

¹ **Global epistasis emerges from a generic model of a complex trait**

² Gautam Reddy*

³ *NSF-Simons Center for Mathematical & Statistical Analysis of Biology,*
⁴ *Harvard University, Cambridge, MA 02138*

⁵ Michael M. Desai†

⁶ *NSF-Simons Center for Mathematical and Statistical Analysis of Biology,*
⁷ *Harvard University, Cambridge, MA 02138*

⁸ *Department of Organismic and Evolutionary Biology,*
⁹ *Harvard University, Cambridge, MA 02138, USA*

¹⁰ *Quantitative Biology Initiative, Harvard University, Cambridge, MA 02138, USA and*
¹¹ *Department of Physics, Harvard University, Cambridge, MA 02138, USA.*

¹² (Dated: June 15, 2021)

Abstract

Epistasis between mutations can make adaptation contingent on evolutionary history. Yet despite widespread “microscopic” epistasis between the mutations involved, microbial evolution experiments show consistent patterns of fitness increase between replicate lines. Recent work shows that this consistency is driven in part by global patterns of diminishing-returns and increasing-costs epistasis, which make mutations systematically less beneficial (or more deleterious) on fitter genetic backgrounds. However, the origin of this “global” epistasis remains unknown. Here we show that diminishing-returns and increasing-costs epistasis emerge generically as a consequence of pervasive microscopic epistasis. Our model predicts a specific quantitative relationship between the magnitude of global epistasis and the stochastic effects of microscopic epistasis, which we confirm by re-analyzing existing data. We further show that the distribution of fitness effects takes on a universal form when epistasis is widespread, and introduce a novel fitness landscape model to show how phenotypic evolution can be repeatable despite sequence-level stochasticity.

¹³ Keywords: evolution, epistasis, complex trait, predictability

* gautam_nallamala@fas.harvard.edu

† mdesai@oeb.harvard.edu

¹⁴ I. INTRODUCTION

¹⁵ Despite the idiosyncrasies of epistasis, a number of laboratory microbial evolution experiments
¹⁶ show systematic patterns of convergent phenotypic evolution and declining adaptability. A strik-
¹⁷ ing example is provided by the *E.coli* long-term evolution experiment (LTEE) (Figure 1a): 12
¹⁸ replicate populations that adapt in parallel show remarkably similar trajectories of fitness increase
¹⁹ over time [1, 2], despite stochasticity in the identity of fixed mutations and the underlying dy-
²⁰ namics of molecular evolution [3, 4]. Similar consistent patterns of fitness evolution characterized
²¹ by declining adaptability over time have also been observed in parallel yeast populations evolved
²² from different genetic backgrounds and initial fitnesses [5] (Figure 1b) and in other organisms
²³ [6–12]. Declining adaptability is thought to arise from diminishing-returns epistasis [5, 13, 14],
²⁴ where a global coupling induced by epistatic interactions systematically reduces the effect size of
²⁵ individual beneficial mutations on fitter backgrounds. Diminishing-returns manifests as a striking
²⁶ linear dependence of the fitness effect of a mutation on background fitness (Figure 1c). While
²⁷ diminishing-returns can be rationalized as the saturation of a trait close to a fitness peak, recent
²⁸ work shows a similar dependence on background fitness even for deleterious mutations, which
²⁹ become more costly on higher fitness backgrounds [15]. This suggests that fitter backgrounds are
³⁰ also less robust to deleterious effects (Figure 1d), a phenomenon that has been termed increasing-
³¹ costs epistasis. The origin of the global coupling that results in these effects is unknown.

³² Put together, these empirical observations suggest that the contributions to the fitness effect,
³³ s_i , of a mutation at a locus i in a given genetic background can be written as

$$s_i = s_{\text{additive},i} + s_{\text{genotype},i} - c_i y, \quad (1)$$

³⁴ where $s_{\text{additive},i}$ is the additive effect of the mutation, $s_{\text{genotype},i}$ is its genotype-dependent epistatic
³⁵ contribution independent of the background fitness y (i.e., idiosyncratic epistasis), and c_i quanti-
³⁶ fies the magnitude of global epistasis for locus i . Eq. (1) reflects the observation that the strength
³⁷ of global epistasis depends on the specific mutation and applies independently of whether its ad-
³⁸ ditive effect is deleterious (increasing-costs) or beneficial (diminishing-returns). Over the course
³⁹ of adaptation in a fixed environment, global epistatic feedback on mutational effects can lead
⁴⁰ to a long-term decrease in adaptability. If this feedback dominates, Eq. (1) suggests that the
⁴¹ dependence of the fitness effect on evolutionary history is summarized entirely by the current
⁴² fitness, and therefore results in predictable fitness evolution.

43 Here, we show that diminishing-returns and increasing-costs epistasis are a simple consequence
 44 of widespread epistasis. This is consistent with recent work [16] that proposes a similar argument
 45 to explain these phenomena. However, while the core idea is similar, we present here an alterna-
 46 tive framework based on the Fourier analysis of fitness landscapes, which leads to new insights
 47 and quantitative predictions. In particular, our framework leads to novel predictions for the
 48 relationship between the magnitude of global epistasis and the stochastic effects of microscopic
 49 epistasis, which we confirm by re-analyzing existing data. Extending this framework, we further
 50 quantify how the distribution of fitness effects shifts as the organism adapts and how the fitness
 51 effect of a mutation depends on the sequence of mutations that have fixed over the course of
 52 adaptation (i.e., historical contingency). While specific historical relationships depend on the ge-
 53 netic architecture, we introduce a novel fitness landscape model with an intuitive architecture for
 54 which the entire history is summarized by the current fitness. Using this fitness landscape model,
 55 we investigate the long-term dynamics of adaptation and elucidate the architectural features that
 56 lead to predictable fitness evolution.

57 **RESULTS**

58 **Diminishing-returns and increasing-costs epistasis**

59 We begin by examining the most general way to express the relationship between genotype
 60 and fitness (i.e., to describe the fitness landscape). A map between a quantitative trait (such as
 61 fitness), y , and the underlying genotype can be expressed as a sum of combinations of ℓ biallelic
 62 loci x_1, x_2, \dots, x_ℓ that take on values $x_i = \pm 1$ [17–21]:

$$y = \bar{y} + \sum_i f_i x_i + \sum_{i>j} f_{ij} x_i x_j + \sum_{i>j>k} f_{ijk} x_i x_j x_k + \dots, \quad (2)$$

63 where \bar{y} is a constant that sets the overall scale of fitness. The symmetric convention $x_i = \pm 1$ for
 64 the two allelic variants is less often used than $x_i = 0, 1$, but it is an equivalent formulation, which
 65 we employ here because it will prove more convenient for our purposes (see [22] for a discussion).
 66 The coefficients of terms linear in x_i represent the additive contribution of each locus to the fitness
 67 (i.e. its fitness effect averaged across genotypes at all other loci), the higher-order terms quantify
 68 epistatic interactions of all orders, and \bar{y} is the average fitness across all possible genotypes.

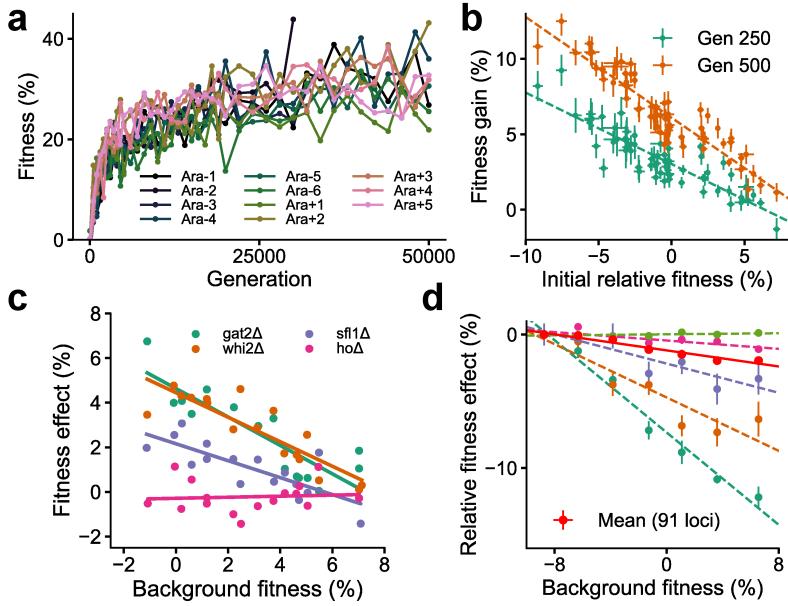


Figure 1. Declining adaptability and global epistasis in microbial evolution experiments. (a) Convergent phenotypic evolution in the *E. coli* long-term evolution experiment: the fitness relative to the common ancestor of 11 independently adapting populations over 50,000 generations is shown (data from [1]). The 12th population, Ara+6, has limited data and is not shown. (b) Yeast strains with lower initial fitness adapt faster (data from [5]). The fitness gain after 250 (green) and 500 (orange) generations of 640 independently adapting populations with 64 different founders and 10 replicates of each founder. Mean and SE are computed over replicates. (c) Diminishing returns of specific beneficial mutations on fitter backgrounds for three knocked out genes (green, orange and purple) (data from [5]). Control in pink. (d) Increasing costs of specific deleterious mutations on fitter backgrounds (data from [15]). The fitness effect relative to the least fit background for the mean over 91 mutations (in red) and five of the 91 mutations are shown. Linear fits for the five specific mutations and the mean using dashed and solid lines respectively are shown.

69 Importantly, Eq. (2) makes apparent the idiosyncrasies induced by epistasis: a mutation at a
70 locus with ℓ interacting partners has an effect composed of $2^{\ell-1}$ contributions.

71 To explicitly compute the fitness effect of a mutation at locus i on a particular genetic back-
72 ground, we simply flip the sign of x_i , keeping all other x_j constant, and write down the difference
73 in fitness that results. This fitness effect will generally involve a sum over a large number of
74 terms involving the f 's in Eq. (2). While this may suggest that an analysis of fitness effects via

75 Eq. (2) is intractable, the analysis in fact simplifies considerably if the locus has a significant
 76 number of independent interactions that contribute to the fitness (i.e., provided that the number
 77 of independent, nonzero epistatic terms associated to the locus is large). In this case, we show
 78 that the fitness effects of individual mutations decrease linearly with background fitness and the
 79 fluctuations around this linear trend are normally-distributed. In other words, widespread inde-
 80 pendent idiosyncratic epistatic interactions lead to the observed patterns of diminishing-returns
 81 and increasing-costs epistasis.

82 We present a derivation of this result in the SI. Here we explain the key intuition using
 83 a heuristic argument. The argument is based on a simple idea: for a well-adapted organism
 84 ($y > \bar{y}$) with complex epistatic interactions, a mutation is more likely to disrupt rather than
 85 enhance fitness. To be quantitative, consider a highly simplified scenario where some number N
 86 of the f 's in Eq. (2) are ± 1 at random and the others are 0. In this case, the fitness of a given
 87 genotype is a sum of N_+ and N_- interactions that contribute positively and negatively to the trait
 88 respectively, each with unit magnitude, so that $y = \bar{y} + N_+ - N_-$. When positive and negative
 89 interactions balance, the organism is in a “neutrally-adapted” state ($y \approx \bar{y}$). By selecting for
 90 positive interactions, adaptation generates a bias so that $N_+ > N_-$ and $y > \bar{y}$. If locus i involved
 91 in a fraction v_i of all of $N = N_+ + N_-$ interactions is mutated, the effect of the mutation, on
 92 average, is to flip the sign of $N_+ v_i$ positive interactions and $N_- v_i$ negative interactions. The new
 93 fitness is then $y_i = y - 2N_+ v_i + 2N_- v_i = \bar{y} + (1 - 2v_i)(y - \bar{y})$ and thus $s_i = y_i - y = -2v_i(y - \bar{y})$. The
 94 negative linear relation between the background fitness, y , and the fitness effect of the mutation,
 95 s_i , is immediately apparent and emerges as a systematic trend simply due to a sampling bias
 96 towards positive interactions. Of course, while this relation is true on average, it is possible that
 97 locus i affects more or less positive interactions due to sampling fluctuations. Provided only that
 98 N is large and the interactions are independent, these fluctuations are approximately Gaussian
 99 with magnitude $\sqrt{Nv_i(1 - v_i)}$.

100 This basic argument holds beyond the simple model with unit interactions. In the more general
 101 case, if the mutation is directed from $x_i = -1 \rightarrow +1$, we show in the SI that its fitness effect, s_i ,
 102 on a background of fitness y can be written as

$$s_i = \underbrace{2f_i(1 - \tilde{v}_i)}_{\text{additive}} - \underbrace{2\tilde{v}_i(y - \bar{y})}_{\text{global epistasis}} + \underbrace{\tilde{\epsilon}_i}_{\text{genotype}}, \quad (3)$$

103 where¹

$$\tilde{v}_i \equiv \frac{\left(\sum_{j \neq i} f_{ij}^2 + \sum_{j > k \neq i} f_{ijk}^2 + \dots\right) - \left(\sum_{j \neq i} f_j f_{ij} + \sum_{j > k \neq i} f_{jk} f_{ijk} + \dots\right)}{\sum_{j \neq i} (f_j - f_{ij})^2 + \sum_{j > k \neq i} (f_{jk} - f_{ijk})^2 + \dots}, \quad (4)$$

104 and $\tilde{\epsilon}_i$ is a genotype and locus-dependent term which is distributed across genotypes with mean
105 zero and variance expressed in terms of the f 's from Eq. (2) (see SI for details). The numerator
106 of \tilde{v}_i in Eq. (4) is proportional to the covariance of fitness effects and background fitness and the
107 denominator is the variance of background fitness across genotypes. A similar equation for the
108 case $x_i = +1 \rightarrow -1$ can be derived. The choice of $+1 \rightarrow -1$ or $-1 \rightarrow +1$ is simply a matter of
109 convention. If the convention is reversed, the coefficients of odd-order in Eq. (2), i.e., f_i, f_{ijk}, \dots ,
110 should also switch signs. It can be easily checked that reversing the signs of these quantities in
111 the expression for \tilde{v}_i above leads to the expression for \tilde{v}_i when $x_i = +1 \rightarrow -1$.

112 Note that in general \tilde{v}_i is not guaranteed to be positive and $\tilde{\epsilon}_i$ is arbitrary and determined by
113 the genotype-fitness map. However, consistent patterns emerge when locus i has a large number of
114 independent, nonzero epistatic terms and the additive effects f_1, f_2, \dots of its interacting partners
115 are not much larger than the epistatic terms (defined further below), which we call the widespread-
116 epistasis (WE) limit. In the WE limit, $\tilde{\epsilon}_i$ is normally-distributed across genotypes with variance
117 proportional to $\tilde{v}_i(1 - \tilde{v}_i)$. This follows from the same reasoning as in our heuristic argument
118 with unit interactions above (see SI for details). In addition, \tilde{v}_i is typically positive, giving rise
119 to a negative linear trend (i.e. diminishing-returns and increasing-costs). We can see this by
120 taking the third and higher-order terms in Eq. (4) to be zero, in which case \tilde{v}_i is positive if
121 $\sum_{j \neq i} f_{ij}^2 > \sum_{j \neq i} f_j f_{ij}$. This will typically be true in the WE limit because we expect $\sum_{j \neq i} f_{ij}^2$ to
122 scale with the number of interacting partners ℓ , while each term in $\sum_{j \neq i} f_j f_{ij}$ can be positive or
123 negative and thus the sum scales as $\sqrt{\ell}$ if the terms are independent. Thus when locus i has a
124 large number of interacting partners, \tilde{v}_i is typically positive unless the magnitude of the additive
125 terms (a) is much larger than the magnitude of the epistatic terms (e), $a \gg e\sqrt{\ell}$. This argument
126 is easily extended to the case when the third and higher-order terms are non-zero (see SI); the
127 upshot is that the bias towards \tilde{v}_i positive gets stronger with increasing epistasis.

128 The conditions for the WE limit are more likely to hold when the number of loci, ℓ , that affect
129 the trait is large. Therefore, we expect to generically observe patterns of diminishing-returns and

¹ In the following equation and similar ones henceforth, a summation such as $\sum_{j > k \neq i} f_{ijk}^2$ is meant to denote a sum over pairs j, k , where each pair appears only once and no pair which includes index i appears. Symmetry of the f 's w.r.t interchanged indices is also assumed (e.g., $f_{ijk} = f_{jik}$).

130 increasing-costs epistasis for a complex trait involving many loci. Importantly, whether we observe
 131 a negative linear trend does not depend on the magnitude of a locus' epistatic interactions relative
 132 to its own additive effect, but rather relative to the additive effects of its interacting partners. If
 133 we are not in the WE limit, and instead the additive effects dominate (i.e., $a \gg e\sqrt{l}$), then Eq. (4)
 134 suggests that the slope of the linear trend can be either positive or negative. We will show further
 135 below that recent experimental data demonstrates that both scenarios can be relevant: some loci
 136 have $a \ll e\sqrt{l}$ while others have $a \gg e\sqrt{l}$, with the former creating a bias towards the observed
 137 negative linear trends that characterize diminishing-returns and increasing-costs epistasis.

138 We note that Eq. (3) immediately leads to testable quantitative predictions: in the WE limit,
 139 the distribution of the residuals, $\tilde{\epsilon}_i$, obtained from regressing s_i and y is entirely determined by
 140 the slope of the regression, $-2\tilde{v}_i$. Specifically, we predict that these residuals (the deviations of
 141 individual genotype fitnesses from the overall diminishing-returns or increasing-costs trend) should
 142 be normally distributed with a variance proportional to $\tilde{v}_i(1 - \tilde{v}_i)$. However, this condition only
 143 applies if diminishing-returns arises from the WE limit. It does not hold if epistasis is negligible,
 144 if locus i interacts significantly with only a few other dominant loci, or if the epistatic terms
 145 are interrelated (e.g., when global epistasis arises from a nonlinearity applied to an unobserved
 146 additive trait [23–25]). The latter case may still lead to a negative linear trend, but the statistics
 147 of the residuals will differ from Eq. (3) (see SI for a discussion).

148 It is convenient to subsequently work with the symmetric version of Eq. (3), where the fitness
 149 effects of both $x_i = -1 \rightarrow +1$ and its reversion $x_i = +1 \rightarrow -1$ (whose fitness effect is negative
 150 of the former) are included in the regression against their respective background fitness. In this
 151 case, the additive term is averaged out, and we show (SI) that in the WE limit,

$$s_i = -2v_i(y - \bar{y}) + 2\sqrt{v_i(1 - v_i)}\eta_i, \quad (5)$$

152 where η_i depends on the genetic background and the locus, and is normally-distributed with zero
 153 mean and variance V , and

$$v_i \equiv \frac{V_i}{V} = \frac{f_i^2 + \sum_{j \neq i} f_{ij}^2 + \dots}{\sum_k f_k^2 + \sum_{k > l} f_{kl}^2 + \dots}. \quad (6)$$

154 Here V is the total genetic variance due to all loci (i.e., the variance in fitness across all possible
 155 genotypes) while V_i is the contribution to the total variance by the f 's involving locus i . We
 156 therefore refer to v_i as the *variance fraction* of locus i . We show further below that for certain
 157 fitness landscapes, v_i can also be interpreted as the fraction of pathways affected by a locus. For

158 these reasons, we focus on v_i , which is half of the negative slope, rather than the slope. Note that
159 the v_i 's do not sum to one unless there is no epistasis (with epistasis, $\sum_i v_i > 1$, reflecting the
160 fact that the variance contributed by different loci overlap). While the directed mutation case
161 discussed previously is the relevant one when presenting experimental data (for e.g., Figure 1c,d),
162 it is conceptually simpler to work with the symmetric case. These two cases coincide and $v_i \approx \tilde{v}_i$
163 in the WE limit if the additive effect of a locus is small (i.e., $f_i^2 \ll \sum_{j \neq i} f_{ij}^2 + \sum_{j > k \neq i} f_{ijk}^2 + \dots$).

164 Our results show that the variance fraction v_i plays an important role. It determines the slope
165 of the negative relationship between the fitness effect and background fitness. At the same time,
166 it determines the magnitude of the idiosyncratic fluctuations away from this trend. We also note
167 that this slope can be used to experimentally probe the contribution of a locus to the trait (i.e.,
168 its variance fraction) taking into account *all* orders of epistasis, which circumvents the estimation
169 of the individual f 's in Eq. (2). The theory additionally predicts that the slope obtained by
170 regressing the sum of fitness effects of two mutations at loci i, j against background fitness is
171 proportional to $v_{ij} = v_i + v_j - 2e_{ij}$, where e_{ij} quantifies the magnitude of epistatic interactions of
172 all orders between i and j (SI).

173 Importantly, while the fitness effects of individual mutations (and hence the distribution of
174 fitness effects) may change over the course of evolution due to epistasis, the distribution of variance
175 fractions (DVF) across loci, $P(v)$, is an invariant measure of the range of effect-sizes available to
176 the organism during adaptation. As we will see, this means that the DVF plays an important
177 role in determining long-term adaptability.

178 Numerical results and experimental tests

179 To illustrate our analytical results, we first demonstrate that the effects described above are
180 reproduced in numerical simulations. To do so, we numerically generated a genotype-phenotype
181 map of the form in Eq. (2), with $\ell = 400$ loci and an exponential DVF, $P(v) = \bar{v}^{-1}e^{-v/\bar{v}}$, where
182 $\bar{v} = 0.02$ (Methods). This DVF is shown in Figure 2a. Note that $\bar{v}\ell \gg 1$ corresponds to an
183 epistatic landscape; $\bar{v}\ell = 8$ chosen here thus corresponds to a model within the WE limit (note
184 that $\tilde{v}_i \approx v_i$ in this parameter range). Using this numerical landscape, we measured the fitness
185 effect of mutations at 30 loci across 640 background genotypes with a range of fitnesses (Figure
186 2b). Our results recapitulate the predicted linear dependence on background fitness (Figure 1c,d),

187 with a negative slope equal to twice the variance fraction predicted from Eq. (5). We further
188 simulated the evolution of randomly generated genotypes similar to the experimental procedure
189 used in Kryazhimskiy *et al.* [5] (Figure 2c), finding that our results reproduce the patterns of
190 declining adaptability observed in experiments (Figure 1b). Note that ~ 10 mutations are fixed
191 during this simulated evolution; declining adaptability here is not due to a finite-sites effect.

192 As described previously, Eq. (5) implies a proportional relationship between the magnitude
193 of global epistasis (quantified by the slope of the relationship between the fitness effect of a
194 mutation and the background fitness) and the magnitude of microscopic epistasis (quantified by
195 the residual variance around this linear trend); see also Figure 3a. We verify this relationship
196 in simulations (Figure 2d). We predict that the slope obtained by regressing the sum of fitness
197 effects of two mutations at loci i, j against background fitness is proportional to $v_{ij} = v_i + v_j - 2e_{ij}$.
198 We further assume that $e_{ij} = O(\bar{v}^2)$ (specifically, $e_{ij} = v_i v_j$ for the genotype-phenotype map used
199 for numerics). Since v_i and v_j are typically small for a complex trait, we expect near-additivity
200 $v_{ij} \approx v_i + v_j$ and that any deviations are sub-additive, which is confirmed in simulations (Figure
201 2e,f).

202 While testing the latter prediction on double mutants requires further experiments, we can
203 immediately test the relationship between the slope and the distribution of residuals from existing
204 experimental data. To do so, we re-analyzed the data from Johnson *et al.* [15], which measured
205 the fitness effect of 91 insertion mutants on about 145 backgrounds. These background strains
206 were obtained by crossing two yeast strains that differed by $\approx 40,000$ SNPs. Of these 40,000
207 loci, $\ell \approx 40$ have been identified as causal loci with currently available mapping resolution [26].
208 In Figure 3, we show the estimated \tilde{v}_i (negative one-half of the slope of the best-fit line) and the
209 variance fraction v_i for each of the 91 mutations. These mutations were selected after screening
210 for nonzero effect, and thus the DVF is biased upwards. The mean variance fraction is $\bar{v} \approx 0.06$.
211 The wide range of v_i observed in the data implies that the epistatic influence of loci varies greatly
212 across loci and we will show further below that this is crucial for maintaining a supply of beneficial
213 mutations even when the organism is well-adapted to the environment.

214 Our theoretical results imply that we expect the linear relationship between background fitness
215 and fitness effect to be negative if the additive effects of a locus' interacting partners are not much
216 larger than the epistatic terms. Specifically, we define the additivity of interacting loci (AoIL) for

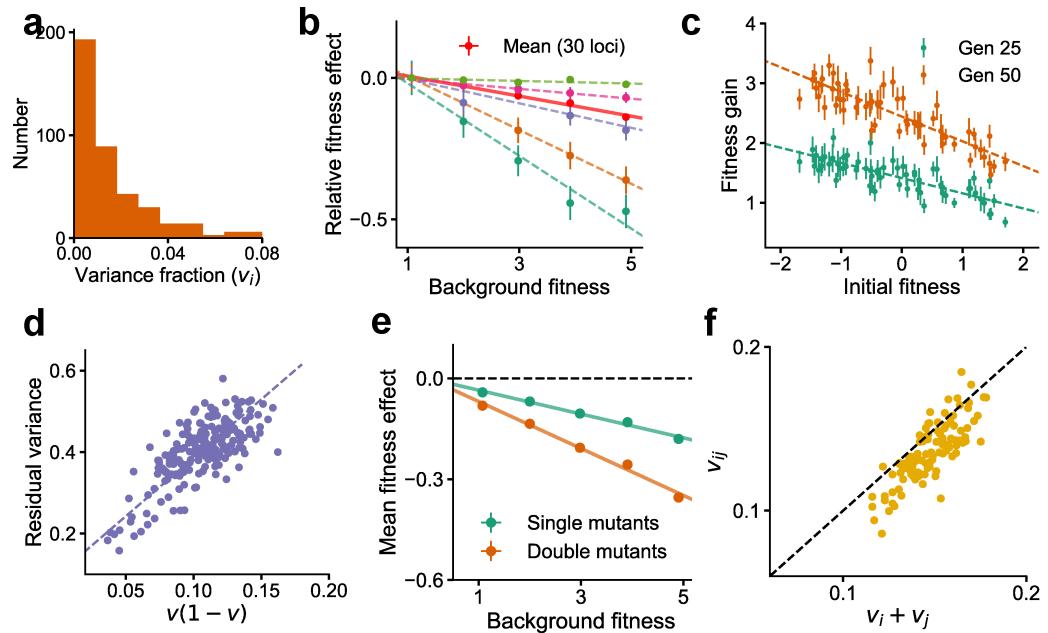


Figure 2. Global epistasis is recapitulated in a generic model of a complex trait and leads to testable predictions. (a) The distribution of variance fractions (DVF) over 400 loci for the simulated genotype-phenotype map. (b) The predicted linear relationship between fitness effect (relative to the fitness effect on the least fit background) and background fitness for the mean over 30 randomly chosen loci (red, solid line) and five loci (dashed lines in colors) is recapitulated. The slope of the linear fit for each locus is proportional to its variance fraction, v (slope = $-2v$). Mean and SE are over backgrounds of approximately equal fitness. See Methods for more details. (c) The mean fitness gain after 25 (green) and 50 (orange) generations of simulated evolution of 768 independently adapting populations with 64 unique founders and 12 replicates each. Means and SEs are computed over the 12 replicates. Error bars are s.e.m. (d) The relationship predicted from theory between the residual variance from the linear fit for each locus and its slope is confirmed in simulations. (e) The mean fitness effect for single mutants at 30 loci and double mutants from all possible pairs of the 30 loci. The slope for the double mutants is predicted to be roughly twice that of single mutants. (f) The estimated variance fraction of a double mutant with mutations at two loci is predicted from theory and confirmed in simulations to be approximately the sum of the variance fractions for single mutations at the two loci. Sub-additivity is due to epistasis between the two loci. See Methods for more details.

217 locus i as

$$\text{AoIL}(i) \equiv \frac{|\sum_{j \neq i} f_j f_{ij} + \sum_{j > k \neq i} f_{jk} f_{ijk} + \dots|}{\left(\sum_{j \neq i} f_{ij}^2 + \sum_{j > k \neq i} f_{ijk}^2 + \dots\right) + |\sum_{j \neq i} f_j f_{ij} + \sum_{j > k \neq i} f_{jk} f_{ijk} + \dots|}, \quad (7)$$

218 which we show can be estimated from data (Methods and SI). If the AoIL is less than half, Eq.
219 (4) implies that the linear trend is guaranteed to be negative. If instead the AoIL is greater than
220 0.5, the trend can be either positive or negative. The data shows a range of AoIL between 0 and
221 1 across loci. As predicted by our theory, we find that the loci with $\text{AoIL} < 0.5$ always show
222 negative trends and the ones with $\text{AoIL} > 0.5$ show both negative and positive trends (Figure
223 3c). Importantly, the sign of the trend is determined by the AoIL and not by the additivity of
224 the mutated locus, which we define as

$$\text{Additivity}(i) \equiv \frac{f_i^2}{f_i^2 + \sum_{j \neq i} f_{ij}^2 + \sum_{j > k \neq i} f_{ijk}^2 + \dots}. \quad (8)$$

225 The additivity across loci also has a wide range. However, small additivity does not necessarily
226 imply a negative trend (Figure 3d).

227 We next used the data from Johnson *et al.* [15] to analyze the relationship between the slope
228 of the linear trend and the residual variance around this trend. We find that the experimental
229 data confirms our theoretical prediction that the residual variance is proportional to $\tilde{v}_i(1 - \tilde{v}_i)$ if
230 the AoIL is small (Figure 3e, $R^2 = 0.5$ for loci with $\text{AoIL} < 0.5$ and $R^2 = 0.42$ for all loci). The
231 Gaussian-distributed term in Eq. (3) also predicts the shape of the distribution of the residuals
232 given the variance fractions, which aligns well with the empirical distribution of the residuals
233 (Figure 3f).

234 Together, these theoretical results and our reanalysis of experimental data show that linear
235 patterns of global diminishing-returns and increasing-costs epistasis are a simple consequence of
236 widespread epistatic interactions. The distribution of variance fractions observed in data (Figure
237 3b) further implies that the epistatic influence of different loci on fitness can vary across a wide
238 range. In what follows, we show that these two observations can be put together to make general
239 predictions about the distribution of fitness effects, and consequently the long-term dynamics of
240 adaptation. The key ingredient that enables this analysis (including Eq. (5)) is that in the WE
241 limit, fitness and fitness effects are jointly normal (with respect to a uniform distribution over all
242 possible genotypes), which allows us to quantify complex dependencies between these variables
243 in terms of pairwise covariances.

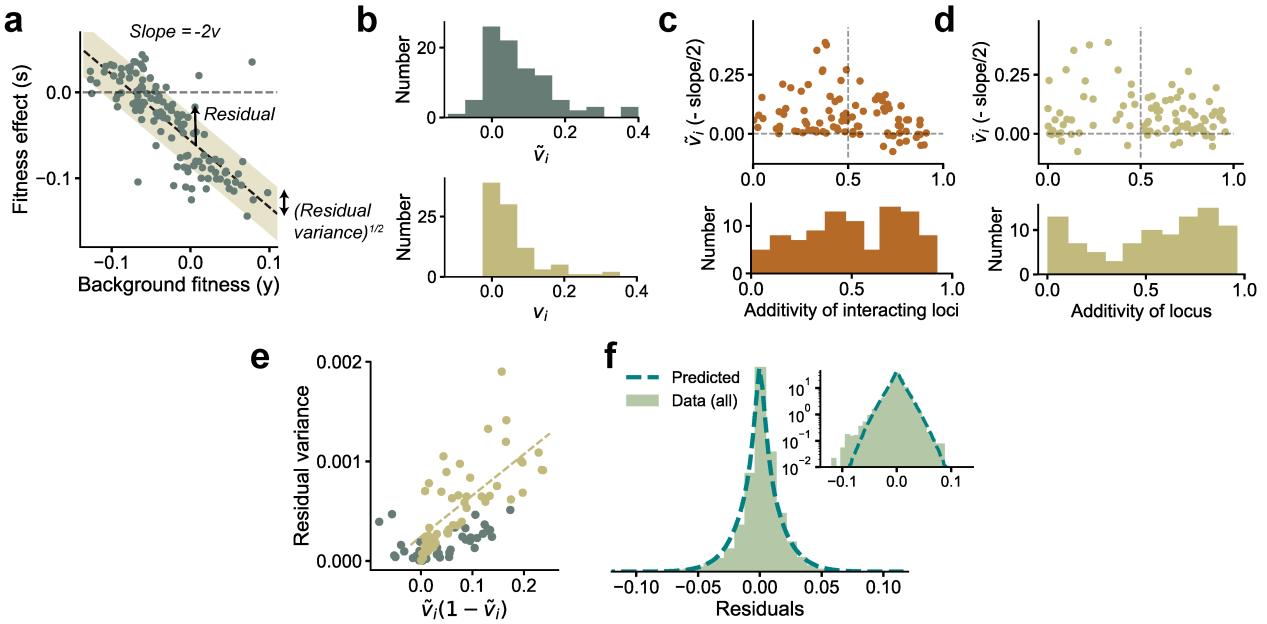


Figure 3. Experimental observations from Johnson *et al.* [15] are consistent with theoretical predictions.

(a) The fitness effect of one of the 91 mutations from [15] plotted against background fitness. (b) The distribution of the measured \tilde{v}_i (negative one-half of the slope from (a)) and variance fractions v_i for the 91 insertion mutations. (c,d) \tilde{v}_i plotted against the additivity of interacting loci and the additivity of the mutated locus (see main text for definitions). The histograms are shown below the plots. The sign of the trend depends on the additivity of interacting loci rather than the additivity of the mutated locus. (e) The measured variance of the residuals against the prediction $\tilde{v}_i(1 - \tilde{v}_i)$, shown here for the 91 mutations. The yellow circles correspond to the loci with AoIL < 0.5. The best-fit line (yellow dashed line) to these loci has $R^2 = 0.50$ ($R^2 = 0.42$ for all points). (f) The shape of the distribution of residuals pooled from all 91 mutations aligns well with the prediction from Eq. (3). The variances of the two distributions are matched. Inset: same plot in log-linear scale. See Methods for more details.

244 **The distribution of fitness effects**

245 Long-term adaptation is determined by the distribution of fitness effects (DFE) of possible
 246 mutations and the stochastic dynamical processes that lead to fixation. While Eq. (5) represents
 247 the distribution of the fitness effects of a specific mutation at locus i over *all* genotypes in the
 248 population that have fitness y , we are instead interested in the DFE, where fitness effects are
 249 measured for all the mutations arising in the background of a *particular* genotype that has fitness

250 y . For now we ignore the influence of evolutionary history on the DFE; we expand on that
 251 complication in the following Section.

252 Examining the DFE over ℓ loci for a randomly chosen genotype of fitness y can be thought of as
 253 sampling the fitness effects s_1, s_2, \dots, s_ℓ from the conditional joint distribution $P(s_1, s_2, \dots, s_\ell|y)$,
 254 which generally depends on epistasis. If the number of independent, nonzero epistatic terms
 255 is large, then $P(s_1, s_2, \dots, s_\ell|y)$ is a multivariate normal distribution defined by the means and
 256 covariances of the $\ell + 1$ variables $y, s_1, s_2, \dots, s_\ell$, which in turn can be computed in terms of
 257 the f 's from Eq. (2). In particular, the conditional means and covariances are $\text{Mean}_y(s_i) =$
 258 $-2v_i(y - \bar{y})$, $\text{Cov}_y(s_i, s_j) = 4V(e_{ij} - v_i v_j)$, where e_{ij} is the epistatic variance fraction between
 259 loci i and j and $e_{ii} = v_i$. This implies that the conditional correlation between fitness effects is
 260 $(e_{ij} - v_i v_j)/\sqrt{v_i v_j (1 - v_i)(1 - v_j)}$.

261 The DFE simplifies considerably if we make certain additional assumptions on the magnitude
 262 of epistatic interactions. If we assume the typical variance fraction \bar{v} is small (i.e., $\bar{v} \ll 1$) and
 263 also that e_{ij} is $O(\bar{v}^2)$, then correlations are $O(\bar{v})$ and thus negligible. Then, in a particular sample
 264 s_1, s_2, \dots, s_ℓ , we can think of each s_i as being drawn independently with mean $-2v_i(y - \bar{y})$ and
 265 variance $4v_iV$. To compute the DFE, $\rho(s|y)$, we first sample the variance fraction from the DVF,
 266 $P(v)$, and then sample a Gaussian random variable with the aforementioned mean and variance.
 267 This leads to the DFE

$$\rho(s|y) = \int_0^1 dv (2\sqrt{vV})^{-1} P(v) \varphi \left(\frac{s + 2v(y - \bar{y})}{2\sqrt{vV}} \right), \quad (9)$$

268 where φ is the standard normal pdf. Curiously, the correlations between s_i 's vanish when $e_{ij} =$
 269 $v_i v_j$, in which case the above equation is exact and the DFE is determined entirely by the DVF.
 270 Further below, we introduce a specific fitness landscape model for which this relation does hold.
 271 Diminishing-returns is naturally incorporated in Eq. (9): the mean of s is $-2\bar{v}(y - \bar{y})$, i.e., the
 272 DFE shifts progressively towards deleterious values with increasing fitness.

273 Historical contingency in adaptive trajectories

274 A key unresolved question is the extent to which evolutionary history influences the DFE and
 275 the dynamics of adaptation [27]. That is, what does our theory say about historical contingency?

276 Suppose a clonal population of fitness y_0 accumulates k successive mutations resulting in

277 fitnesses y_1, y_2, \dots, y_k . By virtue of arising on the same ancestral background, the fitness gain
 278 of a new mutation, s_{k+1} , is in general correlated with the full sequence of past fitnesses and
 279 the identity of the k mutations through its epistatic interactions with them. Based on these
 280 correlations, we use well-known properties of conditional normal distributions [28] to write

$$s_{k+1} = \sum_{i=0}^k w_{k+1,i} y_i + \epsilon, \quad (10)$$

281 where the weights $w_{k+1,i}$ depend on the variance fraction (v_{k+1}) of the new mutation and its
 282 epistatic interactions with past mutations. Here ϵ is the normally-distributed residual that de-
 283 pends on the initial genotype and the weights (SI). Eq. (10) is a generalization to a sequence of
 284 mutations of Eq. (5), which we can think of as the special case where $k = 0$.

285 To gain intuition, it is useful to first analyze Eq. (10) when $k = 1$ (i.e., to compute the effect
 286 of a second mutation conditional on the first). In this case, we show in the SI that

$$s_2 \simeq -2v_2(y_1 - \bar{y}) + \frac{v_1 v_2 - e_{12}}{v_1} s_1 + \epsilon, \quad (11)$$

287 where $s_1 = y_1 - y_0$ is the fitness effect due to mutation 1. The first term on the right hand side
 288 is the dependence on the fitness of the immediate ancestor, similar to the corresponding term in
 289 Eq. (5). The second term quantifies the influence of epistasis between loci 1 and 2 on s_2 . When
 290 $e_{12} = v_1 v_2$, dependence on s_1 vanishes entirely and s_2 depends only on y_1 . In contrast, if loci 1
 291 and 2 do not interact, $e_{12} = 0$, and s_2 is, on average, larger *if* the mutation at 1 is beneficial
 292 compared to when it is deleterious. This has an intuitive interpretation: diminishing-returns
 293 applies to the overall fitness and the mechanism through which it acts is epistasis. However, if
 294 mutations 1 and 2 do not interact, then the increase in fitness corresponding to mutation 1 does
 295 not actually reduce the effect of mutation 2 (as expected by diminishing-returns) so the expected
 296 effect of mutation 2 is larger. This analysis suggests that during adaptation, since selection favors
 297 mutations with stronger fitness effects on the current background, a mutation that interacts less
 298 with previous mutations is more likely to be selected.

299 To identify the conditions under which history plays a minimal role, we would like to examine
 300 when s_{k+1} depends only on the current fitness, y_k , and is independent of both the past fitnesses
 301 and idiosyncratic epistasis. If this were true, then Eq. (5) would apply for new mutations that
 302 arise through the course of a single evolutionary path (i.e., the fitness effect of a new mutation is
 303 “memoryless” and depends only on its variance fraction and the current fitness). Surprisingly, such

304 a condition does exist. We show that this occurs when the magnitude of epistatic interactions
305 between the new mutation and the k previous mutations, $e_{k+1,1:k}$, satisfies a specific relation:
306 $e_{k+1,1:k} = v_{k+1}v_{1:k}$, where $v_{1:k}$ is the combined variance fraction of the k previous mutations (SI).
307 In general, this condition is not satisfied, implying that there will be historical contingency which
308 can be analyzed using the framework above. Remarkably, it turns out that a fitness landscape
309 model for which the condition is satisfied does exist and arises from certain intuitive assumptions
310 on the organization of biological pathways and cellular processes. This fitness landscape model
311 additionally serves as an example of a landscape where global epistasis can vary substantially
312 across loci. We describe this model below.

313 **The connectedness model**

314 We introduce the “connectedness” model (CN model, for short). In this model, each locus i is
315 involved in a fraction μ_i of independent “pathways”, where each pathway has epistatic interactions
316 between all loci involved in that pathway (Figure 4a). The probability of an epistatic interaction
317 between three loci (i, j, k) is then proportional to $\mu_i\mu_j\mu_k$, since this is the probability that these
318 loci are involved in the same pathway. When the number of loci ℓ is large, we show that in this
319 model, $v_i = \mu_i/(1 + \mu_i)$, and when ℓ is small, $v_i = \mu_i/\bar{\mu}\ell$, where $\bar{\mu}$ is the average over all loci (SI).
320 The CN model therefore has a specific interpretation: the outsized contribution to the fitness
321 from certain loci (large v_i) is due to their involvement in many different complex pathways (large
322 μ_i) and not from an unusually large perturbative effect on a few pathways. The distribution,
323 $P(\mu)$, across loci determines the DVF.

324 Statistical fitness landscapes such as the NK model and the Rough Mt. Fuji model [27, 29–33]
325 are related to the CN model. Specifically, the CN model is a sub-class of the broader class of
326 generalized NK models (see [34] for a review). However, often-studied fitness landscape models
327 have one important difference that distinguishes them and gives qualitatively different dynamics
328 of adaptation (shown further below): in contrast to the CN model, classical fitness landscapes
329 are typically ‘regular.’ That is, the variance fraction of every locus is assumed to be the same
330 (except the star neighborhood model which has a bimodal DVF [34]).

331 The CN model is equivalent to a Gaussian fitness landscape with exponentially-decaying cor-
332 relations (SI). The CN model has tunable ruggedness, where the landscape transitions from

333 additivity to maximal epistasis with increasing $\bar{\mu}$. Maximal epistasis corresponds to $\mu_i = 1$ (and
334 hence $v_i = 1/2$) for all i . From Eq. (5), this implies that the new fitness after a mutation occurs
335 is independent of the previous fitness, consistent with the expectation from a House-of-Cards
336 model [35] (where genotypes have uncorrelated fitness). Regular fitness landscape models with
337 exponentially-decaying correlations have memoryless fitness effects under the restrictive assump-
338 tion that every locus is equivalent [27]. We show that the dynamics of adaptation of the more
339 general CN model are also memoryless, i.e., the condition detailed in the previous section holds
340 true (SI). Yet, as we show below, the predicted dynamics for the CN model are very different to
341 those from a regular fitness landscape model.

342 We emphasize that the well-connectedness assumed for the CN model is not a requirement
343 for Eq. (5) to hold. However, how diminishing-returns influences the long-term dynamics of
344 adaptation depends on the specific genetic architecture and the corresponding fitness landscape.
345 Consider for example an alternative model of genetic networks organized in a modular structure
346 (Figure 4b). In this model, each locus is part of a single module, and interacts epistatically with
347 other loci in that module to determine the fitness of that module; overall fitness is then determined
348 as a function of the module fitnesses. In this case, the variance contributed by a locus is due
349 to its additive contribution and from epistasis between loci restricted to its module. While the
350 argument for diminishing-returns still applies to the fitness as a whole, it follows from the same
351 argument that diminishing-returns should also apply to each module separately. Consequently,
352 the dynamics of adaptation for the modular model are different from the CN model. For simplicity,
353 we analyze the dynamics of adaptation for the CN model and postpone a discussion of how the
354 dynamics differ for different models to subsequent work.

355 The dynamics of adaptation

356 We now examine the DFE that follows from Eq. (5) and what that implies for long-term
357 adaptation under the conditions for memoryless fitness effects. We henceforth assume a large
358 number of loci with sparse epistasis (though the total number of nonzero epistatic terms is still
359 large). This implies that $\ell \gg 1$, $v_i \ll 1$ and $\bar{v}\ell \gg 1$; for simplicity, we also assume strong-
360 selection-weak-mutation (SSWM) selection dynamics and $s \ll 1$, $Ns \gg 1$, where s are fitness
361 effects and N is the population size. Under these conditions, a mutation sweeps and fixes in a

362 population before another one arises. The probability of fixation of a beneficial mutation, p_{fix} , is
 363 then proportional to its fitness effect [36].

364 It is convenient to rescale fitnesses based on the total variance in fitness across all possible
 365 genotypes by defining $z = V^{-1/2}(y - \bar{y})$, $\sigma = V^{-1/2}s$, $\nu = V^{-1/2}\eta$. Note that ν is normally-
 366 distributed with zero mean and unit variance. Here z has an intuitive interpretation as the
 367 “adaptedness” of the organism. When the organism is neutrally-adapted ($|z| \ll 1$), positive and
 368 negative epistatic contributions to the fitness are balanced and diminishing-returns is negligible.
 369 Diminishing-returns is relevant when the organism is well-adapted ($z \gg 1$). Below, we give the
 370 intuition behind our analysis, which is presented in full detail in the SI.

371 In the neutrally-adapted regime, the linear negative feedback in Eq. (5) is negligible and the
 372 DFE is determined by the distribution of $\simeq v^{1/2}\nu$. Loci with large v can lead to a DFE with
 373 a long tail. If \bar{v} is the typical variance fraction of a locus, the fitness increases as $z \sim n_s \bar{v}^{1/2}$,
 374 where n_s is the number of substitutions. Since \bar{v} is a measure of overall epistasis, this implies that
 375 epistasis speeds adaptation in the neutrally-adapted regime by allowing access to more influential
 376 beneficial mutations.

377 Fitness increases until the effect of the negative feedback cannot be neglected. From Eq. (5),
 378 this happens when $\bar{v}z \sim \bar{v}^{1/2}\nu$ (i.e., when $z^2 \sim \bar{v}^{-1}$). Intuitively, fitness begins to plateau when
 379 its accumulated benefit from substitutions is comparable to the scale of the total genetic variance
 380 ($n_s \bar{v} \sim 1$) and further improvements are due to rare positive fluctuations. In this well-adapted
 381 regime, diminishing-returns and increasing-costs epistasis strongly constrain the availability of
 382 beneficial mutations, whose effects can be quantified in this model: for a mutation to have a
 383 fitness effect σ , we require from Eq. (5) that $\nu \simeq \sigma/2v^{1/2} + v^{1/2}z$, which has probability $\sim e^{-\nu^2/2}$.
 384 Beneficial effects of large σ arise when ν has a large positive deviation. The most likely v that
 385 leads to a particular σ is when ν is smallest (i.e., at $v^* \simeq \sigma/2z$), in which case $\nu \simeq \sqrt{2\sigma z}$, yielding
 386 a tail probability $\sim e^{-\sigma z}$. Remarkably, the beneficial DFE in the well-adapted regime is quite
 387 generally an exponential distribution independent of the precise form of the DVF (unless it is
 388 singular). In particular, we show in the SI that for the DFE, $\rho(\sigma|z)$,

$$\frac{\rho(\sigma|z)}{\rho(-\sigma|z)} = e^{-\sigma z}, \quad (12)$$

389 which depends solely on the adaptedness of the organism. The exponential form arises because
 390 of the Gaussianity of ν , but the argument can be easily extended to ν with non-Gaussian tails.

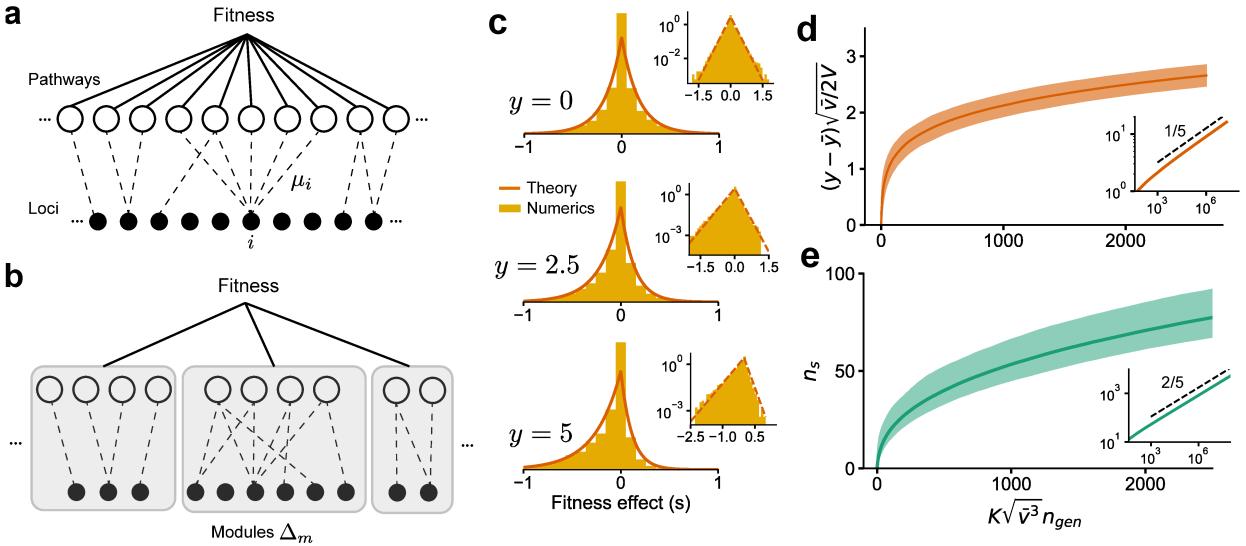


Figure 4. The DFE and long-term adaptation dynamics predicted for the connectedness model. (a) Schematic of the connectedness (CN) model, where each locus is associated with a fraction μ of pathways that contribute to the organism's fitness. (b) An alternative model with modular organization, where sets of loci interact only within the pathways specific to a single module. (c) The DFE predicted from Eq. (14) matches those obtained from simulated evolution of genotypes from the CN model. 128 randomly drawn genotypes (400 loci) with initial fitness y close to zero are evolved to $y = 2.5$ and $y = 5$ and the DFE is measured across loci and genotypes. We chose $\bar{y} = 0$ and $V = 1$ so that y represents adaptedness. Insets: same plots in log-linear scale. Note that the number of beneficial mutations acquired during the simulated evolution ($\sim 10-20$) is much less than the total number of loci (400). (d) For a neutrally-adapted organism, the theory predicts quick adaptation to a well-adapted state beyond which the adaptation dynamics are independent of the specific details of the genotype-fitness map. Shown here is the mean adaptation curve predicted under strong-selection-weak-mutation (SSWM) assumptions, which leads to a power-law growth of fitness with exponent $1/5$ in the well-adapted regime (inset). (e) The number of fixed beneficial mutations under SSWM, which grows as a power-law with exponent $2/5$ in the well-adapted regime (inset). The shaded region is the 95% confidence interval around the mean for (c) and (d). See Methods and SI for more details.

391 An exponential beneficial DFE has been previously proposed by Orr [37] but arises here due to a
 392 qualitatively different argument. Orr's result instead follows from extreme value theory: Suppose
 393 the fitness effects of ℓ loci ($\ell \gg 1$) are sampled from a DFE $\rho(\sigma)$ and $F(\sigma) \equiv \int_{-\infty}^{\sigma} \rho(\sigma') d\sigma'$. Then,

394 the probability that a beneficial mutation has at least a certain effect size σ is $P(\sigma_b \geq \sigma) =$
 395 $\frac{1-F(\sigma)}{1-F(0)} \approx \frac{\ln F(\sigma)}{\ln F(0)}$, where the latter approximation holds when beneficial mutations are rare (i.e.,
 396 $1-F(0)$ is small). A well-known result from extreme value theory (Gumbel's law [38, 39]) implies
 397 that for a large family of distributions $\rho(\sigma)$ and for $\ell \gg 1$, we have $-\ell \ln F(\sigma) \propto e^{-k\sigma}$ (for some
 398 constant k) and therefore $P(\sigma_b \geq \sigma) = e^{-k\sigma}$. This argument is consistent with our results, but
 399 does not yield the dependence of k on adaptedness and the rate of beneficial mutations without
 400 additional information about $\rho(\sigma)$.

401 Under SSWM assumptions, from Eq. (12), the typical effect size of a fixed mutation is $\sigma_{\text{fix}} \sim$
 402 z^{-1} , which typically has a variance fraction,

$$v_{\text{fix}}^* \simeq \sigma_{\text{fix}}/2z \sim 1/2z^2. \quad (13)$$

403 The above relation makes precise the effects of increasing-costs epistasis on adaptation. As
 404 adaptation proceeds, the delicate balance of high fitness configurations constrains fixed beneficial
 405 mutations to have *moderate* variance fractions. A mutation of small variance fraction is likely to
 406 confer small benefit and is lost to genetic drift, while one with a large variance fraction is more
 407 likely to disrupt an established high fitness configuration.

408 This intuition is not captured in regular fitness landscape models, which assume statistically
 409 equivalent loci, i.e., $v_i = \bar{v}$ for all i and $P(v) = \delta(v - \bar{v})$ is singular. From Eq. (9), we see that
 410 this leads to a Gaussian DFE whose mean decreases linearly with increasing fitness, in contrast
 411 to the exponential DFE in our theory. The key difference is the lack of loci with intermediate
 412 effect, which drive adaptation in the well-adapted regime. As a consequence, the rate of beneficial
 413 mutations declines exponentially ($U_b \sim e^{-\bar{v}z^2/2}$) and the fitness thus sharply plateaus at $z \sim \bar{v}^{-1/2}$.
 414 In contrast, our theory predicts a much slower depletion of beneficial mutations, $U_b \sim z^{-2}$ (SI).
 415 The rate of adaptation is $dz/dt \sim U_b p_{\text{fix}} \sigma_{\text{fix}} \sim z^{-4}$ (since $p_{\text{fix}} \sim \sigma_{\text{fix}}$), which leads to a slow
 416 but steady power-law gain in fitness, $z \sim t^{1/5}$. The rate of fixation of beneficial mutations is
 417 $dn_s/dt \sim U_b p_{\text{fix}} \sim z^{-3} \sim t^{-3/5}$, which gives $n_s \sim t^{2/5}$.

418 We verify our analytical results using numerics. As before, we generated a genotype-phenotype
 419 map using the CN model with an exponential DVF, $P(v) = \bar{v}^{-1} e^{-v/\bar{v}}$ and $\ell = 400$ loci. The DFE
 420 can be calculated exactly by plugging in this $P(v)$ in Eq. (9):

$$\rho(\sigma|z) = \frac{\bar{v}^{-1}}{2\sqrt{2\bar{v}^{-1} + z^2}} e^{-\sigma z/2 - |\sigma| \sqrt{2\bar{v}^{-1} + z^2}/2}. \quad (14)$$

421 We simulated the evolution of randomly generated genotypes from $z = 0$ to $z = 2.5$ and $z = 5$
422 and the DFE across all loci was measured (we chose $\bar{y} = 0, V = 1$ so that $y = z, s = \sigma$). The
423 theoretical prediction for the DFE, Eq. (14), closely aligns with the numerical results (Figure
424 4c).

425 Due to computational constraints, it is difficult to simulate evolution deep into the well-adapted
426 regime. To compute the shape of adaptive trajectories and their variability, we instead simulated
427 SSWM dynamics using the DFE directly from Eq. (14), beginning from a neutrally-adapted
428 fitness ($z = 0$). Typical trajectories (Figure 4d) show rapid adaptation to the well-adapted
429 regime beyond which the fitness grows slowly as $t^{1/5}$, as predicted from theory. The predictions
430 for the number of fixed beneficial mutation are also re-capitulated (Figure 4e).

431 DISCUSSION

432 Recent empirical studies have observed consistent patterns of diminishing-returns and increasing-
433 costs epistasis. Our model gives a simple explanation for these observations. In particular, we
434 showed that these patterns are generic consequences of widespread microscopic epistatic interac-
435 tions. The intuition underlying this result is that a random mutation typically has a larger dis-
436 ruptive effect on the delicate balance of microscopic epistasis that underpins a fitter background.
437 Our model predicts a quantitative relationship between the magnitudes of global epistasis (i.e.,
438 the negative slope of diminishing-returns and increasing-costs epistasis) and microscopic epistasis,
439 which we confirmed using existing data (Figure 3).

440 A similar explanation for diminishing-returns and increasing-costs epistasis has been recently
441 proposed by Lyons *et al.* [16]. While our core argument for diminishing-returns and increasing-
442 costs epistasis is the same as in that work, our Fourier analysis framework dissects the features of
443 the fitness landscape necessary to observe these phenomena in terms of experimentally measur-
444 able average effects (i.e., the f 's in Eq. (2)). In particular, we show that the additivity of a locus'
445 interacting partners critically determines whether the trend is negative or unbiased. In addition,
446 the Fourier analysis framework yields predictions for the distribution of fitness effects, the histor-
447 ical influence of past mutations on the fitness effect of a newly mutated site and motivates the
448 proposed 'connectedness' fitness landscape model. The analysis of experimental data presented
449 in Lyons *et al.* complements the experimental data considered here, lending further empirical

450 support for the prevalence of epistasis and its importance in determining long-term adaptability.

451 Our model leads to other experimentally testable predictions. The most direct and accessible
452 test of the theory is to measure the fitness for all possible combinations of mutations at $\sim 10\text{--}15$
453 significant loci and compare (using Eq. (6)) the magnitude of global epistasis to the measured
454 fitness coefficients (the f 's). Additionally, we predict that the magnitude of global epistasis of a
455 double mutant should be nearly the sum of magnitudes of the corresponding single mutants, and
456 any deviations should be biased towards sub-additivity. Since the predictions involve measuring
457 residual variance, experimental noise can be an important confounding factor.

458 The observation that diminishing-returns occurs as a “regression to the mean” effect on certain
459 fitness landscapes has been noted previously [40, 41]. The theory developed here quantifies
460 precisely when we should expect to observe these patterns. We emphasize that our key result,
461 Eq. (5), is a general statistical relation that holds if epistasis is widespread, irrespective of the
462 specific genetic architecture and the corresponding fitness landscape. Weak epistasis with many
463 loci is sufficient to observe noticeable patterns of global epistasis. However, the argument fails
464 if the contribution of a locus is purely additive or when epistasis is limited to one or a handful
465 of other loci. In the latter case, we expect the fitness effect of a mutation to be dominated by
466 the allelic states of its partner loci, and thus take on a few discrete values. A few examples from
467 Johnson *et al.* [15] indeed exhibit this pattern, (e.g. cases where the fitness effect of a specific
468 mutation depends primarily on the allelic state at a single other locus).

469 We highlight a distinction between global epistasis discussed in this work and another form
470 of global epistasis (also known as “nonspecific” epistasis) typically used in protein evolution to
471 describe nonspecific epistatic interactions due to a nearly additive trait transformed by a nonlinear
472 function [23–25, 42, 43]. This nonlinear function creates systematic relationships between epistasis
473 terms and breaks the condition of independent epistatic terms required for our arguments to apply.
474 Specific nonlinearities such as an exponential function may indeed lead to a negative linear trend
475 on average, but the structure of the residuals differs from the one in Eq. (5) and observed in data.

476 A surprising empirical observation is that the negative linear relationship between fitness effect
477 and ancestral fitness characteristic of global epistasis has different slopes for different loci. Our
478 model identifies the negative slope as twice the fraction of variance contributed by a locus to
479 the trait. To explain the wide range of variance fractions (VF) observed in data, we developed
480 the connectedness (CN) model, a framework to think about the organization of cellular processes

481 that can lead to loci of widely varying VFs. In the CN model, loci have a large VF due to their
482 involvement in many different pathways rather than due to a large effect on a single pathway.
483 The CN model can be viewed as a statistical fitness landscape where loci can have a range of
484 VFs, specified by the distribution of variance fractions (DVF). In the special case of every locus
485 having the same VF, the CN model corresponds to a fitness landscape with tunable ruggedness
486 and exponentially-decaying correlations.

487 Extending our framework to incorporate adaptation, we showed that the distribution of fitness
488 effects (DFE) depends only on the current fitness, rather than the entire evolutionary history,
489 under the intuitive assumptions behind the CN model. The theory therefore gives a simple
490 explanation for why phenotypic evolution can be predictable, even while the specific mutations
491 that underlie this evolution are highly stochastic.

492 Our framework has an implicit notion of ‘adaptedness’ without referencing a Gaussian-shaped
493 phenotypic optimum, often assumed in models of adaptation (e.g. Fisher’s geometric model)
494 [44–46]. Over the course of adaptation, the DFE shifts towards deleterious values, reflecting
495 diminishing-returns, which naturally arises from our basic arguments. For a well-adapted organ-
496 ism, we show that the DFE for beneficial mutations takes on an exponential form, and leads
497 to universal adaptive dynamics. While an exponential DFE for beneficial mutations has been
498 proposed previously based on extreme value theory [37], our result arises due to an entirely dif-
499 ferent argument: the tail of the beneficial DFE is determined by loci of intermediate size whose
500 disruptive effect due to increasing-costs is small, yet whose effect size is large enough not to be
501 lost due to genetic drift.

502 Our theory further predicts declining adaptability, with rapid adaptation in a neutrally-adapted
503 regime followed by much slower increases in fitness, resulting in power-law adaptive trajectories
504 when the organism is well-adapted. This is consistent with observations from the *E.coli* LTEE
505 [1, 2]. Our model predicts a quicker decline in the number of substitutions ($n_s \sim t^{2/5}$) compared
506 to the near linear trend observed in the LTEE data [4]. However, the dynamics of fixation in the
507 LTEE deviate strongly from SSWM assumptions. This may explain the discrepancy, although we
508 note that existing theory has only analyzed the effects of clonal interference and other breakdowns
509 in SSWM assumptions for a constant DFE and weak epistasis [47, 48]. Further work will be
510 required to understand how these effects interact with global epistasis. For example, we may
511 expect that the effect of a highly beneficial mutation at a segregating locus is more likely to be

512 attenuated due to interference from subsequent deleterious mutations, while a less-fit lineage has
513 a larger pool of beneficial mutations and is thus more likely to ‘leapfrog’ over more-fit lineages.

514 **METHODS AND MATERIALS**

515 The code and data to generate the figures are available at [49].

516 **Simulations**

517 We use a fitness landscape model with ℓ loci to generate the genotype-fitness map. Each locus
518 is assigned a sparsity μ from $P(\mu)$, which is an exponential distribution with mean $\bar{\mu}$. Each of
519 M independent pathways sample loci with each locus i having probability μ_i of being selected to
520 a pathway. We choose $\ell = 400, \bar{\mu} = 0.02, M = 500$ so that $\bar{\mu}\ell = 8$ ensures significant epistasis.
521 All loci in a pathway interact with each other, where additive and higher-order coefficient terms
522 of all orders were drawn independently from a standard normal distribution. The total fitness is
523 the sum of contributions from the M pathways. We normalize the coefficients so that the sum
524 of squares of all coefficients is 1, i.e., the total variance across genotypes is 1. The mean, \bar{y} is
525 close to zero from our sampling procedure. The above procedure is a simple and efficient way to
526 generate epistatic terms to order ~ 20 , beyond which the computational requirements are limited
527 by the exponentially increasing demand. Note that the effects described in the paper were also
528 observed with only pairwise and cubic epistatic terms.

529 The variance fractions shown in Figure 2a can be calculated numerically from the definition.
530 From the theory, given our choice of $P(\mu)$, these should follow an exponential distribution with
531 mean $\bar{v} \approx \bar{\mu}/(1 + \bar{\mu})$. There may be deviations since M is finite whereas the calculations assume
532 $M \rightarrow \infty$. To generate Figure 2b, in order to get a range of background fitnesses, we first sample
533 128 random genotypes. These have fitnesses close to zero; in order to obtain a range of fitness
534 values, we simulated the evolution of these 128 genotypes up to $y = 1, 2, 3, 4, 5$ under strong-
535 selection-weak-mutation (SSWM) assumptions to get $128 \times 5 = 640$ genotypes at roughly five
536 fitness values. The fitness effect of applying a mutation (i.e., flipping its sign) is measured for 30
537 randomly chosen loci (which are kept fixed) over each of the 640 genotypes. This is shown for
538 five of the 30 and for the mean over the 30 loci in Figure 2b.

539 To generate Figure 2c, we sampled 64 random genotypes and 12 replicates of each. The
 540 evolution of these 768 genotypes was simulated for a total of 50 generations with a mutation rate
 541 of 1 per generation. The mean fitness gain over the 12 replicates is plotted for each of the 64
 542 founders against their initial fitness.

543 To generate Figure 2d, the residuals are measured using the same procedure as for the exper-
 544 imental data analysis described below for the initial 128 genotypes at $y \approx 0$ and the 30 loci with
 545 the largest variance fraction.

546 Double mutants were created by mutating all pairs of the 30 randomly chosen loci on the 640
 547 evolved genotypes. Their mean fitness effect was computed and plotted along with the mean
 548 fitness effect for single mutants, shown in Figure 2e. The variance fraction of the pair of loci for
 549 the double mutant was estimated as before and compared to the sum of the estimated variance
 550 fractions of the corresponding single mutants. This is shown in Figure 2f.

551 To generate the plots in Figure 4c, we simulated the evolution of 128 randomly sampled
 552 genotypes to $y = 2.5$ and $y = 5$. The fitness effect of 200 randomly sampled loci was measured
 553 and the distribution is plotted.

554 **Analysis of the data from Johnson *et al.***

555 The data from Johnson *et al.* [15] consists of the fitness after the addition of 91 insertion
 556 mutations on each of 145 background genotypes. The fitness of a particular mutation at locus i
 557 can be modeled as

$$y_i = -c_i y + b_i + \text{Residual}_i(g), \quad (15)$$

558 where y_i, y are the mutant and background fitnesses respectively, c_i, b_i are constants for each locus
 559 and the residual $\text{Residual}_i(g)$ depends on the background genotype g .

560 We estimate the variance fraction $v_i = (1 - \hat{\rho}_i)/2$, where the Pearson correlation $\hat{\rho}_i = \text{Corr}(y_i \oplus$
 561 $y, y \oplus y_i)$, where the symbol \oplus denotes that the mutant and background fitness datasets are
 562 concatenated. \tilde{v}_i is estimated as the negative one-half of the slope of the best linear fit of $s_i = y_i - y$
 563 and y . The residuals for each of the 145 genotypes for each of the 91 mutations is simply

$$\text{Residual}_i(g) = (y_i + c_i y) - \overline{(y_i + c_i y)}, \quad (16)$$

564 where the overline represents an average over the 145 genotypes, which is used as an estimate of

565 the constant term and $c_i = 2\tilde{v}_i - 1$. In Figure 3b, we plot the distribution of estimated v_i and \tilde{v}_i .
566 In Figure 3c, we compute the AoIL for each locus using Eq. (7), which we show in the SI to be
567 $|\text{Cov}(s_i, y_i + y)| / (|\text{Cov}(s_i, y_i + y)| + \text{Var}(s_i))$. In Figure 3d, we compute the additivity using Eq.
568 (8). The additive effect is $f_i = \overline{(y_i - y)} / 2$ and $\text{Var}(s_i) / 4$ gives the sum of squares of the epistatic
569 terms (SI). In Figure 3e, we compute the variance of the residuals across the 145 genotypes for
570 each locus and plot it against the locus' estimated $\tilde{v}_i(1 - \tilde{v}_i)$. In Figure 3f, we plot the distribution
571 of residuals over all genotypes and loci. The prediction is that in the WE limit the distribution
572 of residuals is determined by $2\tilde{v}_i(1 - \tilde{v}_i)\eta$, where η is a Gaussian random variable. We multiply
573 $\sqrt{\tilde{v}_i(1 - \tilde{v}_i)}$ for each locus with 10,000 i.i.d standard normal RVs, pool the resulting numbers for
574 all loci and plot the predicted distribution in Figure 3f. The distributions are variance-matched.
575 While Figure 3e shows that the variance of the residuals aligns with the theoretical prediction of
576 being proportional to slope, Figure 3f shows that the data is also consistent with the predicted
577 Gaussianity of the background-genotype-dependent contribution.

578 ACKNOWLEDGMENTS

579 We thank Sergey Kryazhimskiy, Andrew Murray, Milo Johnson, and members of the Desai lab
580 for comments on the manuscript. G.R was supported by the NSF-Simons Center for Mathemat-
581 ical and Statistical Analysis of Biology at Harvard (award number #1764269) and the Harvard
582 FAS Quantitative Biology Initiative. M.M.D. acknowledges support from the Simons Foundation
583 (Grant 376196), NSF Grant PHY-1914916, and NIH grant R01GM104239.

-
- 584 [1] Wiser MJ, Ribeck N, Lenski RE. Long-term dynamics of adaptation in asexual populations. *Science*.
585 2013;342(6164):1364–1367.
- 586 [2] Lenski RE, Wiser MJ, Ribeck N, Blount ZD, Nahum JR, Morris JJ, et al. Sustained fitness gains
587 and variability in fitness trajectories in the long-term evolution experiment with *Escherichia coli*.
588 *Proceedings of the Royal Society B: Biological Sciences*. 2015;282(1821):20152292.
- 589 [3] Tenaillon O, Barrick JE, Ribeck N, Deatherage DE, Blanchard JL, Dasgupta A, et al. Tempo and
590 mode of genome evolution in a 50,000-generation experiment. *Nature*. 2016;536(7615):165–170.

- 591 [4] Good BH, McDonald MJ, Barrick JE, Lenski RE, Desai MM. The dynamics of molecular evolution
592 over 60,000 generations. *Nature*. 2017;551(7678):45–50.
- 593 [5] Kryazhimskiy S, Rice DP, Jerison ER, Desai MM. Global epistasis makes adaptation predictable
594 despite sequence-level stochasticity. *Science*. 2014;344(6191):1519–1522.
- 595 [6] Elena SF, Lenski RE. Evolution experiments with microorganisms: the dynamics and genetic bases
596 of adaptation. *Nature Reviews Genetics*. 2003;4(6):457–469.
- 597 [7] Perfeito L, Sousa A, Bataillon T, Gordo I. Rates of fitness decline and rebound suggest pervasive
598 epistasis. *Evolution*. 2014;68(1):150–162.
- 599 [8] Wünsche A, Dinh DM, Satterwhite RS, Arenas CD, Stoebel DM, Cooper TF. Diminishing-returns
600 epistasis decreases adaptability along an evolutionary trajectory. *Nature Ecology & Evolution*.
601 2017;1(4):1–6.
- 602 [9] Sanjuán R, Cuevas JM, Moya A, Elena SF. Epistasis and the adaptability of an RNA virus. *Genetics*.
603 2005;170(3):1001–1008.
- 604 [10] Couce A, Tenaillon OA. The rule of declining adaptability in microbial evolution experiments.
605 *Frontiers in genetics*. 2015;6:99.
- 606 [11] Jerison ER, Kryazhimskiy S, Mitchell JK, Bloom JS, Kruglyak L, Desai MM. Genetic variation in
607 adaptability and pleiotropy in budding yeast. *Elife*. 2017;6:e27167.
- 608 [12] Schenk MF, Szendro IG, Salverda ML, Krug J, De Visser JAG. Patterns of epistasis between bene-
609 ficial mutations in an antibiotic resistance gene. *Molecular biology and evolution*. 2013;30(8):1779–
610 1787.
- 611 [13] Khan AI, Dinh DM, Schneider D, Lenski RE, Cooper TF. Negative epistasis between beneficial
612 mutations in an evolving bacterial population. *Science*. 2011;332(6034):1193–1196.
- 613 [14] Chou HH, Chiu HC, Delaney NF, Segrè D, Marx CJ. Diminishing returns epistasis among beneficial
614 mutations decelerates adaptation. *Science*. 2011;332(6034):1190–1192.
- 615 [15] Johnson MS, Martsul A, Kryazhimskiy S, Desai MM. Higher-fitness yeast genotypes are less robust
616 to deleterious mutations. *Science*. 2019;366(6464):490–493.
- 617 [16] Lyons DM, Zou Z, Xu H, Zhang J. Idiosyncratic epistasis creates universals in mutational effects
618 and evolutionary trajectories. *Nature Ecology & Evolution*. 2020;p. 1–9.
- 619 [17] Hordijk W, Stadler PF. Amplitude spectra of fitness landscapes. *Advances in Complex Systems*.
620 1998;1(01):39–66.

- 621 [18] Neher RA, Shraiman BI. Statistical genetics and evolution of quantitative traits. *Reviews of Modern*
622 *Physics*. 2011;83(4):1283.
- 623 [19] Weinberger ED. Fourier and Taylor series on fitness landscapes. *Biological cybernetics*.
624 1991;65(5):321–330.
- 625 [20] Szendro IG, Schenk MF, Franke J, Krug J, De Visser JAG. Quantitative analyses of empirical fitness
626 landscapes. *Journal of Statistical Mechanics: Theory and Experiment*. 2013;2013(01):P01005.
- 627 [21] Weinreich DM, Lan Y, Wylie CS, Heckendorn RB. Should evolutionary geneticists worry about
628 higher-order epistasis? *Current opinion in genetics & development*. 2013;23(6):700–707.
- 629 [22] Poelwijk FJ, Krishna V, Ranganathan R. The context-dependence of mutations: a linkage of for-
630 malisms. *PLoS computational biology*. 2016;12(6):e1004771.
- 631 [23] Starr TN, Thornton JW. Epistasis in protein evolution. *Protein Science*. 2016;25(7):1204–1218.
- 632 [24] Sailer ZR, Harms MJ. Detecting high-order epistasis in nonlinear genotype-phenotype maps. *Ge-
633 netics*. 2017;205(3):1079–1088.
- 634 [25] Otwinowski J, McCandlish DM, Plotkin JB. Inferring the shape of global epistasis. *Proceedings of
635 the National Academy of Sciences*. 2018;115(32):E7550–E7558.
- 636 [26] Bloom JS, Kotenko I, Sadhu MJ, Treusch S, Albert FW, Kruglyak L. Genetic interactions con-
637 tribute less than additive effects to quantitative trait variation in yeast. *Nature communications*.
638 2015;6(1):1–6.
- 639 [27] Agarwala A, Fisher DS. Adaptive walks on high-dimensional fitness landscapes and seascapes with
640 distance-dependent statistics. *Theoretical population biology*. 2019;130:13–49.
- 641 [28] Eaton ML. Multivariate statistics: a vector space approach. JOHN WILEY & SONS, INC, 605
642 THIRD AVE, NEW YORK, NY 10158, USA, 1983, 512. 1983;.
- 643 [29] Neidhart J, Szendro IG, Krug J. Exact results for amplitude spectra of fitness landscapes. *Journal
644 of theoretical biology*. 2013;332:218–227.
- 645 [30] Kauffman SA, Weinberger ED. The NK model of rugged fitness landscapes and its application to
646 maturation of the immune response. *Journal of theoretical biology*. 1989;141(2):211–245.
- 647 [31] Stadler PF, Happel R. Random field models for fitness landscapes. *Journal of Mathematical Biology*.
648 1999;38(5):435–478.
- 649 [32] Aita T, Uchiyama H, Inaoka T, Nakajima M, Kokubo T, Husimi Y. Analysis of a local fitness
650 landscape with a model of the rough Mt. Fuji-type landscape: Application to prolyl endopeptidase

- 651 and thermolysin. *Biopolymers: Original Research on Biomolecules*. 2000;54(1):64–79.
- 652 [33] Altenberg L, Back T, Fogel DB, Michalewicz Z, editors. *NK Fitness Landscapes*, In “The Handbook
653 of Evolutionary Computation”. Oxford Univ. Press; 1997.
- 654 [34] Hwang S, Schmiegel B, Ferretti L, Krug J. Universality classes of interaction structures for NK
655 fitness landscapes. *Journal of Statistical Physics*. 2018;172(1):226–278.
- 656 [35] Kauffman S, Levin S. Towards a general theory of adaptive walks on rugged landscapes. *Journal of
657 theoretical Biology*. 1987;128(1):11–45.
- 658 [36] Haldane JBS. A mathematical theory of natural and artificial selection, part V: selection and
659 mutation. In: *Mathematical Proceedings of the Cambridge Philosophical Society*. vol. 23. Cambridge
660 University Press; 1927. p. 838–844.
- 661 [37] Orr HA. The distribution of fitness effects among beneficial mutations. *Genetics*. 2003;163(4):1519–
662 1526.
- 663 [38] Gumbel EJ. *Statistics of extremes*. Courier Corporation; 2004.
- 664 [39] Majumdar SN, Pal A, Schehr G. Extreme value statistics of correlated random variables: a peda-
665 gogical review. *Physics Reports*. 2020;840:1–32.
- 666 [40] Draghi JA, Plotkin JB. Selection biases the prevalence and type of epistasis along adaptive trajec-
667 tories. *Evolution*. 2013;67(11):3120–3131.
- 668 [41] Greene D, Crona K. The changing geometry of a fitness landscape along an adaptive walk. *PLOS
669 Comput Biol*. 2014;10(5):e1003520.
- 670 [42] Otwinowski J. Biophysical inference of epistasis and the effects of mutations on protein stability
671 and function. *Molecular biology and evolution*. 2018;35(10):2345–2354.
- 672 [43] Husain K, Murugan A. Physical Constraints on Epistasis. *Molecular Biology and Evolution*. 2020
673 05;Cva128.
- 674 [44] Fisher R. *The genetical theory of natural selection*. Clarendon Press; 1930.
- 675 [45] Orr HA. The genetic theory of adaptation: a brief history. *Nature Reviews Genetics*. 2005;6(2):119–
676 127.
- 677 [46] Martin G, Lenormand T. A general multivariate extension of Fisher’s geometrical model and the
678 distribution of mutation fitness effects across species. *Evolution*. 2006;60(5):893–907.
- 679 [47] Good BH, Rouzine IM, Balick DJ, Hallatschek O, Desai MM. Distribution of fixed beneficial mu-
680 tations and the rate of adaptation in asexual populations. *Proceedings of the National Academy of*

- 681 Sciences. 2012;109(13):4950–4955.
- 682 [48] Schiffels S, Szöllősi GJ, Mustonen V, Lässig M. Emergent neutrality in adaptive asexual evolution.
- 683 Genetics. 2011;189(4):1361–1375.
- 684 [49] Reddy G. [github:greddy992/global_epistasis](https://github.com/greddy992/global_epistasis); 2020. Available from: https://github.com/greddy992/global_epistasis.
- 685