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Abstract

Neutral-current neutrino scattering from the deuteron leading to proton-neutron final states is

considered using an approach that incorporates relativistic dynamics and consequently provides

robust modeling at relatively high energies and momenta. In this work the focus is placed on the

fully exclusive reaction where both the proton and neutron in the final state are assumed to be

detected. Accordingly, the incident neutrino energy, the neutrino scattering angle and the scattered

neutrino’s energy can all be reconstructed. It is shown that for specific choices of kinematics the

reaction proceeds mainly via scattering from the proton, while for other choices of kinematics it

proceeds mainly from the neutron. Specific asymmetries are introduced to focus on these attributes.

Measurements in both regions have the potential to yield valuable information on the nucleon’s

electroweak form factors at momentum transfers up to a (GeV/c)2. In particular, the cross sections

are shown to be very sensitive to the isoscalar axial-vector form factor, and sensitive but less so

to the magnetic strangeness form factor. Comparisons with other reactions, specifically charge-

changing neutrino reactions and both parity-conserving and -violating electron scattering, have the

potential to provide new ways to test the Standard Model.

PACS numbers: 25.30.Fj, 21.45.Bc, 24.10.Jv
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I. INTRODUCTION

The present study involves an investigation of neutral-current neutrino and anti-neutrino

scattering from the deuteron, especially at high energies of order several GeV, namely those

of present and anticipated neutrino facilities. One motivation for such a study is to explore

the possibilities for learning more about the form factors of the nucleon, N = p or n, over a

wide range of momentum transfers. Of course, the electromagnetic form factors of the proton

may be accessed through parity-conserving electron scattering and those of the neutron

typically involve elastic or inelastic electron scattering from the deuteron. However, the other

form factors that enter when the weak interaction is involved are harder to determine. One

way this is done is via parity-violating electron scattering from the proton where constraints

have been placed on the proton’s axial-vector and strangeness form factors, although the

present constraints, while impressive, are not definitive. Other parity-violating electron

scattering reactions also play a role, specifically coherent elastic parity-violating electron

scattering — for instance, from 4He or 208Pb — where the electric strangeness form factor

of the nucleon enters in the PV asymmetry, albeit at rather low values of the momentum

transfer (for discussions on the last point the reader is directed to [1]).

Neutrino reactions with the proton or deuteron also depend on a more complete set of

nucleon form factors and accordingly, these too play a role. For charge-changing neutrino

reactions (CCν) having an incident beam of neutrinos of given flavor, ν` with ` = e, µ or

τ , going to a negatively charged lepton of the same flavor, `−, scattering from the proton

leading to a neutron in the final state cannot occur — it does, of course, for anti-neutrinos

with positively charged leptons `+ in the final state — whereas it can occur for CCν reactions

on neutrons leading to protons in the final state. That is, the CCν reactions that can occur

below pion production threshold are ν̄` + p→ `+ + n and ν` + n→ `− + p. Unfortunately,

practical free neutron targets do not exist and thus, when neutrinos constitute the beam

and these elementary reactions provide the focus, one must employ nuclei which contain

neutrons. A special case of this type is that of the deuteron, since, of all nuclei, one has

the most robust ability to model it, not just at low energies, but at relatively high energies

where relativistic approaches must be pursued; this aspect is discussed in more detail later

in the paper and draws on studies performed previously. Of the latter type we mention the

relatively recent work on CCν disintegration of the deuteron going into pp in the final state
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FIG. 1. Schematic figures showing known and observable quantities for the reactions of interest

in the present work. In both cases the direction of the neutrino beam is known but, due to the

wide range of neutrino energies in the beam, the neutrino energy for each event is not known. The

scattered neutrino momentum is not measurable. On the left-hand side one has elastic scattering

from a nucleon which, after the scattering of the neutrino or anti-neutrino, recoils with momentum

pN , namely, along the momentum transfer q. On the right-hand side one has the NC disintegration

of deuterium into a final-state pn pair. The total momentum of this pair is again given by the

momentum transfer q, as shown. The neutrino kinematics can be reconstructed in both cases from

the known beam direction and the measured three-momenta of final-state nucleons.

[2] (see also [3, 4]).

Finally, in addition to CCν reactions where only isovector form factors enter, one can also

have neutral-current neutrino or anti-neutrino scattering reactions (NCν generically), which

include elastic scattering of neutrinos or anti-neutrinos from protons or neutrons, namely,

ν` + p → ν` + p, ν̄` + p → ν̄` + p and the analogous reactions on neutrons. Again, in the

absence of practical free neutron targets, the deuteron plays a special role. Specifically,

the present study is focused on the NCν disintegration reactions ν`+
2H→ ν` + p + n and

ν̄`+
2H→ ν̄` + p+ n where both the proton and neutron are assumed to be detected.

Thus two classes of NCν reactions have the potential to provide new information on the

form factors of the proton and neutron, namely, elastic neutrino and anti-neutrino scattering

from the proton and the above neutrino-disintegration reactions on deuterium.

In Fig. 1 we show schematic representations of these classes of reactions. For elastic

scattering from the nucleon (left-hand panel of the figure) the nucleon recoils in the di-

rection of the momentum transferred from the neutrino to the nucleon. Similarly, for the
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disintegration of the deuteron into proton plus neutron (the right-hand panel in the figure)

momentum q and energy ω are transferred to the pn system. By detecting both nucleons one

can reconstruct the magnitude of the three-momentum transfer q = |q|, its direction with

respect to the incident neutrino beam, characterized by an angle θq, and the energy transfer

ω. As discussed in detail later in the paper, this then allows one to reconstruct the entire

lepton-scattering kinematics, namely, the neutrino beam energy, the neutrino scattering an-

gle and the scattered neutrino energy. Thus one has a very special set of circumstances: by

selecting events having no final-state charged lepton and no pions one can, in effect, have a

very selective, well-modeled neutrino-disintegration reaction to study. And, since the mo-

mentum transfers can be quite large, of order a (GeV/c)2 as will be shown later, this opens

new possibilities for exploring the nucleon’s electroweak form factors.

As discussed later in the paper, for the NCν disintegration reaction there are kinematic

regions where scattering from the proton in the two-body systems is dominant, hence yielding

information on the proton form factors which can be cross-checked with results for elastic

scattering for the proton, but also (importantly) regions where scattering from the neutron is

dominant and information on the neutron form factors becomes accessible. Since, the proton

and neutron form factors may be rewritten in terms of isoscalar and isovector nucleon form

factors, this has the potential to open new possibilities to explore the entire set of electroweak

form factors of the nucleon.

The paper is organized in the following way: in Sect. II the vector and axial-vector

form factors for the proton and neutron in the Standard Model are summarized along with

parametrizations for these functions that have been employed in past work [5–7], together

with expressions for the elastic scattering NCν cross sections. There we also introduce

specific pn-asymmetries for both neutrinos and anti-neutrinos that prove useful in the dis-

cussions to follow. In Sect. III the NCν disintegration reactions involving the deuteron

introduced above are explored, building on previous work. Here both the basic formalism

for exclusive reactions (detection of both the proton and neutron in the final state), as well

as typical results for the cross sections and asymmetries (to be defined there) are discussed.

Finally in Sect. IV we present a summary of what has been learned from these investigations.

For a recent overview of present and future experimental potential in the area of neutrino

reactions with nucleons and nuclei the reader is directed to [8].
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II. NEUTRINO SCATTERING FROM THE NUCLEON

Neutral-current neutrino or anti-neutrino scattering from a nucleon is represented by

Fig. 2. Later in this section we present explicit forms for the scattering cross sections;

FIG. 2. Diagram representing NCν scattering from a nucleon.

however, we begin by summarizing the complete set of single-nucleon electroweak form

factors. Here we draw upon old work [5–7] including the parametrizations used previously.

A. Electroweak Form Factors of the Nucleon

The effective coupling of the Z0 to nucleons (the right-hand part of the figure) involves

the electroweak current discussed in the above-cited work which in turn may be written in a

standard form involving vector and axial-vector currents. The vector currents for the proton

may be written in terms of Sachs form factors as

G̃p
E,M(τ) =(1− 2 sin2 θW )G

(1)
E,M(τ)− 2 sin2 θWG

(0)
E,M(τ)−G(s)

E,M(τ)

=
1

2

(
(1− 4 sin2 θW )Gp

E,M(τ)−Gn
E,M(τ)− 2G

(s)
E,M(τ)

)
(1)

and for the neutron as

G̃n
E,M(τ) =− (1− 2 sin2 θW )G

(1)
E,M(τ)− 2 sin2 θWG

(0)
E,M(τ)−G(s)

E,M(τ)

=
1

2

(
(1− 4 sin2 θW )Gn

E,M(τ)−Gp
E,M(τ)− 2G

(s)
E,M(τ)

)
, (2)

where τ ≡ |Q2|/4m2
N with Q2 = ω2 − q2 < 0, and we have used

G
(0)
E,M(τ) = Gp

E,M(τ) +Gn
E,M(τ) (3)
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and

G
(1)
E,M(τ) = Gp

E,M(τ)−Gn
E,M(τ) (4)

for the isoscalar and isovector electromagnetic form factors, namely those with T = 0 or 1,

respectively. These expressions contain the usual Standard Model mixing of the isoscalar

and isovector electromagnetic form factors via the expressions containing the term sin2 θW .

In addition, possible isoscalar strangeness form factors G
(s)
E,M(τ) are included.

The nucleon axial-vector form factors for the proton and neutron are given by

G̃p
A(τ) = −G(1)

A (τ) +G
(s)
A (τ) (5)

and

G̃n
A(τ) = G

(1)
A (τ) +G

(s)
A (τ) , (6)

where G
(1)
A (τ) is the usual isovector axial-vector form factor that appears in charged-current

reactions and G
(s)
A (τ) is an isoscalar axial-vector strangeness form factor [7].

For the results presented in this paper the electromagnetic currents are from a fit to

electron scattering data using a vector dominance model [9–11]. Following [6, 7] the axial-

vector and strangeness form factors are chosen to involve simple dipole forms

G
(1)
A (τ) =gAG

D
A(τ)

G
(s)
E (τ) =ρsτG

D
V (τ)

G
(s)
M (τ) =µsG

D
V (τ)

G
(s)
A (τ) =gsAτG

D
A(τ) , (7)

where the dipole form factors are GD
V (τ) = (1 + 4.97τ)−2 and GD

A(τ) = (1 + 3.32τ)−2. In

this form the strangeness content of the nucleons is characterized by the coupling constants

ρs, µs and gsA.

The analysis of parity-violating electron scattering experiments has produced constraints

on the possible values for these couplings [12–14] which we employ in the present work to

provide a “reasonable” representation for the lesser-known electroweak form factors. Note

that, for use here where values of Q2 cannot be fixed to specific values since the kinematics

of neutrino scattering require values that must span a range, we must use parametrizations

such as those employed in this work. Additionally, lattice QCD (LQCD) calculations of

strangeness contributions to the electromagnetic form factors [15, 16] have been performed
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and a calculation of the strangeness contribution to the axial form factor using input from

LQCD and experiment has recently been published [17]. A complete ab initio LQCD calcu-

lation of the weak axial vector form factor is still needed however [18].

The differences seen in the isospin dependences of the form factors for protons and neu-

trons suggests the possibility that isospin asymmetries constructed from neutral-current

neutrino interactions with nucleons could show increased sensitivity to these couplings and

thereby yield further constraints on these couplings. The obvious problem with this, as

discussed in the Introduction, is that no practical free neutron targets exist, and usually

the neutron properties are obtained from reactions with the deuteron. In this paper we will

demonstrate that neutral-current neutrino scattering from deuterium can, with a careful

choice of kinematics, be used to produce the nucleon isospin asymmetries. Calculations

demonstrating this approach will use relativistic deuteron models that were developed to

describe the e+ 2H → e+ p+ n reaction [19–22] and the charge-changing neutrino reaction

with the deuteron [3].

Obviously, our main goal is to look at neutrino scattering from the deuteron, as this

will give us information on both the proton and the neutron strangeness content. We shall,

however, start out with an exploration of the sensitivity of the neutrino-nucleon cross section

to the strangeness parameters in order to get our kinematical bearings, pretending for the

moment that we have free neutron targets available. We proceed in the next sub-section

with a summary of the kinematics involved.

B. NCν Elastic Scattering Kinematics

We start out by establishing our notation and recalling a few kinematical relations. In

the case of NCν scattering, both incoming and outgoing leptons are neutrinos of the same

flavor with (as assumed in this work) mass m = 0. First,

Kµ = (k,k) (8)

is the initial neutrino four-momentum, and the scattered neutrino four-momentum is given

by

K ′
µ

= (k′,k′) . (9)
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Then the four-momentum transfer is

Qµ = Kµ −K ′µ = (k − k′,k − k′) = (ω, q) (10)

and is spacelike, Q2 = ω2−q2 < 0. The four-momentum of the target nucleon can be written

in its rest frame as

P µ = (mN ,0) , (11)

while the four-momentum of the detected nucleon is

P ′
µ

= (
√
p2N +m2

N ,pN) . (12)

Energy conservation requires that

mN + k − k′ −
√
p2N +m2

N = 0 (13)

or

k − k′ − TN = 0 , (14)

where the relativistic kinetic energy of the nucleon is defined as

TN =
√
p2N +m2

N −mN . (15)

This implies that the energy transfer is given by

ω = TN . (16)

Furthermore, momentum conservation requires that

k − k′ − pN = 0 (17)

or

pN = q . (18)

From (17) one has that

k′ = k − pN , (19)

and, using this in (14), we find that

k −
√
k2 − 2kpN cos θN + p2N − TN = 0 , (20)
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where θN is the angle between k and pN . Solving this for k gives

k =
mNTN

pN cos θN − TN
, (21)

and the energy of the scattered neutrino is then

k′ = −TN(mN + TN − pN cos θN)

pN cos θN − TN
. (22)

Note that (21) and (22) become singular when TN = pN cos θN .

Since x = 1 for elastic scattering, the square of the four-momentum transfer is given by

|Q2| = 2mNω = 2mNTN . (23)

The square of the three-momentum transfer is given by

q2 = k2 − 2kk′ cos θl + k′
2

= p2N . (24)

Using (21) and (22), the neutrino scattering angle can be obtained from

cos θl =
mNTN + pNTN cos θN − p2N cos2 θN

TN(mN + TN − pN cos θN)
. (25)

Note that for θN = 0, θl = π. Finally, it is convenient to define a dimensionless variable for

the square of the four-momentum transfer as

τ =
|Q2|
4m2

N

=
TN

2mN

. (26)

This completes the basic kinematical relationships needed when treating elastic neutrino

scattering from the nucleon. Next we turn to a summary of the essentials for the single-

nucleon cross section.

C. Single-Nucleon Cross Section

The double-differential cross section for neutral-current neutrino scattering from a nucleon

is given by (for general discussions of semi-inclusive neutrino reactions with nuclei see [3])

dσ

dpNdΩN

=
G2 cos2 θCmNp

2
Nv0

16π2
√
p2N +m2

N(pN cos θN − TN)

P (k)

k

[
V̂CC(w

V V (I)
CC + w

AA(I)
CC )

+ 2V̂CL(w
V V (I)
CL + w

AA(I)
CL ) + V̂LL(w

V V (I)
LL + w

AA(I)
LL )
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+ V̂T (w
V V (I)
T + w

AA(I)
T ) + χV̂T ′w

V A(I)
T ′

]
, (27)

where P (k) is a flux weighting factor that has the shape of an experimental neutrino flux

distribution arbitrarily normalized to one. For neutrino scattering χ = −1 and for anti-

neutrino scattering χ = 1. The nucleon response functions are

w
V V (I)
CC =(1 + τ)G̃2

E(τ)

w
V V (I)
CL =

√
τ(1 + τ)G̃2

E(τ)

w
V V (I)
LL =τG̃2

E(τ)

w
V V (I)
T =2τG̃2

M(τ)

w
AA(I)
CC =τG̃2

A(τ)

w
AA(I)
CL =

√
τ(1 + τ)G̃2

A(τ)

w
AA(I)
LL =(1 + τ)G̃2

A(τ)

w
AA(I)
T =2(1 + τ)G̃2

A(τ)

w
V A(I)
T ′ =4

√
τ(1 + τ)G̃A(τ)G̃M(τ) , (28)

where the superscript (I) indicates that the response functions are even under parity and

time-reversal. The kinematic factors are

v0 = 4|k||k′| cos2
θl
2

V̂CC = 1

V̂CL = − ω

|q|

V̂LL =
ω2

q2

V̂T =

(
|Q2|
2q2

+ tan2 θl
2

)
V̂TT = −|Q

2|
2q2

V̂TC = − 1√
2

√
Q2

q2
+ tan2 θl

2

V̂TL = − 1√
2

ω

|q|

√
|Q2|
q2

+ tan2 θl
2

V̂T ′ = tan
θl
2

√
|Q2|
q2

+ tan2 θl
2
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V̂TC′ = − 1√
2

tan
θl
2

V̂TL′ =
1√
2

ω

|q|
tan

θl
2
. (29)

It is convenient to rewrite the cross section as(
dσ

dpNd cos θN

)
χ

=
G2 cos2 θc

8π

P (k)

k
(ΥCC+CL+LL + ΥT + χΥT′) , (30)

where

ΥCC+CL+LL =
8m3

Np
2
N sin2 θNTNG̃

2
E(τ)

(mN + TN)(2mN + TN)(pN cos θN − TN)3
(31)

ΥT =
4mNp

2
NTN ((mN + TN) cos2 θN − 2pN cos θN +mN + TN)

(mN + TN)(2mN + TN)(pN cos θN − TN)3

×
(
TNG̃

2
M(τ) + (2mN + TN)G̃2

A(τ)
)

(32)

ΥT′ =
8mNT

2
N(2mN − pN cos θN + TN)G̃A(τ)G̃M(τ)

(mN + TN)(pN cos θN − TN)2
(33)

with χ = −1 for neutrino scattering and χ = 1 for anti-neutrino scattering.

Specifically, for backward scattering, where θl = π, q = pN is parallel to the beam

direction. So, θN = 0, and in this limit

lim
θN→0

ΥCC+CL+LL = 0

lim
θN→0

ΥT =
8mNTN(mN − pN + TN)

(
TNG̃

2
M(τ) + (2mN + TN)G̃2

A(τ)
)

(mN + TN)(2mN + TN)(pN − TN)3

lim
θN→0

ΥT ′ =
8mNT

2
N(2mN − pN + TN)G̃A(τ)G̃M(τ)

(mN + TN)(pN − TN)2
. (34)

The first of these indicates that the contribution from the CC, CL and LL responses vanish

for backward scattering. This means that there is no contribution to the cross section from

G̃E. The second is the result of contributions from the vector-vector and axial-axial contri-

butions to the transverse response. These naturally contain contributions proportional to

G̃2
M and G̃2

A. The third term is the contribution from the vector-axial interference contribu-

tion to the T ′ response and is proportional G̃MG̃A. Since χ = −1 for neutrino scattering and

χ = 1 for anti-neutrino scattering, the second and third contributions to the cross section
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can be separated by measuring cross sections for both neutrino and anti-neutrino scatter-

ing. Furthermore, comparisons of neutrino (anti-neutrino) scattering from both protons and

neutrons may allow for increased sensitivity to strangeness form factors due to the isospin

dependence of the form factors.

In particular, the isospin dependence of the nucleon form factors suggests that the sensi-

tivity to the parameters ρs, µs and gsA might be increased by forming a ratio of isovector to

isoscalar combinations of the nucleon cross sections defined as

Aχ =
(dσ/dpNd cos θN)pχ − (dσ/dpNd cos θN)nχ
(dσ/dpNd cos θN)pχ + (dσ/dpNd cos θN)nχ

. (35)

This ratio should produce cancellation of some systematic errors; for example, the neutrino

flux factors cancel in this ratio. Note that this asymmetry is defined for both neutrinos and

the corresponding anti-particles. In order to conserve space in this paper we present only

cross sections and asymmetries for neutrinos although we have calculated the corresponding

quantities for the anti-particles. It is clear that other asymmetries involving combinations

of cross sections for both isospins and both values of χ can also be defined.

In order to get an idea of the size of effects and the sensitivity to the strangeness param-

eters that we can expect without any nuclear effects, we first present numerical results for

single-nucleon targets. As a theoretical demonstration of this approach we will examine the

sensitivity of the isospin asymmetry to variations in ρs, µs and gsA in the next section before

proceeding to consideration of whether or not a similar isospin asymmetry can be produced

from CCν neutrino scattering from the deuterium cross sections alone.

D. Single-Nucleon Sensitivity to the Strangeness Parameters

We will now consider the sensitivity of the nucleon cross sections to variations of values

of the parameters ρs, µs and gsA. For this purpose we have chosen five values of each of the

parameters over ranges that contain the probability ellipses obtained from fits to parity-

violating electron scattering data in [12] and the results of recent lattice QCD calculations

[16, 17]. The chosen parameters are listed in Table I. In order to limit the number of figures

showing the results of the variation in parameters, we produce figures where two of the

parameters are fixed at the central values given in the third line of Table I and the third is

varied. Each parameter is varied over equal steps to allow easy interpolation to intermediate

13



TABLE I. Strangeness parameters used in testing the variation of cross sections and asymmetries.

ρs µs gAs

-0.3 -0.1 -0.4

0.0 0.0 -0.3

0.3 0.1 -0.2

0.6 0.2 -0.1

0.9 0.3 0.0

values using the resulting figures. All cross sections are calculated using a flux factor having

the shape of the DUNE flux [23] arbitrarily normalized to 1.

We will first consider the case where the final-state three-momentum of the nucleon is at

the angle θN = 0◦ to the neutrino beam. At this angle (34) shows that the cross sections

have no dependence on G̃E(τ), but do depend on G̃M(τ) and G̃A(τ). Figure 3 shows the

dependence on the neutrino energy of k and the square on the four-momentum transfer |Q2|

for these θN = 0◦ as a function of the magnitude of the final-state nucleon momentum pN .

Figure 4 shows the proton (top panel) and neutron (center panel) cross sections along with

the isospin asymmetry (bottom panel) for these kinematics, where µs and gsA are fixed with

varying ρs. As expected from the absence of G̃E(τ) for this case the cross sections and

asymmetry show no variation. Since the cross sections peak at about 0.75 GeV and fall to

about 10 percent of the maximum value at about 1.2 GeV, possibly measurable values of

k range up to about 0.75 GeV, while the range of |Q2| is up to about 1 (GeV/c)2. Figure

5 shows the cross sections and asymmetry for fixed ρs and gsA with varying µs. The cross

sections show moderate sensitivity to changes in the strangeness contribution to the magnetic

form factor, while the asymmetry shows increasing sensitivity with increasing values of pN .

Figure 6 shows the cross sections and asymmetry for fixed ρs and µs with varying gsA. The

cross sections show substantial sensitivity to changes in the strangeness contribution to the

axial-vector form factor and the asymmetry show substantial variation across the range of

pN .

In order to see any effect due to the strangeness contributions to the electric form factor,

it is necessary to consider finite values of θN . As an example we now present calculations

for θN = 40◦. Figure 7 shows the values of k and |Q2| for this choice of kinematics. Note
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FIG. 3. Values of k and |Q2| for neutral-current neutrino scattering from nucleons at θN = 0◦ as

a function of the nucleon momentum pN .

that compared with Fig. 3, the ranges of values for both of these quantities increase with

θN . This is particularly the case for k due to the possibility that the denominator of (21)

can vanish resulting in a kinematical singularity, which is also present in the cross section

as can be seen from (30-33). Figure 8 shows the cross sections and asymmetry for θN = 40◦

with µs and gsA fixed with varying ρs. The cross sections show only a small sensitivity due to

the strangeness contributions to the electric form factor. The sensitivity is clearly enhanced

in the isospin asymmetry, but is still small. The peak in the cross sections is shifted to

slightly lower values of pN and the widths are also slightly increased. Figure 9 shows the

cross sections and asymmetry for θN = 40◦ with ρs and gsA fixed, and with varying µs. The

sensitivity of the cross sections to the strangeness contribution to the magnetic form factor

is still moderate, but is smaller than at θN = 0◦. Figure 10 shows the cross sections and

asymmetry for θN = 40◦ with ρs and µs fixed, and with varying gsA. The sensitivity to

the strangeness contribution to the axial-vector form factor is still substantial even though

slightly smaller than at θN = 0◦

Extension of the cross sections to larger θN will result in larger cross sections due to the

kinematical singularity. The peaks of the cross sections move to lower values of pN and

the widths also decrease. As a result, the range of |Q2| for extraction of the strangeness

contributions to the form factors then decreases. This indicates that extraction of the

strangeness contributions to the form factors for large |Q2| is most likely to be best done

at forward angles. The sensitivity to strangeness contribution to the electric form factor

15



FIG. 4. Neutral-current neutrino scattering from nucleons at θN = 0◦ as a function of the nucleon

momentum pN for fixed µs and gsA and varying values of ρs. The top panel shows the cross section

for scattering from a proton; the middle panel shows the cross section for scattering from a neutron;

the bottom panel shows the isospin asymmetry Aν = Aχ=−1. The variation of ρs has no effect as

should be expected from (31) and (34).
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FIG. 5. Same as Fig. 4, but with ρs and gsA fixed and varying values of µs.

is small while those to the magnetic and axial-vector form factors are moderate and large

using this approach.

The problem with this exercise is that there are no practical free neutron targets that

could be used in this reaction. This means that neutron cross sections must be obtained

by scattering from few- or many-body nuclei. The simplest of these is of course deuterium.
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FIG. 6. Same as Fig. 4, but with ρs and µs fixed and varying values of gsA.

In the following discussion we show that by measuring both the proton and neutron three-

momenta for neutral-current disintegration of the deuteron the lepton kinematics for the

reaction can be determined and that the deuteron can be used to produce an isospin asym-

metry that has a sensitivity to the strangeness parameters comparable to the ideal, but

unachievable single-nucleon case.
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FIG. 7. Values of k and |Q2| for neutral-current neutrino scattering from a nucleon at θN = 40◦

as a function of the nucleon momentum pN .

III. NEUTRINO SCATTERING FROM THE DEUTERON

As there are no practical free neutron targets, the best alternative is to use a deuteron

or helium-3 target. Here we choose to focus on the deuteron, the simplest case. Since the

deuteron is a bound state of a proton and neutron, it is clear that calculation of the isospin

asymmetry, as done above for cross sections on free protons and neutrons, requires that

kinematics can be found which isolate the neutron and proton contributions to the reaction

with little interference between the two contributions. We will show that this is indeed

possible.

The calculations presented here are based on a model originally designed to examine

deuteron electrodisintegration in kinematical regions similar to those occurring in long-

baseline neutrino experiments where large energy and momentum transfers can occur making

it necessary that Lorentz covariance be required. The model has been applied to electro-

disintegration without polarization [19], with polarized deuterons [20, 24], with polarized

final-state protons [21] and to study the model dependence in these processes [24, 25]. Feyn-

man diagrams representing the elements of the model are given in Fig. 11. The deuteron

vertex function, represented as the light ellipse in Fig. 11 is obtained by a numerical so-

lution to the Gross equation [26–28] with meson-exchange model of the nucleon-nucloen

(NN) interaction and is Lorentz covariant. Diagrams (a) and (b) represent neutral-current

disintegration of the deuteron resulting in a free proton and neutron. Diagrams (c) and
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FIG. 8. Neutral-current neutrino scattering at θN = 40◦ as a function of the nucleon momentum pN

for fixed µs and gsA with varying values of ρs. The top panel shows the cross section for scattering

from a proton; the middle panel shows the cross section for scattering from a neutron; the bottom

panel shows the isospin asymmetry.
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FIG. 9. Same as Fig. 8, but with ρs and gsA fixed and varying values of µs.

(d) include final-state interactions (FSI) by means of an antisymmetrized proton-neutron

t matrix represented by the dark ellipse. This final-state interaction is constructed either

from helicity amplitudes taken from the SAID fit to nucleon-nucleon data [29] or from a

Regge-model parameterization of NN scattering data from Mandelstam s = 5.4 GeV2 to

s = 4000 GeV2 [22, 30, 31]. The nucleon with four-momentum P1 is chosen to be the pro-
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FIG. 10. Same as Fig. 8, but with ρs and µs fixed and varying values of gsA.

ton and that with P2 is the neutron. We have also extended the model to charged-current

neutrino disintegration of the deuteron [2, 4]. At this point the model is not completely

consistent. Ideally the scattering t matrix used in the FSI should be obtained using the

same interaction kernel as the deuteron vertex function. However, for technical reasons, this

cannot be done using the Gross equation for invariant masses of the final state above pion
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production threshold. In addition, two-body currents corresponding to interaction of the

electroweak vector bosons interacting with exchanged particles in the NN interaction kernel

have not been included. A detailed discussion of the consistency requirements is contained

in [32]. However calculations using the present model show that the effects of the FSI are

very small and it should be expected that the two-body current contributions will therefore

also be small. The present model is therefore sufficient for the initial examination of this

problem.

FIG. 11. Diagrams representing neutral-current neutrino scattering from a deuteron. Diagrams

(a) and (b) are the plane-wave contributions to the reaction, while diagrams (c) and (d) are

contributions from final-state interactions. The light ellipse represents the deuteron vertex function,

while the dark ellipse represents the completely antisymmetric t matrix. Two-body currents are

not included.

The incident and final neutrino four-momenta are

Kµ = (|k|,k) (36)

and

K ′
µ

= (|k′|,k′) . (37)

The four-momentum transfer is

Qµ = Kµ −K ′µ = (ω, q) . (38)

The final-state proton and neutron four-momenta are

P µ
1 = (

√
p21 +m2

N ,p1) (39)

and

P µ
2 = (

√
p22 +m2

N ,p2) . (40)
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The rest-frame four-momentum of the target deuteron is

Pd = (Md,0) . (41)

We have assumed that the neutrinos are massless.

Since kinematics associated with these diagrams are symmetric under the interchange of

P1 and P2, it is convenient to express the semi-inclusive cross section in a form that manifests

the same symmetry. The procedure for obtaining the necessary quantities to evaluate the

cross section is as follows. Since the incident and scattered neutrinos cannot be detected, a

complete set of variables that parameterize the cross section must be obtained by measuring

the three-momentum of the proton p1 and of the neutron p2. These two momenta define

the hadron plane for the reaction. Conservation of three-momentum gives

q = p1 + p2 ≡ p+ . (42)

The momentum q and the beam direction define the lepton plane of the reaction and θq

represents the angle between the beam direction and q. Choosing the quantization axis ez

to be along q, the azimuthal angle between the lepton and hadron planes is φ. The proton

and neutron momenta can then be decomposed into components parallel and perpendicular

to ez as

p1 = p⊥1 + p
‖
1ez (43)

and

p2 = p⊥2 + p
‖
2ez . (44)

Then

p
‖
+ = p

‖
1 + p

‖
2 = q , (45)

and

p⊥1 + p⊥2 = 0 . (46)

So

|p⊥1 | = |p⊥2 | ≡ p⊥+ (47)

with the azimuthal angles of the momenta being φ1 = φ and φ2 = φ + π. There are now

five independent quantities that determine the cross section: p
‖
1, p

‖
2, p

⊥, θq and φ. This

procedure is illustrated by Fig. 12.
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FIG. 12. Diagram representing the choice of kinematic variables for the ν+d→ ν+p+n reaction.

From conservation of energy

ω +Md =
√
p21 +m2

N +
√
p22 +m2

N =

√
p
‖
1

2
+ p⊥2 +m2

N +

√
p
‖
2

2
+ p⊥2 +m2

N ≡ E+ , (48)

or

ω = E+ −Md = k − k′ . (49)

Now using

k′ = k − q , (50)

gives

k′ =
√
k2 − 2kq cos θq + q2 =

√
k2 − 2kp

‖
+ cos θq + p

‖
+

2
= k − ω = k − E+ +Md . (51)

This can be solved to give the initial neutrino energy

k =
p
‖
+

2
− (E+ −Md)

2

2(p
‖
+ cos θq − E+ +Md)

=
|Q2|

2(q cos θq − ω)
. (52)

Note that this becomes singular at ω = q cos θq. The scattered neutrino energy is

k′ = k − ω = k − E+ +Md =
p
‖
+

2
− 2(E+ −Md)p

‖
+ cos θq + (E+ −Md)

2

2(p
‖
+ cos θq − E+ +Md)

, . (53)

The neutrino scattering angle is given by

cos θl =
k − p‖+ cos θq

k′
. (54)

Note that for θq = 0, θl = π.
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Using these coordinates the semi-inclusive cross section can be written as(
dσ

dp⊥dp
‖
1dp
‖
2dφ

)
χ

=
G2 cos2 θcm

2
Np
⊥

2(2π)5E1E2(p
‖
+ cos θq − E+ +Md)

P (k)

k
v0F2

χ , (55)

where

Ei =

√
p
‖
i

2
+ p⊥2 +m2

N (56)

and

F2
χ =V̂CC(w

V V (I)
CC + w

AA(I)
CC ) + 2V̂CL(w

V V (I)
CL + w

AA(I)
CL ) + V̂LL(w

V V (I)
LL + w

AA(I)
LL )

+ V̂T (w
V V (I)
T + w

AA(I)
T )

+ V̂TT

[
(w

V V (I)
TT + w

AA(I)
TT ) cos 2φ+ (w

V V (II)
TT + w

AA(II)
TT ) sin 2φ

]
+ V̂TC

[
(w

V V (I)
TC + w

AA(I)
TC ) cosφ+ (w

V V (II)
TC + w

AA(II)
TC ) sinφ)

]
+ V̂TL

[
(w

V V (I)
TL + w

AA(I)
TL ) cosφ+ (w

V V (II)
TL + w

AA(II)
TL ) sinφ

]
+ χ

[
V̂T ′w

V A(I)
T ′ + V̂TC′(w

V A(I)
TC′ cosφ+ w

V A(II)
TC′ sinφ)

+V̂TL′(w
V A(I)
TL′ cosφ+ w

V A(II)
TL′ sinφ)

]
. (57)

The kinematic factors are given by (29) and the response functions wji are defined in [3]. The

superscirpt (I) denotes response functions that are even under parity and time-reversal, while

(II) denotes response functions that are odd. This expression is in a form that easily allows

the interchange 1↔ 2. Since the reponse functions are a result of numercal calculations that

involve internal momentum loops, there are no simple expressions for the various response

functions in terms of the electroweak form factors as in the single nucleon case.

For the purposes of this work it is convenient to introduce the variable

y =
(Md + ω)

√
s(s− 4m2

N)

2s
− q

2
=
E+

√
(E2

+ − q2)(E2
+ − p

‖
+

2
− 4m2

N)

2(E2
+ − p

‖
+

2
)

− p
‖
+

2
, (58)

where the missing momentum pm = p2(p1) for the case of the vector boson being absorbed

on the proton(neutron)is bounded by |y| ≤ pm ≤ y+ q. Since the deuteron cross section will

tend to be maximal for y = 0, we will apply this constraint to reduce the number of free

kinematic parameters. Note the constraint y = 0 corresponds to xBj = 0 up to some small

binding corrections. For y = 0, (58) can be solved to yield

p
‖
+ =

√
E+(E+ − 2mN) . (59)
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FIG. 13. The cross section for neutral-current scattering from the deuteron for θq = 0◦ as a

function of p
‖
1 and p

‖
2. The left-hand panel shows the cross section in the distorted-wave impulse

approximation (DWIA), where the Z0 couples only with the protons in the deuteron. The right-

hand panel shows the cross section in the distorted-wave Born approximation (DWBA) where the

Z0 couples to both protons and neutrons in the deuteron. Regions of the cross section which are

primarily due to scattering from a proton or neutron are indicated.

This, in turn can be solved for p⊥ to give

p⊥ =

√√√√√2mNp
‖
1p
‖
2

(√
m2
N + (p

‖
1 + p

‖
2)

2 −mN

)
(p
‖
1 + p

‖
2)

2
. (60)

This constraint can be used to reduce the number of independent parameters to four.

The four-momentum transfer must be space-like, |Q2| ≥ 0. From (52) it is clear that k

becomes singular at q cos θq = ω. A constraint that avoids this singularity and keeps the

four-momentum transfer space-like can be roughly enforced by requiring that k < kmax,

where kmax is chosen from an examination of the neutrino flux factor. An approximate

constraint on the input parameters is then given by

p
‖
2 + p

‖
1 <

2kmaxmN(kmax +mN) cos θq
k2max sin2 θq + 2kmaxmN +m2

N

. (61)

For the calculations shown in this paper we have chosen to use a flux factor related to the

DUNE flux and have chosen kmax = 10 GeV.

The question of whether or not it is possible to separate the neutron and proton contribu-

tions to this cross section can be answered by considering Fig. 13. Here, the semi-inclusive
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cross section is plotted for θq = 0◦ as a function of p
‖
1 and p

‖
2. The left-hand panel is calcu-

lated in the distorted-wave impulse approximation (DWIA) where the diagrams (b) and (d)

of Fig. 11 are omitted so that the Z0 couples only to the protons in the deuteron. The right-

hand panel is calculated in the distorted wave Born approximation (DWBA) where all of

the diagrams of Fig. 11 are calculated so that the Z0 couples to both protons and neutrons.

Comparison of these to panels indicates the two well-separated peaks of the right-hand pan-

elcan be identified as contributions arising primarily from scattering from the proton and

the neutron. By fixing p
‖
2 at a small value and allowing p

‖
1 to run from zero to 2 GeV, the

cross section from the proton can be extracted. Conversely, fixing p
‖
1 at a small value and

allowing p
‖
2 to vary it is possible to extract the contribution from the neutron. This then

makes it possible to construct the isospin asymmetry

Aχ =

(
dσ/dp⊥dp

‖
1dp
‖
2dφ
)p
χ
−
(
dσ/dp⊥dp

‖
1dp
‖
2dφ
)n
χ(

dσ/dp⊥dp
‖
1dp
‖
2dφ
)p
χ

+
(
dσ/dp⊥dp

‖
1dp
‖
2dφ
)n
χ

(62)

from the deuteron cross sections.

A. Results: Sensitivity of the Differential Cross Sections and Asymmetries to the

Strangeness Parameters

We can now proceed in the same manner as for the free nucleon case. For the results

presented here we will set p
‖
2(p
‖
1) = 0.001 GeV and define p‖ = p

‖
1(p
‖
2) for the proton(neutron)

cross sections. This choice maximizes the size of the cross sections.

Figure 14 gives the kinematics for θq = 0◦. The top panel shows k and |Q2| as a function

of p‖. Comparison of this figure with Fig. 3 shows that these quantities are essentially the

same as for scattering from a nucleon at θN = 0◦. The center panel shows the magnitude

of the three momenta for the proton kinematics. Note that, in the case of scattering from a

free proton, pN is equivalent to p1 and p2 is not defined. The bottom figure shows the angles

of the two nucleons with respect to q as a function of p‖. Here θ1 begins at 13◦ and decreases

toward 0◦ with increasing p‖. The corresponding angle for scattering from a proton is 0◦ for

all values of p‖. The quantities |Q2|, p1, p2, θ1 and θ2 do not depend upon the angle θq.

Figure 15 gives the cross sections and isospin asymmetry for these kinematics with fixed µs

and gsA and varying ρs. The cross sections and asymmetry display no sensitivity to variation
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FIG. 14. Kinematics for neutral-current neutrino scattering from deuterium at θq = 0◦ as a function

of the parallel component of p1(p2) = p‖. The top panel shows k and |Q2|; the center panel shows

p1 and p2; the bottom panel shows the nucleon angles θ1 and θ2 relative to q. Of the quantities

shown here, only k depends on the angle θq
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of ρs. Comparison with the free nucleon case of Fig. 4 shows that the peaks in the cross

sections are moved to lower value of p‖ and the shapes of the peaks and isospin asymmetry

are different. This is due in part to the factor of p⊥ in the cross sections which vanishes

rapidly as p‖ goes to 0. Note that for θq = 0◦, θl = 180◦. For this case the combinations or

the kinematic factors v0V̂i defined in (29) vanish except for V̂T and V̂T ′ are zero. The only

response functions contributing to the cross sections are w
V V (I)
T , w

AA(I)
T and w

V A(I)
T ′ . These

reponse functions are dominated by the magnetic and axial-vector form factors with only

very small contributions for the electric form factor due to the movement of the nucleons in

the deuterons. It should therefore be expected that the cross sections and asymmetries are

insensitive to the variation of ρs.

Figure 16 gives the cross sections and isospin asymmetry for the kinematics with fixed

ρs and gsA with varying µs. As in the free nucleon case, the deuteron cross sections and

asymmetry display moderate sensitivity to variation of the strangeness component of the

magnetic form factor, but is slightly smaller in size. Figure 17 gives the cross sections and

isospin asymmetry for the kinematics with fixed ρs and µs with varying gsA. The cross sections

and asymmetry display a large sensitivity to variations in the strangeness component of the

axial-vector form factor. The asymmetry, however, becomes markedly less sensitive for the

lowest values of gsA for values of p‖ above the peaks of the cross sections.

Although Figs. 15, 16 and 17 are calculated including the FSI represented by Fig. 11

(c) and (d), for the kinematics shown here, the FSI contributions are small. This may not

be the case for other kinematic choices. If the need arises, the model can be improved to

provide a more accurate and consistent treatment of the FSI.

Now consider the case where θq = 40◦. Figure 18 shows the kinematical variables for this

case as a function of p‖. Note that values of k and |Q2| are almost identical to those for

the free nucleons at θN = 40◦. The values of p1 are virtually the same as p‖ and pN . The

value of the recoil momentum p2 is small. Again, θ1 starts at about 13◦ and approaches

0◦ with increasing p‖. The recoil angle θ2 is near 90◦. Figure 19 gives the cross sections

and isospin asymmetry for the kinematics with fixed µs and gsA and varying ρs. The cross

sections and asymmetry now display a small sensitivity to variation of ρs. Comparison to

the free nucleon case of Fig. 8 shows that the peaks in the cross sections are moved to lower

value of p‖ and the shapes of the peaks and isospin asymmetry are different. Figure 20

gives the cross sections and isospin asymmetry for the kinematics with fixed ρs and gsA with
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FIG. 15. Neutral-current neutrino scattering from deuterium at θq = 0◦ as a function of p‖ for

fixed µs and gsA and varying values of ρs. The top panel shows the cross section for scattering from

a proton; the middle panel shows the cross section for scattering from a neutron; the bottom panel

shows the isospin asymmetry.
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FIG. 16. Same as Fig. 15, but with ρs and gsA fixed and varying values of µs.

varying µs. As in the free nucleon case, the cross sections and asymmetry display moderate

sensitivity to variation of the strangeness component of the magnetic form factor, but is

slightly smaller in size. Figure 21 gives the cross sections and isospin asymmetry for the

kinematics with fixed ρs and µs with varying gsA. The cross sections and asymmetry display

a large sensitivity to variations in the strangeness component of the axial-vector form factor.
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FIG. 17. Same as Fig. 15, but with ρs and µs fixed and varying values of gsA.

As in the case of θq = 0◦, the asymmetry, however, becomes markedly less sensitive for the

lowest values of gsA for values of p‖ above the peaks of the cross sections.

Extension of the cross sections to larger θq is similar to the kinematical singularity as is

the case for scattering from free nucleons. The range in |Q2| is significantly reduced while

the size of the cross sections is increased.
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FIG. 18. The neutrino energy k for θq = 40◦ as a function of the parallel component of p
‖
1(p
‖
2) = p‖.

|Q2| is shown for reference.

In the examples shown here we have chosen a very small value of the recoil momentum

by setting p
‖
2(p
‖
1) = 1 MeV for protons(neutrons). This can be increased by choosing larger

values for this parallel component of the recoil momentum. Increasing this value to 25 MeV

will result in recoil momenta in the range of 100 MeV. This is done at the expense of

decreasing the size of the cross sections and introducing a region where the proton and

neutron contributions overlap.

In summary, the differential cross sections are practically insensitive to ρs, display a

moderate sensitivity to µs and a fairly strong sensitivity to gsA. The neutrino - proton and

neutrino - neutron cross sections show sensitivity to µs and gsA in the opposite directions, so

we considered asymmetries that exploit this behavior.

In the asymmetries, the sensitivity to gsA appears to be quite strong, and measurements

of the differential cross sections and asymmetries together at a handful of angles θq might

well allow one to constrain the values for µs and gsA better than methods that have been

used up to this time.

IV. SUMMARY AND OUTLOOK

We have presented theoretical results for neutral-current neutrino scattering from the

deuteron leading to final hadronic states containing only a proton and neutron. In this

work the focus has been placed on the fully exclusive reaction where both the proton and
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FIG. 19. Neutral-current neutrino scattering from deuterium at θq = 40◦ as a function of p‖ for

fixed µs and gsA and varying values of ρs. The top panel shows the cross section for scattering from

a proton; the middle panel shows the cross section for scattering from a neutron; the bottom panel

shows the isospin asymmetry.
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FIG. 20. Same as Fig. 19, but with ρs and gsA fixed and varying values of µs.

neutron in the final state are assumed to be detected. As discussed when considering the

kinematics in detail, the incident neutrino energy, the neutrino scattering angle and the

scattered neutrino’s energy can all be reconstructed given this information.

The model employed is Lorentz covariant although the treatment of the FSI is not com-

pletely consistent with the calculation of deuteron vertex functions. This inconsistency can
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FIG. 21. Same as Fig. 19, but with ρs and µs fixed and varying values of gsA.

be removed with a moderate amount of effort. Since our interest is in modeling reactions

where the typical neutrino energies are in the several GeV region, the ability to follow an

approach where relativistic dynamics are incorporated is especially important. We note in

passing that the close similarity between electrodisintegration of deuterium (for instance,

via the (e, e′p) reaction), charge-changing neutrino reactions on deuterium (namely, the CCν
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reactions that can occur below pion production threshold, which are ν`+
2H→ `− + p + n

and ν̄`+
2H→ `+ + p+ n) and the NCν reactions that provide the focus of the present work,

ν`+
2H→ ν` + p + n and ν̄`+

2H→ ν̄` + p + n, ultimately should allow one to reach levels

of theoretical uncertainty from the underlying nuclear physics to levels that are extremely

hard to achieve otherwise.

We have shown that for specific choices of kinematics the reaction proceeds mainly via

scattering from the proton, while for other choices of kinematics it proceeds mainly from

the neutron. One can see this by doing as we have in this work and comparing the cross

section for NCν disintegration of the deuteron in these special kinematical situations with

elastic neutrino scattering from a proton or neutron. Thus a special feature of such studies

using the deuteron as a target is to have both protons and neutrons as effective targets for

neutral-current neutrino scattering with well-determined kinematics for the leptonic part of

the problem. Given this ability to isolate effects from protons and neutrons then provides

a way to explore the electroweak form factors for both the proton and neutron; that is,

equivalently, both isoscalar and isovector form factors of the nucleon may be explored in

this way. We have introduced specific asymmetries involving protons with neutrons where

the sensitivities to the hard-to-determine form factors are particularly large. Exploiting such

asymmetries also has the advantage of minimizing systematic errors in future measurements.

We have found that the cross sections are very sensitive to the isoscalar axial-vector form

factor as characterized by its strength parameter gsA, and sensitive but less so to the magnetic

strangeness form factor characterized by its strength parameter µs. In the kinematic region

explored in this study little sensitivity was found to the electric strangeness form factor with

its strength parameter ρs.

The present study has been focused on neutral-current scattering of neutrinos, although

some attention was paid to the differences that occur when anti-neutrinos are employed.

In particular, the vector-vector plus axial-axial contributions remain unchanged, while the

vector-axial contributions change sign in going from neutrinos to anti-neutrinos. Again an

asymmetry can be created by forming the ratio of the semi-inclusive cross sections (i.e.,

neutrino minus anti-neutrino over their sum). From an exploratory study done involving

both neutrinos and anti-neutrinos we see rather similar results in the two cases, although

with somewhat different sensitivities to the underlying nucleon form factors. Clearly having

both types of beam could yield more information about the form factors while potentially
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minimizing some experimental issues of a systematic nature.

Finally, we note that the present study is centered on the underlying theory involved,

both the two-body nuclear theory and the hadronic physics that could be explored in future

experiments. This work can serve as a basis for developing those future experiments, per-

haps using heavy water or some other target that is rich in deuterium, although that is a

job for those who are interested in pursuing such experimental issues and is not part of our

focus. Upon moving towards a conceptual experiment one would hope that a deuterium-rich

target/detector could be realized where both charge-changing and neutral-current disinte-

gration reactions could be measured in concert.
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