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Abstract

Mental iliness often emerges during the formative years of adolescence and young adult
development and interferes with the establishment of healthy educational, vocational, and
social foundations. Despite the severity of symptoms and decline in functioning, the time
between illness onset and receiving appropriate care can be lengthy. A method by which to
objectively identify early signs of emerging psychiatric symptoms could improve early inter-
vention strategies. We analyzed a total of 405,523 search queries from 105 individuals with
schizophrenia spectrum disorders (SSD, N = 36), non-psychotic mood disorders (MD, N =
38) and healthy volunteers (HV, N = 31) utilizing one year’s worth of data prior to the first
psychiatric hospitalization. Across 52 weeks, we found significant differences in the timing
(p<0.05) and frequency (p<0.001) of searches between individuals with SSD and MD com-
pared to HV up to a year in advance of the first psychiatric hospitalization. We additionally
identified significant linguistic differences in search content among the three groups includ-
ing use of words related to sadness and perception, use of first and second person pro-
nouns, and use of punctuation (all p<0.05). In the weeks before hospitalization, both
participants with SSD and MD displayed significant shifts in search timing (p<0.05), and par-
ticipants with SSD displayed significant shifts in search content (p<0.05). Our findings dem-
onstrate promise for utilizing personal patterns of online search activity to inform clinical
care.

Introduction

The consequences of untreated psychiatric illness can be devastating [1-3]. Behavioral health
disorders often present during the formative years of adolescent and young adult development
and interfere with the establishment of social, educational, and vocational foundations [4].
While early intervention services have demonstrated the potential to improve outcomes,
symptoms often remain unrecognized and untreated for years before receiving effective care
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[5-8]. Novel screening strategies, supported by technological innovation, are critical to achiev-
ing the goal of early identification and treatment.

The emergence of serious mental illnesses, such as schizophrenia and bipolar disorder, are
often preceded by periods of anxiety, mood lability, sleep pattern irregularity, trouble concen-
trating, social isolation, strained interactions with others, and attenuated/subthreshold psy-
chotic and manic experiences [9, 10]. Despite the decline in functioning and established
deleterious impact of untreated symptoms, an effective method by which to screen and educate
vulnerable individuals has not been established [11, 12]. Clinical interview, assessment scales,
patient self-report, and family observation remain the primary sources for assessing early
warning signs and are limited by reliance on direct and timely contact with trained profession-
als, as well as accurate and insightful patient and family recall. These standard approaches to
clinical assessment do not allow for objective monitoring of psychiatric symptom emergence
and typically do not occur with enough frequency, or at the necessary level of detail, to detect
subtle, sub-clinical, and burgeoning symptoms. Early, precise, and noninvasive identification
of psychiatric symptom emergence could facilitate the initiation of personalized and proactive
intervention strategies.

At the same time, Google Search has emerged as one of the world’s most popular websites,
supporting over 660 million daily visitors, and managing over three billion searches daily [13].
Searching online has become the primary resource for youth seeking out mental health related
information [14]. This is especially true for stigmatized illnesses such as schizophrenia, as the
Internet provides a comfortable and anonymous setting to gather information about symp-
toms and treatment options [15]. Previous reports have demonstrated that adolescents and
young adults with emerging symptoms of psychiatric disorders utilize the Internet first, and
most frequently, to gather information prior to receiving psychiatric care, and that they are
more likely to search online for information than to discuss their experiences with peers, fam-
ily, physicians, and mental health clinicians [16-18]. Performing an Internet search may there-
fore represent one of the first proactive steps towards treatment initiation and could provide a
valuable opportunity to impact help-seeking behavior.

Prior work in machine learning has highlighted opportunities to utilize large scale anon-
ymized online search activity to detect content and patterns associated with the emergence
and progression of medical illnesses including lung cancer, pancreatic cancer, and Parkinson’s
disease [19-21]. These initiatives aim to inform the development of a new generation of digital
tools designed to assist in the screening and early identification of individuals developing med-
ical health conditions. Similar computational methods have identified associations between
social media activity and behavioral health [22-29]. Few studies to date, however, have
explored the link between search activity and psychiatric illness, beyond retrospective self-
report [30]. Furthermore, while promising, internet activity research to date has been limited
by the fact that it has been conducted nearly exclusively using search data from anonymous
individuals who self-report a diagnosis online, and has yet to be carried out in real world clini-
cal settings, using participant-contributed search data, with clinically validated symptoms and
diagnoses.

This study aimed to explore the feasibility of utilizing online search archives as a tool to
identify emerging psychiatric symptoms. This knowledge would support the development of
resources designed to inform screening procedures for individuals with emerging mental ill-
ness earlier along their trajectory to care. We hypothesized that significant differences in the
content, timing, and frequency of online activity would differentiate participants with schizo-
phrenia spectrum disorders (SSD) from those with mood disorders (MD) and healthy volun-
teers (HV). Additionally, we hypothesized that significant changes in the content and
behavioral patterns of search activity would exist within individuals with SSD and MD in the
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period of time closest to their first hospitalization consistent with escalating psychiatric symp-
toms during that time period.

Materials and methods

Participants between the ages of 15 and 35 years, diagnosed with a schizophrenia spectrum dis-
order or a non-psychotic mood disorder, were recruited from The Zucker Hillside Hospital/
Northwell Health inpatient and outpatient psychiatric departments. Most participants with
SSD were recruited from the Early Treatment Program (ETP), Zucker Hillside’s specialized
early psychosis intervention clinic. Additional participants (3) were recruited from a collabo-
rating psychiatric clinic located in East Lansing, Michigan. Healthy volunteers who had
already been screened for prior studies were recruited. Additional HV’s (n = 10) were
recruited from the University of North Carolina. Recruitment occurred between March 2016
and December 2018. Written informed consent was obtained for adult participants and legal
guardians of participants under 18 years of age. Assent was obtained for participating minors.
Participants were fully informed of the potential risks, benefits, and alternative options avail-
able, as well as strategies to mitigate risks. Decisional capacity to consent was determined
through clinical assessment, as well as via completion of a short quiz, designed to assess one’s
understanding of research procedures, conducted prior to consenting to participate. The study
was approved by the Institutional Review Board (IRB) of Northwell Health (the coordinating
institution) as well as local IRBs at participating sites.

Participation involved a single study visit. Participants were asked to export their search
archive by logging on to their Google account to request their search history. Archives include
all historical search activity including the content and timing of search queries. Diagnoses and
dates for the first psychiatric hospitalization were obtained through participants’ medical
records.

Given the goal of identifying changes in search activity associated with escalating psychiat-
ric symptoms, 52 weeks’ worth of search data prior to the first psychiatric hospitalization was
extracted from each participant, operating under the expectation that at some point during
that year, psychiatric signs and symptoms emerged and progressed to the point of necessitating
inpatient intervention. One year was selected as it represents a period of time long enough to
establish a baseline level of search activity, and to identify changes in the weeks closest to hos-
pitalization. For HV (who were never hospitalized), the midpoint of the first hospitalization
dates across all patients (N = 74) was utilized to mitigate the potential temporal effects on
search patterns, such as functional changes in the search platform and search data logging sys-
tems over time. This resulted in using November 9, 2015 as the anchor date for healthy partici-
pants in our dataset.

Our analysis consisted of (1) between-group comparisons among SSD, MD, and HV to
examine group-level differences, and (2) within group comparisons by comparing a period of
“relative health” (6 month furthest away from hospitalization) to periods of “relative illness”,
closest to the date of the first psychiatric hospitalization.

Both sets of comparisons were conducted on the frequency, timing, and content of
searches. We extracted search frequency and timing distributions from the meta data (i.e.
timestamps). For search content, we used Linguistic Inquiry and Word Count (LIWC), a well
validated language analytic tool, which extracts 93 variables pertaining to word usage, known
to be associated with emotion, mood, and behavior [31, 32]. Given the number of comparisons
tested, we implemented the two-stage Benjamini and Hochberg [33] procedure to control the
false discovery rate (FDR). Specifically, we used the implementation from the statsmodels
Python library [34] and set the family-wise error rate to be 0.05.
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Table 1. Participant demographics.

N

Age

Years of Education

Male

Race/Ethnicity

African American/Black
Asian

Caucasian

Mixed race/Other
Hispanic

Diagnosis
Schizophrenia
Schizophreniform
Schizoaffective

Brief Psychotic Disorder
Unspecified SSD
Bipolar I Disorder

Major Depressive Disorder

https://doi.org/10.1371/journal.pone.0240820.t001

Data preprocessing

A total of 132 (44 SSD, 41 MD, 47 HV) search archives were available for analysis. Participants
with 30 or more weeks of zero search activity during the 52-week period were excluded

(n =27). The final dataset consisted of 405,523 searches across 105 participants. Demographic
information of included participants is shown in Table 1.

Results
Between-group differences in search (frequency, timing, and content)

Frequency of search activity. Across 52-weeks (Fig 1), HV showed significantly higher
search frequency on average compared to both SSD (Post-hoc Tukey: T = 19.51, p = 0.001)
and MD (Post-hoc Tukey: T = 16.76, p = 0.001). HV also showed significantly higher variabil-
ity of search frequency compared to MD (T = 2.83, p = 0.006) across the 52-weeks (averaged
standard deviations across weeks: HV = 50.74, MD = 30.12, SSD = 36.36). Education, sex, and
age were not associated with search frequency among MD and HV participants. Among SSD
participants, those who completed high school (n = 25) searched more often than those who
did not (n = 11), and relatedly, young adults with SSD, 20 years and older (n = 28), searched
more than adolescents (n = 8).

Timing of search activity. Over 52 weeks (Fig 2), we found that SSD participants search
significantly more during the 12am-6am period (T = 2.24, p = 0.029) compared to HV. Addi-
tionally, MD participants searched significantly less than HV from 12pm-6pm (T = -2.20,

p = 0.03) and significantly more than SSD from 6pm-12am (T = 2.48, p = 0.015). Education,
sex, and age were not associated with search timing among MD, SSD, and HV participants.

Content of search activity. Over 52-weeks (Table 2), we identified several linguistic dif-
ferences in search content across groups. Participants with SSD were significantly more likely

SSD MD HV Full Sample
36 38 31 105
Mean (SD)

23.11 (3.3) 19.48 (3.1) 25.72 (4.8) 23.12 (4.2)
13.58 (1.8) 13.34 (2.1) 16.41 (1.9) 14.29(2.3)
n (%)

22 (61) 10 (26) 11 (35) 43 (41)
16 (44) 7 (18.4) 5(16.1) 28 (27)
5(13.9) 5(13.2) 6(19.4) 16 (15)
12 (33.3) 11 (28.9) 18 (58.1) 47 (45)
3(8.3) 9(23.7) 2 (6.4) 14 (13)

9 (25) 11 (28.9) 0 (0) 20 (19)
16 (15) 0(0) 0 (0) 16 (15)
8(8) 0(0) 0(0) 8(8)
1(1) 0 (0) 0 (0) 1(0)
2(2) 0 (0) 0 (0) 2(2)
9(9) 0(0) 0(0) 9(9)
0(0) 5(5) 0(0) 5(5)
0(0) 33 (32) 0(0) 33 (31)
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Fig 1. Search frequency across groups over 52 weeks.

https://doi.org/10.1371/journal.pone.0240820.g001

to search using words related to perception (T = 3.08, p = 0.025) and use first (T = 3.01,

p =0.03) and second person pronouns (T = 3.45, p = 0.011) compared to HV. Participants
with MD were significantly more likely to search using words related to negative emotions

(T =2.94, p =0.028), sadness (T = 3.01, p = 0.026), and death (T = 2.71, p = 0.046), and use
first (T = 3.41, p = 0.010) and second (T = 3.22, p = 0.016) person pronouns compared to HV.
HV were significantly more likely to search using more words compared to SSD (T = 3.57,

p =0.009) and MD (T = 3.18, p = 0.018), use more punctuation compared to SSD (T = 3.53,
p =0.009) and MD (T = 3.27, p = 0.015), and use common online abbreviations (i.e., b/c for
“because”) compared to SSD (T = 3.42, p = 0.011).

Within-group differences in search (frequency, timing, and content)

To explore within group differences in search frequency, timing, and content, search data was
aggregated and averaged over one-week intervals. The periods of time within 6 months (24
weeks) closest to hospitalization were defined as periods of “relative illness” as we would expect
symptoms to be most prominent during this time, culminating in hospitalization. These peri-
ods were compared to periods of “relative health,” which consisted of data from the six months
(25-52 weeks) furthest away from hospitalization.

Frequency of search activity. No significant differences in search frequency were found
between periods of relative illness and periods of relative health in all three groups using
repeated measures ANOVA and paired t-tests.

Timing of search activity. Significant shifts were identified in the timing of search activity
in participants with MD and SSD closer to hospitalization (Figs 3 and 4). Compared to periods
of relative health, participants with MD searched significantly less (T = -3.19, p = 0.003) during
the morning hours (6am-12pm) during periods of relative illness. Compared to periods of rela-
tive health, participants with SSD search significantly less (T = -2.30, p = 0.03) during the early
morning hours (12am-6am) during periods of relative illness.
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Fig 2. Search timing across groups over 52 weeks.

https://doi.org/10.1371/journal.pone.0240820.g002

Content of search activity. We identified several significant linguistic shifts in search
content among participants with SSD prior to the first psychiatric hospitalization (Table 3).
Participants with SSD were less likely to use punctuation (T = -4.13, p = 0.0025), less likely to
search for terms related to “seeing” (T =-3.79, p = 0.01), “anger” (T = -3.47, p = 0.023), “nega-
tive emotions” (T = -3.15, p = 0.04), “perception” (T = -3.30, p = 0.03), and “death (T =-3.54,
p =0.04),” in the 12 weeks prior to hospitalization compared to periods of relative health (Figs

5-7). No significant shifts in search content were identified among the MD participants.

Table 2. Linguistic differences in search content across 52 weeks.

HV > MD

Word count (p = 0.018)
Analytic (p = 0.006)
Words per sentence

(p = 0.028)
Punctuation (p = 0.015)
Period (p = 0.018)
Dash (p = 0.023)

HV > SSD

Word count (p = 0.009)
Analytic (p = 0.009)

MD > HV MD > SSD SSD > MD SSD > HV
Authentic (p = 0.010) Filler Semi-Colon Authentic (p = 0.009)
Function (p = 0.006) (p=0.045) (p=0.045) Total pronoun

Words per sentence Total pronoun (p = 0.006) (p =0.009)

(p=0.013) Personal pronouns You (p =0.011)

We (p =0.023) (p = 0.006) I(p=0.030)

Informal (p = 0.013) I(p=0.010) Perception (p = 0.025)

Net speak (p = 0.011)
Punctuation (p = 0.009)
Period (p = 0.009)
Dash (p = 0.021)

https://doi.org/10.1371/journal.pone.0240820.t002

You (p = 0.016)

Prep (p = 0.040)

Aux verb (p = 0.006)
Adverb (p = 0.006)
Negate (p = 0.006)

Verb (p = 0.006)
Interrogation (p = 0.027)
Quant (p = 0.045)

Neg emotion (p = 0.028)
Sad (p = 0.026)

Cog process (p = 0.027)
Cause (p = 0.046)

Focus present (p = 0.006)
Death (p = 0.046)

Focus Present (p = 0.009)
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Fig 3. Shifts in timing of search activity across 24 hours in participants with MD.
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Table 3. Within group changes in content for SSD (comparing periods of relative illness to periods of relative health).

Content of searches
(Relative health > Relative illness)

https://doi.org/10.1371/journal.pone.0240820.t003

Weeks prior to hospitalization

Week 0-4 Week 4-8 Week 8-12
Quote (p = 0.025) Neg emotion (p = 0.04) Death (p = 0.04)
Comma (p = 0.000008) Anger (p = 0.025)
Punctuation (p = 0.0025) Perception (p = 0.03)

See (p =0.01)
Discussion

In this study, we explored the potential for online search activity to serve as a tool to identify
emerging behavioral health disorders. Our results suggest significant differences exist in the
timing, frequency, and content of search activity a year in advance of the first psychiatric hos-
pitalization for participants with SSD and MD, when compared to HV. Furthermore, in the
weeks closest to the date of the first hospitalization, significant shifts in language occurred in
participants with SSD, and significant shifts in timing occurred in individuals with SSD and
MD. While Google data alone is not meant diagnose psychiatric conditions, results demon-
strate the potential for online search activity to be used in conjunction with clinical informa-
tion to inform clinical decision making. Similar to the way a physician might use an x-ray or
blood test to inform health status, search data may one day serve as a viable screening tool to
better gauge risk factors associated with the later development of psychiatric conditions. Iden-
tifying emerging psychiatric symptoms early, before they have an opportunity to escalate to
the point of necessitating hospitalization, is our best chance at transforming trajectories to care
and improving behavioral healthcare experiences and outcomes for patients.

Individuals with SSD and MD demonstrated significantly fewer searches in the year leading
up to the first psychiatric hospitalization as compared to HV, who searched over twice as
much. Counter to our hypothesis, no significant changes in search frequency were noted in
participants with SSD and MD as psychiatric symptoms escalated necessitating a psychiatric
hospitalization. Decreased search activity may be related to very early budding psychiatric
symptoms including reduced motivation, increased fatigue, or decreased interest and engage-
ment with one’s environment [35-37]. Additionally, individuals with SSD are known to expe-
rience cognitive deficits early in the course of illness development, which may contribute to
reduced search activity [38, 39]. These subtle changes may occur well in advance of the first
psychiatric hospitalization. In contrast, reduced search activity may represent a longstanding
risk factor contributing to the later emergence of a psychiatric disorder. To address these ques-
tions, future research will need to extract search data several years in advance of the first psy-
chiatric hospitalization, and to prospectively collect symptom rating scales in individuals
earlier along the course of illness development.

Compared to HV, participants with SSD and MD searched at different times throughout
the day. Temporal differences date back at least a year in advance of the first psychiatric hospi-
talization. Sleep disruption is a common experience for people with psychiatric disorders [40,
41], and many individuals with MD show circadian shifting [42], which results in a preference
for being awake/active late at night. Precisely when sleep disturbances begin, however, is less
well understood. According to our data, sleep dysfunction appears to already be present well
in advance of the first psychiatric hospitalization and significant alterations in search timing
occurred in both patient populations closer to the date of the first psychiatric hospitalization.
As with search frequency, it remains unclear if different temporal patterns represent a change
from baseline activity due to emerging psychiatric symptoms, or rather a persistent irregularity
in sleep contributing to the later development of a psychiatric disorder. In either circumstance,
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extracting online search activity in youth presenting with sleep disturbance may one day serve
as useful collateral information to predict the risk of psychiatric illness development.
Linguistic analysis of search terms identified significant differences in search content over
52-weeks before the first psychiatric hospitalization. Compared to HV, search terms among
participants with SSD and MD demonstrated a greater emphasis on sadness, and perception,

40 group
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¢ ™MD
S 301
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©
= |
© 25 4—*
C
-
o
20 —
15
I ]
relative illness relative health

>

Fig 6. Changes in search content corresponding to “punctuation”.

https://doi.org/10.1371/journal.pone.0240820.g006
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as well as first and second person pronouns. Several linguistic differences existed well in
advance of the first psychiatric hospitalization and it is possible that certain linguistic features
represent a state rather than a trait marker of mental illness. Analyzing word choice could
therefore help to identify people at higher risk of SSD or MD prior to the emergence of clini-
cally significant symptoms. As symptoms progressed, closer to the date of hospitalization, the
content of searches changed significantly among individuals with SSD, but not MD. These lin-
guistic changes may reflect shifting interests, changing mood, preoccupations, social function-
ing, and other domains known to accompany psychotic illness emergence [4]. In contrast to
prior work exploring changes in language use on social media associated with relapse [29], par-
ticipants with SSD were less likely to search for content related to perceptions, anger, and neg-
ative emotions. This may be related to differences in how people compose searches, which are
private and generally intended to find information, versus social media posts, which are public
and may be more likely to be communicating information.

Prior research in linguistic analysis has identified significant differences at the word level in
the use of certain word categories, as well as at the sentence level in terms of semantic density,
coherence, and/or content, both in individuals at risk for developing psychotic disorders as
well as those with established SSD and MD [43-58]. Language extracted from online search
activity is distinct due to its short sentence structure and the unique nature of the online search
platform. As we continue to identify linguistic associations with psychiatric illness, the source
of the language data must be taken into consideration. Future work is needed to better under-
stand the clinical correlates of changing online search content and to identify the point in ill-
ness progression at which linguistic shifts emerge, in order to make the best clinical use of this
information. Additionally, further analysis is needed to identify how language varies depend-
ing on the platform (Facebook vs Google, for example) used, and which has greater clinical
utility.

Several noteworthy limitations should be mentioned. First, our sample size is relatively
small and limits the generalizability of these findings. Second, the majority of our participants
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had medical record documentation that began with the first psychiatric hospitalization, mak-
ing it challenging to know what symptoms were present and for how long prior to hospitaliza-
tion. Given that many individuals report extended periods of untreated illness or comorbid
psychiatric conditions prior to receiving clinical attention [5-8], it is possible that more data,
beyond 52-weeks, is needed to identify shifts in search activity associated with illness progres-
sion. Additionally, future studies should consider monitoring participants prospectively and
leveraging rating scales to more accurately explore how individual fluctuating interests and
psychiatric symptoms impact search behaviors over time. Third, the fact that some participants
searched more than others, may also impact results as there were large differences in the
amount of extractable data across participants. While we do not anticipate that Google data
alone will ever be sensitive or specific enough to establish a particular diagnosis, important
questions for future research will be how much search data is necessary to make a reliable clin-
ical prediction and how individual characteristics influence search behavior within a diagnos-
tic group. Finally, eligibility criteria ranged from 15 to 35 years to reflect the inclusion criteria
of the Early Treatment Program, however adolescents may engage with the Internet in a dis-
tinct manner compared to young adults and future initiatives will need to consider the impact
of age as well as other demographic characteristics, such as sex, and education level on search
activity.

Search patterns hold promise for gathering objective, non-invasive, and easily accessed,
indicators of psychiatric symptom emergence. Utilizing online activity as collateral behavioral
health information would represent a major advancement in efforts to capitalize on objective
digital data to improve mental health screening. This would be a significant step forward for
psychiatry, which has historically been limited by its reliance on self-reported data. However,
how to effectively and ethically incorporate personalized patterns of online activity into public
health initiatives and clinical workflow are critical questions [59]. The data utilized in the cur-
rent study were obtained from consenting participants who were fully informed of the risks
and benefits of participation. Furthermore, the data were extracted and analyzed locally at
Northwell Health and remained entirely within a HIPAA compliant secure database to ensure
the privacy of our participants. Nonetheless, this field of research evokes a host of challenging
questions and concerns related to ethics, privacy, consent, and clinical responsibility. Interdis-
ciplinary teams of researchers, clinicians, and patients must continue to work together on
identifying and solving these important ethical dilemmas. Importantly, investigators must
develop standards to protect the confidentiality and the rights of this sensitive population to
avoid misuse of personal information and ensure that the data and the technologies are used
in the service of positive outcomes for clinicians and the patients they treat.
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