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Abstract

Epistasis between mutations can make adaptation contingent on evolutionary history. Yet despite

widespread “microscopic” epistasis between the mutations involved, microbial evolution experiments show

consistent patterns of fitness increase between replicate lines. Recent work shows that this consistency

is driven in part by global patterns of diminishing-returns and increasing-costs epistasis, which make

mutations systematically less beneficial (or more deleterious) on fitter genetic backgrounds. However, the

origin of this “global” epistasis remains unknown. Here we show that diminishing-returns and increasing-

costs epistasis emerge generically as a consequence of pervasive microscopic epistasis. Our model predicts

a specific quantitative relationship between the magnitude of global epistasis and the stochastic effects

of microscopic epistasis, which we confirm by re-analyzing existing data. We further show that the

distribution of fitness effects takes on a universal form when epistasis is widespread, and introduce a

novel fitness landscape model to show how phenotypic evolution can be repeatable despite sequence-level

stochasticity.
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I. INTRODUCTION14

Despite the idiosyncrasies of epistasis, a number of laboratory microbial evolution experiments15

show systematic patterns of convergent phenotypic evolution and declining adaptability. A strik-16

ing example is provided by the E.coli long-term evolution experiment (LTEE) (Figure 1a): 1217

replicate populations that adapt in parallel show remarkably similar trajectories of fitness increase18

over time [1, 2], despite stochasticity in the identity of fixed mutations and the underlying dy-19

namics of molecular evolution [3, 4]. Similar consistent patterns of fitness evolution characterized20

by declining adaptability over time have also been observed in parallel yeast populations evolved21

from different genetic backgrounds and initial fitnesses [5] (Figure 1b) and in other organisms22

[6–12]. Declining adaptability is thought to arise from diminishing-returns epistasis [5, 13, 14],23

where a global coupling induced by epistatic interactions systematically reduces the effect size of24

individual beneficial mutations on fitter backgrounds. Diminishing-returns manifests as a striking25

linear dependence of the fitness effect of a mutation on background fitness (Figure 1c). While26

diminishing-returns can be rationalized as the saturation of a trait close to a fitness peak, recent27

work shows a similar dependence on background fitness even for deleterious mutations, which28

become more costly on higher fitness backgrounds [15]. This suggests that fitter backgrounds are29

also less robust to deleterious effects (Figure 1d), a phenomenon that has been termed increasing-30

costs epistasis. The origin of the global coupling that results in these effects is unknown.31

Put together, these empirical observations suggest that the contributions to the fitness effect,32

si, of a mutation at a locus i in a given genetic background can be written as33

si = sadditive,i + sgenotype,i − ciy, (1)

where sadditive,i is the additive effect of the mutation, sgenotype,i is its genotype-dependent epistatic34

contribution independent of the background fitness y (i.e., idiosyncratic epistasis), and ci quanti-35

fies the magnitude of global epistasis for locus i. Eq. (1) reflects the observation that the strength36

of global epistasis depends on the specific mutation and applies independently of whether its ad-37

ditive effect is deleterious (increasing-costs) or beneficial (diminishing-returns). Over the course38

of adaptation in a fixed environment, global epistatic feedback on mutational effects can lead39

to a long-term decrease in adaptability. If this feedback dominates, Eq. (1) suggests that the40

dependence of the fitness effect on evolutionary history is summarized entirely by the current41

fitness, and therefore results in predictable fitness evolution.42
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Here, we show that diminishing-returns and increasing-costs epistasis are a simple consequence43

of widespread epistasis. This is consistent with recent work [16] that proposes a similar argument44

to explain these phenomena. However, while the core idea is similar, we present here an alterna-45

tive framework based on the Fourier analysis of fitness landscapes, which leads to new insights46

and quantitative predictions. In particular, our framework leads to novel predictions for the47

relationship between the magnitude of global epistasis and the stochastic effects of microscopic48

epistasis, which we confirm by re-analyzing existing data. Extending this framework, we further49

quantify how the distribution of fitness effects shifts as the organism adapts and how the fitness50

effect of a mutation depends on the sequence of mutations that have fixed over the course of51

adaptation (i.e., historical contingency). While specific historical relationships depend on the ge-52

netic architecture, we introduce a novel fitness landscape model with an intuitive architecture for53

which the entire history is summarized by the current fitness. Using this fitness landscape model,54

we investigate the long-term dynamics of adaptation and elucidate the architectural features that55

lead to predictable fitness evolution.56

RESULTS57

Diminishing-returns and increasing-costs epistasis58

We begin by examining the most general way to express the relationship between genotype59

and fitness (i.e., to describe the fitness landscape). A map between a quantitative trait (such as60

fitness), y, and the underlying genotype can be expressed as a sum of combinations of ` biallelic61

loci x1, x2, . . . , x` that take on values xi = ±1 [17–21]:62

y = ȳ +
∑

i

fixi +
∑

i>j

fijxixj +
∑

i>j>k

fijkxixjxk + . . . , (2)

where ȳ is a constant that sets the overall scale of fitness. The symmetric convention xi = ±1 for63

the two allelic variants is less often used than xi = 0, 1, but it is an equivalent formulation, which64

we employ here because it will prove more convenient for our purposes (see [22] for a discussion).65

The coefficients of terms linear in xi represent the additive contribution of each locus to the fitness66

(i.e. its fitness effect averaged across genotypes at all other loci), the higher-order terms quantify67

epistatic interactions of all orders, and ȳ is the average fitness across all possible genotypes.68
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Eq. (2) is intractable, the analysis in fact simplifies considerably if the locus has a significant75

number of independent interactions that contribute to the fitness (i.e., provided that the number76

of independent, nonzero epistatic terms associated to the locus is large). In this case, we show77

that the fitness effects of individual mutations decrease linearly with background fitness and the78

fluctuations around this linear trend are normally-distributed. In other words, widespread inde-79

pendent idiosyncratic epistatic interactions lead to the observed patterns of diminishing-returns80

and increasing-costs epistasis.81

We present a derivation of this result in the SI. Here we explain the key intuition using82

a heuristic argument. The argument is based on a simple idea: for a well-adapted organism83

(y > ȳ) with complex epistatic interactions, a mutation is more likely to disrupt rather than84

enhance fitness. To be quantitative, consider a highly simplified scenario where some number N85

of the f ’s in Eq. (2) are ±1 at random and the others are 0. In this case, the fitness of a given86

genotype is a sum of N+ and N− interactions that contribute positively and negatively to the trait87

respectively, each with unit magnitude, so that y = ȳ + N+ − N−. When positive and negative88

interactions balance, the organism is in a “neutrally-adapted” state (y ≈ ȳ). By selecting for89

positive interactions, adaptation generates a bias so that N+ > N− and y > ȳ. If locus i involved90

in a fraction vi of all of N = N+ + N− interactions is mutated, the effect of the mutation, on91

average, is to flip the sign of N+vi positive interactions and N−vi negative interactions. The new92

fitness is then yi = y−2N+vi+2N−vi = ȳ+(1−2vi)(y−ȳ) and thus si = yi−y = −2vi(y−ȳ). The93

negative linear relation between the background fitness, y, and the fitness effect of the mutation,94

si, is immediately apparent and emerges as a systematic trend simply due to a sampling bias95

towards positive interactions. Of course, while this relation is true on average, it is possible that96

locus i affects more or less positive interactions due to sampling fluctuations. Provided only that97

N is large and the interactions are independent, these fluctuations are approximately Gaussian98

with magnitude
√

Nvi(1− vi).99

This basic argument holds beyond the simple model with unit interactions. In the more general100

case, if the mutation is directed from xi = −1 → +1, we show in the SI that its fitness effect, si,101

on a background of fitness y can be written as102

si = 2fi(1− ṽi)
︸ ︷︷ ︸

additive

− 2ṽi(y − ȳ)
︸ ︷︷ ︸

global epistasis

+ ε̃i
︸︷︷︸

genotype

, (3)
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where1
103

ṽi ≡

(
∑

j 6=i f
2
ij +

∑

j>k 6=i f
2
ijk + . . .

)

−
(
∑

j 6=i fjfij +
∑

j>k 6=i fjkfijk + . . .
)

∑

j 6=i(fj − fij)2 +
∑

j>k 6=i(fjk − fijk)2 + . . .
, (4)

and ε̃i is a genotype and locus-dependent term which is distributed across genotypes with mean104

zero and variance expressed in terms of the f ’s from Eq. (2) (see SI for details). The numerator105

of ṽi in Eq. (4) is proportional to the covariance of fitness effects and background fitness and the106

denominator is the variance of background fitness across genotypes. A similar equation for the107

case xi = +1 → −1 can be derived. The choice of +1 → −1 or −1 → +1 is simply a matter of108

convention. If the convention is reversed, the coefficients of odd-order in Eq. (2), i.e., fi, fijk, . . . ,109

should also switch signs. It can be easily checked that reversing the signs of these quantities in110

the expression for ṽi above leads to the expression for ṽi when xi = +1 → −1.111

Note that in general ṽi is not guaranteed to be positive and ε̃i is arbitrary and determined by112

the genotype-fitness map. However, consistent patterns emerge when locus i has a large number of113

independent, nonzero epistatic terms and the additive effects f1, f2, . . . of its interacting partners114

are not much larger than the epistatic terms (defined further below), which we call the widespread-115

epistasis (WE) limit. In the WE limit, ε̃i is normally-distributed across genotypes with variance116

proportional to ṽi(1 − ṽi). This follows from the same reasoning as in our heuristic argument117

with unit interactions above (see SI for details). In addition, ṽi is typically positive, giving rise118

to a negative linear trend (i.e. diminishing-returns and increasing-costs). We can see this by119

taking the third and higher-order terms in Eq. (4) to be zero, in which case ṽi is positive if120

∑

j 6=i f
2
ij >

∑

j 6=i fjfij. This will typically be true in the WE limit because we expect
∑

j 6=i f
2
ij to121

scale with the number of interacting partners `, while each term in
∑

j 6=i fjfij can be positive or122

negative and thus the sum scales as
√
` if the terms are independent. Thus when locus i has a123

large number of interacting partners, ṽi is typically positive unless the magnitude of the additive124

terms (a) is much larger than the magnitude of the epistatic terms (e), a � e
√
`. This argument125

is easily extended to the case when the third and higher-order terms are non-zero (see SI); the126

upshot is that the bias towards ṽi positive gets stronger with increasing epistasis.127

The conditions for the WE limit are more likely to hold when the number of loci, `, that affect128

the trait is large. Therefore, we expect to generically observe patterns of diminishing-returns and129

1 In the following equation and similar ones henceforth, a summation such as
∑

j>k 6=i f
2

ijk is meant to denote a

sum over pairs j, k, where each pair appears only once and no pair which includes index i appears. Symmetry

of the f ’s w.r.t interchanged indices is also assumed (e.g., fijk = fjik).
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increasing-costs epistasis for a complex trait involving many loci. Importantly, whether we observe130

a negative linear trend does not depend on the magnitude of a locus’ epistatic interactions relative131

to its own additive effect, but rather relative to the additive effects of its interacting partners. If132

we are not in the WE limit, and instead the additive effects dominate (i.e., a � e
√
l), then Eq. (4)133

suggests that the slope of the linear trend can be either positive or negative. We will show further134

below that recent experimental data demonstrates that both scenarios can be relevant: some loci135

have a � e
√
l while others have a � e

√
l, with the former creating a bias towards the observed136

negative linear trends that characterize diminishing-returns and increasing-costs epistasis.137

We note that Eq. (3) immediately leads to testable quantitative predictions: in the WE limit,138

the distribution of the residuals, ε̃i, obtained from regressing si and y is entirely determined by139

the slope of the regression, −2ṽi. Specifically, we predict that these residuals (the deviations of140

individual genotype fitnesses from the overall diminishing-returns or increasing-costs trend) should141

be normally distributed with a variance proportional to ṽi(1− ṽi). However, this condition only142

applies if diminishing-returns arises from the WE limit. It does not hold if epistasis is negligible,143

if locus i interacts significantly with only a few other dominant loci, or if the epistatic terms144

are interrelated (e.g., when global epistasis arises from a nonlinearity applied to an unobserved145

additive trait [23–25]). The latter case may still lead to a negative linear trend, but the statistics146

of the residuals will differ from Eq. (3) (see SI for a discussion).147

It is convenient to subsequently work with the symmetric version of Eq. (3), where the fitness148

effects of both xi = −1 → +1 and its reversion xi = +1 → −1 (whose fitness effect is negative149

of the former) are included in the regression against their respective background fitness. In this150

case, the additive term is averaged out, and we show (SI) that in the WE limit,151

si = −2vi(y − ȳ) + 2
√

vi(1− vi)ηi, (5)

where ηi depends on the genetic background and the locus, and is normally-distributed with zero152

mean and variance V , and153

vi ≡
Vi

V
=

f 2
i +

∑

j 6=i f
2
ij + . . .

∑

k f
2
k +

∑

k>l f
2
kl + . . .

. (6)

Here V is the total genetic variance due to all loci (i.e., the variance in fitness across all possible154

genotypes) while Vi is the contribution to the total variance by the f ’s involving locus i. We155

therefore refer to vi as the variance fraction of locus i. We show further below that for certain156

fitness landscapes, vi can also be interpreted as the fraction of pathways affected by a locus. For157
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these reasons, we focus on vi, which is half of the negative slope, rather than the slope. Note that158

the vi’s do not sum to one unless there is no epistasis (with epistasis,
∑

i vi > 1, reflecting the159

fact that the variance contributed by different loci overlap). While the directed mutation case160

discussed previously is the relevant one when presenting experimental data (for e.g., Figure 1c,d),161

it is conceptually simpler to work with the symmetric case. These two cases coincide and vi ≈ ṽi162

in the WE limit if the additive effect of a locus is small (i.e., f 2
i � ∑

j 6=i f
2
ij +

∑

j>k 6=i f
2
ijk + . . . ).163

Our results show that the variance fraction vi plays an important role. It determines the slope164

of the negative relationship between the fitness effect and background fitness. At the same time,165

it determines the magnitude of the idiosyncratic fluctuations away from this trend. We also note166

that this slope can be used to experimentally probe the contribution of a locus to the trait (i.e.,167

its variance fraction) taking into account all orders of epistasis, which circumvents the estimation168

of the individual f ’s in Eq. (2). The theory additionally predicts that the slope obtained by169

regressing the sum of fitness effects of two mutations at loci i, j against background fitness is170

proportional to vij = vi + vj − 2eij, where eij quantifies the magnitude of epistatic interactions of171

all orders between i and j (SI).172

Importantly, while the fitness effects of individual mutations (and hence the distribution of173

fitness effects) may change over the course of evolution due to epistasis, the distribution of variance174

fractions (DVF) across loci, P (v), is an invariant measure of the range of effect-sizes available to175

the organism during adaptation. As we will see, this means that the DVF plays an important176

role in determining long-term adaptability.177

Numerical results and experimental tests178

To illustrate our analytical results, we first demonstrate that the effects described above are179

reproduced in numerical simulations. To do so, we numerically generated a genotype-phenotype180

map of the form in Eq. (2), with ` = 400 loci and an exponential DVF, P (v) = v̄−1e−v/v̄, where181

v̄ = 0.02 (Methods). This DVF is shown in Figure 2a. Note that v̄` � 1 corresponds to an182

epistatic landscape; v̄` = 8 chosen here thus corresponds to a model within the WE limit (note183

that ṽi ≈ vi in this parameter range). Using this numerical landscape, we measured the fitness184

effect of mutations at 30 loci across 640 background genotypes with a range of fitnesses (Figure185

2b). Our results recapitulate the predicted linear dependence on background fitness (Figure 1c,d),186
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with a negative slope equal to twice the variance fraction predicted from Eq. (5). We further187

simulated the evolution of randomly generated genotypes similar to the experimental procedure188

used in Kryazhimskiy et al. [5] (Figure 2c), finding that our results reproduce the patterns of189

declining adaptability observed in experiments (Figure 1b). Note that ∼10 mutations are fixed190

during this simulated evolution; declining adaptability here is not due to a finite-sites effect.191

As described previously, Eq. (5) implies a proportional relationship between the magnitude192

of global epistasis (quantified by the slope of the relationship between the fitness effect of a193

mutation and the background fitness) and the magnitude of microscopic epistasis (quantified by194

the residual variance around this linear trend); see also Figure 3a. We verify this relationship195

in simulations (Figure 2d). We predict that the slope obtained by regressing the sum of fitness196

effects of two mutations at loci i, j against background fitness is proportional to vij = vi+vj−2eij.197

We further assume that eij = O(v̄2) (specifically, eij = vivj for the genotype-phenotype map used198

for numerics). Since vi and vj are typically small for a complex trait, we expect near-additivity199

vij ≈ vi + vj and that any deviations are sub-additive, which is confirmed in simulations (Figure200

2e,f).201

While testing the latter prediction on double mutants requires further experiments, we can202

immediately test the relationship between the slope and the distribution of residuals from existing203

experimental data. To do so, we re-analyzed the data from Johnson et al. [15], which measured204

the fitness effect of 91 insertion mutants on about 145 backgrounds. These background strains205

were obtained by crossing two yeast strains that differed by ≈ 40, 000 SNPs. Of these 40,000206

loci, ` ≈ 40 have been identified as causal loci with currently available mapping resolution [26].207

In Figure 3, we show the estimated ṽi (negative one-half of the slope of the best-fit line) and the208

variance fraction vi for each of the 91 mutations. These mutations were selected after screening209

for nonzero effect, and thus the DVF is biased upwards. The mean variance fraction is v̄ ≈ 0.06.210

The wide range of vi observed in the data implies that the epistatic influence of loci varies greatly211

across loci and we will show further below that this is crucial for maintaining a supply of beneficial212

mutations even when the organism is well-adapted to the environment.213

Our theoretical results imply that we expect the linear relationship between background fitness214

and fitness effect to be negative if the additive effects of a locus’ interacting partners are not much215

larger than the epistatic terms. Specifically, we define the additivity of interacting loci (AoIL) for216
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locus i as217

AoIL(i) ≡
|∑j 6=i fjfij +

∑

j>k 6=i fjkfijk + . . . |
(
∑

j 6=i f
2
ij +

∑

j>k 6=i f
2
ijk + . . .

)

+ |∑j 6=i fjfij +
∑

j>k 6=i fjkfijk + . . . |
, (7)

which we show can be estimated from data (Methods and SI). If the AoIL is less than half, Eq.218

(4) implies that the linear trend is guaranteed to be negative. If instead the AoIL is greater than219

0.5, the trend can be either positive or negative. The data shows a range of AoIL between 0 and220

1 across loci. As predicted by our theory, we find that the loci with AoIL < 0.5 always show221

negative trends and the ones with AoIL > 0.5 show both negative and positive trends (Figure222

3c). Importantly, the sign of the trend is determined by the AoIL and not by the additivity of223

the mutated locus, which we define as224

Additivity(i) ≡ f 2
i

f 2
i +

∑

j 6=i f
2
ij +

∑

j>k 6=i f
2
ijk + . . .

. (8)

The additivity across loci also has a wide range. However, small additivity does not necessarily225

imply a negative trend (Figure 3d).226

We next used the data from Johnson et al. [15] to analyze the relationship between the slope227

of the linear trend and the residual variance around this trend. We find that the experimental228

data confirms our theoretical prediction that the residual variance is proportional to ṽi(1− ṽi) if229

the AoIL is small (Figure 3e, R2 = 0.5 for loci with AoIL < 0.5 and R2 = 0.42 for all loci). The230

Gaussian-distributed term in Eq. (3) also predicts the shape of the distribution of the residuals231

given the variance fractions, which aligns well with the empirical distribution of the residuals232

(Figure 3f).233

Together, these theoretical results and our reanalysis of experimental data show that linear234

patterns of global diminishing-returns and increasing-costs epistasis are a simple consequence of235

widespread epistatic interactions. The distribution of variance fractions observed in data (Figure236

3b) further implies that the epistatic influence of different loci on fitness can vary across a wide237

range. In what follows, we show that these two observations can be put together to make general238

predictions about the distribution of fitness effects, and consequently the long-term dynamics of239

adaptation. The key ingredient that enables this analysis (including Eq. (5)) is that in the WE240

limit, fitness and fitness effects are jointly normal (with respect to a uniform distribution over all241

possible genotypes), which allows us to quantify complex dependencies between these variables242

in terms of pairwise covariances.243

11





y. For now we ignore the influence of evolutionary history on the DFE; we expand on that250

complication in the following Section.251

Examining the DFE over ` loci for a randomly chosen genotype of fitness y can be thought of as252

sampling the fitness effects s1, s2, . . . , s` from the conditional joint distribution P (s1, s2, . . . , s`|y),253

which generally depends on epistasis. If the number of independent, nonzero epistatic terms254

is large, then P (s1, s2, . . . , s`|y) is a multivariate normal distribution defined by the means and255

covariances of the ` + 1 variables y, s1, s2, . . . , s`, which in turn can be computed in terms of256

the f ’s from Eq. (2). In particular, the conditional means and covariances are Meany(si) =257

−2vi(y − ȳ),Covy(si, sj) = 4V (eij − vivj), where eij is the epistatic variance fraction between258

loci i and j and eii = vi. This implies that the conditional correlation between fitness effects is259

(eij − vivj)/
√

vivj(1− vi)(1− vj).260

The DFE simplifies considerably if we make certain additional assumptions on the magnitude261

of epistatic interactions. If we assume the typical variance fraction v̄ is small (i.e., v̄ � 1) and262

also that eij is O(v̄2), then correlations are O(v̄) and thus negligible. Then, in a particular sample263

s1, s2, . . . , s`, we can think of each si as being drawn independently with mean −2vi(y − ȳ) and264

variance 4viV . To compute the DFE, ρ(s|y), we first sample the variance fraction from the DVF,265

P (v), and then sample a Gaussian random variable with the aforementioned mean and variance.266

This leads to the DFE267

ρ(s|y) =
∫ 1

0

dv(2
√
vV )−1P (v)ϕ

(
s+ 2v(y − ȳ)

2
√
vV

)

, (9)

where ϕ is the standard normal pdf. Curiously, the correlations between si’s vanish when eij =268

vivj, in which case the above equation is exact and the DFE is determined entirely by the DVF.269

Further below, we introduce a specific fitness landscape model for which this relation does hold.270

Diminishing-returns is naturally incorporated in Eq. (9): the mean of s is −2v̄(y − ȳ), i.e., the271

DFE shifts progressively towards deleterious values with increasing fitness.272

Historical contingency in adaptive trajectories273

A key unresolved question is the extent to which evolutionary history influences the DFE and274

the dynamics of adaptation [27]. That is, what does our theory say about historical contingency?275

Suppose a clonal population of fitness y0 accumulates k successive mutations resulting in276
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fitnesses y1, y2, . . . , yk. By virtue of arising on the same ancestral background, the fitness gain277

of a new mutation, sk+1, is in general correlated with the full sequence of past fitnesses and278

the identity of the k mutations through its epistatic interactions with them. Based on these279

correlations, we use well-known properties of conditional normal distributions [28] to write280

sk+1 =
k∑

i=0

wk+1,iyi + ε, (10)

where the weights wk+1,i depend on the variance fraction (vk+1) of the new mutation and its281

epistatic interactions with past mutations. Here ε is the normally-distributed residual that de-282

pends on the initial genotype and the weights (SI). Eq. (10) is a generalization to a sequence of283

mutations of Eq. (5), which we can think of as the special case where k = 0.284

To gain intuition, it is useful to first analyze Eq. (10) when k = 1 (i.e., to compute the effect285

of a second mutation conditional on the first). In this case, we show in the SI that286

s2 ' −2v2(y1 − ȳ) +
v1v2 − e12

v1
s1 + ε, (11)

where s1 = y1 − y0 is the fitness effect due to mutation 1. The first term on the right hand side287

is the dependence on the fitness of the immediate ancestor, similar to the corresponding term in288

Eq. (5). The second term quantifies the influence of epistasis between loci 1 and 2 on s2. When289

e12 = v1v2, dependence on s1 vanishes entirely and s2 depends only on y1. In contrast, if loci 1290

and 2 do not interact, e12 = 0, and s2 is, on average, larger if the mutation at 1 is beneficial291

compared to when it is deleterious. This has an intuitive interpretation: diminishing-returns292

applies to the overall fitness and the mechanism through which it acts is epistasis. However, if293

mutations 1 and 2 do not interact, then the increase in fitness corresponding to mutation 1 does294

not actually reduce the effect of mutation 2 (as expected by diminishing-returns) so the expected295

effect of mutation 2 is larger. This analysis suggests that during adaptation, since selection favors296

mutations with stronger fitness effects on the current background, a mutation that interacts less297

with previous mutations is more likely to be selected.298

To identify the conditions under which history plays a minimal role, we would like to examine299

when sk+1 depends only on the current fitness, yk, and is independent of both the past fitnesses300

and idiosyncratic epistasis. If this were true, then Eq. (5) would apply for new mutations that301

arise through the course of a single evolutionary path (i.e., the fitness effect of a new mutation is302

“memoryless” and depends only on its variance fraction and the current fitness). Surprisingly, such303
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a condition does exist. We show that this occurs when the magnitude of epistatic interactions304

between the new mutation and the k previous mutations, ek+1,1:k, satisfies a specific relation:305

ek+1,1:k = vk+1v1:k, where v1:k is the combined variance fraction of the k previous mutations (SI).306

In general, this condition is not satisfied, implying that there will be historical contingency which307

can be analyzed using the framework above. Remarkably, it turns out that a fitness landscape308

model for which the condition is satisfied does exist and arises from certain intuitive assumptions309

on the organization of biological pathways and cellular processes. This fitness landscape model310

additionally serves as an example of a landscape where global epistasis can vary substantially311

across loci. We describe this model below.312

The connectedness model313

We introduce the “connectedness” model (CN model, for short). In this model, each locus i is314

involved in a fraction µi of independent “pathways”, where each pathway has epistatic interactions315

between all loci involved in that pathway (Figure 4a). The probability of an epistatic interaction316

between three loci (i, j, k) is then proportional to µiµjµk, since this is the probability that these317

loci are involved in the same pathway. When the number of loci ` is large, we show that in this318

model, vi = µi/(1+µi), and when ` is small, vi = µi/µ̄`, where µ̄ is the average over all loci (SI).319

The CN model therefore has a specific interpretation: the outsized contribution to the fitness320

from certain loci (large vi) is due to their involvement in many different complex pathways (large321

µi) and not from an unusually large perturbative effect on a few pathways. The distribution,322

P (µ), across loci determines the DVF.323

Statistical fitness landscapes such as the NK model and the Rough Mt. Fuji model [27, 29–33]324

are related to the CN model. Specifically, the CN model is a sub-class of the broader class of325

generalized NK models (see [34] for a review). However, often-studied fitness landscape models326

have one important difference that distinguishes them and gives qualitatively different dynamics327

of adaptation (shown further below): in contrast to the CN model, classical fitness landscapes328

are typically ‘regular.’ That is, the variance fraction of every locus is assumed to be the same329

(except the star neighborhood model which has a bimodal DVF [34]).330

The CN model is equivalent to a Gaussian fitness landscape with exponentially-decaying cor-331

relations (SI). The CN model has tunable ruggedness, where the landscape transitions from332
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additivity to maximal epistasis with increasing µ̄. Maximal epistasis corresponds to µi = 1 (and333

hence vi = 1/2) for all i. From Eq. (5), this implies that the new fitness after a mutation occurs334

is independent of the previous fitness, consistent with the expectation from a House-of-Cards335

model [35] (where genotypes have uncorrelated fitness). Regular fitness landscape models with336

exponentially-decaying correlations have memoryless fitness effects under the restrictive assump-337

tion that every locus is equivalent [27]. We show that the dynamics of adaptation of the more338

general CN model are also memoryless, i.e., the condition detailed in the previous section holds339

true (SI). Yet, as we show below, the predicted dynamics for the CN model are very different to340

those from a regular fitness landscape model.341

We emphasize that the well-connectedness assumed for the CN model is not a requirement342

for Eq. (5) to hold. However, how diminishing-returns influences the long-term dynamics of343

adaptation depends on the specific genetic architecture and the corresponding fitness landscape.344

Consider for example an alternative model of genetic networks organized in a modular structure345

(Figure 4b). In this model, each locus is part of a single module, and interacts epistatically with346

other loci in that module to determine the fitness of that module; overall fitness is then determined347

as a function of the module fitnesses. In this case, the variance contributed by a locus is due348

to its additive contribution and from epistasis between loci restricted to its module. While the349

argument for diminishing-returns still applies to the fitness as a whole, it follows from the same350

argument that diminishing-returns should also apply to each module separately. Consequently,351

the dynamics of adaptation for the modular model are different from the CN model. For simplicity,352

we analyze the dynamics of adaptation for the CN model and postpone a discussion of how the353

dynamics differ for different models to subsequent work.354

The dynamics of adaptation355

We now examine the DFE that follows from Eq. (5) and what that implies for long-term356

adaptation under the conditions for memoryless fitness effects. We henceforth assume a large357

number of loci with sparse epistasis (though the total number of nonzero epistatic terms is still358

large). This implies that ` � 1, vi � 1 and v̄` � 1; for simplicity, we also assume strong-359

selection-weak-mutation (SSWM) selection dynamics and s � 1, Ns � 1, where s are fitness360

effects and N is the population size. Under these conditions, a mutation sweeps and fixes in a361
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population before another one arises. The probability of fixation of a beneficial mutation, pfix, is362

then proportional to its fitness effect [36].363

It is convenient to rescale fitnesses based on the total variance in fitness across all possible364

genotypes by defining z = V −1/2(y − ȳ), σ = V −1/2s, ν = V −1/2η. Note that ν is normally-365

distributed with zero mean and unit variance. Here z has an intuitive interpretation as the366

“adaptedness” of the organism. When the organism is neutrally-adapted (|z| � 1), positive and367

negative epistatic contributions to the fitness are balanced and diminishing-returns is negligible.368

Diminishing-returns is relevant when the organism is well-adapted (z � 1). Below, we give the369

intuition behind our analysis, which is presented in full detail in the SI.370

In the neutrally-adapted regime, the linear negative feedback in Eq. (5) is negligible and the371

DFE is determined by the distribution of ' v1/2ν. Loci with large v can lead to a DFE with372

a long tail. If v̄ is the typical variance fraction of a locus, the fitness increases as z ∼ nsv̄
1/2,373

where ns is the number of substitutions. Since v̄ is a measure of overall epistasis, this implies that374

epistasis speeds adaptation in the neutrally-adapted regime by allowing access to more influential375

beneficial mutations.376

Fitness increases until the effect of the negative feedback cannot be neglected. From Eq. (5),377

this happens when v̄z ∼ v̄1/2ν (i.e., when z2 ∼ v̄−1). Intuitively, fitness begins to plateau when378

its accumulated benefit from substitutions is comparable to the scale of the total genetic variance379

(nsv̄ ∼ 1) and further improvements are due to rare positive fluctuations. In this well-adapted380

regime, diminishing-returns and increasing-costs epistasis strongly constrain the availability of381

beneficial mutations, whose effects can be quantified in this model: for a mutation to have a382

fitness effect σ, we require from Eq. (5) that ν ' σ/2v1/2+ v1/2z, which has probability ∼ e−ν2/2.383

Beneficial effects of large σ arise when ν has a large positive deviation. The most likely v that384

leads to a particular σ is when ν is smallest (i.e., at v∗ ' σ/2z), in which case ν '
√
2σz, yielding385

a tail probability ∼ e−σz. Remarkably, the beneficial DFE in the well-adapted regime is quite386

generally an exponential distribution independent of the precise form of the DVF (unless it is387

singular). In particular, we show in the SI that for the DFE, ρ(σ|z),388

ρ(σ|z)
ρ(−σ|z) = e−σz, (12)

which depends solely on the adaptedness of the organism. The exponential form arises because389

of the Gaussianity of ν, but the argument can be easily extended to ν with non-Gaussian tails.390
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the probability that a beneficial mutation has at least a certain effect size σ is P (σb ≥ σ) =394

1−F (σ)
1−F (0)

≈ lnF (σ)
lnF (0)

, where the latter approximation holds when beneficial mutations are rare (i.e.,395

1−F (0) is small). A well-known result from extreme value theory (Gumbel’s law [38, 39]) implies396

that for a large family of distributions ρ(σ) and for ` � 1, we have −` lnF (σ) ∝ e−kσ (for some397

constant k) and therefore P (σb ≥ σ) = e−kσ. This argument is consistent with our results, but398

does not yield the dependence of k on adaptedness and the rate of beneficial mutations without399

additional information about ρ(σ).400

Under SSWM assumptions, from Eq. (12), the typical effect size of a fixed mutation is σfix ∼401

z−1, which typically has a variance fraction,402

v∗fix ' σfix/2z ∼ 1/2z2. (13)

The above relation makes precise the effects of increasing-costs epistasis on adaptation. As403

adaptation proceeds, the delicate balance of high fitness configurations constrains fixed beneficial404

mutations to have moderate variance fractions. A mutation of small variance fraction is likely to405

confer small benefit and is lost to genetic drift, while one with a large variance fraction is more406

likely to disrupt an established high fitness configuration.407

This intuition is not captured in regular fitness landscape models, which assume statistically408

equivalent loci, i.e., vi = v̄ for all i and P (v) = δ(v − v̄) is singular. From Eq. (9), we see that409

this leads to a Gaussian DFE whose mean decreases linearly with increasing fitness, in contrast410

to the exponential DFE in our theory. The key difference is the lack of loci with intermediate411

effect, which drive adaptation in the well-adapted regime. As a consequence, the rate of beneficial412

mutations declines exponentially (Ub ∼ e−v̄z2/2) and the fitness thus sharply plateaus at z ∼ v̄−1/2.413

In contrast, our theory predicts a much slower depletion of beneficial mutations, Ub ∼ z−2 (SI).414

The rate of adaptation is dz/dt ∼ Ubpfixσfix ∼ z−4 (since pfix ∼ σfix), which leads to a slow415

but steady power-law gain in fitness, z ∼ t1/5. The rate of fixation of beneficial mutations is416

dns/dt ∼ Ubpfix ∼ z−3 ∼ t−3/5, which gives ns ∼ t2/5.417

We verify our analytical results using numerics. As before, we generated a genotype-phenotype418

map using the CN model with an exponential DVF, P (v) = v̄−1e−v/v̄ and ` = 400 loci. The DFE419

can be calculated exactly by plugging in this P (v) in Eq. (9):420

ρ(σ|z) = v̄−1

2
√
2v̄−1 + z2

e−σz/2−|σ|
√
2v̄−1+z2/2. (14)
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We simulated the evolution of randomly generated genotypes from z = 0 to z = 2.5 and z = 5421

and the DFE across all loci was measured (we chose ȳ = 0, V = 1 so that y = z, s = σ). The422

theoretical prediction for the DFE, Eq. (14), closely aligns with the numerical results (Figure423

4c).424

Due to computational constraints, it is difficult to simulate evolution deep into the well-adapted425

regime. To compute the shape of adaptive trajectories and their variability, we instead simulated426

SSWM dynamics using the DFE directly from Eq. (14), beginning from a neutrally-adapted427

fitness (z = 0). Typical trajectories (Figure 4d) show rapid adaptation to the well-adapted428

regime beyond which the fitness grows slowly as t1/5, as predicted from theory. The predictions429

for the number of fixed beneficial mutation are also re-capitulated (Figure 4e).430

DISCUSSION431

Recent empirical studies have observed consistent patterns of diminishing-returns and increasing-432

costs epistasis. Our model gives a simple explanation for these observations. In particular, we433

showed that these patterns are generic consequences of widespread microscopic epistatic interac-434

tions. The intuition underlying this result is that a random mutation typically has a larger dis-435

ruptive effect on the delicate balance of microscopic epistasis that underpins a fitter background.436

Our model predicts a quantitative relationship between the magnitudes of global epistasis (i.e.,437

the negative slope of diminishing-returns and increasing-costs epistasis) and microscopic epistasis,438

which we confirmed using existing data (Figure 3).439

A similar explanation for diminishing-returns and increasing-costs epistasis has been recently440

proposed by Lyons et al. [16]. While our core argument for diminishing-returns and increasing-441

costs epistasis is the same as in that work, our Fourier analysis framework dissects the features of442

the fitness landscape necessary to observe these phenomena in terms of experimentally measur-443

able average effects (i.e., the f ’s in Eq. (2)). In particular, we show that the additivity of a locus’444

interacting partners critically determines whether the trend is negative or unbiased. In addition,445

the Fourier analysis framework yields predictions for the distribution of fitness effects, the histor-446

ical influence of past mutations on the fitness effect of a newly mutated site and motivates the447

proposed ‘connectedness’ fitness landscape model. The analysis of experimental data presented448

in Lyons et al. complements the experimental data considered here, lending further empirical449
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support for the prevalence of epistasis and its importance in determining long-term adaptability.450

Our model leads to other experimentally testable predictions. The most direct and accessible451

test of the theory is to measure the fitness for all possible combinations of mutations at ∼10-15452

significant loci and compare (using Eq. (6)) the magnitude of global epistasis to the measured453

fitness coefficients (the f ’s). Additionally, we predict that the magnitude of global epistasis of a454

double mutant should be nearly the sum of magnitudes of the corresponding single mutants, and455

any deviations should be biased towards sub-additivity. Since the predictions involve measuring456

residual variance, experimental noise can be an important confounding factor.457

The observation that diminishing-returns occurs as a “regression to the mean” effect on certain458

fitness landscapes has been noted previously [40, 41]. The theory developed here quantifies459

precisely when we should expect to observe these patterns. We emphasize that our key result,460

Eq. (5), is a general statistical relation that holds if epistasis is widespread, irrespective of the461

specific genetic architecture and the corresponding fitness landscape. Weak epistasis with many462

loci is sufficient to observe noticeable patterns of global epistasis. However, the argument fails463

if the contribution of a locus is purely additive or when epistasis is limited to one or a handful464

of other loci. In the latter case, we expect the fitness effect of a mutation to be dominated by465

the allelic states of its partner loci, and thus take on a few discrete values. A few examples from466

Johnson et al. [15] indeed exhibit this pattern, (e.g. cases where the fitness effect of a specific467

mutation depends primarily on the allelic state at a single other locus).468

We highlight a distinction between global epistasis discussed in this work and another form469

of global epistasis (also known as “nonspecific” epistasis) typically used in protein evolution to470

describe nonspecific epistatic interactions due to a nearly additive trait transformed by a nonlinear471

function [23–25, 42, 43]. This nonlinear function creates systematic relationships between epistasis472

terms and breaks the condition of independent epistatic terms required for our arguments to apply.473

Specific nonlinearities such as an exponential function may indeed lead to a negative linear trend474

on average, but the structure of the residuals differs from the one in Eq. (5) and observed in data.475

A surprising empirical observation is that the negative linear relationship between fitness effect476

and ancestral fitness characteristic of global epistasis has different slopes for different loci. Our477

model identifies the negative slope as twice the fraction of variance contributed by a locus to478

the trait. To explain the wide range of variance fractions (VF) observed in data, we developed479

the connectedness (CN) model, a framework to think about the organization of cellular processes480
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that can lead to loci of widely varying VFs. In the CN model, loci have a large VF due to their481

involvement in many different pathways rather than due to a large effect on a single pathway.482

The CN model can be viewed as a statistical fitness landscape where loci can have a range of483

VFs, specified by the distribution of variance fractions (DVF). In the special case of every locus484

having the same VF, the CN model corresponds to a fitness landscape with tunable ruggedness485

and exponentially-decaying correlations.486

Extending our framework to incorporate adaptation, we showed that the distribution of fitness487

effects (DFE) depends only on the current fitness, rather than the entire evolutionary history,488

under the intuitive assumptions behind the CN model. The theory therefore gives a simple489

explanation for why phenotypic evolution can be predictable, even while the specific mutations490

that underlie this evolution are highly stochastic.491

Our framework has an implicit notion of ‘adaptedness’ without referencing a Gaussian-shaped492

phenotypic optimum, often assumed in models of adaptation (e.g. Fisher’s geometric model)493

[44–46]. Over the course of adaptation, the DFE shifts towards deleterious values, reflecting494

diminishing-returns, which naturally arises from our basic arguments. For a well-adapted organ-495

ism, we show that the DFE for beneficial mutations takes on an exponential form, and leads496

to universal adaptive dynamics. While an exponential DFE for beneficial mutations has been497

proposed previously based on extreme value theory [37], our result arises due to an entirely dif-498

ferent argument: the tail of the beneficial DFE is determined by loci of intermediate size whose499

disruptive effect due to increasing-costs is small, yet whose effect size is large enough not to be500

lost due to genetic drift.501

Our theory further predicts declining adaptability, with rapid adaptation in a neutrally-adapted502

regime followed by much slower increases in fitness, resulting in power-law adaptive trajectories503

when the organism is well-adapted. This is consistent with observations from the E.coli LTEE504

[1, 2]. Our model predicts a quicker decline in the number of substitutions (ns ∼ t2/5) compared505

to the near linear trend observed in the LTEE data [4]. However, the dynamics of fixation in the506

LTEE deviate strongly from SSWM assumptions. This may explain the discrepancy, although we507

note that existing theory has only analyzed the effects of clonal interference and other breakdowns508

in SSWM assumptions for a constant DFE and weak epistasis [47, 48]. Further work will be509

required to understand how these effects interact with global epistasis. For example, we may510

expect that the effect of a highly beneficial mutation at a segregating locus is more likely to be511
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attenuated due to interference from subsequent deleterious mutations, while a less-fit lineage has512

a larger pool of beneficial mutations and is thus more likely to ‘leapfrog’ over more-fit lineages.513

METHODS AND MATERIALS514

The code and data to generate the figures are available at [49].515

Simulations516

We use a fitness landscape model with ` loci to generate the genotype-fitness map. Each locus517

is assigned a sparsity µ from P (µ), which is an exponential distribution with mean µ̄. Each of518

M independent pathways sample loci with each locus i having probability µi of being selected to519

a pathway. We choose ` = 400, µ̄ = 0.02,M = 500 so that µ̄` = 8 ensures signficant epistasis.520

All loci in a pathway interact with each other, where additive and higher-order coefficient terms521

of all orders were drawn independently from a standard normal distribution. The total fitness is522

the sum of contributions from the M pathways. We normalize the coefficients so that the sum523

of squares of all coefficients is 1, i.e., the total variance across genotypes is 1. The mean, ȳ is524

close to zero from our sampling procedure. The above procedure is a simple and efficient way to525

generate epistatic terms to order ∼20, beyond which the computational requirements are limited526

by the exponentially increasing demand. Note that the effects described in the paper were also527

observed with only pairwise and cubic epistatic terms.528

The variance fractions shown in Figure 2a can be calculated numerically from the definition.529

From the theory, given our choice of P (µ), these should follow an exponential distribution with530

mean v̄ ≈ µ̄/(1 + µ̄). There may be deviations since M is finite whereas the calculations assume531

M → ∞. To generate Figure 2b, in order to get a range of background fitnesses, we first sample532

128 random genotypes. These have fitnesses close to zero; in order to obtain a range of fitness533

values, we simulated the evolution of these 128 genotypes up to y = 1, 2, 3, 4, 5 under strong-534

selection-weak-mutation (SSWM) assumptions to get 128 × 5 = 640 genotypes at roughly five535

fitness values. The fitness effect of applying a mutation (i.e., flipping its sign) is measured for 30536

randomly chosen loci (which are kept fixed) over each of the 640 genotypes. This is shown for537

five of the 30 and for the mean over the 30 loci in Figure 2b.538
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To generate Figure 2c, we sampled 64 random genotypes and 12 replicates of each. The539

evolution of these 768 genotypes was simulated for a total of 50 generations with a mutation rate540

of 1 per generation. The mean fitness gain over the 12 replicates is plotted for each of the 64541

founders against their initial fitness.542

To generate Figure 2d, the residuals are measured using the same procedure as for the exper-543

imental data analysis described below for the initial 128 genotypes at y ≈ 0 and the 30 loci with544

the largest variance fraction.545

Double mutants were created by mutating all pairs of the 30 randomly chosen loci on the 640546

evolved genotypes. Their mean fitness effect was computed and plotted along with the mean547

fitness effect for single mutants, shown in Figure 2e. The variance fraction of the pair of loci for548

the double mutant was estimated as before and compared to the sum of the estimated variance549

fractions of the corresponding single mutants. This is shown in Figure 2f.550

To generate the plots in Figure 4c, we simulated the evolution of 128 randomly sampled551

genotypes to y = 2.5 and y = 5. The fitness effect of 200 randomly sampled loci was measured552

and the distribution is plotted.553

Analysis of the data from Johnson et al.554

The data from Johnson et al. [15] consists of the fitness after the addition of 91 insertion555

mutations on each of 145 background genotypes. The fitness of a particular mutation at locus i556

can be modeled as557

yi = −ciy + bi + Residuali(g), (15)

where yi, y are the mutant and background fitnesses respectively, ci, bi are constants for each locus558

and the residual Residuali(g) depends on the background genotype g.559

We estimate the variance fraction vi = (1− ρ̂i)/2, where the Pearson correlation ρ̂i = Corr(yi⊕560

y, y ⊕ yi), where the symbol ⊕ denotes that the mutant and background fitness datasets are561

concatenated. ṽi is estimated as the negative one-half of the slope of the best linear fit of si = yi−y562

and y. The residuals for each of the 145 genotypes for each of the 91 mutations is simply563

Residuali(g) = (yi + ciy)− (yi + ciy), (16)

where the overline represents an average over the 145 genotypes, which is used as an estimate of564

24



the constant term and ci = 2ṽi − 1. In Figure 3b, we plot the distribution of estimated vi and ṽi.565

In Figure 3c, we compute the AoIL for each locus using Eq. (7), which we show in the SI to be566

|Cov(si, yi + y)|/(|Cov(si, yi + y)| + Var(si)). In Figure 3d, we compute the additivity using Eq.567

(8). The additive effect is fi = (yi − y)/2 and Var(si)/4 gives the sum of squares of the epistatic568

terms (SI). In Figure 3e, we compute the variance of the residuals across the 145 genotypes for569

each locus and plot it against the locus’ estimated ṽi(1− ṽi). In Figure 3f, we plot the distribution570

of residuals over all genotypes and loci. The prediction is that in the WE limit the distribution571

of residuals is determined by 2ṽi(1 − ṽi)η, where η is a Gaussian random variable. We multiply572

√

ṽi(1− ṽi) for each locus with 10,000 i.i.d standard normal RVs, pool the resulting numbers for573

all loci and plot the predicted distribution in Figure 3f. The distributions are variance-matched.574

While Figure 3e shows that the variance of the residuals aligns with the theoretical prediction of575

being proportional to slope, Figure 3f shows that the data is also consistent with the predicted576

Gaussianity of the background-genotype-dependent contribution.577
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