selves in the hope that they would achieve immunity.
Such an approach for less severe diseases is consis-
tent with Proposition 3.

1https://www.who.int/csr/sars/country/table2004_04_21/en/

Proposition 4 states that the optimal P&C invest-
ment to mitigate epidemic propagation risks should
not exceed 0.368·Z0 (Z0 = βμL0, the intrinsic epi-
demic risk without any mitigation measures). Since
both β and μ are less than 1, this upper bound for
the optimal investment in P&C is a fraction of (and
can be significantly lower than) the intrinsic lossL0 of
an epidemic. Interestingly, Courtemanche, Garuccio,
Le, Pinkston, and Yelowitz (2020) indicate that based
on evidence from the 1918 influenza pandemic, social
distancing measures would reduce the average con-
tact rate by 38%, a number very close to the factor
(as the inverse of e, the Euler’s number or the nat-
ural exponential constant) in this proposition. This
relationship between this “limit” of prevention ef-
fectiveness and the upper bound for optimal preven-
tion investment is worth further exploration in future
research.

Proposition 5 addresses investments in T&R. It
states that such investments are called for only in
those epidemics with potential loss higher than some
critical value Ḽ. This may be the case for seasonal
flu, especially when the flu vaccine proves to be ef-
fective, in that there is little need for specific invest-
ment targeting specific treatment for such a disease.
This proposition also states that the optimal T&R in-
vestment is a fraction of the difference between the
intrinsic loss and Ḽ. In a Dutch study, Lugnér and
Postma (2009) estimate that the cost-effectiveness
cut-off point for investment in stockpiling a combina-
tion of antiviral drugs for treatment is an 11% risk of
a pandemic during a 30-year period (9% for a single
antiviral drug treatment), or 29% (23% for a single
antiviral drug treatment) when production loss off-
sets are not included. (The authors note that there is
no official threshold below which a cost-effectiveness
ratio is considered acceptable in the Netherlands,
possibly due to the ethical difficulty in measuring
the value of human lives.) Balicer, Huerta, Davi-
dovitch, and Grotto (2005) evaluate multiple strate-
gies of treatment for the entire population, or those
at heightened risk, in Israel and find that investing in
antiviral stockpiling is always cost-effective as long as
the estimated annual pandemic risk remains greater
than one in 80 years. Both cases are consistent with
Proposition 5.

Propositions 6 and 7 deal with the optimal allo-
cation between both P&C and T&R measures when
there is a limit to total investment due to budgetary
and economic constraints. Proposition 6 states that
the allocation between prevention efforts and treat-
ment efforts is not dependent on potential intrinsic
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loss. Although surprising, this result appears to be
consistent with the concept of risk tolerance, where
one responds to varying levels of risk by spend-
ing more or less on mitigation instead of changing
the mitigation strategies. Proposition 6 also states
that, in a more connected network, a greater pro-
portion of the limited investment amount should be
allocated to treatment and less to prevention. Pre-
venting or containing the spreading of an epidemic
in a highly connected network can be difficult and
costly, and with a limited investment capability it
may be more effective to focus on treatment. Wang,
Li, and Guo (2012) discuss the allocation of a fixed
budget between vaccines (prevention) and antivirals
(treatment) based on the cost and efficacy of the two
options. They find that if both options are 100% ef-
fective, a higher investment in vaccines is the obvious
option. But even in this case, they allocate a certain
amount to antivirals to address any possibility of R0

>1. As the infection rate increases, with greater con-
nectivity, there should be more investment allocated
to treatment and less to prevention. This allocation
is further supported in cases when there is no avail-
ability or low efficacy of prevention measures (such
as vaccines against a virus).

Finally, Proposition 7 states that if the invest-
ment is very limited, it is better to focus primarily on
treatment. This can be seen in the typical antiviral
stockpiles that many countries maintain, especially
when the source of threats is not specifically known
in advance. It is also the usual strategy to prepare
for responding to potential bio-terrorist attacks. The
proposition also states that as the investment limit
increases, a higher proportion should be allocated to
P&C. After the SARS and H1N1 epidemics, many
Asian nations opted to invest significantly over the
past two decades to combat future epidemics, and a
large proportion was allocated to prevention, consis-
tent with Proposition 7. Xue and Zeng (2019) detail
investments by China in a variety of prevention mea-
sures including strengthening national emergency
response teams, building institutional capacity for
national monitoring and epidemiological training,
growing vaccine production capacity, and developing
international and regional collaborations. It is ex-
pected that as countries begin to see epidemics as a
national biosecurity threat based on the experience
of COVID-19, governments are likely to invest sig-
nificantly in combating future pandemics and a large
portion of such spending would be applied toward
P&C.

4.2. Analysis of COVID-19 Pandemic

Faced with the COVID-19 pandemic, countries
and communities have rushed to mitigate the risks
via a plethora of strategies (see Table I), with varying
degree of success. In this section, we examine how
the modeling results developed in this study can in-
form this current case and provide guidelines for the
future.

Walker et al. (2020) estimate that in the absence
of any interventions, COVID-19 would have resulted
in 7 billion infections and 40 million deaths (at R0 =
3) globally in 2020. More recently, Cutler and Sum-
mers (2020) put the total loss in the United States
due to COVID-19 at more than $16 trillion. Such
a potential impact is so enormous that it would be
likely exceed any conceivable critical threshold for
intervention (Proposition 1). Perhaps the most nat-
ural reaction to an epidemic breakout is prevention,
particularly when investment limit is not an issue
(Propositions 2 and 7). Although almost all nations
spent heavily in prevention when facing a pandemic
as serious as COVID-19, the key difference appears
to be not only the amount and but the type and
pace of mitigation efforts. As of fall 2020, several
countries and regions, most notably Taiwan, South
Korea, and Vietnam, have successfully contained
COVID-19 in spite of the proximity (both geograph-
ically and socially) to the disease epicenter, China.
These countries all have densely populated cities
and regions, resulting in high connectivity and thus
requiring massive investment in prevention (Propo-
sition 3). To be able to afford such a large investment
(primarily in isolation, tracing, and tracking sys-
tems), it must be made preemptively and over time.
For instance, Kao et al. (2017) discuss the extensive
and continued investment in the development of the
Communicable Disease Control Medical Network
(CDCMN), a collaboration of the public health sys-
tem and the medical system that Taiwan established
in 2003 following the SARS outbreak. CDCMN was
successfully activated during the H1N1 influenza
(2009–2010) and the Ebola outbreak (2014–2016)
and has been effective in addressing the COVID-
19 pandemic (Duff-Brown, 2020; Wang, Ng, &
Brook, 2020).

For countries and regions that do not have miti-
gation measures in place at the time of an outbreak,
the most effective prevention measure is social dis-
tancing or even complete lockdown (Chu et al., 2020;
Flaxman et al., 2020; Hsiang et al., 2020). Although
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Table I. Examples of Mitigation Measures amid COVID-19

Prevention/Containment Treatment/Recovery

Short term • Social distancing and lockdown
• Universal mask requirement
• Quarantine and isolation
• Tracing and tracking

• Herd immunity through natural trans-
mission

• Scaling up disease-targeted healthcare
capacity

Long term • Public health education
• Vaccine development; herd immunity
through vaccination

• Developing therapeutics

the “intrinsic cost” of social distancing—that is, to
separate people from one another—may appear to
be low, the economic impact of executing such lock-
downs, as reflected in business closures, layoffs and
furloughs, and overall reduced economic output, can
be extremely high (Proposition 2), requiring bil-
lions or even trillions of dollars in government sup-
port (Cassim, Handjiski, Schubert, & Zouaoui, 2020;
Humphries, Neilson, & Ulyssea, 2020). In densely
populated areas without preventive alert systems,
like New York City, prevention is almost impos-
sible without virtually unlimited monetary support
(Proposition 3 and Fig. 2). In this case, the investment
can perhaps be better made to boost treatment (such
as increasing hospital capacity) until the spread is un-
der control (Proposition 7). In general, although pre-
vention may be desirable, highly connected commu-
nities or countries with no little prior investment in
disease containment should allocate heavily to treat-
ment to reduce the impact of the disease, because
prevention may turn out to be too expensive (Propo-
sition 6).

In the case of a very limited ability to invest,
Proposition 7 recommends focusing more on treat-
ment than prevention, and one such option is to
develop herd immunity through natural transmis-
sion. Herd immunity occurs when most individuals of
a population are immune to an infectious disease and
thereby will not spread it, indirectly protecting those
who are not immune (D’Souza & Dowdy, 2020).
During the COVID-19 pandemic, Sweden, with its
broadly liberal society and decentralized healthcare
system, has taken on a strategy to protect the elderly
and the fragile and to avoid overloading hospitals,
while keeping the economy open with minimum
curtailment of people’s movements and by relying
on the individual judgment of people to behave
appropriately. Such an approach was justified by low
population density and high percentage of single
dwelling (therefore low connectivity, cf. Proposi-

tion 6), as well as the relative healthy population,
which has an effect of lowering the cost of treatment
(Leatherby & McCann, 2020). The result, however,
was controversial: although there were signs of suc-
cess as of summer 2020 (Erdbrink, 2020), Sweden’s
economy has generally experienced slumps similar
to those of other European nations that enforced
stricter social distancing policies (Lindeberg, 2020),
and, by fall 2020, Sweden maintains three to five
times the number of infections and deaths per million
population compared to its Scandinavian neighbors
of Denmark, Finland, and Norway. Such an approach
is certainly even less advisable in densely populated
areas (high connectivity) or less healthy populations
(high cost of treatment). It is also important to note
that the ethical issue of putting a price tag on human
lives makes such a decision difficult, even when it is
supported by economic and risk analysis.

Although the model discussed above uses
network-wide averaged parameters, it is also inter-
esting to examine the mitigation measures at the in-
dividual level. In a population network that exhibits
preferential attachment characteristics, the optimal
investment in prevention would be disproportionally
high for the few “hubs” with high connectivity com-
pared to the average individuals in an epidemic with
high intrinsic loss (Proposition 3). To be effective in
slowing down the transmission of COVID-19, it is
necessary and even paramount to shut down those
hubs (often small businesses such as bars and gyms),
but such closings cost them disproportionally more
compared to individuals staying at home. This creates
an inherent moral hazard: the hubs may not have the
incentive to spend much more than the vast major-
ity of the nodes for the good of the whole network,
and it is natural for some to attempt to open despite
the shutdown order to reduce their outsized burden
from the prevention measures. It is, therefore, rec-
ommended that decisionmakers identify and subsi-
dize those businesses and individuals that act as hubs
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in order to effectively enforce prevention mitigation
measures such as social distancing.

Finally, it is worth noting that Proposition 7
is about the optimal allocation between prevention
and treatment, given the size of the budgetary and
economic constraints; it does not provide an either–
or choice. Based on the modeling results, allocat-
ing all resources to prevention or treatment only
happens when limit of investment is infinite or in-
finitesimal, neither of which is possible in reality.
For instance, although treatment is highly favored
in the case of very limited investment capability
(Proposition 7) and high connectivity (Proposition
6), low-cost prevention measures can still be pursued
(such as policies adopted in African countries dur-
ing COVID-19 pandemic; see, for instance, Massinga
Loembé et al., 2020). On the other hand, no mat-
ter how much effort one puts into preventing an epi-
demic from spreading, it is always necessary to invest
in effective treatment of the disease in order to min-
imize the impact on the population in the network.
This has also been verified in the case of COVID-
19, where stockpiling personal protection equipment
for healthcare workers, a modest measure to ensure
treatment availability, proved to be critical in mitigat-
ing risks of the epidemic.

5. CONCLUSION

In this article, we build a mathematical model to
optimize the investments in mitigating the risks of
epidemic propagation throughout a network of indi-
viduals by treating the prevention/containment and
treatment/recovery measures separately.We find that
when investment concentrates on one category of
measures (i.e., prevention or treatment only), given
an epidemic that may cause large enough poten-
tial loss, then optimal investment increases with con-
nectivity and potential loss but is limited to only a
fraction of loss amount. When the total investment
is limited by budgetary and economic constraints,
however, the proportion allocated to prevention in-
creases when the total investment limit goes up and
when the network connectivity is lower. We further
show that these results are consistent with previous
studies and can be used to properly interpret what
happened in past pandemics as well as to shed light
on future and ongoing events such as COVID-19.

As with all analytical research, assumptions that
are made to keep the models manageable always re-
sult in a simplified representation of reality. One such
key assumption is the use of average transmission pa-

rameters for all nodes. In reality, transmission rates
can be different for each node and they can be dy-
namic over time. We also assume that investments
are made at a single point in time and that their ef-
fects are instantaneous, whereas in reality they can
be made over time and have delayed impacts. Our
model is deterministic in nature at a snapshot in time.
In other words, we assume that one can obtain (or
estimate) the values of all the parameters at a par-
ticular point in time in order to derive a steady state
solution to inform the decisionmakers of their invest-
ment options. In the future, we can extend the current
work to include probabilistic models for input param-
eters such as the exposure (μ) and effectiveness of
investment (ε), in order to take into account the un-
certainties of those parameters. Finally, we adopt the
expected loss (i.e., the probability of an event mul-
tiplied by its consequences) to quantify the risk of
a pandemic because the objective of our model is
to minimize the total expected loss of a pandemic.
Although such a definition is supported by and fre-
quently adopted in the literature, we do acknowledge
that, as highlighted by Aven (2010, 2019), using ex-
pected loss in its statistical term may not be informa-
tive when comparing risks of different scenarios. In
such cases, uncertainties beyond probabilities should
be considered in measuring risk. Future studies that
relax these and other assumptions, as well as provide
empirical verification of the modeling results, can ex-
tend the applicability and generalizability of this line
of research.

This study makes several theoretical and prac-
tical contributions. Instead of using epidemiologi-
cal parameters within the objective function, our
economics-based model optimizes the risk-reducing
performance of mitigation investments. Additionally,
our model explicitly accounts for network topology,
a critical element of epidemic propagation, and de-
rives critical relationships between optimal invest-
ments and key network characteristics. Overall, our
results provide both a solid theoretical foundation
and practical guidance to decisionmakers in deter-
mining proper actions to take to mitigate the risks of
an epidemic such as COVID-19.
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APPENDIX 1

Derivation of p

To find p, the probability of a node in a network
being infected by the epidemic, we follow the deriva-
tion of the SIR-based epidemic spread in a scale-
free network (Chang & Young, 2005; Pastor-Satorras
& Vespignani, 2001). Let Pk (t) denote the relative
density of infected nodes with k connections—that
is, the probability that a node with k connections
is infected—at time t. The mean field rate equation
gives

∂Pk (t)
∂t

= − Pk (t) + λk [1 − Pk (t)]� (λ), (A.1)

where �(λ) is the probability that any given connec-
tion points to an infected node, as a function of λ, the
epidemic spreading rate (Pastor-Satorras & Vespig-
nani, 2001). Solving for Pk in a steady state (i.e.,
∂Pk(t)/∂t = 0), one gets

Pk = kλ� (λ)
1 + kλ� (λ)

. (A.2)

Note that �(λ) can be expressed in the lowest order
of λ and n, the average number of node connections
(Chang & Young, 2005):

� (λ) = e−λn

λn
. (A.3)

Substituting Eq. (A.3) into Eq. (A.2) and aver-
aging Pk over k, one gets the average probability that
a disease would spread to a random node (Pastor-
Satorras & Vespignani, 2001):

p = β e− 1
λn = βμ

1
λ , (A.4)

where β represents the probability that any individ-
ual may be infected when exposed to the disease, a
factor determined by the nature of the epidemic but
exogenous to the network, and μ = e−1/n represents
the connectivity of the node (μ ∈ [0, 1), μ = 0 when
n = 0, and μ = 1 when n → ∞).

The effect of the P&C investment Sp is in the re-
duction of the epidemic spreading rate λ in Eq. (A.4).
As such, λ and Sp satisfy certain boundary conditions.
We know that, without any investment, a disease
would be spread freely to any other nodes; in other
words, λ = 1 when Sp = 0. (Note that although the
epidemic propagates “freely” without P&C invest-
ment, the rate of individuals contracting the disease is
determined by the susceptibility β in Eq. (A.4).) But,
any finite investments, no matter how large, would

never be able to block propagation completely, that
is, λ → 0 only when Sp → ∞. Without loss of gener-
ality, the relationship between P&C investment and
spreading rate can be expressed as λ ≡ 1

1+ εpSp
to sat-

isfy the above boundary conditions, where εp is a
parameter describing the effectiveness of investment
Sp. Therefore, we have

p = βμ1+ εpSp (A.5)

APPENDIX 2

Proof of Proposition 6

The first part of the proposition that the alloca-
tion is independent of the intrinsic potential loss is
trivial, since L0 is not in Eq. (27), the equation for sp.

To prove the second part of this proposition, we
first have to derive Eq. (28). To facilitate the implicit
functionmanipulation, wemake the following assign-
ments:

ϕ ≡ 1 + εLS(1 − sp). (A.6)

F ≡ (−lnμ) + lnμlnϕ − 1
ϕ

. (A.7)

Since F in Eq. (A.7) is a function of both sp and
μ, we can use the implicit function rule to find the
derivative of sp with respect to μ as follows:

∂sp
∂μ

= −
∂F
∂μ

∂F
∂sp

= −
∂F
∂μ

∂F
∂ϕ

∂ϕ

∂sp

. (A.8)

Inserting Eq. (A.6) and Eq. (A.7) into Eq. (A.8)
and making the simplification that εL = εp, we find

∂sp
∂μ

= ϕlnϕ

εLμS (ϕlnμ + 1)
=

(
1 + εLS(1 − sp

)
)
(
ln

(
1 + εLS(1 − sp

)) − 1)

εLμS
((
1 + εLS(1 − sp

))
lnμ) + 1)

(A.9)

Since the numerator of Eq. (A.9) is always
positive, the sign is determined by the denomi-
nator, or, to be exact, the sign of the term 1 −
(1 + εLS(1 − sp))ln 1

μ
. (We rewire the logarithmic

term to make it positive, since lnμ is always nega-
tive.) Because 1 + εLS(1 − sp) is always greater than
1, the term is negative when ln 1

μ
> 1, or e−1 > μ =

e− 1
n , where n is the number of connections. There-

fore, when n > 1, ∂sp
∂μ

is always negative, and sp, the
allocation to P&C, decreases with increasing connec-
tivity μ. �
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APPENDIX 3

Proof of Proposition 7

We proceed in the same fashion as the proof for
Proposition 6. Since F in Eq. (A.7) is a function of
both sp and S, we can use the implicit function rule to
find the derivative of sp with respect to S as follows:

∂sp
∂S

= −
∂F
∂S
∂F
∂sp

= −
∂F
∂ϕ

∂ϕ

∂S
∂F
∂ϕ

∂ϕ

∂sp

= −
∂ϕ

∂S
∂ϕ

∂sp

. (A.10)

Note that from Eq. (A.6),

∂ϕ

∂sp
= − εLS; ∂ϕ

∂S
= εL (1 − sp) . (A.11)

Therefore, we have the differential equation:

∂sp
∂S

− 1 − sp
S

= 0. (A.12)

Solving for the differential equation, we find the
relationship of sp as a linear function 1 − 1

S , or

sp ∝ 1 − 1
S

. (A.13)

Proceeding in the same fashion, we can also find
that

sL ∝ 1
S

. (A.14)

�
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