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Abstract

Epistasis between mutations can make adaptation contingent on evolutionary history. Yet despite
widespread “microscopic” epistasis between the mutations involved, microbial evolution experiments show
consistent patterns of fitness increase between replicate lines. Recent work shows that this consistency
is driven in part by global patterns of diminishing-returns and increasing-costs epistasis, which make
mutations systematically less beneficial (or more deleterious) on fitter genetic backgrounds. However, the
origin of this “global” epistasis remains unknown. Here we show that diminishing-returns and increasing-
costs epistasis emerge generically as a consequence of pervasive microscopic epistasis. Our model predicts
a specific quantitative relationship between the magnitude of global epistasis and the stochastic effects
of microscopic epistasis, which we confirm by re-analyzing existing data. We further show that the
distribution of fitness effects takes on a universal form when epistasis is widespread, and introduce a
novel fitness landscape model to show how phenotypic evolution can be repeatable despite sequence-level

stochasticity.
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14 I. INTRODUCTION

15 Despite the idiosyncrasies of epistasis, a number of laboratory microbial evolution experiments
16 show systematic patterns of convergent phenotypic evolution and declining adaptability. A strik-
17 ing example is provided by the E.coli long-term evolution experiment (LTEE) (Figure la): 12
1 replicate populations that adapt in parallel show remarkably similar trajectories of fitness increase
10 over time [1, 2|, despite stochasticity in the identity of fixed mutations and the underlying dy-
20 namics of molecular evolution [3, 4|. Similar consistent patterns of fitness evolution characterized
21 by declining adaptability over time have also been observed in parallel yeast populations evolved
22 from different genetic backgrounds and initial fitnesses [5] (Figure 1b) and in other organisms
23 [6-12]. Declining adaptability is thought to arise from diminishing-returns epistasis [5, 13, 14],
22 where a global coupling induced by epistatic interactions systematically reduces the effect size of
25 individual beneficial mutations on fitter backgrounds. Diminishing-returns manifests as a striking
26 linear dependence of the fitness effect of a mutation on background fitness (Figure 1c). While
27 diminishing-returns can be rationalized as the saturation of a trait close to a fitness peak, recent
g work shows a similar dependence on background fitness even for deleterious mutations, which
20 become more costly on higher fitness backgrounds [15]. This suggests that fitter backgrounds are
30 also less robust to deleterious effects (Figure 1d), a phenomenon that has been termed increasing-
a1 costs epistasis. The origin of the global coupling that results in these effects is unknown.

2 Put together, these empirical observations suggest that the contributions to the fitness effect,

33 §;, of a mutation at a locus 7 in a given genetic background can be written as

Si = Sadditive,i + Sgenotype,i — CiY, (]-)

s34 Where Saqditive,i 1S the additive effect of the mutation, sgenotype,i 15 its genotype-dependent epistatic
35 contribution independent of the background fitness y (i.e., idiosyncratic epistasis), and ¢; quanti-
36 fies the magnitude of global epistasis for locus 7. Eq. (1) reflects the observation that the strength
37 of global epistasis depends on the specific mutation and applies independently of whether its ad-
ss ditive effect is deleterious (increasing-costs) or beneficial (diminishing-returns). Over the course
30 of adaptation in a fixed environment, global epistatic feedback on mutational effects can lead
w0 to a long-term decrease in adaptability. If this feedback dominates, Eq. (1) suggests that the
a1 dependence of the fitness effect on evolutionary history is summarized entirely by the current

a2 fitness, and therefore results in predictable fitness evolution.



a3 Here, we show that diminishing-returns and increasing-costs epistasis are a simple consequence
aa of widespread epistasis. This is consistent with recent work [16] that proposes a similar argument
a5 to explain these phenomena. However, while the core idea is similar, we present here an alterna-
s6 tive framework based on the Fourier analysis of fitness landscapes, which leads to new insights
a7 and quantitative predictions. In particular, our framework leads to novel predictions for the
a8 relationship between the magnitude of global epistasis and the stochastic effects of microscopic
a0 epistasis, which we confirm by re-analyzing existing data. Extending this framework, we further
so quantify how the distribution of fitness effects shifts as the organism adapts and how the fitness
s1 effect of a mutation depends on the sequence of mutations that have fixed over the course of
s2 adaptation (i.e., historical contingency). While specific historical relationships depend on the ge-
s3 netic architecture, we introduce a novel fitness landscape model with an intuitive architecture for
s« which the entire history is summarized by the current fitness. Using this fitness landscape model,
ss we investigate the long-term dynamics of adaptation and elucidate the architectural features that

s6 lead to predictable fitness evolution.

7 RESULTS

58 Diminishing-returns and increasing-costs epistasis

so  We begin by examining the most general way to express the relationship between genotype
so and fitness (i.e., to describe the fitness landscape). A map between a quantitative trait (such as

o1 fitness), y, and the underlying genotype can be expressed as a sum of combinations of ¢ biallelic

62 loci 1, 9, ..., x, that take on values x; = +1 [17-21]:
i i>j i>j>k

63 where ¥ is a constant that sets the overall scale of fitness. The symmetric convention x; = +1 for
ss the two allelic variants is less often used than x; = 0, 1, but it is an equivalent formulation, which
es we employ here because it will prove more convenient for our purposes (see [22] for a discussion).
es The coefficients of terms linear in x; represent the additive contribution of each locus to the fitness
o7 (i.e. its fitness effect averaged across genotypes at all other loci), the higher-order terms quantify

es epistatic interactions of all orders, and ¢ is the average fitness across all possible genotypes.
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Figure 1. Declining adaptability and global epistasis in microbial evolution experiments. (a) Convergent
phenotypic evolution in the F.coli long-term evolution experiment: the fitness relative to the common
ancestor of 11 independently adapting populations over 50,000 generations is shown (data from [1]). The
12th population, Ara+6, has limited data and is not shown. (b) Yeast strains with lower initial fitness
adapt faster (data from [5]). The fitness gain after 250 (green) and 500 (orange) generations of 640
independently adapting populations with 64 different founders and 10 replicates of each founder. Mean
and SE are computed over replicates. (c¢) Diminishing returns of specific beneficial mutations on fitter
backgrounds for three knocked out genes (green, orange and purple) (data from [5]). Control in pink.
(d) Increasing costs of specific deleterious mutations on fitter backgrounds (data from [15]). The fitness
effect relative to the least fit background for the mean over 91 mutations (in red) and five of the 91

mutations are shown. Linear fits for the five specific mutations and the mean using dashed and solid

lines respectively are shown.

o Importantly, Eq. (2) makes apparent the idiosyncrasies induced by epistasis: a mutation at a

70 locus with ¢ interacting partners has an effect composed of 2=! contributions.

71

To explicitly compute the fitness effect of a mutation at locus ¢ on a particular genetic back-

72 ground, we simply flip the sign of z;, keeping all other z; constant, and write down the difference

73 in fitness that results. This fitness effect will generally involve a sum over a large number of

74 terms involving the f’s in Eq. (2). While this may suggest that an analysis of fitness effects via
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s Eq. (2) is intractable, the analysis in fact simplifies considerably if the locus has a significant
76 number of independent interactions that contribute to the fitness (i.e., provided that the number
77 of independent, nonzero epistatic terms associated to the locus is large). In this case, we show
78 that the fitness effects of individual mutations decrease linearly with background fitness and the
70 fluctuations around this linear trend are normally-distributed. In other words, widespread inde-
so pendent idiosyncratic epistatic interactions lead to the observed patterns of diminishing-returns

s1 and increasing-costs epistasis.

g2 We present a derivation of this result in the SI. Here we explain the key intuition using
g3 a heuristic argument. The argument is based on a simple idea: for a well-adapted organism
sa (y > 7) with complex epistatic interactions, a mutation is more likely to disrupt rather than
ss enhance fitness. To be quantitative, consider a highly simplified scenario where some number N
ss of the f’s in Eq. (2) are £1 at random and the others are 0. In this case, the fitness of a given
g7 genotype is a sum of N, and N_ interactions that contribute positively and negatively to the trait
ss respectively, each with unit magnitude, so that y = y + Ny — N_. When positive and negative
so interactions balance, the organism is in a “neutrally-adapted” state (y =~ ). By selecting for
o0 positive interactions, adaptation generates a bias so that N, > N_ and y > ¢. If locus ¢ involved
o1 in a fraction v; of all of N = N, + N_ interactions is mutated, the effect of the mutation, on
o2 average, is to flip the sign of N v; positive interactions and N_v; negative interactions. The new
o3 fitness is then y; = y— 2N, v;+2N_v; = g+ (1—2v;)(y—y) and thus s; = y;—y = —2v;(y—y). The
s negative linear relation between the background fitness, y, and the fitness effect of the mutation,
o5 5;, is immediately apparent and emerges as a systematic trend simply due to a sampling bias
o6 towards positive interactions. Of course, while this relation is true on average, it is possible that
o7 locus ¢ affects more or less positive interactions due to sampling fluctuations. Provided only that
og IV is large and the interactions are independent, these fluctuations are approximately Gaussian
oo with magnitude /Nv;(1 — v;).

wo  This basic argument holds beyond the simple model with unit interactions. In the more general
101 case, if the mutation is directed from x; = —1 — 41, we show in the SI that its fitness effect, s;,

102 on a background of fitness y can be written as

s =261 — &) — 20(y — §) + & 3
=260~ 0) z(% y) i (3)
additive global epistasis ~ genotype

5



103 where!

5— <Z#i fin + ZJ’>k’s«éi fz?jk T > N <Zj;£i fifii + Zj>k7éi Fikfige + - ) n
o Z];&z(.fj - fij)2 + Zj>k?éi(fjk — fijk)2 + ... ’

104 and €; is a genotype and locus-dependent term which is distributed across genotypes with mean

105 zero and variance expressed in terms of the f’s from Eq. (2) (see SI for details). The numerator
106 of ¥; in Eq. (4) is proportional to the covariance of fitness effects and background fitness and the
107 denominator is the variance of background fitness across genotypes. A similar equation for the
108 case r; = +1 — —1 can be derived. The choice of +1 — —1 or —1 — +1 is simply a matter of
100 convention. If the convention is reversed, the coeflicients of odd-order in Eq. (2), i.e., fi, fijks - - -
1o should also switch signs. It can be easily checked that reversing the signs of these quantities in
11 the expression for v; above leads to the expression for v; when z; = +1 — —1.

112 Note that in general v; is not guaranteed to be positive and €; is arbitrary and determined by
13 the genotype-fitness map. However, consistent patterns emerge when locus ¢ has a large number of
ua independent, nonzero epistatic terms and the additive effects fi, fo, ... of its interacting partners
us are not much larger than the epistatic terms (defined further below), which we call the widespread-
ue epistasis (WE) limit. In the WE limit, € is normally-distributed across genotypes with variance
u7 proportional to 9;(1 — ©;). This follows from the same reasoning as in our heuristic argument
us with unit interactions above (see SI for details). In addition, v; is typically positive, giving rise
110 t0 a negative linear trend (i.e. diminishing-returns and increasing-costs). We can see this by
120 taking the third and higher-order terms in Eq. (4) to be zero, in which case ©; is positive if
w1 Yo 17 > 3054 fifij. This will typically be true in the WE limit because we expect Y-, f7 to
122 scale with the number of interacting partners ¢, while each term in ) i Jiij can be positive or
123 negative and thus the sum scales as /¢ if the terms are independent. Thus when locus i has a
124 large number of interacting partners, v; is typically positive unless the magnitude of the additive
125 terms (a) is much larger than the magnitude of the epistatic terms (e), a > ev/(. This argument
126 18 easily extended to the case when the third and higher-order terms are non-zero (see SI); the
127 upshot is that the bias towards v; positive gets stronger with increasing epistasis.

128 The conditions for the WE limit are more likely to hold when the number of loci, ¢, that affect

120 the trait is large. Therefore, we expect to generically observe patterns of diminishing-returns and

! In the following equation and similar ones henceforth, a summation such as >kt ffjk is meant to denote a
sum over pairs j, k, where each pair appears only once and no pair which includes index i appears. Symmetry

of the f’s w.r.t interchanged indices is also assumed (e.g., fijx = fjik)-
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130 increasing-costs epistasis for a complex trait involving many loci. Importantly, whether we observe
131 a negative linear trend does not depend on the magnitude of a locus’ epistatic interactions relative
132 to its own additive effect, but rather relative to the additive effects of its interacting partners. If
133 we are not in the WE limit, and instead the additive effects dominate (i.e., a > eV/1), then Eq. (4)
13a suggests that the slope of the linear trend can be either positive or negative. We will show further
135 below that recent experimental data demonstrates that both scenarios can be relevant: some loci
136 have a < ey/l while others have a > ev/I, with the former creating a bias towards the observed
137 negative linear trends that characterize diminishing-returns and increasing-costs epistasis.

s We note that Eq. (3) immediately leads to testable quantitative predictions: in the WE limit,
130 the distribution of the residuals, €;, obtained from regressing s; and y is entirely determined by
140 the slope of the regression, —20;. Specifically, we predict that these residuals (the deviations of
1 individual genotype fitnesses from the overall diminishing-returns or increasing-costs trend) should
142 be normally distributed with a variance proportional to ;(1 — 7;). However, this condition only
13 applies if diminishing-returns arises from the WE limit. It does not hold if epistasis is negligible,
1 if locus ¢ interacts significantly with only a few other dominant loci, or if the epistatic terms
s are interrelated (e.g., when global epistasis arises from a nonlinearity applied to an unobserved
s additive trait [23-25]). The latter case may still lead to a negative linear trend, but the statistics
147 of the residuals will differ from Eq. (3) (see SI for a discussion).

us It is convenient to subsequently work with the symmetric version of Eq. (3), where the fitness
1o effects of both x; = —1 — +1 and its reversion z; = +1 — —1 (whose fitness effect is negative
150 of the former) are included in the regression against their respective background fitness. In this

151 case, the additive term is averaged out, and we show (SI) that in the WE limit,
si = —2vi(y — ¥) + 2v/vi(1 — vi)mi, (5)

152 where 7; depends on the genetic background and the locus, and is normally-distributed with zero

153 mean and variance V', and
Voo YRt

15« Here V' is the total genetic variance due to all loci (i.e., the variance in fitness across all possible

(%

155 genotypes) while V; is the contribution to the total variance by the f’s involving locus i. We
156 therefore refer to v; as the variance fraction of locus ¢. We show further below that for certain

157 fitness landscapes, v; can also be interpreted as the fraction of pathways affected by a locus. For

7



158 these reasons, we focus on v;, which is half of the negative slope, rather than the slope. Note that
10 the v;’s do not sum to one unless there is no epistasis (with epistasis, >, v; > 1, reflecting the
0 fact that the variance contributed by different loci overlap). While the directed mutation case
161 discussed previously is the relevant one when presenting experimental data (for e.g., Figure 1c,d),
162 it is conceptually simpler to work with the symmetric case. These two cases coincide and v; ~ v;
163 in the WE limit if the additive effect of a locus is small (i.e., f7 < > . f2+ >0 o fin +- 00 )
16a  Our results show that the variance fraction v; plays an important role. It determines the slope
165 Of the negative relationship between the fitness effect and background fitness. At the same time,
166 it determines the magnitude of the idiosyncratic fluctuations away from this trend. We also note
167 that this slope can be used to experimentally probe the contribution of a locus to the trait (i.e.,
168 its variance fraction) taking into account all orders of epistasis, which circumvents the estimation
160 Of the individual f’s in Eq. (2). The theory additionally predicts that the slope obtained by
170 regressing the sum of fitness effects of two mutations at loci 7,7 against background fitness is
171 proportional to v;; = v; +v; — 2e;5, where e;; quantifies the magnitude of epistatic interactions of
172 all orders between ¢ and j (SI).

w3 Importantly, while the fitness effects of individual mutations (and hence the distribution of
wa fitness effects) may change over the course of evolution due to epistasis, the distribution of variance
ws fractions (DVF) across loci, P(v), is an invariant measure of the range of effect-sizes available to
176 the organism during adaptation. As we will see, this means that the DVF plays an important

177 role in determining long-term adaptability.

17s  Numerical results and experimental tests

1o To illustrate our analytical results, we first demonstrate that the effects described above are
180 reproduced in numerical simulations. To do so, we numerically generated a genotype-phenotype
121 map of the form in Eq. (2), with £ = 400 loci and an exponential DVF, P(v) = v~ 'e™"/?, where
12 0 = 0.02 (Methods). This DVF is shown in Figure 2a. Note that o/ > 1 corresponds to an
183 epistatic landscape; v¢ = 8 chosen here thus corresponds to a model within the WE limit (note
18a that ; & v; in this parameter range). Using this numerical landscape, we measured the fitness
185 effect of mutations at 30 loci across 640 background genotypes with a range of fitnesses (Figure

186 2b). Our results recapitulate the predicted linear dependence on background fitness (Figure 1c,d),
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1e7 with a negative slope equal to twice the variance fraction predicted from Eq. (5). We further
188 simulated the evolution of randomly generated genotypes similar to the experimental procedure
180 used in Kryazhimskiy et al. [5] (Figure 2c), finding that our results reproduce the patterns of
100 declining adaptability observed in experiments (Figure 1b). Note that ~10 mutations are fixed

101 during this simulated evolution; declining adaptability here is not due to a finite-sites effect.

12 As described previously, Eq. (5) implies a proportional relationship between the magnitude
103 of global epistasis (quantified by the slope of the relationship between the fitness effect of a
104 mutation and the background fitness) and the magnitude of microscopic epistasis (quantified by
10s the residual variance around this linear trend); see also Figure 3a. We verify this relationship
106 in simulations (Figure 2d). We predict that the slope obtained by regressing the sum of fitness
107 effects of two mutations at loci 7, j against background fitness is proportional to v;; = v; +v; —2e;;.
10s We further assume that e;; = O(v?) (specifically, e;; = v;v; for the genotype-phenotype map used
190 for numerics). Since v; and v; are typically small for a complex trait, we expect near-additivity
200 U;; & v; + v; and that any deviations are sub-additive, which is confirmed in simulations (Figure

201 2€,f).

202 While testing the latter prediction on double mutants requires further experiments, we can
203 immediately test the relationship between the slope and the distribution of residuals from existing
204 experimental data. To do so, we re-analyzed the data from Johnson et al. [15], which measured
205 the fitness effect of 91 insertion mutants on about 145 backgrounds. These background strains
206 were obtained by crossing two yeast strains that differed by ~ 40,000 SNPs. Of these 40,000
207 loci, ¢ = 40 have been identified as causal loci with currently available mapping resolution [26].
208 In Figure 3, we show the estimated v; (negative one-half of the slope of the best-fit line) and the
200 variance fraction v; for each of the 91 mutations. These mutations were selected after screening
210 for nonzero effect, and thus the DVF is biased upwards. The mean variance fraction is v ~ 0.06.
o1 The wide range of v; observed in the data implies that the epistatic influence of loci varies greatly
212 across loci and we will show further below that this is crucial for maintaining a supply of beneficial

213 mutations even when the organism is well-adapted to the environment.

a1a Our theoretical results imply that we expect the linear relationship between background fitness
215 and fitness effect to be negative if the additive effects of a locus’ interacting partners are not much

216 larger than the epistatic terms. Specifically, we define the additivity of interacting loci (AolL) for

9



oo b. C 4
2 <+ Mean (30 loci) Gen 25
5 cal Gen 50
5 3 S + M ,}
3 & H}
£ 100 = @ ol
3 = o) -~
z @ £ Tﬂ {W_I r** <
= i
k| 11
o ‘
0 14
0.00 0.04 0.08 p y M 1 5
Variance fraction (v;) 2 ?nitial (t)”ltness1 2
d e f
02 1 ,/
g 0.6 . /" g 0.0'-.-,-. ---------------- //
5 'h.x;:. a’J:) ® : - ,/’
= ° [2] e~ >
$ 0.4 e o 8 v s g
2 A o S /
© ° o, 5 034 Vi
=} Peo = B e
b o Pl c T o ~
é)O.Z /.04..? 8 4 Single mutants ) //
. = 4 Double mutants o
005 010 015 o020 967 3 z 01 02
v(l-v) Background fitness VitV

Figure 2. Global epistasis is recapitulated in a generic model of a complex trait and leads to testable
predictions. (a) The distribution of variance fractions (DVF) over 400 loci for the simulated genotype-
phenotype map. (b) The predicted linear relationship between fitness effect (relative to the fitness effect
on the least fit background) and background fitness for the mean over 30 randomly chosen loci (red,
solid line) and five loci (dashed lines in colors) is recapitulated. The slope of the linear fit for each
locus is proportional to its variance fraction, v (slope = —2v). Mean and SE are over backgrounds of
approximately equal fitness. See Methods for more details. (¢) The mean fitness gain after 25 (green) and
50 (orange) generations of simulated evolution of 768 independently adapting populations with 64 unique
founders and 12 replicates each. Means and SEs are computed over the 12 replicates. Error bars are s.e.m.
(d) The relationship predicted from theory between the residual variance from the linear fit for each locus
and its slope is confirmed in simulations. (e) The mean fitness effect for single mutants at 30 loci and
double mutants from all possible pairs of the 30 loci. The slope for the double mutants is predicted to
be roughly twice that of single mutants. (f) The estimated variance fraction of a double mutant with
mutations at two loci is predicted from theory and confirmed in simulations to be approximately the sum
of the variance fractions for single mutations at the two loci. Sub-additivity is due to epistasis between

the two loci. See Methods for more details.
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218 which we show can be estimated from data (Methods and SI). If the AolL is less than half, Eq.

AolL (i) = (7)

210 (4) implies that the linear trend is guaranteed to be negative. If instead the AolL is greater than
220 (.5, the trend can be either positive or negative. The data shows a range of AolLL between 0 and
21 1 across loci. As predicted by our theory, we find that the loci with AollL < 0.5 always show
222 negative trends and the ones with AolL. > 0.5 show both negative and positive trends (Figure
223 3¢). Importantly, the sign of the trend is determined by the AolL and not by the additivity of

224 the mutated locus, which we define as

f7

225 The additivity across loci also has a wide range. However, small additivity does not necessarily

Additivity (i) = (8)

226 imply a negative trend (Figure 3d).

227 We next used the data from Johnson et al. [15] to analyze the relationship between the slope
28 of the linear trend and the residual variance around this trend. We find that the experimental
220 data confirms our theoretical prediction that the residual variance is proportional to o;(1 — 9;) if
230 the AolL is small (Figure 3e, R? = 0.5 for loci with AoIL. < 0.5 and R? = 0.42 for all loci). The
2n1 Gaussian-distributed term in Eq. (3) also predicts the shape of the distribution of the residuals
232 given the variance fractions, which aligns well with the empirical distribution of the residuals
233 (Figure 3f).

23a Together, these theoretical results and our reanalysis of experimental data show that linear
235 patterns of global diminishing-returns and increasing-costs epistasis are a simple consequence of
236 widespread epistatic interactions. The distribution of variance fractions observed in data (Figure
237 3b) further implies that the epistatic influence of different loci on fitness can vary across a wide
238 range. In what follows, we show that these two observations can be put together to make general
230 predictions about the distribution of fitness effects, and consequently the long-term dynamics of
240 adaptation. The key ingredient that enables this analysis (including Eq. (5)) is that in the WE
2a1 limit, fitness and fitness effects are jointly normal (with respect to a uniform distribution over all
242 possible genotypes), which allows us to quantify complex dependencies between these variables

203 in terms of pairwise covariances.

11



Q
@
3
él)
o
o
o

| B 201 S K s 3
S e} = N '
s o8, - : Bozsi . 4. |
g 00717 U z » . T @ 3
ks s gl Residual 0 < LY AT ~ §
5 g 00 02 04 S0.00{ SISk aBie- 50005t f e
o g . LS : : :
2-019 . --:'-'\"\"\“. . 0.0 05 1.0 0.0 05 1.0
ic o \i (Re‘sidualﬂ2 ézs. g 10 g
' ' ' variance)”? £ € g 107
-0.1 0.0 0.1 z o Z, z,
Background fitness (y) 00 0.2 04 0.0 0.5 1.0 0.0 0.5 1.0
Vi Additivity of interacting loci Additivity of locus
€  0.002-
= = Predicted § 10"
8 Data(an Iy '°,
8 h
g Iy 10"
0.001 [ e
& I 110
2 \
g ® .o L4 Il \\
14 s .4l Vi
0.0001_ st 40 - Mo
00 01 0.2 -0.10 -0.05 0.00 0.05 0.10
Vi(1 - ) Residuals

Figure 3. Experimental observations from Johnson et al. [15] are consistent with theoretical predictions.
(a) The fitness effect of one of the 91 mutations from [15] plotted against background fitness. (b) The
distribution of the measured v; (negative one-half of the slope from (a)) and variance fractions v; for the
91 insertion mutations. (c,d) ¥; plotted against the additivity of interacting loci and the additivity of the
mutated locus (see main text for definitions). The histograms are shown below the plots. The sign of the
trend depends on the additivity of interacting loci rather than the additivity of the mutated locus. (e)
The measured variance of the residuals against the prediction v;(1— 9;), shown here for the 91 mutations.
The yellow circles correspond to the loci with AoIL < 0.5. The best-fit line (yellow dashed line) to these
loci has R? = 0.50 (R? = 0.42 for all points). (f) The shape of the distribution of residuals pooled from
all 91 mutations aligns well with the prediction from Eq. (3). The variances of the two distributions are

matched. Inset: same plot in log-linear scale. See Methods for more details.

244 The distribution of fitness effects

25 Long-term adaptation is determined by the distribution of fitness effects (DFE) of possible
26 mutations and the stochastic dynamical processes that lead to fixation. While Eq. (5) represents
247 the distribution of the fitness effects of a specific mutation at locus ¢ over all genotypes in the
28 population that have fitness y, we are instead interested in the DFE, where fitness effects are

240 measured for all the mutations arising in the background of a particular genotype that has fitness
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250 . For now we ignore the influence of evolutionary history on the DFE; we expand on that
251 complication in the following Section.

52 FExamining the DFE over /£ loci for a randomly chosen genotype of fitness y can be thought of as
253 sampling the fitness effects sq, s, .. ., s¢ from the conditional joint distribution P(sq, Sa, .. ., S¢|y),
254 which generally depends on epistasis. If the number of independent, nonzero epistatic terms
25 is large, then P(sq,s9,...,S¢|y) is a multivariate normal distribution defined by the means and
256 covariances of the ¢ + 1 variables y, s1, Sa, ..., Sy, which in turn can be computed in terms of
2s7 the f’s from Eq. (2). In particular, the conditional means and covariances are Mean,(s;) =
258 —20;(y — ), Covy(s;, ;) = 4V (e;; — v;v;), where e;; is the epistatic variance fraction between
250 loci ¢ and j and e; = v;. This implies that the conditional correlation between fitness effects is
20 (€35 — Viv5)/\/vivy (1 — vi) (1 — vy).

261 The DFE simplifies considerably if we make certain additional assumptions on the magnitude

262 Of epistatic interactions. If we assume the typical variance fraction v is small (i.e., o < 1) and
263 also that e;; is O(v?), then correlations are O(v) and thus negligible. Then, in a particular sample
264 S1, 82, ..., S, we can think of each s; as being drawn independently with mean —2v;(y — ) and
26s variance 4v;V. To compute the DFE, p(s|y), we first sample the variance fraction from the DVF,
266 P(v), and then sample a Gaussian random variable with the aforementioned mean and variance.
267 This leads to the DFE

plol) = [ a2y Py (2L 0

26s Where ¢ is the standard normal pdf. Curiously, the correlations between s;’s vanish when e;; =
260 V;V;, in which case the above equation is exact and the DFE is determined entirely by the DVF.
270 Further below, we introduce a specific fitness landscape model for which this relation does hold.
271 Diminishing-returns is naturally incorporated in Eq. (9): the mean of s is —20(y — y), i.e., the

272 DFE shifts progressively towards deleterious values with increasing fitness.

273 Historical contingency in adaptive trajectories

a7za A key unresolved question is the extent to which evolutionary history influences the DFE and
27s the dynamics of adaptation [27]|. That is, what does our theory say about historical contingency?

276 Suppose a clonal population of fitness yy accumulates k successive mutations resulting in
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277 fitnesses y1, 4, ..., yr. By virtue of arising on the same ancestral background, the fitness gain
o7 of a new mutation, sp.1, is in general correlated with the full sequence of past fitnesses and
279 the identity of the k& mutations through its epistatic interactions with them. Based on these

280 correlations, we use well-known properties of conditional normal distributions [28] to write

k
Sk+1 = Z Wk11,:Yi T €, (10)
i=0

2s1 where the weights wyy1; depend on the variance fraction (vg4;) of the new mutation and its
282 epistatic interactions with past mutations. Here € is the normally-distributed residual that de-
23 pends on the initial genotype and the weights (SI). Eq. (10) is a generalization to a sequence of
25 mutations of Eq. (5), which we can think of as the special case where k = 0.

25 1o gain intuition, it is useful to first analyze Eq. (10) when k& =1 (i.e., to compute the effect
286 Of a second mutation conditional on the first). In this case, we show in the SI that

V1V — €
So X~ —2’02<y1 — g) + %81 + €, (11)
1

287 Where s1 = y; — yp is the fitness effect due to mutation 1. The first term on the right hand side
2g8 1S the dependence on the fitness of the immediate ancestor, similar to the corresponding term in
280 Eq. (5). The second term quantifies the influence of epistasis between loci 1 and 2 on s5. When
200 €19 = V109, dependence on s; vanishes entirely and s, depends only on y;. In contrast, if loci 1
20 and 2 do not interact, e;s = 0, and sy is, on average, larger if the mutation at 1 is beneficial
202 compared to when it is deleterious. This has an intuitive interpretation: diminishing-returns
203 applies to the overall fitness and the mechanism through which it acts is epistasis. However, if
204 mutations 1 and 2 do not interact, then the increase in fitness corresponding to mutation 1 does
205 not actually reduce the effect of mutation 2 (as expected by diminishing-returns) so the expected
206 effect of mutation 2 is larger. This analysis suggests that during adaptation, since selection favors
207 mutations with stronger fitness effects on the current background, a mutation that interacts less
208 With previous mutations is more likely to be selected.

200 To identify the conditions under which history plays a minimal role, we would like to examine
300 when s, 1 depends only on the current fitness, vy, and is independent of both the past fitnesses
so1 and idiosyncratic epistasis. If this were true, then Eq. (5) would apply for new mutations that
s02 arise through the course of a single evolutionary path (i.e., the fitness effect of a new mutation is

s03 “memoryless” and depends only on its variance fraction and the current fitness). Surprisingly, such
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304 a condition does exist. We show that this occurs when the magnitude of epistatic interactions
sos between the new mutation and the k previous mutations, eyi1 1., satisfies a specific relation:
306 €411k = Ug+1V1:%, Where vy is the combined variance fraction of the k previous mutations (SI).
so7 In general, this condition is not satisfied, implying that there will be historical contingency which
308 can be analyzed using the framework above. Remarkably, it turns out that a fitness landscape
300 model for which the condition is satisfied does exist and arises from certain intuitive assumptions
310 on the organization of biological pathways and cellular processes. This fitness landscape model

s additionally serves as an example of a landscape where global epistasis can vary substantially

it

s12 across loci. We describe this model below.

313 The connectedness model

sie We introduce the “connectedness” model (CN model, for short). In this model, each locus i is
15 involved in a fraction u; of independent “pathways”, where each pathway has epistatic interactions
a16 between all loci involved in that pathway (Figure 4a). The probability of an epistatic interaction
si7 between three loci (4, j, k) is then proportional to g, since this is the probability that these
s18 loci are involved in the same pathway. When the number of loci £ is large, we show that in this
10 model, v; = p;/(1 4 p;), and when ¢ is small, v; = p;/fl, where [ is the average over all loci (SI).
320 The CN model therefore has a specific interpretation: the outsized contribution to the fitness
s21 from certain loci (large v;) is due to their involvement in many different complex pathways (large
322 f1;) and not from an unusually large perturbative effect on a few pathways. The distribution,
323 P(), across loci determines the DVF.

24 Statistical fitness landscapes such as the NK model and the Rough Mt. Fuji model [27, 29-33]
325 are related to the CN model. Specifically, the CN model is a sub-class of the broader class of
a2 generalized NK models (see [34] for a review). However, often-studied fitness landscape models
327 have one important difference that distinguishes them and gives qualitatively different dynamics
s2s of adaptation (shown further below): in contrast to the CN model, classical fitness landscapes
320 are typically ‘regular.” That is, the variance fraction of every locus is assumed to be the same
s30 (except the star neighborhood model which has a bimodal DVF [34]).

s The CN model is equivalent to a Gaussian fitness landscape with exponentially-decaying cor-

332 relations (SI). The CN model has tunable ruggedness, where the landscape transitions from
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333 additivity to maximal epistasis with increasing fi. Maximal epistasis corresponds to p; = 1 (and
33 hence v; = 1/2) for all i. From Eq. (5), this implies that the new fitness after a mutation occurs
335 is independent of the previous fitness, consistent with the expectation from a House-of-Cards
a3 model [35] (where genotypes have uncorrelated fitness). Regular fitness landscape models with
337 exponentially-decaying correlations have memoryless fitness effects under the restrictive assump-
a3s tion that every locus is equivalent [27]. We show that the dynamics of adaptation of the more
330 general CN model are also memoryless, i.e., the condition detailed in the previous section holds
sa0 true (SI). Yet, as we show below, the predicted dynamics for the CN model are very different to
s those from a regular fitness landscape model.

322 We emphasize that the well-connectedness assumed for the CN model is not a requirement
sas for Eq. (5) to hold. However, how diminishing-returns influences the long-term dynamics of
a2 adaptation depends on the specific genetic architecture and the corresponding fitness landscape.
3as Consider for example an alternative model of genetic networks organized in a modular structure
us (Figure 4b). In this model, each locus is part of a single module, and interacts epistatically with
347 other loci in that module to determine the fitness of that module; overall fitness is then determined
sas as a function of the module fitnesses. In this case, the variance contributed by a locus is due
320 to its additive contribution and from epistasis between loci restricted to its module. While the
350 argument for diminishing-returns still applies to the fitness as a whole, it follows from the same
351 argument that diminishing-returns should also apply to each module separately. Consequently,
352 the dynamics of adaptation for the modular model are different from the CN model. For simplicity,
353 we analyze the dynamics of adaptation for the CN model and postpone a discussion of how the

ssa dynamics differ for different models to subsequent work.

355 The dynamics of adaptation

6 We now examine the DFE that follows from Eq. (5) and what that implies for long-term
357 adaptation under the conditions for memoryless fitness effects. We henceforth assume a large
sss number of loci with sparse epistasis (though the total number of nonzero epistatic terms is still
350 large). This implies that ¢ > 1, v; < 1 and 9¢ > 1; for simplicity, we also assume strong-
ss0 selection-weak-mutation (SSWM) selection dynamics and s < 1, Ns > 1, where s are fitness

se1 effects and N is the population size. Under these conditions, a mutation sweeps and fixes in a
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362 population before another one arises. The probability of fixation of a beneficial mutation, pgy, is
363 then proportional to its fitness effect [36].

s« It is convenient to rescale fitnesses based on the total variance in fitness across all possible
ses genotypes by defining z = V"V2(y — g),0 = VY25, = V125, Note that v is normally-
366 distributed with zero mean and unit variance. Here z has an intuitive interpretation as the
se7 “adaptedness” of the organism. When the organism is neutrally-adapted (|z| < 1), positive and
368 Negative epistatic contributions to the fitness are balanced and diminishing-returns is negligible.
30 Diminishing-returns is relevant when the organism is well-adapted (z > 1). Below, we give the
70 intuition behind our analysis, which is presented in full detail in the SI.

s In the neutrally-adapted regime, the linear negative feedback in Eq. (5) is negligible and the
sz DFE is determined by the distribution of ~ v'/?v. Loci with large v can lead to a DFE with
s73 a long tail. If o is the typical variance fraction of a locus, the fitness increases as z ~ ngo'/?,
sza Where ng is the number of substitutions. Since v is a measure of overall epistasis, this implies that
a7s epistasis speeds adaptation in the neutrally-adapted regime by allowing access to more influential
376 beneficial mutations.

sz Fitness increases until the effect of the negative feedback cannot be neglected. From Eq. (5),
w7 this happens when 0z ~ ©%/2v (i.e., when 22 ~ o~1). Intuitively, fitness begins to plateau when
379 its accumulated benefit from substitutions is comparable to the scale of the total genetic variance
ss0 (ns0 ~ 1) and further improvements are due to rare positive fluctuations. In this well-adapted
ss1 regime, diminishing-returns and increasing-costs epistasis strongly constrain the availability of
382 beneficial mutations, whose effects can be quantified in this model: for a mutation to have a
se3 fitness effect o, we require from Eq. (5) that v ~ ¢ /202 4+ v'/2z, which has probability ~ e=*"/2,
s8¢ Beneficial effects of large o arise when v has a large positive deviation. The most likely v that
ses leads to a particular ¢ is when v is smallest (i.e., at v* ~ ¢/22), in which case v ~ /202, yielding

oz

g6 a tail probability ~ e7??. Remarkably, the beneficial DFE in the well-adapted regime is quite
ss7 generally an exponential distribution independent of the precise form of the DVF (unless it is

sss singular). In particular, we show in the SI that for the DFE, p(c|z),

p(o|z) _ o
(o) ¢ (12)

380 which depends solely on the adaptedness of the organism. The exponential form arises because

300 of the Gaussianity of v, but the argument can be easily extended to v with non-Gaussian tails.

17



391

392

393

a Fitness c

Pathways
y=0
AN Ve -
‘\ \\ I’ /\’\ \\ : /I// l“\ II 1 0
\ \ N 1
Vo :I ,’ ‘:\ I /// w0 — Theory
Loci N LY Numerics
. ‘ . ( N J . o0 0 0
b y=2.5

Fitness
/N -1 0 1
l’—m

C000 Q00O OO

5 0 1000 2000
Fitness effect (s) KVv3n
Modules Am .

Figure 4. The DFE and long-term adaptation dynamics predicted for the connectedness model. (a)
Schematic of the connectedness (CN) model, where each locus is associated with a fraction p of pathways
that contribute to the organism’s fitness. (b) An alternative model with modular organization, where sets
of loci interact only within the pathways specific to a single module. (¢) The DFE predicted from Eq. (14)
matches those obtained from simulated evolution of genotypes from the CN model. 128 randomly drawn
genotypes (400 loci) with initial fitness y close to zero are evolved to y = 2.5 and y = 5 and the DFE is
measured across loci and genotypes. We chose §y = 0 and V = 1 so that y represents adaptedness. Insets:
same plots in log-linear scale. Note that the number of beneficial mutations acquired during the simulated
evolution (~10-20) is much less than the total number of loci (400). (d) For a neutrally-adapted organism,
the theory predicts quick adaptation to a well-adapted state beyond which the adaptation dynamics are
independent of the specific details of the genotype-fitness map. Shown here is the mean adaptation
curve predicted under strong-selection-weak-mutation (SSWM) assumptions, which leads to a power-
law growth of fitness with exponent 1/5 in the well-adapted regime (inset). (e) The number of fixed
beneficial mutations under SSWM, which grows as a power-law with exponent 2/5 in the well-adapted
regime (inset). The shaded region is the 95% confidence interval around the mean for (c) and (d). See

Methods and SI for more details.

An exponential beneficial DFE has been previously proposed by Orr [37] but arises here due to a
qualitatively different argument. Orr’s result instead follows from extreme value theory: Suppose

the fitness effects of £ loci (¢ > 1) are sampled from a DFE p(0) and F(o) = [°_ . Then,
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s0a the probability that a beneficial mutation has at least a certain effect size o is P(o, > o) =

1-F(o) . InF(o)
3% T-F(0) ~ WnF(0)’

where the latter approximation holds when beneficial mutations are rare (i.e.,
306 1 — F(0) is small). A well-known result from extreme value theory (Gumbel’s law [38, 39]) implies
so7 that for a large family of distributions p(c) and for £ > 1, we have —{In F(c) oc e % (for some
s0s constant k) and therefore P(o, > o) = e %, This argument is consistent with our results, but
300 does not yield the dependence of k on adaptedness and the rate of beneficial mutations without
s00 additional information about p(o).

s1  Under SSWM assumptions, from Eq. (12), the typical effect size of a fixed mutation is og, ~

w2 271, which typically has a variance fraction,
Vi o Oqy /22 ~ 1/22°. (13)

a3 The above relation makes precise the effects of increasing-costs epistasis on adaptation. As
a0s adaptation proceeds, the delicate balance of high fitness configurations constrains fixed beneficial
s0s mutations to have moderate variance fractions. A mutation of small variance fraction is likely to
a0 confer small benefit and is lost to genetic drift, while one with a large variance fraction is more
a7 likely to disrupt an established high fitness configuration.
as  This intuition is not captured in regular fitness landscape models, which assume statistically
a00 equivalent loci, i.e., v; = v for all ¢ and P(v) = 0(v — v) is singular. From Eq. (9), we see that
a10 this leads to a Gaussian DFE whose mean decreases linearly with increasing fitness, in contrast
an to the exponential DFE in our theory. The key difference is the lack of loci with intermediate
a12 effect, which drive adaptation in the well-adapted regime. As a consequence, the rate of beneficial
a1z mutations declines exponentially (U, ~ e~/ 2) and the fitness thus sharply plateaus at z ~ o~ 1/2.
s In contrast, our theory predicts a much slower depletion of beneficial mutations, U, ~ 272 (SI).
ss The rate of adaptation is dz/dt ~ Uppscoax ~ 2% (since pax ~ 0gx), which leads to a slow
a6 but steady power-law gain in fitness, z ~ t'/5. The rate of fixation of beneficial mutations is
a7 dng/dt ~ Uypgy ~ 275 ~ t73/° which gives n, ~ t%/°.
as We verify our analytical results using numerics. As before, we generated a genotype-phenotype
a0 map using the CN model with an exponential DVF, P(v) = v~ 'e/? and ¢ = 400 loci. The DFE
a20 can be calculated exactly by plugging in this P(v) in Eq. (9):

-1

v efoz/27|0'|\/217—1+z2/2. (14)

olz) = ———
o) =
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az We simulated the evolution of randomly generated genotypes from z =0 to 2 = 2.5 and z =5
s22 and the DFE across all loci was measured (we chose § = 0,V = 1 so that y = z,s = ). The
s23 theoretical prediction for the DFE, Eq. (14), closely aligns with the numerical results (Figure
a2a 4c).

a5 Due to computational constraints, it is difficult to simulate evolution deep into the well-adapted
226 Tegime. To compute the shape of adaptive trajectories and their variability, we instead simulated
227 SSWM dynamics using the DFE directly from Eq. (14), beginning from a neutrally-adapted
a2 fitness (z = 0). Typical trajectories (Figure 4d) show rapid adaptation to the well-adapted
a20 regime beyond which the fitness grows slowly as t'/°, as predicted from theory. The predictions

s30 for the number of fixed beneficial mutation are also re-capitulated (Figure 4e).

a1 DISCUSSION

a2 Recent empirical studies have observed consistent patterns of diminishing-returns and increasing-
a33 costs epistasis. Our model gives a simple explanation for these observations. In particular, we
a3 showed that these patterns are generic consequences of widespread microscopic epistatic interac-
a3s tions. The intuition underlying this result is that a random mutation typically has a larger dis-
a3 Tuptive effect on the delicate balance of microscopic epistasis that underpins a fitter background.
37 Our model predicts a quantitative relationship between the magnitudes of global epistasis (i.e.,
a3s the negative slope of diminishing-returns and increasing-costs epistasis) and microscopic epistasis,
s30 which we confirmed using existing data (Figure 3).

a0 A similar explanation for diminishing-returns and increasing-costs epistasis has been recently
a1 proposed by Lyons et al. [16]. While our core argument for diminishing-returns and increasing-
aa2 costs epistasis is the same as in that work, our Fourier analysis framework dissects the features of
aa3 the fitness landscape necessary to observe these phenomena in terms of experimentally measur-
aaa able average effects (i.e., the f’s in Eq. (2)). In particular, we show that the additivity of a locus’
ass interacting partners critically determines whether the trend is negative or unbiased. In addition,
as6 the Fourier analysis framework yields predictions for the distribution of fitness effects, the histor-
a7 ical influence of past mutations on the fitness effect of a newly mutated site and motivates the
ass proposed ‘connectedness’ fitness landscape model. The analysis of experimental data presented

as0 in Lyons et al. complements the experimental data considered here, lending further empirical
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aso support for the prevalence of epistasis and its importance in determining long-term adaptability.
a1 Our model leads to other experimentally testable predictions. The most direct and accessible
a2 test of the theory is to measure the fitness for all possible combinations of mutations at ~10-15
ss3 significant loci and compare (using Eq. (6)) the magnitude of global epistasis to the measured
sss fitness coefficients (the f’s). Additionally, we predict that the magnitude of global epistasis of a
ass double mutant should be nearly the sum of magnitudes of the corresponding single mutants, and
ass6 any deviations should be biased towards sub-additivity. Since the predictions involve measuring
as7 residual variance, experimental noise can be an important confounding factor.

s The observation that diminishing-returns occurs as a “regression to the mean” effect on certain
w0 fitness landscapes has been noted previously [40, 41]. The theory developed here quantifies
ae0 precisely when we should expect to observe these patterns. We emphasize that our key result,
w1 Eq. (5), is a general statistical relation that holds if epistasis is widespread, irrespective of the
a2 specific genetic architecture and the corresponding fitness landscape. Weak epistasis with many
a3 loci is sufficient to observe noticeable patterns of global epistasis. However, the argument fails
aea if the contribution of a locus is purely additive or when epistasis is limited to one or a handful
aes of other loci. In the latter case, we expect the fitness effect of a mutation to be dominated by
as6 the allelic states of its partner loci, and thus take on a few discrete values. A few examples from
a7 Johnson et al. [15] indeed exhibit this pattern, (e.g. cases where the fitness effect of a specific
sss mutation depends primarily on the allelic state at a single other locus).

a0 We highlight a distinction between global epistasis discussed in this work and another form
a0 of global epistasis (also known as “nonspecific” epistasis) typically used in protein evolution to
an describe nonspecific epistatic interactions due to a nearly additive trait transformed by a nonlinear
a2 function [23-25, 42, 43]. This nonlinear function creates systematic relationships between epistasis
a73 terms and breaks the condition of independent epistatic terms required for our arguments to apply.
a7a Specific nonlinearities such as an exponential function may indeed lead to a negative linear trend
as on average, but the structure of the residuals differs from the one in Eq. (5) and observed in data.
aze A surprising empirical observation is that the negative linear relationship between fitness effect
a7 and ancestral fitness characteristic of global epistasis has different slopes for different loci. Our
as model identifies the negative slope as twice the fraction of variance contributed by a locus to
a70 the trait. To explain the wide range of variance fractions (VF) observed in data, we developed

ss0 the connectedness (CN) model, a framework to think about the organization of cellular processes
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ae1 that can lead to loci of widely varying VFs. In the CN model, loci have a large VF due to their
a2 involvement in many different pathways rather than due to a large effect on a single pathway.
as3 The CN model can be viewed as a statistical fitness landscape where loci can have a range of
ssa VFs, specified by the distribution of variance fractions (DVF). In the special case of every locus
ags having the same VF, the CN model corresponds to a fitness landscape with tunable ruggedness
ass and exponentially-decaying correlations.

a7 Extending our framework to incorporate adaptation, we showed that the distribution of fitness
ass effects (DFE) depends only on the current fitness, rather than the entire evolutionary history,
ago under the intuitive assumptions behind the CN model. The theory therefore gives a simple
a00 explanation for why phenotypic evolution can be predictable, even while the specific mutations
a01 that underlie this evolution are highly stochastic.

a2 Our framework has an implicit notion of ‘adaptedness’ without referencing a Gaussian-shaped
s03 phenotypic optimum, often assumed in models of adaptation (e.g. Fisher’s geometric model)
s0a [44-46]. Over the course of adaptation, the DFE shifts towards deleterious values, reflecting
a0s diminishing-returns, which naturally arises from our basic arguments. For a well-adapted organ-
a06 ism, we show that the DFE for beneficial mutations takes on an exponential form, and leads
a07 to universal adaptive dynamics. While an exponential DFE for beneficial mutations has been
s0s proposed previously based on extreme value theory [37], our result arises due to an entirely dif-
a00 ferent argument: the tail of the beneficial DFE is determined by loci of intermediate size whose
so0 disruptive effect due to increasing-costs is small, yet whose effect size is large enough not to be
so1 lost due to genetic drift.

s2  Our theory further predicts declining adaptability, with rapid adaptation in a neutrally-adapted
so3 regime followed by much slower increases in fitness, resulting in power-law adaptive trajectories
soa when the organism is well-adapted. This is consistent with observations from the E.coli LTEE
s0s [1, 2]. Our model predicts a quicker decline in the number of substitutions (n, ~ t*°) compared
sos t0 the near linear trend observed in the LTEE data [4]. However, the dynamics of fixation in the
sov LTEE deviate strongly from SSWM assumptions. This may explain the discrepancy, although we
so8 nnote that existing theory has only analyzed the effects of clonal interference and other breakdowns
so0 in SSWM assumptions for a constant DFE and weak epistasis [47, 48]. Further work will be
s10 required to understand how these effects interact with global epistasis. For example, we may

su expect that the effect of a highly beneficial mutation at a segregating locus is more likely to be
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s12 attenuated due to interference from subsequent deleterious mutations, while a less-fit lineage has

s13 a larger pool of beneficial mutations and is thus more likely to ‘leapfrog’ over more-fit lineages.

52 METHODS AND MATERIALS

sis  The code and data to generate the figures are available at [49].

516 Simulations

siz We use a fitness landscape model with ¢ loci to generate the genotype-fitness map. Each locus
s18 1S assigned a sparsity p from P(u), which is an exponential distribution with mean f. Each of
si0 M independent pathways sample loci with each locus ¢ having probability u; of being selected to
s20 a pathway. We choose ¢ = 400, 1 = 0.02, M = 500 so that ¢ = 8 ensures signficant epistasis.
s21 All loci in a pathway interact with each other, where additive and higher-order coefficient terms
s22 of all orders were drawn independently from a standard normal distribution. The total fitness is
s23 the sum of contributions from the M pathways. We normalize the coefficients so that the sum
s24 of squares of all coefficients is 1, i.e., the total variance across genotypes is 1. The mean, y is
s25 close to zero from our sampling procedure. The above procedure is a simple and efficient way to
s26 generate epistatic terms to order ~20, beyond which the computational requirements are limited
s27 by the exponentially increasing demand. Note that the effects described in the paper were also
s28 observed with only pairwise and cubic epistatic terms.

s20  The variance fractions shown in Figure 2a can be calculated numerically from the definition.
s3 From the theory, given our choice of P(u), these should follow an exponential distribution with
sa1 mean U ~ i/(1 4 f1). There may be deviations since M is finite whereas the calculations assume
s32 M — 00. To generate Figure 2b, in order to get a range of background fitnesses, we first sample
s33 128 random genotypes. These have fitnesses close to zero; in order to obtain a range of fitness
s34 values, we simulated the evolution of these 128 genotypes up to y = 1,2,3,4,5 under strong-
s3s selection-weak-mutation (SSWM) assumptions to get 128 x 5 = 640 genotypes at roughly five
s36 fitness values. The fitness effect of applying a mutation (i.e., flipping its sign) is measured for 30
s37 randomly chosen loci (which are kept fixed) over each of the 640 genotypes. This is shown for

s3s five of the 30 and for the mean over the 30 loci in Figure 2b.
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s39  To generate Figure 2c¢, we sampled 64 random genotypes and 12 replicates of each. The
sa0 evolution of these 768 genotypes was simulated for a total of 50 generations with a mutation rate
sa1 of 1 per generation. The mean fitness gain over the 12 replicates is plotted for each of the 64
sa2 founders against their initial fitness.

sa3 10 generate Figure 2d, the residuals are measured using the same procedure as for the exper-
se« imental data analysis described below for the initial 128 genotypes at y ~ 0 and the 30 loci with
sas the largest variance fraction.

sa6  Double mutants were created by mutating all pairs of the 30 randomly chosen loci on the 640
sa7 evolved genotypes. Their mean fitness effect was computed and plotted along with the mean
sag fitness effect for single mutants, shown in Figure 2e. The variance fraction of the pair of loci for
sa0 the double mutant was estimated as before and compared to the sum of the estimated variance
sso fractions of the corresponding single mutants. This is shown in Figure 2f.

ssi 1o generate the plots in Figure 4c, we simulated the evolution of 128 randomly sampled
ss2 genotypes to y = 2.5 and y = 5. The fitness effect of 200 randomly sampled loci was measured
ss3 and the distribution is plotted.

ss4  Analysis of the data from Johnson et al.

sss  The data from Johnson et al. [15] consists of the fitness after the addition of 91 insertion
sse utations on each of 145 background genotypes. The fitness of a particular mutation at locus ¢
ss7 can be modeled as

y; = —c;y + b; + Residual;(g), (15)

sss Where y;, y are the mutant and background fitnesses respectively, ¢;, b; are constants for each locus
sso and the residual Residual;(g) depends on the background genotype g.

sso  We estimate the variance fraction v; = (1—p;)/2, where the Pearson correlation p; = Corr(y; @
se1 Y,y @D y;), where the symbol @ denotes that the mutant and background fitness datasets are
se2 concatenated. ?; is estimated as the negative one-half of the slope of the best linear fit of s; = y;,—vy

se3 and y. The residuals for each of the 145 genotypes for each of the 91 mutations is simply
Residual;(g) = (y: + ciy) — (vi + cy), (16)

se« Where the overline represents an average over the 145 genotypes, which is used as an estimate of
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ses the constant term and ¢; = 20; — 1. In Figure 3b, we plot the distribution of estimated v; and ;.
ses In Figure 3c, we compute the AolL for each locus using Eq. (7), which we show in the SI to be
ser |Cov(s;, yi + y)|/(|Cov(s;, yi + y)| + Var(s;)). In Figure 3d, we compute the additivity using Eq.
see (8). The additive effect is f; = (1; — y)/2 and Var(s;)/4 gives the sum of squares of the epistatic
seo terms (SI). In Figure 3e, we compute the variance of the residuals across the 145 genotypes for
s70 each locus and plot it against the locus’ estimated 9;(1 —9;). In Figure 3f, we plot the distribution
sn of residuals over all genotypes and loci. The prediction is that in the WE limit the distribution
s72 of residuals is determined by 29;(1 — ©;)n, where 1 is a Gaussian random variable. We multiply
573 \/m for each locus with 10,000 i.i.d standard normal RVs, pool the resulting numbers for
s74 all loci and plot the predicted distribution in Figure 3f. The distributions are variance-matched.
s7s While Figure 3e shows that the variance of the residuals aligns with the theoretical prediction of

sz6 being proportional to slope, Figure 3f shows that the data is also consistent with the predicted

s77 Gaussianity of the background-genotype-dependent contribution.
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