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ABSTRACT

Weak gravitational lensing measurements based on photometry are limited by shape noise, the
variance in the unknown unlensed orientations of the source galaxies. If the source is a disk galaxy
with a well-ordered velocity field, however, velocity field data can support simultaneous inference of the
shear, inclination, and position angle, virtually eliminating shape noise. We use the Fisher Information
Matrix formalism to forecast the precision of this method in the idealized case of a perfectly ordered
velocity field defined on an infinitesimally thin disk. For nearly face-on targets one shear component,
γ×, can be constrained to 0.00390

I0
25
npix

where I0 is the S/N of the central intensity pixel and npix
is the number of pixels across a diameter enclosing 80% of the light. This precision degrades

with inclination angle, by a factor of three by i=50◦. Uncertainty on the other shear
component, γ+, is about 1.5 (7) times larger than the γ× uncertainty for targets at i = 10◦

(50◦). For arbitrary galaxy position angle on the sky, these forecasts apply not to γ+ and γ× as defined

on the sky, but to two eigenvectors in (γ+, γ×, µ) space where µ is the magnification. We also forecast
the potential of less expensive partial observations of the velocity field such as slit spectroscopy. We
conclude by outlining some ways in which real galaxies depart from our idealized model and thus create

random or systematic uncertainties not captured here. In particular, our forecast γ× precision
is currently limited only by the data quality rather than scatter in galaxy properties
because the relevant type of scatter has yet to be measured.

Keywords: gravitational lensing: weak

1. INTRODUCTION

Weak gravitational lensing is a key technique in mod-
ern cosmology, in which the gravitational field of a ce-

lestial object is reconstructed from the distortion it im-
prints on background sources of light; see Bartelmann &
Maturi (2017) for a recent review. The distortion is de-

scribed in terms of shear, defined as stretching the image
in one direction and compressing it in the perpendicu-
lar direction, and convergence, defined as an isotropic
stretching. Shear can be depicted as a headless vector
with a dimensionless magnitude and a position angle
(PA) on the sky modulo 180◦, or in terms of two com-
ponents separated by 45◦ in PA. Shear is inferred from
the observed shapes of source galaxies, under the as-
sumption that galaxies have no preferred orientation in
the absence of lensing. The fundamental source of noise

in this approach is the large intrinsic scatter in galaxy
orientations, called shape noise. This scatter is such that
the shear on a single galaxy is uncertain by at least 0.2
in each component, while the relevant signal is usually
much smaller. Averaging over many source galaxies in a
given patch of sky builds the signal-to-noise ratio (S/N),

but correspondingly decreases the angular resolution of
the reconstruction.

Techniques to measure convergence also face substan-

tial amounts of noise. Convergence leads to magnifica-
tion, which increases the flux of sources while decreas-
ing the effective area of sky probed. This can shift the
counts of sources as a function of apparent magnitude
(eg, Morrison et al. 2012; Garcia-Fernandez et al. 2016).
This is again a technique that relies on aggregation of
many sources due to the low information content of each

individual source.
To increase the information content of an individual

source, we must know more about its unlensed state. A
recent idea in this regard is that a source with a well-
ordered velocity field, such as a rotating disk galaxy,
can potentially provide that information. The velocity
in each pixel provides a tag that helps place that pixel
in the source plane—a more specific tag than is possi-
ble with the intensity field. Although velocity measure-
ments are more expensive than intensity measurements,

the gain in per-galaxy precision is potentially quite large.
This paper aims to quantify that gain with a Fisher in-
formation matrix analysis.
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First, we briefly outline the history of the velocity field
idea. Blain (2002) first recognized that shear perturbs
the symmetry of the velocity field. He used a rotat-
ing ring toy model to show how velocity measurements
could constrain the shear component at 45◦ to the source
galaxy’s unlensed photometric axes, which we call γ×.
Morales (2006) extended the velocity-field idea to full
disk galaxies, and provided a clear picture of how γ×
causes the major and minor velocity axes to deviate
from perpendicularity. A version of this method has
been implemented by de Burgh-Day et al. (2015), who
infer the shear by determining the transformation re-
quired to restore symmetry to the velocity map. They
find that shears as small as 0.01 are measurable in sim-
ulations, and they find shears consistent with zero, with
uncertainties ∼ 0.01, on unlensed nearby disk galaxies.
However, their approach is still insensitive to the com-
ponent of shear along the unlensed photometric axes be-
cause that component, which we call γ+, preserves the

symmetry of the velocity field.
γ+ does change the observed axis ratio, so Huff et al.

(2013) proposed constraining this component as follows.
They propose predicting the total rotation speed of the

galaxy using the Tully-Fisher relation (Tully & Fisher
1977), then comparing this prediction with the mea-
sured line-of-sight rotation speed to find the inclina-

tion of the disk. Assuming the disk to be circular when
viewed face-on, the inclination uniquely predicts the un-
lensed axis ratio, which effectively removes the problem

of shape noise. The Huff et al. (2013) goal of design-
ing an efficient large cosmic shear survey led them to
propose minimal velocity-field measurements per galaxy
(slit spectra along the apparent photometric axes) and

to assume approximations, such as the low-shear limit
and negligible magnification, that may fail in more gen-
eral lensing situations. Considering that de Burgh-Day

et al. (2015) needed the full velocity field of a very well-
resolved nearby galaxy to infer γ×, it is not clear that
shear could be measured precisely using only crossed
slits along the photometric axes. Nevertheless, the in-
sight of Huff et al. (2013)—that symmetry is not the
only source of information in the velocity field—is po-
tentially powerful and deserves further investigation.

This paper uses the Fisher Information Matrix for-
malism to forecast the best achievable performance in
the case of perfectly ordered rotation and an infinitesi-

mally thin disk. This is highly idealized, but the point is
to determine whether the method is promising enough
to justify further development. Therefore, we forecast
the best possible performance across a wide range of
scenarios: from zero-shear lines of sight on up to higher-
shear lines of sight, from nearly face-on targets to nearly
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Figure 1. Effect of finite disk thickness. A line of sight
probes particles at a range of cylindrical galactocentric dis-
tances R depending on their height above or below the mid-
plane. Where the rotation curve is approximately linear in R
across the range ∆R, the above- and below-plane contribu-
tions are approximately equal and opposite, which preserves
the mean velocity but increases the linewidth. Hence to first
order the disk can be modeled as an infinitesimally thin disk
but with greater linewidth.

edge-on targets, from full velocity-field observations to

crossed slits and so on.
The remainder of this paper is organized as follows.

In §2 we describe and illustrate the method; in §3 we

present the resulting forecasts; and in §4 we discuss the
implications.

2. METHOD

We assume an infinitesimally thin disk galaxy with a
polar (R,φ) coordinate system specifying particle loca-

tions. Viewed at inclination i (where i = 0 is face-on)
but before lensing, we define an (x, y) coordinate system,
in which

x=R cos(φ− φ0) cos i (1)

y=R sin(φ− φ0) (2)

where φ0 is the unlensed PA of the apparent major axis.
The velocity field is assumed to be a function only of R,
with measured line-of-sight velocity vlos = v(R) sin(φ−
φ0) sin i.

Note that, to first order, a finite-thickness disk can be
modeled as an infinitesimally thin disk but with greater
linewidth. Figure 1 illustrates the argument: stars along
the line of sight above and below the disk depart from
the midplane value of R in equal and opposite ways.
Therefore the mean velocity for this line of sight is un-
changed if the rotation curve is linear in R across the
range of R probed by the line of sight. The line of sight
does, however, encounter a wider range of velocities than

would be the case for an infinitesimally thin disk, lead-
ing to a greater linewidth unless the rotation curve is
approximately flat across the range of R probed by a
given line of sight. Real galaxies will present additional
complications, such as bulges and warps. We stress that
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Figure 2. Velocity fields before lensing (left), after applying
γ+ = 0.1 (middle), and after applying γ× = 0.1 (right).
The galaxy has maximum rotation speed of 220 km/s and is
inclined at 1 radian to the line of sight. The colorbar shows
units of km/s.

our approach here is to explore the optimal case of a bul-

geless, dynamically cold thin disk in order to establish
the limits of this method, reveal parameter degeneracies
and requirements for priors, and identify key assump-

tions that will need to be explored further.
Lensing transforms the coordinates described above to

observed coordinates, which we denote with primes:[
x′

y′

]
= A−1

[
x

y

]
(3)

where

A−1 = µ

(
1− κ+ γ+ −γ×
−γ× 1− κ− γ+

)
(4)

Here κ is the convergence, which is proportional to the
surface mass density; µ = 1

(1−κ)2−γ2 is the magnifica-

tion, and γ =
√
γ2+ + γ2× is the magnitude of the shear.

We choose to parametrize the shear in terms of γ+ and

γ×, which are dimensionless quantities with identical
ranges, rather than a magnitude and a PA. Then, the
lensing matrix can be completed by specifying either κ
or µ. We choose µ because prior information on µ is
more likely to be available through other methods.

With this in mind, the left panel of Figure 2 shows
an unlensed model velocity field for i = 60◦ and fortu-
itously aligned with the coordinate axes. The middle
and right panels show the same field after lensing by
γ+ and γ× respectively. (All fields in this figure are
cropped at a consistent physical radius; this guides the
eye but may overstate the power of the method, be-
cause such cuts and comparisons will not be available to

the data analyst.) The right panel displays the asym-
metry discussed in the introduction, which we will as-
sociate with γ× throughout the paper. Our formalism
defines the shear components with respect to sky coor-
dinate axes rather than the galaxy axes, so in practice

the asymmetry-causing component need not be γ× as
defined on the sky. Although the physical distinction is
between shear components aligned and not aligned with
the apparent unlensed galaxy axes, we choose not to de-
fine the components this way because in practice the
unlensed axes are unknown. By defining shear compo-
nents on the sky, we adopt the basis in which shear will
actually be used. That said, to highlight physical be-
haviors we will typically align the galaxy as in Figure 2
and refer to γ× as causing the asymmetry.

A key assumption is that the unlensed velocity field
has the symmetry shown. Under this assumption, the
data analyst can determine γ× because the relevant un-
lensed condition is known. The effect of γ+ is to change
the apparent axis ratio, so measuring γ+ requires knowl-
edge of the unlensed axis ratio. That axis ratio is set by
the inclination, an effect distinct from that of γ+ in that
inclination also changes the line-of-sight velocity. It is
conceptually useful to consider the extreme case of a uni-

form observed velocity field, from which we can deduce
that the galaxy must be viewed face-on. This implies a
unlensed axis ratio of unity, so we can deduce γ+ from
the observed axis ratio, with no shape noise.1 The key

is the ability to deduce a unlensed axis ratio from the
velocity field amplitude; this is a way of restating the
idea of Huff et al. (2013).

To go beyond this conceptual understanding we must
choose quantitative models for the intensity and veloc-
ity fields. First, we define the parameter r80, which
is the radius that encircles 80% of the galaxy light.

For an exponential disk, this is 2.99 times the expo-
nential scale length. The intensity field is specified by
I = I0 exp(− 2.99R

r80
), where the parameter I0 represents

the central intensity. We set the intensity uncertainty
in each pixel to unity, so I0 represents the S/N of the
intensity measurement in the central pixel. The inten-

sity uncertainty field is uniform because sky noise, rather
than photon noise from the galaxy itself, is the dominant
uncertainty in broadband imaging of most galaxies. We
set the fiducial value of I0 to 90, which is a high S/N
reflecting the fact that bright galaxies are the likeliest
targets for integral field spectroscopy. The velocity un-
certainty is set by σv,0, the uncertainty in the central
pixel (with a fiducial value of 10 km/s) and grows ex-
ponentially with R because source photon noise is likely
to be the limiting factor.

We adopt a simple arctan rotation curve: v =
vmax

2
π arctan R

r0
, where the factor 2

π ensures that
v → vmax as r → ∞ given an arctan function that

1 In practice, there will still be some uncertainty due to uncer-
tainty in the intrinsic circularity of face-on disks.
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Figure 3. Partial derivatives of the velocity (left) and intensity (right) fields with respect to each of the parameters, for an
inclination of 20◦ (top row) and 60◦ (bottom row). The colorbar units are km/s on the left, and arbitrary intensity units on
the right. To keep the scales roughly the same across panels, we show the change in velocity per 0.01 change in shear and
convergence. The form of the velocity field itself can be seen in the ATF panels on the left because that field is linear in ATF .
Similarly, the form of the intensity field can be seen in the I0 panels on the right.

returns radians. We also investigated the more com-
plicated Universal Rotation Curve (URC; Persic et al.
1996; Salucci et al. 2007) and found the results to be
nearly identical; a few minor differences will be dis-
cussed in §3.8. With either form, the rotation curve has
a scale length independent of the scale length describing
the intensity field. If these two scales were the same,
the model would be more constrained and yield higher
precision, but the scales do appear to differ in observed
galaxies.

vmax is related to the intensity field via the Tully-
Fisher relation (TFR) as follows. The TFR empirically
states that L ∝ vnmax where n ≈ 4, with a scatter in
luminosity or stellar mass of about 16% (Miller et al.
2011). This implies that at fixed L the scatter in vmax is

about 4%. For an exponential disk, the total luminosity
is L ∝ I0r

2
80, so the TFR predicts vmax ∝ (I0r

2
80)0.25.

With our fiducial values of I0 and r80 (12.5 pixels), we
need vmax = 20(I0r

2
80)0.25 to produce a typical rotation

speed around 200 km/s.2 Hence we define a Tully-Fisher
amplitude, ATF , with a fiducial value of unity, such that
vmax = 20ATF (I0r

2
80)0.25. We then place a prior of ±4%

on ATF .
Table 1 summarizes the parameters for this model, in-

cluding the nuisance parameters x0, y0, v0 describing the
galaxy position on the sky and systemic radial velocity.

2 More precisely, vmax = 218 in this case, but note that in the
arctan model vmax is reached only as R→∞.
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The units listed in this table are relevant to the fore-
cast precision plots presented below; units are omitted
for dimensionless quantities. The results can be quite
sensitive to the inclination angle i, so i will be varied
in many plots rather than remaining fixed at a fiducial
value.

We construct velocity and intensity fields extending to
a radius of r80, thus encompassing 25×25 pixels each.
We compute partial derivatives numerically to a rela-
tive precision of order 10−11 using the algorithm in Sec-
tion 5.7 of Press et al. (1992), which we re-implement
in Python. Figure 3 shows the partial derivatives of the
velocity and intensity fields with respect to each param-
eter at two different inclinations. These figures will help
readers understand which parameters are highly corre-
lated. Note that ATF , I0, i, and r80 have nearly identical
effects on the velocity field. For ATF this is broken by
its lack of effect on the intensity field, but I0 and r80 also
have nearly identical effects on that field—with opposite

sign, but the sign is not relevant for determining degen-
eracy and correlation. The effect of i on the intensity
field is not identical to that of I0, but there is a good
deal of overlap, indicating that the three parameters I0,

i, and r80 will be highly correlated. Magnification (µ)
joins this family because its effect on both velocity and
intensity fields is much like −I0, and its effect on the

intensity field is identical to changing the intensity scale
length r80. Finally, r0 is linked with all these parame-
ters because, as a rotation curve scale length, its effect
on the velocity field is identical to that of magnification

µ. The strength of these correlations will vary with the
specific values of inclination, shear, and so on: Figure 3,
for example, shows that by i = 60◦ perturbations in i

affect the velocity field differently than perturbations in
I0 and r80.

For any given value of i, we concatenate the velocity

and intensity fields into a Python data structure repre-
senting a generalized data field we denote ~D. Denoting
the set of parameters as P , the Fisher matrix elements
are then

Fij =
∑
pixels

~σ−2(
∂ ~D

∂Pi
)(
∂ ~D

∂Pj
) (5)

where i and j index the parameters, and ~σ is the un-
certainty field associated with the data field. We then
invert the Fisher matrix to obtain the covariance ma-
trix C. We also compute the correlation matrix ρ ≡
D−1CD−1 where D ≡

√
diag(C).

3. RESULTS

3.1. Degeneracies

We find that ∂ ~D
∂γ+

is a linear combination of the

other partial derivative fields. The coefficients

depend on the parameter values themselves, but
for concreteness we display the coefficients for
our fiducial scenario at i = 30◦:

∂ ~D

∂γ+
+199

∂ ~D

∂i
−180

∂ ~D

∂I0
+4

∂ ~D

∂r0
+12.5

∂ ~D

∂r80
−6

∂ ~D

∂ATF
= 0

(6)
Hence, a model can be transformed into another
model with a different γ+ value that predicts the
same data, providing that we:

• increment i to preserve the apparent axis
ratio despite the change caused by γ+. (In
our setup, the unlensed apparent major axis
is in the “y” direction while positive γ+ acts
to stretch the “x” direction, hence one must
make the galaxy more edge-on to counteract
positive γ+.)

• decrement I0 to preserve the apparent sur-
face brightness. (In our model the galaxy
is transparent, so making it more edge-on

had the side effect of increasing the appar-
ent surface brightness.)

• increment r80 to preserve the observed an-
gular size of the major axis of the intensity
field. In concert with the change in inclina-
tion angle, this also preserves the apparent

minor axis.

• increment r0 to preserve the observed angu-

lar scale of the rotation curve’s rise. The co-
efficients on r80 and r0 here are equal to their
fiducial values, confirming that dγ+ equals

the fractional change in each apparent size,
as it should when κ = 0.

• finally, we have to preserve the Tully-Fisher
relation. To preserve the amplitude of the
observed velocity-field pattern despite be-
ing more edge-on, our model must sup-

pose a lower rotation speed, thus decreas-
ing ATF. Alternately, the same effect can
be achieved by adjusting µ, which allows a
lower-luminosity model to fit the intensity
field.

The specific linear combination depends on the
scenario, but always involves ATF, µ, I0, i, r0, and
r80. It also involves φsky if the γ× is nonzero, and
γ× if φsky is nonzero. We tested a parametriza-
tion in terms of reduced shear (g+(×) ≡

γ+(×)

1−κ )
rather than shear. This did not change the set
of interdependencies. We find similar dependen-

cies parametrizing in terms of κ rather than µ.
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Table 1. Model parameters

Symbol Fiducial value Unit Description

ATF 1 - vmax as a fraction of the Tully-Fisher prediction

I0 90 - intensity S/N at center

i varies deg inclination angle

φsky 0 deg sky position angle of unlensed major axis

r0 4 pixel rotation curve scale length

r80 12.5 pixel radius of 80% encircled light

x0 0 pixel center of galaxy in x coordinate

y0 0 pixel center of galaxy in y coordinate

v0 0 km/s galaxy systemic radial velocity

γ+ 0 - shear parallel to sky coordinates

γ× 0 - shear at 45◦ to sky coordinates

µ 1 - magnification

Data parameters

npix 25 pixel field diameter

σv,0 10 km/s uncertainty in v, central pixel

This degeneracy prevents the Fisher matrix from
being inverted.

The TFR should be effective at breaking this
degeneracy, in the sense that a fractional change
in γ+ requires a large fractional change in ATF, in
tension with the TFR. But the fact that a tweak

in µ can substitute for a tweak in ATF leaves the
Fisher matrix still noninvertible.

However, when finite steps are taken along the

degeneracy direction, the data change quadrati-
cally with the step size, suggesting that data can
indeed constrain the model. We have confirmed

this with Markov Chain Monte Carlo (MCMC)
explorations of the likelihood surface: our fidu-
cial data constrain µ to slightly better than ±0.1
at all inclinations. Hence we support the Fisher

forecast by placing a prior of ±0.1 on µ. The fact
that data constrain µ as well as all the other pa-
rameters is potentially important and will be fur-

ther explored in a subsequent paper using higher
order expansions of the likelihood surface (Heav-
ens 2016) and/or MCMC techniques.

The physical context is that µ = 1 in the absence of
lensing; only the densest lines of sight have µ approach-
ing 2 or more; and for those lines of sight the fact that µ
is high will generally be known in advance. We also note
that the weak lensing formalism used here breaks down
at high magnification. Specifically, we assume that the
matrix A (hence the parameters γ+, γ×, and µ) is con-

stant over the extent of the target galaxy, and this is not
generally the case along strongly lensed lines of sight. In
those cases, more traditional strong-lensing techniques
will be preferred, although it is possible that the veloc-

Table 2. Priors

Parameter Width (Gaussian σ)

ATF 0.04

µ 0.1

ity field can complement the intensity field in constrain-
ing the strong-lensing reconstruction (Rizzo et al. 2018).

For all these reasons, the µ uncertainty on a typi-
cal weak lensing line of sight would approach 0.1
in any case, so our prior is a good match to the

physical situation. Table 2 lists the priors applied as
part of our standard forecast.

With this prior in place, we invert the Fisher ma-
trix. Numerical instability in matrix inversion gener-

ally becomes important if the inverse of the condition
number, the ratio between largest and smallest modulus
eigenvalue, is not much larger than the inaccuracies in
our knowledge of the matrix elements (Vallisneri 2008).
With the µ prior we find condition numbers ranging
from ≈ 106.5 at i = 10◦ to ≈ 1011.5 at i = 80◦.
The inverse of the latter overlaps the ∼ 10−11 un-
certainty in our numerical differentiation cited
above.3 Hence, we cannot make numerically sta-
ble forecasts for galaxies close to edge-on. We
limit our forecasts to those with condition num-
ber < 108 (i ≤ 50◦). Appendix A shows that fore-
casts with these condition numbers match very

well with MCMC explorations of the likelihood

3 For standard double precision arithmetic, the relative round-
ing error is ≈ 10−16, so machine precision is a subdominant un-
certainty here.
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surface. In the verified results below, the shear
constraints consistently degrade as the inclina-
tion increases from 10◦ to 50◦, so there is little
reason to push the forecast to higher inclination.

Figure 4 shows the resulting correlation matrices for
low- and high-inclination cases. The parameters in
the family discussed above (ATF, I0, i, r0, r80,
γ+, and µ) are indeed correlated, with some in-
crease in correlation at higher inclination. Sep-
arately, there is an anticorrelation between φsky
and γx, which is moderately strong at i = 20◦

but quite strong at i = 50◦. This suggests that
higher inclinations will yield looser constraints
for both shear components. These correlations set
the stage for understanding our primary products, fore-
casts of precision on each parameter.

3.2. Fiducial forecast

We repeat the process of building and inverting the
Fisher matrix in order to present these forecasts as a

function of i, as shown in Figure 5. The main features
are:

• The i-dependence is dramatic: face-on targets

yield much more information. This is perhaps
counterintuitive because such a target will have
a featureless velocity field, but in our idealized
model such a featureless field carries the informa-

tion that the unlensed image is exactly circular,
which is most sensitive to shear.

• The γ× precision is tighter than than the γ+ pre-
cision by a factor of 1.5 (at i=10◦) to 7 (at

i=50◦). This is because γ+ inference depends cru-
cially on prior knowledge of vmax and µ while γ×
inference depends on a more fundamental symme-
try argument. The precision of that symmetry ar-
gument depends, of course, on the assumption that
real galaxy velocity fields have negligible shearlike

modes, so this assumption is one that should be
tested in further work.

• In this high-S/N and well-resolved scenario, both
shear components can be inferred to a precision of
0.01 or better if the target is nearly face-on. At
50◦ (close to a typical value for randomly selected
targets) γ× can still be inferred to this precision
but the constraint on γ+ is less useful. (§3.4 will
show that a linear combination of γ+ and µ can
still be constrained at this inclination.)

3.3. Dependence on Tully-Fisher prior

Tightening the Tully-Fisher (TF) prior has no effect
on the γ+ forecast because the dominant source of un-
certainty for γ+ is uncertainty in µ, at least in our fidu-
cial setup. This raises the question of how loose a TF
prior is tolerable. We found a . 10% relative effect on
γ+ uncertainty when the prior is loosened from 0.04 to
0.08, and ≈ 30% relative effect when further loosened
to 0.16 (i.e., 16% scatter in rotation speed at fixed lu-
minosity, or almost a factor of two scatter in luminosity
at fixed speed). In summary, we see a substantial effect
on γ+ when the TF prior becomes looser than the prior
on µ. Conversely, the current level of TFR scatter is
low enough that uncertainty in µ will remain the factor
driving the γ+ uncertainty for the foreseeable future.

Note that neither µ nor TF priors affect the γ× fore-
cast. In our idealized model, the limiting factor on γ×
precision is merely the precision and resolution of the
velocity field measurements. This is unlikely to be the
case in nature, where velocity fields are not perfectly
orderly. An important task beyond the scope of this pa-

per is to quantify the leading sources of γ× uncertainty
and systematic error due to natural variations from this
idealized model.

3.4. Eigenvector decomposition

A striking feature of our results so far is the dramatic
growth of γ+ uncertainty with inclination, from about
1.5 times the γ× uncertainty at i = 10◦ to about

7 times the γ× uncertainty at i = 50◦. In this
subsection we show that this is largely due to greater
mixing of γ+ and µ as i increases. To better illustrate

what happens at high inclination, we go slightly
beyond our standard range of 10◦− 50◦ and use a
very loose µ prior of ±1.

Figure 6 illustrates the constraints in the (γ+, µ) plane

at three representative inclinations. At low inclination
the constraints on γ+ and µ are nearly orthogonal. This
makes sense because µ should be irrelevant in the face-
on case: given a uniform velocity field, the unlensed
galaxy is circular so both components of shear can be
determined precisely. At higher inclination, however,
the constraint ellipse rotates in the (γ+, µ) plane. With
the µ uncertainty remaining ±1, this rotation greatly
expands the uncertainty on γ+.

Some of the precision could be recaptured by
parametrizing the lensing in terms of eigenvectors of
the (γ+, µ) submatrix of the covariance matrix. These
are represented graphically by the major and minor

axes of the ellipses in Figure 6. Although the minor axis
does increase with i, it increases only about one-fifth as
much as the γ+ uncertainty; the increase in the latter is
mostly due to the eigenvector rotation.
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pixels encompassing ±r80 across the source major axis.
The γ+ constraint is 1.5–7 times looser, depending on
inclination. Both constraints degrade substantially at
higher inclinations.

In more detail, we find:

• The model is degenerate under infinitesimal
displacements in specific directions in pa-
rameter space. However, the data change
quadratically with step size along these di-
rections, so the data can constrain all pa-
rameters. The quadratic effect can be em-
ulated in the Fisher matrix formalism by
putting a ±0.1 prior on µ.

• For our fiducial zero-shear scenario, constraints on
γ× are precise to better than 0.01 for targets in-
clined by less than ≈ 55◦—nearly half of all ran-

domly inclined disks. This precision is a useful
benchmark because it is roughly 20 times better
than the per-galaxy precision for standard weak

lensing, and also matches that found by de Burgh-
Day et al. (2015). This precision, if true for both
shear components, would make one velocity-field
target worth roughly 202 = 400 galaxy images,

thus providing strong motivation to obtain the
more expensive velocity-field observation.

• This precision is more difficult to reach for γ+, the
shear component parallel/perpendicular to the un-
lensed apparent major axis. With our default prior

on µ (±0.1) only targets with i < 25◦ reach 0.01
precision on γ+. This is a small minority of ran-
domly inclined disks. Furthermore, for this select
group of targets the assumption of face-on circu-

larity is likely to be crucial, and bears further in-
vestigation.

• For either component, constraints degrade with in-
creasing i. For γ+ the trend is somewhat steeper
so targets with substantial inclination become un-
interesting. The precision can be improved some-
what if a tighter prior on µ can be justified.

• the Tully-Fisher relation is not a limiting factor.
A fractional velocity scatter smaller than the prior
on µ is sufficient.

• The notion of a well-measured γ× and a less well-
measured γ+ is useful for conceptual understand-
ing, but for general source PA the result is more
complicated. Of the three parameters (γ+, γ×, µ)
two eigenvectors can be well measured and the
third is constrained only by the prior on µ. In the
fiducial case, γ× is an eigenvector but the γ+-like

eigenvector includes a µ component, hence con-
straints on γ+ look worse. As i increases that
eigenvector rotates to include more µ, so the pure
γ+ constraints degrade more rapidly than the γ×
constraints. If one chooses to measure the γ+-
like eigenvector rather than γ+, the constraints
degrade somewhat less rapidly with i.

• In the presence of shear, the nominal γ+ and γ×
constraints degrade, but this is due to eigenvector
rotation in the (γ+, γ×, µ) space. The eigenval-
ues are equally well constrained in the presence or
absence of shear.

• A per-pixel velocity uncertainty of 10–20 km/s is
adequate, with smaller uncertainties yielding only
marginal improvements.

• Observing a subset of the velocity field via crossed
slits may be a viable strategy for reducing observ-

ing expense. In the fiducial case (φsky = 0) this
causes a factor of 2–3 degradation in the pre-
cision of each component. A more realistic as-
sessment of crossed slits versus full velocity fields

will require exploration of how real disk galaxies
depart from our idealized assumptions as well as
slit placement uncertainty.

Our model is highly idealized. It assumes:

• The galaxy is circular when viewed face-on.

• The velocity field is well ordered and completely
described by a simple analytical function. The
choice of rotation curve does not appear to matter,

but the azimuthal symmetry surely matters.

• The velocity and intensity fields share a single in-
clination angle and PA. With the arctan rotation
curve, there is no other link between the two fields
(apart from the Tully-Fisher relation). With the
URC, there is a link via r80 but this does not lead
to tigher constraints because the limiting factors
lie elsewhere.

• The disk is infinitesimally thin. The finite thick-

ness of real disks will likely loosen the constraints
at higher inclinations, because our forecast does
not account for the increased velocity width in
each pixel nor for extinction.

• No additional structure such as bulges, bars, or
warps. Bulges may add noise, but bars and warps
seem more concerning in terms of biases. Never-
theless, de Burgh-Day et al. (2015) did succeed in
inferring a plausible γ× (≈ 0.01 ± 0.01) for radio
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observations of an unlensed nearby galaxy with a
prominent gas warp, so it is possible that warps
do not disturb the velocity-field symmetry in the
same way that shear does. On the other hand,
if the precision cited by de Burgh-Day et al.
(2015) is due to typical galaxy features, fu-
ture forecasts will need to account for this,
with ∼0.01 becoming the γ× noise floor. More
work is needed to address this question.

The salience of warps may hinge on the velocity-field
tracer: gas or stars. Gas is a convenient tracer for both
radio and optical spectroscopy, but is also susceptible
to inflows and outflows as well as warps. If this leads
to the velocity equivalent of shape noise, the velocity-
field method could become much less attractive. Stel-
lar velocity fields are more orderly, but obtaining veloc-
ity fields from stellar absorption lines will require much

more observational effort.
These observational choices are also tied to the ques-

tion of whether the velocity and intensity fields must

come from the same tracer. In our model the two fields
are linked by a common center, inclination, and PA. The
fact that our forecast is sensitive to the intensity field

S/N suggests that reaching the 0.01 level does require
constraints on the disk center, inclination, and PA be-
yond those derivable from the velocity field itself. There-
fore, misalignments between intensity and velocity fields

are a potential source of concern.
Recent observations indicate the potential for such

misalignments. Figure 9 of Contini et al. (2016) com-

pares the difference between the kinematic PA, as ex-
tracted from observations with the MUSE integral field
spectrograph at the VLT, with the morphological PA as

extracted from HST/F814W broadband images. They
find one galaxy (of 27) with a large PA difference that
cannot be related to poor resolution or by being nearly
face-on (where PA is less well defined): the source of
this difference is a bar. Even among the nearly face-
on cases, they attribute some of the PA differences to
structures such as spiral arms, bars, or clumps. Simi-
larly, Wisnioski et al. (2015) find some significant offsets
between the PA of broadband light and of the velocity
field as traced by Hα emission with the KMOS integral
field spectrograph at the VLT. It is possible that such

offsets would be reduced (albeit at additional observa-
tional expense) if stars were used to trace both velocity
and intensity fields. Other potential steps to mitigate
this source of error could be to model bars and spiral
arms out of the intensity field, and/or to introduce a
nuisance parameter representing the intensity-velocity

PA offset and marginalize over it.

This concludes a long list of sources of uncertainty,
yet to be quantified, that could prevent this method
from being of practical use. Yet there are substantial
strengths to this method as well:

• At favorable inclinations, tight constraints are
achievable even with uninformative priors on µ.

• The method may work well with fitting mass mod-
els to lenses. Each background source will yield a
constraint that may span a range of γ+, γ×, and µ
but is a long, narrow ellipsoid in (γ+, γ×, µ) space.
Because a mass model predicts, for a given line of
sight, a unique point in that space, the ellipsoid is
likely to be highly constraining regardless of how
it is oriented in that space. That said, the most
highly constrained principal axis of this ellipsoid
corresponds to our fiducial γ× forecast, so this ar-

gument does not allow parameter inference better
than our fiducial forecast. Rather, inferences that
cannot take advantage of the eigenvectors may be
limited to the precisions presented in Figures 8 and

9.

• This is a method of obtaining a high-precision
shear measurement along a single line of sight,

whereas traditional weak lensing enables this pre-
cision only after averaging over a large area of sky.
These are different and potentially complementary
types of information. The velocity field method,

for example, may yield more information about
localized substructures, which are effective probes
of certain aspects of dark matter (see, e.g., Drlica-

Wagner et al. 2019 for an overview).

Morales (2006) also argued that this method avoids
some of the major systematic errors of traditional weak

lensing. For example, he argues that the PSF is no
longer a first-order contributor to systematics. How-
ever, our assumption that the source is well-resolved im-
plies that the PSF would be largely irrelevant for these
sources regardless of the method. He also argues that
this method is less susceptible to contamination by in-
trinsic alignments. It is indeed robust against scenarios
in which source galaxies are aligned in the absence of
lensing, because the shear is measured independently on
each target. But there are more subtle intrinsic align-

ment scenarios (Hirata & Seljak 2004). Imagine that
Galaxy A sits in a gravitational tidal field that directly
affects its velocity field by perturbing the orbits of its
stars, while Galaxy B is a background source lensed by
that gravitational tidal field. To the extent that the
velocity field perturbation in Galaxy A mimics lensing
modes, it will have an “intrinsic shear” that is corre-
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lated with the lensing shear on Galaxy B. In fact, this
is perhaps the most important open question here: can
an external tidal field, perhaps due to a neighbor or
satellite, induce shearlike perturbations in a disk’s ve-
locity field? If so, marginalizing over a range of such
velocity field models could introduce significant uncer-
tainty. Whatever their origin, natural sources of uncer-
tainty will degrade γ× more than γ+ because the γ×
forecast currently is limited only by the precision of the
velocity measurements.

A possible extension to this method is to analyze the
velocity dispersion field as well (which requires no addi-
tional observations). The dispersion field is nonuniform
because the disk’s radial, tangential, and vertical dis-

persions contribute differently to the line-of-sight dis-
persion, depending on azimuth. This yields unlensed
symmetry that differs from that of the velocity field: it
is symmetric about both major and minor axes. How-
ever, it is unlikely that this would contribute substan-
tially to the Fisher information, because the azimuthal
variations are small.
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APPENDIX

A. VERIFYING THE FISHER FORECAST WITH AN EXPLORATION OF THE LIKELIHOOD SURFACE

We employ the Markov Chain Monte Carlo (MCMC) code emcee (Foreman-Mackey et al. 2013) to sample the
likelihood surface. emcee implements an affine-invariant sampling algorithm, and hence performs well even on highly
degenerate systems, provided they are not strongly multimodal (Goodman & Weare 2010).

For each case we generate mock data and add the fiducial amount of noise to the velocity and intensity fields. In

addition to the Tully-Fisher prior used in the main text (±0.04 on ATF) we place flat step function priors on other
parameters to keep the model physically well defined: ATF, I0, r0, r80 ≥ 0; i in [0, 90◦); φsky in [0, 45◦); and µ > 0.
Note that we do not apply the ±0.1 prior on µ used for the Fisher forecasts; the data already constrain

µ to this level due to their quadratic dependence on steps in the degeneracy direction. We initialize one
thousand walkers in a small ball around the correct values. We run the Markov chain for ≈ 1000 autocorrelation times
as a burn in, followed by an additional ≈ 1000 autocorrelation times to record the positions of the walkers.

We first examine our fiducial case at the extremes of i = 10◦ (Figure 12 and i = 50◦ (Figure 13.

In each figure, the colorscale represents the density of MCMC samples, the cyan contour represents
the MCMC 68% confidence region, and the black ellipse represents the Fisher forecast for the 68%
confidence region. The three least interesting parameters (x0, y0, and v0) are omitted for clarity. A good

match is evident throughout all panels at i = 10◦. At i = 50◦ there is a hint that the forecast is becoming
more pessimistic than the MCMC samples. This effect is more noticeable at higher inclinations. We
attribute this to increasing numerical errors as one goes to higher inclinations: the condition number

at i = 50◦ (60◦) is 7 × 107 (3 × 108). Hence, for the fiducial setup we provide forecasts only for i ≤ 50◦,
and more generally we provide forecasts only where the condition number is <108.

Finally, we present a case far from our fiducial scenario: with φsky = 10◦ and γ+ = γ× = 0.07, these
three parameters are highly mixed. We have also changed r0 (r80) to 6 (10) kpc, I0 to 75, and µ to 1.2,
with an inclination angle of 35◦. Figure 14 shows that the forecast still accurately predicts the MCMC
precision.
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