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ABSTRACT
Generalised additive models (GAMs) provide flexible models for a
wide array of data sources. In the past, improvements of GAM esti-
mation have focused on the smoothers used in the local scoring
algorithm used for estimation, but poor prediction for non-Gaussian
datamotivates the need for robust estimation of GAMs. In this paper,
rank-based estimation, as a robust and efficient alternative to the
likelihood-based estimation of GAMs, is proposed. It is shown that
rankGAMestimators canbeobtained through iteratively reweighted
likelihood-based GAM estimation which we call the iterated regu-
larised rank quasi-likelihood (IRRQL). Simulation experiments sup-
port the use of rank-based GAM estimation for heavy-tailed or con-
taminated sources of data.
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1. Introduction

Generalized additivemodels (GAMs)model themean of a response variableμ via amono-
tonic link function g(μ) = η using smooth nonparametric coefficient functions fj(·) and
taking the form

η = f0 +
p∑

j=1
fj(Xj) , (1)

whereX1, . . . ,Xp are covariates contributing toμ = E(Y) and Y has an exponential family
distributionwith varianceV(Y) = φ2ν(μ). Hereφ > 0 is an unknowndispersion parame-
ter and the function ν(·) is assumed to be twice continuously differentiable. GAMs provide
flexible models that are useful for applications in business, economics, medicine, ecology,
and environmental health, among other disciplines.

Estimation of the smooth functions f1(·), . . . , fp(·) in GAM required to estimate the
model was done via local scoring by Hastie and Tibshirani (1990) in which the smooth
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functions fj(·) were estimated individually using a local scoring algorithm. A major
focus of improvements to GAM estimation has been on the representation and esti-
mation of the smoother functions. Hastie and Tibshirani (1990) focus on the use of
linear smoothers, because many guarantee convergence via their convenient proper-
ties of symmetry and shrinking (Buja, Hastie, and Tibshirani 1989). However, linear
smoothers pose a difficulty in model selection and inference due to the problem of cal-
culating the effective degrees of freedom of the smoothing terms. This issue in turn
affects the criteria typically applied in model selection, such as Akaike information cri-
terion (AIC) or generalised cross-validation (GCV). Wahba (1990) elegantly solved this
problem with generalised smoothing splines and developed an algorithm for estimating
multiple smoothing parameters using GCV scores for GAMs constructed with smooth-
ing splines (Gu and Wahba 1991); however, model selection using this approach is
computationally expensive. Wood and Augustin (2002) proposed a compromise using
penalised regression splines which reduced the class of usable smoothers but were com-
putationally efficient. An issue with regression splines mentioned by Hastie and Tibshi-
rani (1990) is the complicated choice of the placement of knots.Wood andAugustin (2002)
opted for penalised regression splines as a solution: use a large number of knots and
apply a penalty to avoid overfitting. The estimation of the smooth functions is then
obtained by the least squares procedure subject to a roughness penalty. The choice of
the smoothing parameter used in the roughness penalty is discussed in detail in Wood
and Augustin (2002). Model (1) is fit by maximising the penalised log-likelihood through
iteratively reweighted least squares in the algorithm given by Hastie and Tibshirani
(1990).

Later, Wood (2004) proposed an improved method for multiple smoothing parame-
ter estimation to cope with fixed penalties and suggested GAMs with a ridge penalty to
optimise numerical stability and deal with issues of model identifiability. This involves
performing Newton or steepest descent updates of the log of the smoothing parameters λj
within the iteratively reweighted least squares (IRLS) backfitting algorithm. The approach
we propose in this paper will take advantage of this formulation.

Classical fitting of GAMs may not be adequate to fit heavy-tailed or contaminated data,
since the approach is sensitive to data contamination. Hence, there is a need for develop-
ing robust methodology for fitting GAMs. Robust fitting strategies for GAMs have been
considered previously. Croux, Gijbels, and Prosdocimi (2012) used the extended quasi-
likelihood (EQL) approach to obtain anM-estimator instead of the least squares estimator
ofWood and Augustin (2002) and proposed a robust form of GCV to select the smoothing
parameters λj. Alimadad and Salibian-Barrera (2011) built on this work by replacing the
maximum likelihood-based weights in the IRLS algorithm with robust quasi-likelihood
weights usingM-estimators. Both contributed to fitting robust GAMs resistant to the pres-
ence of outliers but at a computational cost. Wong, Yao, and Lee (2014) used an iterated
least-squares procedure to develop an efficient algorithm forM-estimation in GAMs. This
paper instead applies R-estimators to GAM estimation and devises a natural extension
of the iterative rank estimation in GLMs by Miakonkana and Abebe (2014) to construct
robust and efficient GAMs.

The paper is structured as follows: Section 2 provides our rank-based estimation
approach and Section 3 outlines the iterative algorithm used to fit rank-based GAMs.
Simulations are given in Section 4. We offer concluding remarks in Section 5.
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2. Estimation

To accommodate a wide range of data generating phenomena when fitting GAMs,
robust approaches have been recently proposed. These include Alimadad and Salibian-
Barrera (2011), Croux et al. (2012), andWong et al. (2014). These are allM-type estimators.
We are interested in R-estimators as defined in Jaeckel (1972) and Hettmansperger and
McKean (2011). As discussed in Draper (1988), bothM- and R-estimators provide robust
fits with no clear winner. While bothM and R are location invariant, only R-estimators are
automatically scale invariant.M-estimators can be made scale invariant with the addition
of a preliminarily estimated scale parameter (Rousseeuw and Leroy 2005). This makes R-
estimators very attractive for estimation in complex model settings. A drawback of both
M- and R-estimation is that they are computationally expensive. For the linear regression
model, Sievers and Abebe (2004) gave an approach that uses iterative least squares fitting
to obtain R-estimators. More recently, Miakonkana and Abebe (2014) extended this to the
fitting of generalised linear models. Wong et al. (2014) derived a computationally efficient
M-estimator for GAMs, again using iterative fitting of GAMs via penalised least squares.
In this chapter, we propose a rank estimator of GAMs and develop an efficient iterative
computational algorithm. Our method, which we call the iterated regularised rank quasi-
likelihood (IRRQL) procedure, depends on the ranking of Pearson residuals to account for
the mean-variance dependence in GAMs.

2.1. Rank-based estimation

To facilitate the introduction of our rank-based approach for estimation of GAMs, we
will start with the linear regression model Yi = α + xTi β + εi, i = 1, . . . , n. The vector of
model residuals is given by z(β) with ith component zi(β) = Yi − xTi β . Jaeckel (1972)
proposed to estimate the regression slope parameter β by minimising

‖z(β)‖ϕ ≡
n∑

i=1
ϕ

(
R(zi(β))

n + 1

)
zi(β), (2)

where ϕ : (0, 1) → R is a nondecreasing score function such that
∫

ϕ = 0 and
∫

ϕ2 = 1
and R(·) is the rank function. He showed that this produces a regression estimator that
is equivalent to the rank score estimator given by Jurečková (1971). He also showed that
the quantity ‖ · ‖ϕ is a convex pseudo-norm on Rn. Because ‖ · ‖ϕ is a pseudo-norm, it
is invariant to constant translations; hence, it cannot be used to estimate the intercept α.
There are several choices for ϕ with the simplest one given by the linear score function
ϕ(u) = √

12(u − 1/2) resulting in the so-called Wilcoxon pseudo-norm. For a general
discussion regarding the use of (2) in the linear model, one may refer to the monograph
(Hettmansperger and McKean 2011).

For linear regression, it has been shown that the estimator resulting from Wilcoxon
estimation is robust in the presence of outliers and heavy-tailed error distributions. It is
also very efficient. For instance, it achieves 95.5% relative efficiency versus the least squares
estimator when the underlying error distribution is normal, and the relative efficiency is
much higher for distributions with tails heavier than the normal. The worst-case relative
efficiency is 86.4% for symmetric error distributions. So there ismuch appeal to using ‖ · ‖ϕ

for estimation purposes. The inference also extends to hypothesis testing (Hettmansperger
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and McKean 2011). For example, we can easily define drop, Wald, or score tests for testing
the significance of model parameters.

In recent years, the method has been employed for models other than the linear
model. Bindele and Abebe (2015) studied rank estimation of semiparametric models
with responses missing at random. They showed that the rank estimator remains robust
and efficient, with efficiency improving relative to standard imputation methods, when a
large proportion of the responses are missing. The approach has been used for estima-
tion of general nonlinear regression (Abebe and McKean 2013), generalised linear models
(Miakonkana and Abebe 2014), varying coefficient models (Wang et al. 2009), and func-
tional regression (Denhere and Bindele 2016), among others. Some of the development
has been facilitated by the iterative reweighted least squares procedure given by Sievers
and Abebe (2004). This greatly simplifies the computation of rank regression coefficients
even for complex models (Abebe et al. 2016).

2.2. Rank-based GAM estimation

For obtaining the rank estimator of GAMs, we will use a penalised version of the rank
quasi-score function given in Miakonkana and Abebe (2014). The responses {Yi}ni=1
are assumed to be independent and follow a distribution from the exponential family
with expectation μi and variance φ2ν(μi). To simplify our discussion and theoretical
development, we will consider the simple p = 1 version of the GAM (1) given by

g(μi) = f (xi)

as well as the linear (Wilcoxon) score function
√
12(u − 1/2). Our approach extends

directly to p>1 and other score functions ϕ.
Taking a set of prespecified basis functions b = (b1(·), . . . , bm(·))′, the function f is

assumed to have a representation

f (xi; θ) =
m∑
j=1

bj(xi)θj ≡ bTi θ (3)

where θ = (θ1, . . . , θm)′ is a vector of basis coefficients and we suppress xi in b. Define the
Pearson residuals as

zi(θ) = Yi − μi√
ν(μi)

.

Note that we are ignoring the extra dispersion parameter φ since the ranks are invariant to
scale transformations. The rank quasi-likelihood function as defined in Miakonkana and
Abebe (2014) is then

�(θ) =
n∑

i=1

{
R(zi(θ))
n + 1

− 1
2

}
∂μi/∂θ√

ν(μi)
.

By taking h ≡ g−1, we have μi = h(bTi θ) and ∂μi/∂θ = h′(bTi θ)b(xi) and therefore

�(θ) =
n∑

i=1

{
R(zi(θ))
n + 1

− 1
2

}
h′(bTi θ)bi√
ν(h(bTi θ))

.



JOURNAL OF NONPARAMETRIC STATISTICS 105

Theoretically, the rank estimator of θ is foundby solving �(θ) = 0. However, for the estima-
tion of GAMs, wewill need to impose a smoothness penalty. Thus we define the regularised
rank quasi-likelihood (RRQL) function and solve

�λn(θ) ≡ �(θ) − Sλnθ = 0 ,

where Sλn = 2λnD, λn > 0 is a smoothing parameter and D is an m × m penalty matrix.
We let θ̃n represent the zero of the RRQL function; that is θ̃n solves �λn(θ) = 0.

However, finding a direct solution of �λn(θ) = 0 is difficult. Below, we will define an
iterative scheme to approximate θ̃n. To that end, define the pseudo-Pearson ‘residuals’

zi(θ , θ∗) = Yi − h(bTi θ)√
ν(h(bTi θ

∗))

and define the corresponding rank estimator as the minimiser of ‖z(θ , θ∗)‖w, where

‖z(θ , θ∗)‖w =
n∑

i=1

{
R(zi(θ , θ∗))

n + 1
− 1

2

}
zi(θ , θ∗)

is as given in (2) with ϕ(u) = √
12(u − 12). Using the IRLS scheme of Sievers and

Abebe (2004), this can be represented as

‖z(θ , θ∗)‖w =
n∑

i=1
wi(θ)

(Yi − h(bTi θ))
2

ν(h(bTi θ
∗)

where, lettingm = med{Yi − h(bTi θ)}, the weights are defines as

wi(θ) =

⎧⎪⎪⎨⎪⎪⎩
R(zi(θ , θ∗))

n + 1
− 1

2

Yi−h(bTi θ)−m
if Yi − h(bTi θ) − m �= 0

0 otherwise.

Since ϕ(u) is odd about 1/2, these weights are all non-negative. To obtain our iteration, we
take the weights wi at a different value of θ , say θ ′. Now taking the derivative of ‖ · ‖w with
respect to θ we obtain the approximate rank score function

2
n∑

i=1
wi(θ

′)
(Yi − h(bTi θ))

ν(h(bTi θ
∗)

h′(bTi θ)bi

Following Wedderburn (1974), if we now take θ∗ = θ , then we get the weighted quasi-
likelihood function

�(θ , θ ′) =
n∑
i=1

wi(θ
′)

{
Yi − h(bTi θ)
ν(h(bTi θ))

}
h′(bTi θ)bi =

n∑
i=1

wi(θ
′)

(Yi − μi)

ν(μi)

∂μi

∂θ
,

which is exactly a weighted form of the classical GLM quasi-likelihood function.
We can now define the penalised quasi-likelihood for GAM estimation as

�λn(θ , θ
′) = �(θ , θ ′) − Sλnθ .
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Now, suppose we have a suitable initial estimator of θ , say θ̂ (0)
n . This can be the classical

penalised likelihood estimator. For k = 1, 2, . . ., we define θ̂ (k)
n as a solution of the iterated

regularised rank quasi-likelihood (IRRQL) function

�λn(θ , θ̂
(k−1)
n ) = 0,

which can be computed by iteratively solving aweightedGAMestimating equation. For the
unpenalised version �0(θ , θ̂

(k−1)
n ),Miakonkana andAbebe (2014) showed that the iteration

converges to the solution of �0(θ).
Let f = (f (x1), . . . , f (xn))T and the n × m coefficient matrix be B = [b1, b2, . . . , bn]T .

Note that we have two rank estimators of θ : θ̃n which solves the RRQL and θ̂
(k)
n , k = 1, 2, . . .

given θ̂ (0)
n which solves the IRRQL. We can correspondingly define two rank-based GAM

estimators of f using equation (3). We define these as

f̃n = B̃θn

and

f̂(k)n = B̂θ (k)
n , k = 1, 2, . . . .

Note that for a given k, f̂(k)n is just a regular weighted GAM estimator. Thus, its asymptotic
properties are well understood and are part of the standard GAM literature (cf. Hastie and
Tibshirani 1990; Wood 2006). The conditions needed for consistency and the asymptotic
results given in Theorems 2.1 and 2.2 are the same as those given in Wong et al. (2014).
The results are given here for completeness and detailed proofs are found in the online
appendix of Wong et al. (2014). Theorem 2.1 gives consistency of f̂(k)n . However, we need
to understand whether f̂(k)n provides a good approximation of the rank estimator f̃n. (A1)
– (A4) below give conditions under which f̂(k)n gives a valid approximation of f̃n. The
theorem following the conditions gives the asymptotic equivalence of f̂(k)n and f̃n. Before
giving the conditions, we note that when using the iteratively reweighted least squares
(IRLS) approach of fitting GAMs, there is a reproducing kernel Hilbert space (RKHS) rep-
resentation fT�1/2R�1/2f of the penalty function λnβ

TDβ , where � is the IRLS weight
(Wong et al. 2014). In this set up, the residual smoother matrix for GAM estimation
is Hλn = (I + 2λnR)−1, where R is the reproducing kernel. The conditions needed for
consistency are

(A1) The function f is bounded; that is, sup−∞<t<∞ |f (t)| < ∞.
(A2) Let F be the space of all f ’s. We assume that F is a reproducing kernel Hilbert

space.
(A3) Let Cα = {f ∈ F : ‖f ‖F ≤ α} for some constant α. We assume that Cα is compact

with respect to L2 norm.
(A4) Let dn be the maximum diagonal element of Hλn . We assume that λn/n → 0 and

dn → 0 as n → ∞. Moreover, tr(Hλn)/λn < K < ∞.

Theorem 2.1: Under (A1)–(A4), for k ∈ N, n−1E{‖̂f(k)n − f‖2} → 0 as n → ∞.
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Theorem 2.2: Under (A1)–(A4), for k ∈ N, ‖̂f(k)n − f̃n‖/E{‖̂f(k)n − f‖} P−→ 0 as n → ∞.

There are certain practical considerations that need attention. The first is the degrees of
freedom of the estimation problem. The RKHS literature defines the effective degrees of
freedom as tr(Hλn). So, (A4) specifies a balance between the effective degrees of freedom
and the smoothing parameter.We still need a way to estimate the smoothing parameter λn.
In this paper, we employ generalised cross-validation to select the parameter λn. This is the
most common approach in the literature (Wood 2006). Finally, onemay question the value
of fully iterating k. If the one step estimator gives us consistent estimators (Theorems 2.1
and 2.2), then why do we need to iterate more than once? This was answered in Sievers and
Abebe (2004) and Miakonkana and Abebe (2014) where, using fixed-point theory, it was
established that as k → ∞ the IRLS rank estimator converges to the true rank estimator
for finite samples. In our notation, this is limk→∞ f̂(k)n = f̃n for n fixed.

2.3. Robustness

We will focus on the influence function (Hampel et al. 2005) as a measure of robust-
ness. The influence function (IF) measures the sensitivity of the estimator to infinitesimal
changes in data. As we will demonstrate below, the IF of our rank-based estimator can be
found in a straightforward manner.

The score function for the classical GAM estimation is

ψ(y, θ) = y − μ

ν(μ)

∂μ

∂θ
− 1

n
Sλθ .

Letting F(y, x, y) be the joint distribution function of (y, x) and F̂ the corresponding joint
empirical distribution function, Wong et al. (2014) give the IF of the GAM estimator ˆ̂

θn =
T(F̂) as

IF(y;ψ , F) = −
{∫

∂

∂θ
ψ(u, θ)

∣∣∣∣
θ=T(F)

dF(u, x)

}−1

ψ(y,T(F)),

which is unbounded since ψ is unbounded in y. Similarly, the score function for the rank-
based GAM estimation is equivalent to

ψ r(z, θ) = G
(

y − μ√
ν(μ)

− 1
2

)
∂μ

∂θ
− 1

n
Sλθ ,

where G is the distribution function of the Pearson residual z = (y − μ)/
√

ν(μ). Let H
be the joint distribution of (z, x) with a corresponding empirical distribution function
Ĥ(z, x) = n−1 ∑

I({zi ≤ z} ∩ {xi ≤ x}). Then the generic functional representation of the
rank-based GAM estimator can be given as θ̃n = T(Ĥ) and its IF is

IF(z;ψ r,H) = −
{∫

∂

∂θ
ψ r(v, θ)

∣∣∣∣
θ=T(H)

dH(v, x)

}−1

ψ r(z,T(H)) .

Since the dependence of ψ r on y is only through G, it is bounded in y. As a result, the IF
of the rank estimator IF(z;ψ r,H) is also bounded in y, thus establishing the robustness



108 H. E. CORREIA AND A. ABEBE

of our procedure. We emphasise that this boundedness is true in the residual space for
each fixed x, but not in the factor space, since the IF depends on ∂μ/∂θ = h′(b(x)Tθ)b(x)
unless x has bounded domain (e.g. controlled designs). This is similar to the performance
of rank estimators for the linear model (Hettmansperger and McKean 2011) as well as
generalised linear models (Miakonkana and Abebe 2014). The unboundedness of the IF
in factor space means the breakdown point of this estimator is 0 (Hettmansperger and
McKean 2011). However, efficient high breakdown estimators can be constructed using the
weighting scheme proposed by Chang, McKean, Naranjo, and Sheather (1999) and Abebe
and McKean (2013).

3. Computational algorithm

In this section, we give a brief outline of the iterative algorithm for solving the IRRQL used
to obtain the rank estimates θ̂n and f̂n.

Step 0: Obtain initial estimates θ̂ (0)
n , f̂(0)n = B̂θ (0)

n , Pearson residuals z(̂θ (0)
n ), and weights

w(̂θ
(0)
n ). Set k = 1 and let ε > 0 be a given tolerance.

Step 1: Obtain a weighted GAM (Hastie and Tibshirani 1990) estimate θ̂ (k)
n by solving

�λn(θ , θ
(k−1)) = 0,

where λn is chosen by generalised cross-validation (Wood 2004).
Step 2: Calculate f̂(k)n = B̂θ (k)

n .
Step 3: If ‖̂f(k)n − f̂(k−1)

n ‖ ≥ ε‖̂f(k−1)
n ‖, then set k = k+ 1 and return to Step 1. Otherwise,

take θ̂n = θ̂
(k)
n , f̂n = f̂(k)n and STOP.

Thin plate spline approximation, the default approach in the mgcv package in R (Wood
2006), requires O(n3) operations, which is prohibitive especially for large n. We employed
thin plate regression splines, which can also become expensive to calculate for large
datasets. For this reason, we used the strategy in Wood (2003) where data are subsam-
pled up to a specific threshold. This threshold is the number of unique data points up to
2000, and for data with more than 2000 unique data points, it is set at 2000. The computa-
tion time using aMacBook Pro with 2.8 GHzQuad-Core Intel Core i7 processor and 16GB
RAM for Gaussian error and one function to estimate with n = 500 took about 0.02 s for
the likelihood-based GAM and 0.1 s for the IRRQL based GAM, while for n = 8000 took
about 0.6 s for the likelihood-based GAM and 1.6 s for the IRRQL based GAM.

4. Simulations and real data studies

4.1. Simulations

We performed simulation experiments to compare our proposed procedure (labeled as
R) to the classical likelihood-based GAM estimator (labeled as L) and an M-estimator of
Croux et al. (2012) using robust Huber weights (labeled as M). The R code implementa-
tion of theM-estimation procedures of Alimadad and Salibian-Barrera (2011) and Wong
et al. (2014) included only the binomial and Poisson distributions, so we did not make
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direct comparisons of our method with theirs. In our simulation, we considered two addi-
tive models: one with only one function and a second one with four functions. We also
considered a Gamma generalised additive model with four functions.

With p functions f1, . . . , fp, the relative efficiencies of R and M versus L for the ith
function were obtained as

REi(R) =
∑n

j=1(fij − f̂L,i,j)2∑n
j=1(fij − f̂R,i,j)

2
and REi(M) =

∑n
j=1(fij − f̂L,i,j)2∑n
j=1(fij − f̂M,i,j)

2
,

respectively, for each estimated function. When there was more than one function we also
computed the relative efficiencies for the overall fit as

RE(R) =
∑n

j=1(yj − f̂ L,j)2∑n
j=1(yj − f̂ R,j)

2
and RE(M) =

∑n
j=1(yj − f̂L,j)2∑n
j=1(yj − f̂M,j)

2
,

where f̂∗,j = ∑p
i=1 f̂∗,i,j and yj are the responses for j = 1, . . . , n. For simplicity, we only use

the Wilcoxon score function ϕ(u) = √
12(u − 1/2) for IRRQL estimators labelled by R.

All our simulations used 500 iterations.

4.1.1. One regressor
The first simulation example considered n = 100 samples generated according to the
model

yj = f (xj) + εj, j = 1, . . . , n,

where f was

f (xj) = 0.2(106x11j )(1 − xj)6 + 104x3j (1 − xj)10

which is given as f2 in Gu and Wahba (1991) and xj are uniformly distributed on [0, 1].
We considered two error distribution scenarios: one to simulate the effect of heavy tails

and the second to simulate the effect of contamination. To study the effect of tail thickness
on the estimators, the errors ε were randomly generated from Student’s t distributions
with increasing degrees of freedom ek, where k is taken from 1 to 5 in steps of 0.5. To study
the effect of contamination in the measured response on the estimators, the errors ε were
drawn from a contaminated normal distribution. The contaminated normal distribution
is defined by creating a normal-normal Huber contaminated distribution as

CN(δ, σ) = (1 − δ)N(0, 1) + δN(0, σ 2),

where δ ∈ [0, 1] and σ > 0. This means the errors are drawn from theN(0, 1) distribution
with probability 1 − δ and from theN(0, σ 2) distribution with probability δ. For our simu-
lation experiment, we took σ = 3 and δ taken from 0 to 0.35 in steps of 0.05. The results are
shown in Figures 1 and 2, respectively. Figure 1 shows that bothM and R are much more
efficient than L for heavy-tailed distributions, and M is consistently less efficient than R.
Figure 2 shows that the rank estimator is more efficient thanM across all levels of contam-
ination considered, withM losing efficiency when there is more than 20% contamination.
BothM and R are more efficient than L for contamination over 5%.
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Figure 1. Relative efficiencies vs L for simulation with increasing df of the t distribution.

Figure 2. Relative efficiencies vs L for simulation with increasing proportions of contamination of the
normal distribution.

We compared the computation time of R andM using the same simulation parameters
for one case of the contaminated normal setting but only 50 iterations. We found that the
average computation time for R was around 0.1 s (min = 0.05 s,max = 0.26 s), whereas
M took an average of 0.75 s (min = 0.50 s,max = 1.65 s). This demonstrates the compu-
tational efficiency of our algorithm. M-estimators would need to calculate an additional
preliminary scale estimator to become scale invariant which increases their computation
time. This highlights the advantages of the proposed estimator for complex problemswhere
computational time efficiency is crucial.

4.1.2. Four regressors
The second simulation study considered the following four-term GAM with n = 500
samples:

yj = x21j + 5
√

|x2j + 1| + 2 sin(πx3j) + x4j + εj,

where each of the four functions was centred and scaled.



JOURNAL OF NONPARAMETRIC STATISTICS 111

Figure 3. Relative efficiencies vs L for simulation with errors drawn from Cauchy, t(2), and t(3) distribu-
tions with a Gaussian-distributed response.

For this simulation experiment, we drew errors from six distribution types: a standard
Cauchy distribution; a Student’s t distribution with 2 degrees of freedom; a Student’s t dis-
tribution with 3 degrees of freedom; a N(0, σ 2) distribution with σ = 1/2; a Laplace(0, 1)
distribution; and a contaminated normal distribution defined as

CN(δ, σ) = (1 − δ)N(5, σ 2) + δN(0, σ 2),

where δ = 0.95 and σ = 1/2. The simulation was performed 500 times. Relative efficien-
cies compared to L estimation were calculated for M and R procedures, and MSE were
calculated for all three estimation procedures.

R was more efficient than M for errors from the Cauchy, Student’s t(2) and t(3), and
Laplace distributions, and both R and M were both more efficient than L for errors from
contaminated normal distributions (Figures 3 and 4). MSE for R-estimated functions were
consistently lower than L- andM-estimated functions with errors from Cauchy, Student’s
t(3) and t(3), Laplace, and contaminatednormal distributions (Figures S9–S13).MSE forR-
estimated functions with normal errors were not lower than L- andM-estimated functions
for more complex second and third functions (Figure S14).

4.1.3. Gamma regression with four regressors
To examine the performance of our IRRQL estimation method for non-normal distri-
butions, we conducted a third simulation study with n = 500 samples according to the
model

f (x) = 2 sin(πx1) + exp(2x2) + [
0.2(106x113 )(1 − x3)6 + 104x33(1 − x3)10

] + 0x4 ,

which is given in Gu and Wahba (1991) and xi, i = 1, . . . , 4, are uniformly distributed on
[0, 1]. Each of the four functions were centred and scaled.
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Figure 4. Relative efficiencies vs L for simulation with errors drawn from contaminated normal (CN),
Laplace, and normal distributions with a Gaussian-distributed response.

Avector of responseswas drawn from aGammadistribution y∼�(4, 0.25 exp(f (x)/4)),
where f (x) = f1(x1) + f2(x2) + f3(x3) + f4(x4) is the true function as given above. The
response vector was then contaminated by taking a proportion δ ∈ [0, 1] of the responses
in each case and replacing them by N(max(y), 0.22). In our simulation study, we took
δ ∈ {0, 0.1, 0.2}. L, M, and R were compared by assuming either a Gaussian family with
identity link or a Gamma family with log link. The simulation was run 500 times. R was
consistently more efficient than L for 10% and 20% contamination, and R was also as effi-
cient asM at all contamination levels. R generally reduced variance in relative efficiencies
compared to M for higher contamination levels (Figure 5). R had lower MSE than L for
all levels of contamination when using the Gaussian with identity link assumption, and R
regularly had lower MSE thanM for most of the smooths at all contamination levels (Fig-
ures S15–S17).When using the Gamma with log link assumption, R had lowerMSE values
than L and M for 10% and 20% contamination levels, while MSE for L, M, and R were
similar for 0% contamination (Figures S18–S20).

4.2. Real data application

The IRRQLmethod was applied to data from a large-scale study which accumulated crime
and sociodemographic data from census tracts in a representative sample of large cities
and metropolitan areas throughout the United States in 2000 (Peterson and Krivo 2010).
For computational efficiency, only data from the state of Ohio was used for this applica-
tion. A GAM of the form given in (1) was fit, with X = {pop00, femhed, percap} being the
predictor variables tract population, percent of female-headed households, and per capita
income, respectively. The response Y = crimrt is the three-year average total crime rate
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Figure 5. Relative efficiencies vs L for simulation with response drawn from the contaminated Gamma
distribution with contamination δ = {0, 0.1, 0.2}.

Figure 6. Histogram with density overlay of the untransformed response crime rate.

for each tract and is heavily right-skewed (Figure 6). A 10-fold cross-validation was per-
formed, comparing L, M, and R. Two alternative family assumptions were used for each
estimation procedure: a Gaussian with identity link and a Gamma with log link.

Assuming a Gamma distribution with log link improved fit for L, however R had good
fit even when the distribution was misspecified (Figure 7). The R method outperformed
both L andM in prediction under both family assumptions in the 10-fold cross-validation
(Table 1). We therefore utilised the GAM fit with the R method using a Gamma family
assumption with log link for inference.
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Figure 7. Normal Q–Q plots for crime rate model residuals for L, M, and R using two alternative family
assumptions for each estimation procedure: (a) Gaussian with identity link and (b) Gammawith log link.
(a) Gaussian with identity link assumption and (b) Gamma with log link assumption.

Table 1. Means and standard deviations of median absolute devia-
tion (MAD) from 10-fold cross-validation for each estimation method
when using either Gaussian with identity link or Gamma with log link
assumptions.

Method MAD (Std Dev)

Gaussian L 27.694 (5.119)
M 83.174 (10.906)
R 23.060 (4.722)

Gamma L 24.327 (5.337)
M 80.224 (10.706)
R 23.021 (4.889)

The estimated smooths from the GAM fit with the Rmethod using the Gamma family
assumption are illustrated in Figure 8. As tract population increased up to 6000, three-year
average total crime rate decreased. Additionally, as the percent of female-headed house-
holds increased, crime rate decreased. However, there was no change in crime rate when
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Figure 8. Smooths of predictor variables from the GAM fit with the R method using a Gamma family
assumption with log link on crime data.

the percent of female-headed households was approximately between 15% and 25%. Sim-
ilarly, crime rate decreased as per capita income increased, but per capita income between
$28,000 and $35,000 was estimated to produce no change in crime rate.

5. Discussion

This paper proposes and studies rank-based estimators of generalised additive models.
This provides a viable alternative to the usual likelihood-based estimator of GAMs. Our
estimation algorithm is simple. In our reformulation of rank estimators of GAMs as iter-
atively reweighted penalised least squares estimators, we manage to (1) take advantage of
existing weighted GAM theory to establish the theoretical properties of the proposed esti-
mator and (2) take advantage of existing software (eg. mgcv in R) to fit the models. In
particular, our estimation procedure proceeds by performing repeated weighted GAM fits
until convergence conditions are met. We evaluated the relative change in fits to establish
convergence.

Pointwise confidence intervals as well as simultaneous confidence bands used for infer-
ence can be constructed using the fittedmodel following the bootstrap procedure described
in Section 6.5 of Ruppert et al. (2003). This involves estimating each function over a grid
of x values and then using bootstrap to approximate the standard error at each of the grid
points. For simultaneous confidence intervals, one may employ percentile bootstrap confi-
dence intervals (Efron and Tibshirani 1994) based on the maximum absolute standardised
deviation of the estimated function, as opposed to using quantiles based on data simulated
from the multivariate normal distribution.

Our simulation experiments show that the proposed IRRQL estimation method out-
performs GAM and LAD for data derived from processes that are heavy-tailed or contam-
inated. This is fairly common in climate studies, and investigators often depend on simpli-
fying the problem so that they can apply basic nonparametric tests such as the Wilcoxon
rank-sum test. However, such approaches are not easy to apply for high-dimensional data
with complex underlying structure. Thus, the proposed method gives a practical approach
for studying problems where classical fitting of GAMs is inefficient.
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