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Abstract

Laboratory experimental evolution provides a window into the details of the evolutionary process.
To investigate the consequences of long-term adaptation, we evolved 205 S. cerevisiae populations
(124 haploid and 81 diploid) for ~10,000 generations in three environments. We measured the
dynamics of fitness changes over time, finding repeatable patterns of declining adaptability.
Sequencing revealed that this phenotypic adaptation is coupled with a steady accumulation of
mutations, widespread genetic parallelism, and historical contingency. In contrast to long-term
evolution in E. coli, we do not observe long-term coexistence or populations with highly elevated
mutation rates. We find that evolution in diploid populations involves both fixation of heterozygous
mutations and frequent loss-of-heterozygosity events. Together, these results help distinguish
aspects of evolutionary dynamics that are likely to be general features of adaptation across many

systems from those that are specific to individual organisms and environmental conditions.
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Introduction

As human health is increasingly threatened by emerging pathogens, multidrug resistant infections,
and therapy-evading cancer cells, our understanding of the dynamics and predictability of evolution
is of growing importance. Yet predicting the course of evolution is difficult, since it is driven by a
complex combination of deterministic and stochastic forces. On the one hand, beneficial mutations
that establish within a population often rise to fixation at rates nearly perfectly predicted by decades-
old theory. On the other hand, random forces such as mutation, genetic drift, and recombination
ensure an enduring role for chance and contingency. To understand evolution, we must appreciate

the interactions between these deterministic and stochastic components.

While there is extensive theoretical work analyzing how the interplay between these factors affects
the rate, predictability, and molecular basis of evolution, empirical evidence remains relatively
limited. In large part this stems from a basic difficulty: we cannot easily characterize the
predictability of evolution using observational studies of natural populations, because we cannot
replicate evolutionary history. In addition, the inferences we can make from extant populations and

the fossil record are limited by a lack of complete data.

To circumvent these difficulties, scientists have turned to laboratory evolution experiments,
primarily in microbial populations. These provide a simple model system in which researchers can
maintain many replicate populations for hundreds or thousands of generations, in a setting where
the environment and other relevant parameters (e.g. population size) can be precisely controlled and
manipulated. By conducting phenotypic and sequencing studies of the resulting evolved lines, we can
observe evolution in action, and ask whether specific phenotypic and genotypic outcomes are

predictable.

Over the last several decades, a few consistent results have emerged from these types of experiments
(reviewed in Kassen (2014)). As populations evolve in a constant environment, they gain fitness
along a fairly predictable trajectory, following a pattern of declining adaptability in which the rate of
fitness increase slows as populations adapt (Couce and Tenaillon, 2015; Kryazhimskiy et al., 2014;
Wiser et al,, 2013). Meanwhile, the rate of molecular evolution remains roughly constant (Barrick et
al, 2009; Good et al., 2017; Tenaillon et al.,, 2016). Mutations are rarely predictable at the nucleotide
level but often moderately predictable at higher levels: mutations in certain genes or pathways are
repeatedly fixed across replicate populations (Bailey et al., 2015; Kryazhimskiy et al., 2014; Tenaillon

etal,, 2012, 2016). Phenotypes not under direct selection change less predictably than fitness in the
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evolution environment, but sometimes still exhibit some correlation with level of adaptation in the

evolution environment (Jerison et al.,, 2020; Leiby and Marx, 2014; Ostrowski et al., 2005).

Most of these microbial and viral evolution experiments, as well as those in multicellular eukaryotes
such as C. elegans and Drosophila melanogaster, involve at most about 1,000 generations of
adaptation to a novel environment. This makes them well suited to studying the initial dynamics of
adaptation, where a population encounters a novel environment and rapidly acquires beneficial
mutations as it evolves in response to this new challenge. However, it is unclear how far we can
extrapolate findings from this type of study. Will evolutionary dynamics remain similar over longer
timescales? Or will the evolutionary dynamics change in qualitative ways once a population has had

thousands of generations to become well-adapted to the laboratory environment?

The experiment best equipped to answer this question is the Long-Term Evolution Experiment
(LTEE) conducted by Richard Lenski and collaborators. For over 30 years and 70,000 generations
(reviewed in Lenski (2017)), the Lenski lab has propagated 12 Escherichia coli populations in
minimal media by batch culture. The LTEE has led to numerous insights into evolutionary dynamics
over both short and long timescales, and has also provided many examples of interesting phenomena
such as contingency (Blount et al., 2012; Good et al., 2017), the spontaneous emergence of quasi-
stable coexistence (Good et al., 2017; Plucain et al., 2014; Rozen and Lenski, 2000), and evolution of
mutation rates (Sniegowski et al., 1997; Wielgoss et al., 2013). The LTEE is unique among microbial
evolution experiments in its long timescale, and provides an important look at evolution well beyond
the initial rapid adaptation of a population to a novel laboratory environment. However, it is limited
by its specificity: it involves twelve replicate populations, each founded from a single E. coli strain, all
evolving in the same constant environment. It thus remains unclear which of the broad conclusions
drawn from this experiment will be generalizable to other organisms and environments. Would we
draw similar conclusions when other species are allowed to evolve in other environments for long

periods of time?

While no other laboratory evolution experiments match the LTEE in timescale, a few have extended
beyond the ~1,000 generations of most other experiments. For example, Behringer et al. (2018)
evolved E. coli populations in tubes for up to 10,000 generations and found that they repeatedly
evolved a biofilm phenotype and stable coexisting subpopulations. Fisher et al. (2018) evolved
laboratory populations of the budding yeast S. cerevisiae for 4,000 generations, finding that as in E.
coli, these populations gain fitness along predictable trajectories characterized by declining

adaptability. This experiment, along with Marad et al. (2018), also studied the relationship between
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ploidy and adaptation, finding that in general diploids adapt more slowly than haploids. Slower
adaptation in diploids has been observed in yeast evolution experiments in a variety of environments
and appears to be caused by the reduced efficacy of selection on recessive or partially recessive
beneficial mutations in diploids (Zeyl 2003; Gerstein et al. 2011). While these experiments provide
an important firstlook into long-term adaptation in yeast and E. coli, they all involve relatively limited
whole-population sequencing, and none have provided data on the dynamics of molecular evolution

in both haploid and diploid populations over many thousands of generations.
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Figure 1. Experimental design. We propagated budding yeast lines in 96-well microplates in one of three
environmental conditions, using a daily dilution protocol as shown at top. Each population was founded by
a single clone of one of three ancestral genotypes (a haploid MATa, a haploid MATa, and a diploid, all derived
from the W303 strain background). On a weekly basis, we froze all populations in glycerol at -80°C for long-
term storage. The frozen timepoints used for the analyses in this paper are indicated at bottom.

To fill this gap, we established a long-term evolution experiment in the spirit of the LTEE, with a total
of 205 budding yeast populations (split between haploids and diploids) evolving in three different
laboratory environments. In this paper, we describe the first 10,000 generations of this experiment.
We find that some aspects of evolution in our system are broadly consistent with the conclusions of
the LTEE and other long-term evolution experiments. For example, the dynamics of fitness increase
are largely repeatable between replicate lines and show a pattern of declining adaptability over time
even while the rate of molecular evolution remains relatively constant. However, there are also key

differences: we find no evidence of stably coexisting lineages or widespread evolution of mutator
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phenotypes. As the first laboratory evolution of this length in a eukaryotic system, our study provides
an important test of the generality of conclusions from earlier work (primarily the LTEE), as well as
a novel opportunity to observe evolutionary dynamics over long timescales across many replicate

populations in multiple environmental conditions.

Results

We founded 45 haploid mating type a (MATa), 8 mating type a (MAT«a), and 37 diploid S. cerevisiae
populations in each of three evolution environments (90 populations per environment, for a total of
270 independent lines; see Figure 1). Each population was founded from a single independent colony
of the corresponding ancestral W303 MATa, MATe, or diploid strain (see Methods for details). We
then propagated each population in batch culture in one well of an unshaken 96-well microplate in
the appropriate environment (YPD at 30°C, SC at 30°C, and SC at 37°C), with daily 1:210 dilutions for
the 30°C environments, and 1:28 dilutions for the 37°C environment. We froze glycerol stocks of each
population every week (corresponding to every 70 generations in the 30°C environments, and every
56 generations in the 37°C environment), creating a frozen fossil record for future analysis. A total of
65 populations were lost during the first 10,000 generations of evolution due to contamination,
evaporation, or pipetting errors (see Methods for details; Figure 1 - figure supplement 1), leaving us

with 205 populations.

Fitness changes during evolution

To measure changes in fitness over time, we unfroze populations from 8 timepoints in each of the
205 evolved populations (see Figure 1) and conducted competitive fitness assays against a
fluorescently labeled reference strain (see Methods for details). In Figure 2, we show the resulting
fitness trajectories in each population. We find that in most cases, including almost all haploid
populations, these trajectories tell a familiar story of declining adaptability: populations predictably
increase in fitness rapidly in the first few hundred generations, and then adapt more slowly as time
progresses (Figure 2 - figure supplement 1A). We find a different pattern in some diploid populations
in SC 30°C, where an initial slower period of fitness gain is succeeded by a significant rapid increase
in fitness. We also find that a few populations (indicated by asterisks in Figure 2) experience dramatic
increases in fitness, and subsequently remain at higher fitness than other populations for the
duration of the experiment. As we describe in more detail below, these events are caused by a specific

mutation in the adenine biosynthesis pathway (see “ADE pathway mutations” section).
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Figure 2. Fitness changes during evolution. Competitive fitness is plotted relative to a reference strain in
each environment. Inferred ancestral fitness is indicated by horizontal lines and colored by strain.
Populations with premature stop-codon reversion mutations in ADE2 are indicated by asterisks.
Correlations between replicate fitness measurements are shown in Figure 2 - figure supplement 2.

On average, our haploid populations gained more fitness over the course of evolution than diploids
(P<0.02, Mann-Whitney U test), consistent with prior work (Fisher et al., 2018; Marad et al., 2018;
Zeyl, 2003; Gerstein et al. 2011). This effect could be entirely due to reduced accessibility of recessive
or partially recessive beneficial mutations in diploids (as these previous studies propose). However,
we note that this effect is also consistent with declining adaptability: the diploids have a higher
ancestral fitness than the haploids in all three environments (Figure 2). We also observe more rapid
evolution of MATa haploids compared to MATa haploids in SC 30°C, where the MATa haploids start
at lower fitness (Figure 2 - figure supplement 1B; P<0.02, Mann-Whitney U test). Together, these
results are consistent with a picture in which the pattern of declining adaptability as a function of
fitness applies not only along the course of a fitness trajectory for one population, but also between

ancestral strains of different ploidy and mating type (Figure 2 - figure supplement 1).

Molecular evolution

At six of the timepoints used for fitness assays (Figure 1), we also performed whole-population,
whole-genome sequencing in 90 focal populations (12 MATa, 12 diploid, and 6 MATa from each
environment). After aligning sequencing reads and calling variants, we use observed allele counts
across multiple timepoints to filter out sequencing and alignment errors and identify a set of
mutations present in each evolving population (Methods). At each sequenced timepoint, we call
mutations fixed if they are at greater than or equal to 40% frequency (diploids) or 90% frequency
(haploids) and do not drop below these thresholds at a later timepoint. We additionally call loss of

heterozygosity in mutations in diploids using the criteria for fixation in haploids (90% threshold).
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Our data shows that mutations fix steadily through time across all sequenced populations (Figure 3).
While we would need more sequenced timepoints to fully observe the frequency trajectories of
mutations in these populations, we can see a few patterns from our temporally sparse sequencing
(Figure 3A, Figure 3 figure supplements 1-9). We frequently observe clonal interference in which
groups of mutations rise to high frequency and then plummet to extinction, outcompeted by another
group. All populations fix mutations throughout the experiment; we find no evidence for the
emergence of stably coexisting lineages within any of our populations (Figure 3B, Figure 3 - figure
supplement 10). Denser sequencing through time would be required to determine whether any
populations exhibit shorter periods of semistable coexistence (e.g. as seen by Frenkel et al. (2015)).
It is also possible we are missing coexistence of haplotypes at very low frequency ($5%), which
sequencing may not be able to detect. However, our results rule out long-term coexistence of multiple
lineages at substantial frequencies like that observed after 10,000 generations of evolution in the

LTEE or Behringer et al. (2018).
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We find that the rate of mutation accumulation in the MATa populations is consistently higher than
in MATea or diploid populations (Figure 3B). This is likely due to a higher mutation rate in our MATa
ancestor. Consistent with this hypothesis, we find that MATa populations have a lower ratio of
nonsynonymous to synonymous mutations than MATa or diploid populations in all three
environments, as expected if a higher mutation rate leads to an increase in hitchhiking (though we
note that this comparison is only significantin SC 37°C; P<0.01, Mann-Whitney U Test, figure 4A). We
identified a putative causal mutation in TSA1 in our MATa ancestor; this mutation is absent in our
MATa ancestor and heterozygous in our diploid ancestor. We confirmed that the TSA1 mutation

increases mutation rate in a BY strain background (Figure 4 - figure supplement 1).
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Overall, we find that dN/dS ratios for fixed mutations in our populations are near one (Figure 4A),
suggesting that selection in favor of beneficial (and presumably typically nonsynonymous) mutations
is balanced by hitchhiking of neutral mutations and purifying selection against deleterious mutations.
The relative prevalence of different types of fixed mutations across strains and environments are
similar, with roughly 45-50% missense mutations, 40-45% synonymous and noncoding mutations,
and 5-10% nonsense and indel mutations (Figure 4B). While there is variation between populations
in the number of mutations accumulated, we do not observe any sudden increases in the rate of
mutation accumulation (Figure 3B). This stands in contrast to the LTEE, where mutator alleles sweep
to fixation and dramatically increase the mutation rate in 6 of 12 replicate populations (4 of which
are apparent in sequencing data after 10,000 generations (Good et al. 2017)). We do observe one
potential mutator event: P1E11, a MATa population evolved in YPD 30°C has an unusually large
number of indel mutations, likely due to a mutation in the mismatch repair protein MSH3 that
hitchhiked to fixation with an indel mutation in GPB2 (Figure 4 - figure supplement 2). However, the
elevation in mutation rate in this population remains relatively modest. While we do observe
mutations in mutator-associated genes such as MSH3 in other populations, we do not observe clear
differences in mutation-type distribution or rate of mutation accumulation in these populations,
suggesting that these mutations lead to at most subtle changes in mutation rate (stacked mutation
type plots for each population are shown in Figure 4 - figure supplements 3-14). Further work will

be needed to characterize more subtle variation in mutation rate in each of these populations.

Parallelism

Next, we examined whether mutations in certain genes are fixed more frequently than we would
expect by chance. We define a “hit” as a nonsynonymous mutation that is fixed by the final timepoint,
and define the multiplicity of a gene as the number of hits in that gene across all sequenced
populations, divided by its relative target size (Good et al., 2017). As in many other laboratory
evolution experiments, we observe an excess of high multiplicity genes in our data, relative to a null

in which mutations are fixed randomly across all open reading frames (Figure 5A).

To understand the functional basis of this parallelism, we focus on multi-hit genes, defined as those
with hits in six or more populations. These multi-hit genes (Figure 6) are enriched for several gene
ontology (GO) terms (Supplementary file 4), indicating parallelism at the level of biosynthetic and
signaling pathways. In Figure 6 we show all genes with hits in ten or more populations, and highlight
several key functional groups (adenine biosynthesis, sterility, and negative regulators of the Ras

pathway; see Figure 6 - figure supplements 1-3 for analogous figures for all other multi-hit genes).
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Figure 5. Parallelism. Comparison between null and actual distributions of (A) the fraction of genes with
multiplicity = m (see Methods), (B) the fraction of genes with hits in = PH populations, and (C) the fraction
of amino acid sites with hits in = PH populations (those with PH = 3 are listed in Supplementary file 4). For
all three plots, the null distribution (shown in gray) is obtained by simulating random hits to genes, taking
into account the number of hits in each population in our data and the relative length of each gene.

Mutations in the latter two functional groups are commonly observed in yeast evolution experiments,
and have been shown to be beneficial in similar environments (Echenique et al., 2019; Kryazhimskiy
et al, 2014; Lang et al., 2013; Venkataram et al.,, 2016). The mutations in adenine biosynthesis, by

contrast, reflect the particular genotype of our ancestral strains; we discuss these further below.

We next asked whether some multi-hit genes are more likely to fix mutations in particular strain
backgrounds or environments. We find that most multi-hit genes have mutations distributed across
both haploid mating types, diploids, and all three environmental conditions, indicating that these
mutations are presumably beneficial in all of these contexts. However, we do find several mutations
that are either strain or environment specific (“Effect” column in Figure 6; Figure 6 - figure

supplement 4, Supplementary file 4). For example, mutations in SRS2 and LCB3 are fixed more often

in SC 37°C, while mutations in CCW12 are fixed more in diploids.
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Figure 6. Multi-hit genes. Each row represents a gene. The first three blocks are groups of genes identified
from gene-ontology enrichment analysis of multi-hit genes (from top to bottom: adenine biosynthesis,
sterility, and negative regulation of the Ras pathway). The bottom block is all other genes with hits in at
least 10 populations. Each column in the heatmap represents a population, such that if a gene is hit in that
population the square will be colored (darker color if a gene is hit 2 or more times in that population). Red
squares indicate premature-stop-lost mutations in ADE2, which correspond to the populations with
asterisks in Figure 2. One population that was not sequenced (not shown here) also has this mutation
(confirmed by Sanger sequencing). The table at left gives more information on each multi-hit gene: “High
impact” is the fraction of hits that are likely to cause a loss-of-function, as annotated by SnpEff (e.g. nonsense
mutations), “LOH” (loss of heterozygosity) is the fraction of hits in diploid populations that fix
homozygously, and “Effect” describes whether the hits are distributed significantly unevenly across strain-
types (S), environments (E), or both (SxE), when compared to a null model where fixations are not strain or
environment dependent.
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To investigate the impact of the mutations in multi-hit genes on protein function, we used SnpEff
(Cingolani et al., 2012) to predict the impact of each mutation. In Figure 6, we show the fraction of
mutations in each multi-hit gene that were annotated as “High Impact.” Because most of these high-
impact mutations are nonsense or frameshift mutations, they are very likely to lead to loss of function
of the associated gene, as are some fraction of the “Moderate Impact” mutations (e.g. some missense
mutations or in-frame deletions). We find that many of our multi-hit genes have a large percentage
of high impact mutations, suggesting that selection acts in favor of loss-of-function of the
corresponding genes, consistent with many earlier laboratory evolution experiments (Murray,
2020). However, this is not universal: a few genes with 10 or more hits have no high-impact
mutations fixed, and several of these genes are essential (Figure 6). This suggests that selection in

these genes may be instead for change- or gain-of-function.

ADE pathway mutations

The founding genotype of all the populations used in this experiment is derived from the W303 strain
background, which has a premature stop codon in the ADE2 gene (adeZ2-1). This disrupts the adenine
biosynthetic pathway, which is likely deleterious because adenine depletion can limit growth even in
rich media (Kokina et al.,, 2014). In addition, loss-of-function of ADE2 causes buildup of a toxic
intermediate, phospho-ribosylaminoimidazole (AIR), which is converted to a visible red pigment that
accumulates in the vacuole (Kokina et al., 2014; Sharma et al., 2003) (Figure 7A). This means that
loss-of-function mutations upstream in this pathway, which are deleterious when ADE2 is functional
because they disrupt adenine biosynthesis, are strongly beneficial in the ade2-1 background because
they prevent this toxic buildup (Echenique et al., 2019). Consistent with this, we see rapid fixation of
atleast one mutation in the ADE pathway, typically upstream of ADE2, in almost all of our sequenced

populations, along with frequent loss of heterozygosity of these mutations in diploids (Figure 3A).
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Figure 7. ADE pathway evolution. (A) Simplified schematic of the adenine biosynthesis pathway. Circles
represent metabolic intermediates; AIR is the toxic metabolic intermediate phosphoribosylaminoimidazole.
Annotations represent the number of fixed nonsynonymous mutations in each gene (note that ADE5 and
ADE7 are both products of the same gene). (B) Schematic of a fitness landscape with four possible states
defined by whether ADE?2 is functional and whether the ADE pathway upstream of ADE2 is functional. The
small insets represent the state of the pathway in (A) at each position. Elevation in the landscape represents
putative fitness differences, and the width of the arrows represents the putative mutation rates between
the different states.

Five of our sequenced populations find a better solution: they fix mutations that revert the premature
stop codon so that the full ADE2 sequence can be translated (populations indicated by asterisks in
Figure 2 and mutations shown in red in Figure 6; note that one unsequenced high-fitness population
also has this mutation, confirmed by Sanger sequencing). These populations have higher fitness than
other populations from the same strain background and environment, presumably because they have
both repaired the defect in adenine biosynthesis and avoided the buildup of the toxic intermediate.
As we would expect, these populations do not fix any loss-of-function mutations in other ADE
pathway genes. The fact that only six of our populations find this higher-fitness reversion of ade2-1
is presumably a consequence of differences in target size: while loss-of-function in genes upstream
in the pathway can arise from a variety of mutations in five genes upstream of ADE2, the ade2-1

reversion requires a mutation at a specific codon in ADEZ2.

We note that once a population has fixed an upstream loss-of-function mutation, it requires reversion
of both the original ade2-1 mutation and the upstream mutation to find the higher-fitness genotype.
While this is possible in principle, both mutations have single-codon target sizes and when they occur

alone are likely neutral and deleterious respectively, making this evolutionary path extremely
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improbable. We do not observe any populations that move from the lower fitness genotype to the
higher fitness genotype even after 10,000 generations of evolution. Figure 7 depicts these

evolutionary states using a simple fitness landscape framework.

Contingency

The alternative evolutionary paths involving mutations in the ADE pathway are an example of
contingency that is already well understood (Echenique et al., 2019; Roman, 1956). We next sought
to analyze the role of contingency more broadly in our experiment. To do so, we first analyzed
whether mutations are over-dispersed or under-dispersed among populations, following Good et al.
(2017). Looking within each environment-strain combination, we find that mutations are more over-
dispersed than expected by chance; this is still true if we also include mutations that are present but
not fixed (Figure 7 - figure supplement 1). This provides evidence of “coupon collecting”: populations

with a fixed nonsynonymous mutation in a gene are less likely to fix another mutation in that gene.

We next sought to test whether mutations in a given gene tend to open up or close off opportunities
for beneficial mutations in other genes. To do so, we calculated the mutual information between
multi-hit genes (i.e. for each pair of multi-hit genes, whether a population with a fixed
nonsynonymous mutation in the first gene is more or less likely to have a fixed nonsynonymous
mutation in the second). As in Fisher et al. (2019), we find that the sum of mutual information across
all pairs of multi-hit genes in our experiment is higher than in simulations (P=0.036, Figure 7 - figure
supplement 2). Thus there is an overall statistical signature of contingency in our data: mutations in
certain genes make mutations in others more or less likely. However, we do not have power to isolate
this signature to individual pairs of genes; the mutual information between any two multi-hit genes
in our experiment is not higher than we would expect by chance. Note that because we calculate
mutual information separately for each environment-strain combination (at most 12 populations per
group), we have less power than Fisher et al. (2019) to detect interactions between genes. In sum,
while we cannot confidently identify more specific examples of contingency in our data beyond a

general pattern of coupon-collecting, it is likely to be playing a role, as in the LTEE (Good et al., 2017).

Patterns of molecular evolution specific to diploids

Our experiment provides an opportunity to compare asexual adaptation in diploids to that in
haploids, and to characterize diploid-specific aspects of the evolutionary dynamics (Figure 8). Only
one of our focal haploid populations underwent a whole genome duplication and became diploid

during our experiment (Figure 8 - figure supplements 1-2, and see Methods). We were surprised by
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this result; previous studies have demonstrated that evolving haploid yeast populations often
become diploid (Gerstein et al. 2006; Fisher et al. 2018; Harari 2018). We have excluded this
population from all comparative analyses, and we restrict our analysis of diploids here to the diploid

populations started from a diploid ancestor.

A key difference between evolution in diploids and haploids has to do with the dominance effects of
mutations. Some mutations that provide a fitness advantage in haploids may be fully or partially
dominant in diploids, and hence provide a fitness advantage when they initially arise in a single
chromosome. Others are likely to be recessive, and hence are neutral when they initially arise in a
single chromosome. Earlier laboratory evolution experiments have found that diploid populations of
budding yeast tend to adapt more slowly than haploids, which could be a signature of the impact of
Haldane’s sieve (e.g. if most beneficial mutations in haploids are loss-of-function mutations and most
loss-of-function mutations are recessive) (Fisher et al., 2018; Marad et al., 2018; Zeyl, 2003; Gertstein
et al. 2011). Consistent with this expectation, our diploid populations did increase in fitness more
slowly than haploids over the course of the experiment, and the majority of mutations in our diploid
populations fix as heterozygotes. However, we note that diploid populations do not accumulate
mutations at alower rate (and do not have alower dN/dS) than our haploid MATa populations. Thus
the slower rate of fitness increase in diploids could also be partly a consequence of diminishing

returns (Chou et al,, 2011; Khan et al., 2011; Kryazhimskiy et al., 2014).
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Figure 8. Patterns of Molecular Evolution and Loss of Heterozygosity in Diploids. (A) Genomic
positions of all mutations that experienced loss of heterozygosity (LOH) across all diploid populations (loss
of heterozygosity defined by a mutation reaching >90% frequency). Each horizontal line represents one
population, and the histogram at right represents the total number of LOH fixations in each population, with
populations arranged by environment. The top histogram represents the frequency of loss of heterozygosity
across the genome, and the chromosomes underneath show the centromere location with a black circle.
Genes with five or more LOH fixations are annotated. (B) The fraction of fixed nonsynonymous mutations
that are in essential genes, plotted for mutations fixed in haploid populations, mutations fixed
homozygously in diploid populations (LOH) and mutations fixed heterozygously in diploid populations,
plotted separately for mutations annotated as high or moderate impact by SnpEff (High impact mutations
are likely to cause loss-of-function). The dashed line represents the fraction of the coding genome that is in
essential genes. (C) The ratio of high impact to moderate impact fixations in the same three mutation groups
as in (B), for mutations in non-essential genes only.

One way for recessive (or incompletely dominant) mutations arising in diploid populations to bypass
Haldane’s sieve is by loss of heterozygosity (LOH), in which a mutation is copied to the sister
chromosome by mitotic recombination or whole-chromosome homozygosis (Forche et al., 2011;
Gerstein etal., 2014; St Charles etal., 2012). We see signatures of these LOH events across the genome
in our experiment (Figure 8A). As in Marad et al. (2018) and Fisher et al. (2018), we observe certain
areas of the genome with higher rates of LOH, such as the right arms of chromosomes XII and 1V.
These concentrations of LOH are likely due to some combination of selection in favor of LOH events
and differences in the rates at which they occur. Higher rates of LOH on the right arm of chromosome
XII are likely related to high levels of recombination associated with the ribosomal DNA array (Fisher

etal, 2018; Marad etal., 2018), but we also see evidence that patterns of LOH are affected by selection
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for recessive beneficial mutations that would otherwise be filtered out by Haldane’s sieve (as in
Gerstein et al. (2014)), notably among loss-of-function mutations in the adenine pathway (Figure 34,

Figure 84) .

As driver mutations sweep to fixation in diploids, they have the potential to bring along recessive
deleterious hitchhikers (which then also fix as heterozygotes). Consistent with this, we find that
mutations fixed as heterozygotes in diploids include a large percentage of high impact mutations in
essential genes, while mutations fixed in haploids and mutations fixed homozygously in diploids
include nearly zero high impact mutations in essential genes (Figure 8B). Even in non-essential
genes, mutations that fix heterozygously in diploids are more likely to be high impact mutations
compared to those that fix in haploids or those that fix homozygously in diploids, again suggesting
that diploids are fixing recessive deleterious mutations as heterozygotes (Figure 8C). This build-up
of recessive deleterious load in diploids is expected, but takes on an interesting light in the context
of the widespread loss of heterozygosity we observe. As recessive deleterious load accumulates in
the population, it will limit the rate of LOH by making many LOH events strongly deleterious or lethal.
Thus, passage through Haldane’s sieve by loss of heterozygosity should become less likely as
populations accumulate a substantial load of hitchhiking heterozygous mutations. This process is
likely to be occurring in domesticated industrial diploid yeast lineages, which often become
obligately asexual and accumulate many heterozygous mutations (Gallone et al. 2016). However, we
note that in sexual lineages recombination with sufficient inbreeding could dramatically alter these

dynamics, by continuously purging recessive deleterious load (Charlesworth and Willis, 2009).

While we hypothesize that most of the heterozygous fixations in diploids are either dominant
beneficial mutations or neutral or deleterious hitchhikers, some may be overdominant beneficial
mutations. One possible candidate for overdominance is CCW12, which is hit preferentially in
diploids (Figure 6) and in which only 2 of the 17 fixed mutations lost heterozygosity (both of these
mutations are in-frame deletions of the final amino acid, and note that CCW12 is in a region on the
right arm of chromosome XII where LOH appears common). In Leu et al. (2020), mutations in CCW12
were maintained in asexual diploid populations but lost in sexual populations, supporting a
hypothesis of overdominance, though Leu et al. (2020) did not detect overdominance in
reconstructed strains in their evolution environments. Extensive reconstructions or backcrossing
will be required to understand the importance of overdominance in the evolution of our diploid

populations.
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Loss of the 2-micron plasmid and killer phenotype

While the mitochondria is maintained throughout evolution in all of our focal populations, we
detected frequent loss or loss-of-function in three other exclusively extrachromosomal elements: the
2-micron plasmid and two double-stranded RNA components of the yeast “killer virus” toxin-

antitoxin system (Schmitt and Breinig, 2002).

Following Buskirk et al. (2020) and Jerison et al. (2020), we performed halo killing assays against a
sensitive strain for each of our focal populations at each sequenced timepoint (Woods and Bevan,
1968). To avoid potential inactivation of the toxin at higher temperatures in liquid media (Woods
and Bevan, 1968), we conducted these assays at room temperature on agar plates. By the final
timepoint, 89/90 of our focal populations lost the ability to kill a susceptible strain (Figure 9A), and
this loss happened most rapidly in the high temperature environment, consistent with previous work
(Jerison etal., 2020). This effect is likely due to some combination of segregation or replication failure
at high temperatures (Weinstein et al.,, 1993) and toxin inactivation at high temperatures (Woods
and Bevan, 1968). While we have not sequenced RNA viral genomes over time in our experiment,
Buskirk et al. (2020) also observed widespread loss of killing ability in evolved yeast populations and
determined that mutations in the K1 toxin gene were causing a loss of killing ability. While they found
no evidence for a fitness benefit to the host from these loss-of-function mutations in the toxin gene,
they observed that these mutations were favored in intracellular competition with other viral

variants.

The 2-micron plasmid is a selfish genetic element that imposes a cost on the cell without providing
any apparent benefit (Harrison et al., 2012). Because it is a DNA element, we can directly observe

loss of this element in many of our populations. It appears to be lost less frequently in diploid strains,
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Figure 9. Loss of extrachromosomal elements. (A) Killer virus activity at each sequenced timepoint,
determined by a killer assay against a sensitive strain. Each row represents one population. Examples of
raw data for each qualitative phenotypic category are shown in the key, and the full raw data underlying
these scores is shown in Figure 9 - figure supplement 1. (B) 2-micron plasmid copy number at each
sequenced timepoint. Rows represent the same populations as in A. The x in a diploid population at
generation 1410 marks a population we excluded due to contamination in the population during these
experiments.

and, as with the killer phenotype, it is lost most consistently and rapidly in the high temperature

environment (Figure 9B).

Discussion

Evolution experiments are as much about hypothesis generation as hypothesis testing, and work
across the field has now laid out a series of hypotheses about evolution in general. No experiment
can cover the breadth of biological and environmental diversity needed to fully test these hypotheses;
we cannot replay all of evolution. However, a relatively consistent set of results has emerged across
microbial species evolved asexually for thousands of generations in the lab (Kassen, 2014). Our
results confirm many aspects of the picture drawn by previous work, with several important

exceptions.

Most of our populations followed predictable fitness trajectories in which fitness increases slowed
over time. This pattern was not observed, however, in some of our diploid populations in SC 30°C,
which instead increased in fitness at a slow constant rate similar to Marad et al. (2018), before
experiencing significant rapid increases in fitness likely associated with individual selective sweeps

(Figure 2). Our populations show signatures of clonal interference, and they accumulated fixed
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mutations linearly through time even late in the experiment. We find only one strong case of
repeatable selection at the level of the nucleotide change (adeZ2-1 reversions), but we observe
widespread parallelism across strains and environments at the level of genes and pathways:
populations predictably adapt through loss-of-function mutations in the adenine biosynthesis

pathway, sterility-associated genes, and negative regulators of the Ras pathway.

We do not observe two phenomena that results from the LTEE had previously suggested might be
common: the fixation of mutator alleles that dramatically increase mutation rates, and the
spontaneous emergence of long-term quasi-stable coexistence between competing lineages. The
reasons for these differences remain unclear. In part, we may not observe these phenomena simply
because of the shorter timescale of our experiment. However, we note that within the first 10,000
generations of the LTEE, 4 of the 12 populations fix mutator alleles, and 3 of the 12 populations have
coexisting lineages detectable from sequencing data. Instead, the lack of mutator lineages may stem
from a difference in the rate at which mutators arise or a different balance between the relative
importance of beneficial and deleterious mutations (which depends on the environment and
ancestral fitness (e.g. Swings et al. 2017; Kryazhimskiy et al. 2014)) that leads to less indirect
selection for mutators (Good and Desai, 2016). We also may not have second-order selection
mutators in our experiment because our strains have mutation rates that are higher than the
ancestral E. coli strain in the LTEE, though lower than the LTEE mutator lineages (Lang and Murray
2008; Wielgoss et al. 2013). The difference in how commonly coexistence emerges is similarly
unclear. Our strains and environments may simply lack the metabolic pathway architecture to
produce cross-feeding or other interactions that could be the basis for coexistence. Alternately,
coexisting lineages may have emerged in our experiment but been lost due to strong within-lineage
adaptation or drift. Since our populations are smaller than those in the LTEE, low-frequency lineages
will be lost more commonly during the daily bottleneck. Regardless of the reasons for these
differences, our results suggest that the evolution of mutation rates and of stable ecological
interactions may not be as general or widespread as the LTEE has suggested, and may instead vary

substantially based on differences in the organisms or details of the environmental conditions.

As the longest running evolution experiment in yeast, this project provides a window into how
dominance and loss of heterozygosity can affect the dynamics of adaptation in diploids. Our diploid
populations appear to carry substantial recessive deleterious load (Figure 8B-C) and may carry
beneficial overdominant mutations, but future studies involving genetic reconstructions or

backcrossing will be needed to fully characterize these effects. We also observe widespread loss of
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heterozygosity. The dynamics of mutations in the adenine biosynthesis pathway provides a
particularly interesting example of both how Haldane’s sieve slows adaptation in diploids and how
diploids can bypass the sieve by loss of heterozygosity. At some point during the experiment, most of
our diploid populations homozygously fix a loss-of-function mutation upstream in the pathway,
which eliminates the deleterious toxic intermediate produced as a result of the ancestral adeZ2-1
mutation. While the rate of loss of heterozygosity was high enough to produce these genotypes and
expose them to selection, it appears to have been a limiting factor; haploids typically fixed these
mutations earlier in the experiment (Figure 3 - figure supplements 2-10). Haldane’s “speedcheck”
here slowed adaptation but also provided diploid populations with more time to search for the single-
codon target of the (highly beneficial and apparently dominant) ade2-1 reversion, and indeed, 4/6

populations with this mutation in our experiment are diploids.

Perhaps the most important product of microbial evolution experiments is a base of intuition for
understanding how the interactions between different evolutionary forces determine the dynamics
and outcomes of genotypic and phenotypic evolution. The extent to which this base of intuition can
be generalized across systems and scales -- ranging from specific protein complexes to human
pathogens to entire clades of sexually reproducing species -- is an important set of largely
unanswered questions. However, laboratory microbial evolution experiments have provided basic
expectations to compare against, and have highlighted a collection of phenomena that can sometimes
play a major role in adaptation. Our results here reinforce the conclusion that long-term adaptation
to a constant environment can be characterized by widespread clonal interference, contingency, and
steady molecular evolution even as fitness increases slow down over time. They also highlight the
role of dominance and loss of heterozygosity in diploid evolution. However, our work also calls into
question the generality of conclusions about the importance of the evolution of mutation rates or
stable coexistence. As our populations continue to evolve, further analysis of our experiment and of
other complementary studies will further broaden our understanding of the processes that

determine the rate, predictability, and molecular basis of evolution.
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Materials and Methods

Strains

The two haploid strains used for this study are MJM361, which has genotype MATa, YCR043C:KanMX,
STE5pr-URA3, ade2-1, his3A::3xHA, leu2A:3xHA, trpl-1, canl:STE2pr-HIS3 STE3pr-LEU2,
HML::NATMX, rad5-535 and MJM335, which has genotype MATa, YCR043C:HGHB, STE5pr-URA3,
ade2-1, his3A::3xHA, leu2A::3xHA, trp1-1, can1::STE2pr-HIS3 STE3pr-LEU2, HMR::NATMX, rad5-
535. We created MJM361 and MJM335 by knocking out HML or HMR with the NatMX cassette in
MJM64 and MJM36 respectively (McDonald et al,, 2016). The diploid strain used in this study,
MJM102, is a cross of MJM64 and MJM36.

Culture conditions

We propagated all populations in 128 pL of media in unshaken flat-bottom polypropylene 96-well
plates (VWR #82050-786). For one environment, we used rich YPD media (1% Bacto yeast extract
(VWR #90000-726), 2% Bacto peptone (VWR #90000-368), 2% dextrose (VWR #90000-904)) and
grew populations at 30°C. For the other two environments, we used synthetic complete (SC) media
(0.671% YNB with nitrogen (Sunrise Science #1501-250), 0.2% SC (Sunrise Science # 1300-030),
2% dextrose) and grew populations at 30°C or 37°C. All media was supplemented with 100 pg/ml
ampicillin and 25 pg/ml tetracycline. Using a BiomekFXp robot (Beckman Coulter), we performed
daily 1:210dilutions of populations in YPD 30°C and SC 30°C and daily 1:28 dilutions of populations in
SC 37°C (we used 384-well plates (VWR #82051-306) for serial dilution). These dilutions determine
the number of doublings or generations per day (10 for YPD 30°C and SC 30°C, 8 for SC 37°C), the
bottleneck population size (~8 o 103 for YPD 30°C and SC 37°C, ~2 e 103 for SC 30°C), and the
corresponding effective population size (~5.6 @ 104 for YPD 30°C, ~4.5 ¢ 104 for SC37°C, ~1.4 ¢ 104
for SC 30°C) (Wahl and Gerrish 2001). Before dilution, we resuspended cultures by shaking at 1200
rpm for 2 minutes, and after dilution we shook the new plates at 1200 rpm for 1 minute, both on a
Titramax 100 plate shaker (Heidolph Instruments). After each transfer, the tips (VWR #89204-794)
used to dilute cultures were washed with water (to wash out cells) and 100% ethanol (to lyse
residual cells), left to dry overnight, and reused in culture propagation. The 96-well microplates used
to maintain populations were bleached (to lyse cells), washed with distilled water, and autoclaved
(121°C, 30 mins) before being reused. Every 7 days, we froze aliquots of all populations in 27%
glycerol (final concentration) at -80°C. To monitor for contamination, 6 well-spaced wells in each

environment were intentionally left “blank” at the start of the experiment (i.e. they contained only
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media and no cells). At several timepoints during the evolution we noticed contamination in the
previously blank wells of our 96 well plates. During instances of contamination, we unfroze all
populations from an older glycerol archive and inoculated 4 pL directly into 124 pL of the appropriate
media for each environment. A record with notes on the evolution is available in Supplementary file

1.

Population loss and cross-contamination

Over the course of this experiment, we periodically screened our populations for drug resistance
(Hygromycin, G-418, and ClonNat) in order to detect cross-contamination. Using these checks, we
observed multiple instances of cross-contamination in the YPD 30°C environment from other yeast
species which were part of a concurrent evolution experiment. These events were likely due to
mistakes during our tip washing or media filling procedures, which were more carefully controlled
later in the experiment. As described above for the case of outside contamination, if we observed
cross-contamination shortly after it occurred, we restarted the experiment from a previously frozen
timepoint. In several cases we failed to recognize cross-contamination until thousands of generations
had passed, so we excluded these populations from our analysis (these populations are listed in
Supplementary file 1). While it is possible that cross-contamination occurred more frequently than
just the cases we observed, the sequencing data for focal populations suggests otherwise (fixed
mutations remained fixed in all populations for the duration of the experiment). Due to a combination
of errors in Biomek pipetting and evaporation (especially in the 37°C environment), we also lost
several populations over the course of the experiment (the wells became blanks); these are also

excluded from our analysis, and are listed in Supplementary file 1.

Fitness assays

In order to assess competitive fitness using a consistent reference for each environment, we isolated
clones at various generations from an arbitrarily chosen evolving diploid population in YPD 30°C
(P1G09). We looked for clones that had fitnesses intermediate between the ancestral strains and
evolved strains in each environment, and tagged these clones by inserting a yNatMX cassette and GFP
(pRPL39::eGFP::tADH) into an intergenic region (chromosome VII, position 649234) that was
previously used as a neutral insertion site control in Johnson et al. (2019). This produced the
reference strains used for fitness assays in YPD 30°C and SC 30°C (2490A-GFP1), and SC 37°C
(11470A-GFP1).
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Fitness assays were performed as described previously (Lang et al., 2011). Briefly, we unfroze
populations and a reference strain from glycerol stocks, allowed them to grow in their evolution
environment for one full growth cycle, and then mixed the populations with the reference strain in
equal proportions. We then maintained these mixed populations for 3 daily growth cycles, as
described above. At each transfer, we diluted cells from each well into PBS and used flow cytometry
(Fortessa and LSRII, BD Biosciences) to measure the ratio of the two competing types, counting

approximately 10,000-40,000 cells for each measurement.

To get fitness measurements for each population-timepoint, we first calculated the frequency of
fluorescent reference cells in each sample by gating our flow cytometry data to separate the
fluorescent cells. Because a small percentage of reference cells do not fluoresce, we estimated this
percentage from six wells that only contained the reference in each environment and used these
values to correct the reference frequency in all other wells. We then calculated the fitness of each
population-timepoint as the slope of the natural log of the ratio between the frequencies of the non-
reference and reference cell populations over time (timepoints with reference frequency under 5%
or over 95% were excluded). After taking the mean of fitness measurements from two replicates, we
corrected for batch effects in our assays by subtracting the mean fitness measured for an unlabeled
reference (24904A) in the same fitness assay. While our replicate fitness measurements generally
correlate very well (Figure 2 - figure supplement 1), there is a deviation from the 1:1 line for replicate
fitness measurements for low-fitness populations in SC 37°C. We believe this is due to batch effects
specific to each flow cytometry machine, which in turn affect the reference frequency correction
explained above. Only assays in which the reference frequency goes up very rapidly (low-fitness

populations) are strongly affected.

Because the ancestral genotypes have a strongly deleterious mutation in the adenine biosynthesis
pathway and haploids very quickly fix strongly beneficial suppressor mutations, it was difficult to
measure ancestral fitness in some cases; we sometimes observed changes in fitness during the fitness
assay even when using clones from generation zero (which had been grown prior to and after
freezing glycerol stocks). In all but one environment-strain combination, we were able to identify
populations without any nonsynonymous mutations detected from our sequencing data at the first
timepoint (generation 70 for YPD 30°C and SC 30°C, generation 56 for SC 37°C), so we used the
median of the fitness measured among these populations at the first timepoint to define ancestral
fitness. All MATa populations in YPD 30°C had nonsynonymous mutations present (and often fixed)

at generation 70, but one unsequenced population had a significantly lower generation 70 fitness
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than all others (similar to the one MATa population in YPD 30°C with no-nonsynonymous mutations
at generation 70), so we use the fitness estimated at generation 70 for that population as our

ancestral fitness for MATa populations in YPD.

Whole-genome sequencing

For each of the three environments, we selected 30 focal populations: 12 diploid populations, 12
MATa populations, and 6 MATa populations. We chose these populations randomly after excluding
populations in wells along the edge of the plate (which we have had the most problems with losing
due to evaporation or pipetting errors) and populations where we had detected cross-contamination.
We performed whole-genome, whole-population sequencing on each of these populations at 6
timepoints. After unfreezing populations as described above, we transferred each of our focal
populations into 5 replicate wells in their evolution environment, let them grow for 24 hours, and
then pelleted ~0.5 mL of cells. We used a DNA extraction protocol based on the “BOMB gDNA
extraction using GITC lysis” from Oberacker et al. (2019). Briefly, we resuspended the cell pellets in
50 pL of zymolyase buffer (5mg/mL Zymolyase 20T (Nacalai Tesque), 1M Sorbitol, 100mM Sodium
Phosphate pH 7.4, 10mM EDTA, 0.5% 3-(N,N-Dimethylmyristylammonio)-propanesulfonate (Sigma,
T7763), 200ug/mL RNAse A, and 20mM DTT) (Nguyen Ba et al,, 2019) and incubated the suspension
at 37°C for 1 hour. Subsequently, we added 85puL of a modified BOMB buffer (4M guanidinium-
isothiocyanate (Goldbio G-210-500), 50 mM Tris-HCl pH 8, 20 mM EDTA) and then 115pL of
isopropanol (VWR# BDH1133-4LP), mixing by pipetting for 3 minutes after each addition. We then
added 20pL of Zymo Research MagBinding beads to bind DNA, mixed for 3 minutes by pipetting,
separated beads from the solution using a Magnum FLX 96-well magnetic separation rack (Alpaqua),
and removed the supernatant. We washed the beads with 400 uL of isopropanol and twice with 300
uL of 80% ethanol. Finally, we added 75 pL of sterile water to the beads and mixed by pipetting for 3
minutes. Finally, we separated beads from solution and transferred 44 pL of the supernatant
(containing the DNA) into a new 96-well PCR plate (Bio-Rad HSP9631) for library preparation. This

entire process was carried out on a BiomekFXp robot (Beckman Coulter).

Sequencing libraries were prepared using a Nextera (Illumina) kit as previously described (Baym et
al, 2015), but with 3 additional PCR cycles for a total of 16, and with a two-sided bead-based size
selection after PCR (we used either 0.5/0.7X or 0.55/0.65X bead buffer ratios with PCRClean DX
Magnetic Beads (Aline)). Libraries were sequenced to an average depth of 20-fold (haploids) or 40-
fold (diploids) coverage using a Nextseq 500 (Illumina).
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Sequencing analysis

We trimmed Illumina reads with NGmerge version 0.2 (Gaspar, 2018), aligned all the first-timepoint
samples to a SNP-corrected W303 genome (Lang et al.,, 2013) using BWA version 0.7.15 (Li, 2013),
and marked duplicate reads with Picard version 2.9.0 (http://broadinstitute.github.io/picard). We
used samtools (Li et al,, 2009) to merge these alignments and then used Pilon version 1.23 (Walker
et al.,, 2014) to create a new reference genome that is corrected for additional SNPs present in the
ancestral strains. We then repeated this process until the marking duplicate reads step for all samples
using this new reference and called variants using GATK version 4.1.3.0 (McKenna et al., 2010),
specifically using HaplotypeCaller, GenomicsDBImport, and GenotypeGVCFs with heterozygosity set
to 0.005. We annotated these variants using SnpEff version 4.3T (Cingolani et al., 2012), and split

multi-allelic records into individual records.

We extracted allele depths for each variant to determine the number of reads supporting the
reference and alternate alleles at each site. We then filtered variants based on these read counts. We
first excluded mutations with less than 5 reads representing the alternate allele across all timepoints.
To create this filtered list of variants present in each population, we required that mutations pass at

least one of these two criteria:

1) The total alternate-allele reads across all timepoints for the population in
question is more than 90% of the total alternate-allele reads across all populations

and all timepoints.
OR

2) (Atleast two timepoints have at least 5 reads supporting the alternate allele)
AND (The total alternate-allele reads across all timepoints for the population in
question is more than 90% of the total alternate-allele reads across all populations

at only the first timepoint).

The first criterion addresses if a mutation is unique to a single population, which provides strong
evidence that it is not a common sequencing or alignment error. However, we do not want to exclude
the possibility of parallelism at the nucleotide level, so we include the second criterion as a more
lenient way to exclude these types of errors while not requiring uniqueness. Some small number of
sequencing or alignment errors will pass these filters, so we emphasize that this is only a lenient first

step, and that our analysis of parallelism and contingency relies on also observing fixation.
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We simplify our SnpEff annotations to indicate one of five types of mutation; in order of decreasing
putative effect they are indel, nonsense, missense, synonymous, or noncoding. For mutations with
multiple annotations, we assign the mutation type with the largest putative effect. To test if some
nearby mutations are part of a single mutational event, we perform Fisher’s exact test on the
alternate and reference allele counts at each timepoint for mutations within 25 bp of each other. If
two mutations have no significant differences detected at the P<0.01 level for any timepoint, we label
them as part of the same “mutation group,” and they are counted as one mutation in subsequent
analysis. We define mutations as “present” at a particular timepoint if they have coverage of at least
5X and are at greater than or equal to 0.1 frequency. We define mutations as “fixed” at a particular
timepoint if they have coverage of at least 5X, are at greater than or equal to a frequency of 40%
(diploids) or 90% (haploids), and do not drop below these thresholds while still at >=5X coverage at
a later timepoint. If a mutation is called fixed at one timepoint, it is automatically called fixed at later
timepoints, even if they have less than 5X coverage. Using the same rules, we also call loss of
heterozygosity of a mutation in diploids using a frequency threshold of 90%. We exclude mutations
called in the 2-micron plasmid from further analysis since most populations lose this plasmid during
evolution and variation in coverage, and misalignments can easily produce false mutation calls in
these cases. We also exclude mutations in the telomeres, where alignment errors and repetitive

regions make mutation calling difficult.

Structural variant / copy number variant analysis

We use LUMPY and smoove (https://github.com/brentp/smoove) to call structural variants in our

sequencing data (Layer et al. 2014). All structural variants called are listed in the processed variant
call files for each population included in Supplementary file 2. In addition, we use a custom pipeline
to identify putative copy number variants (CNVs) in our data. We use samtools-depth to calculate
per-site depth from our bam files, and then calculate the average depth in non-overlapping 500 bp
windows along the genome. We calculate the median window-depth across the entire genome for
each sample and divide all window-depths by this value to get “relative depth.” To account for regions
that are at a different copy number in our ancestral strains, we calculate the average relative depth
at the first sequenced timepoint for each window (and for each strain). We divide the relative depth
in our data by these values to get “standardized depth.” Windows with a relative depth less than 0.25
at the first timepoint are excluded from analysis. For each chromosome in each sample, we use a
simple, untrained HMM to detect tracts of standardized depth that deviate from the expectation of 1.

We allow states 0, 0.5, 1, 1.5, 2, 3, and 4, with variances equal to the calculated variance in
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standardized depth multiplied by the state (except for state 0, where we use the calculated variance
multiplied by 0.5), initial probabilities of 1% for each non-1 state (94% for state 1), and transition
matrix probabilities of .01% for all non-diagonal entries (99.94% along the diagonal). This is a rough
detection method, but it succeeds in identifying putative CNVs, which we then subject to a filtering
process. First, we merge CNV records across timepoints if they cover the same region. Next, we
exclude CNVs in telomeric regions, CNVs found in only one timepoint, and CNVs that are less than 4
windows (2kb) long. Finally, we manually inspect our structural variant and CNV calls together using

a modified version of Samplot (https://github.com/ryanlayer/samplot) to create a list of confirmed

copy number variants in our populations (Supplementary file 3). During this analysis, we noticed two
regions with high copy-number that experienced copy-number changes in many populations: one
associated with the CUP1 tandem array and one associated with the ribosomal DNA tandem array.
We excluded these regions from the above analysis and show their copy number changes in every

population in Figure 3 - figure supplement 11.

Analysis of multi-hit genes

To look for evidence of parallelism and contingency in our data, we focus on nonsynonymous
mutations in genes (we consider all open reading frames to be genes for this analysis) that are fixed
at the final timepoint. We define the multiplicity as the number of hits multiplied by the number of
possible nonsynonymous mutations for that gene, scaled by the mean number of possible
nonsynonymous mutations across all genes. In our null model, the hits for each population (the
number of hits from our data) are randomly assigned to genes from the complete set of 6579
annotated open reading frames in S. cerevisiae, weighted by the number of possible nonsynonymous
mutations in each gene. We simulate these random draws 1,000 times to generate null distributions
for gene multiplicity and number of unique populations in which a gene has at least one hit. To look
for parallelism at the codon level, we randomize the location of each nonsynonymous fixed mutation
in the gene in which it occurred and then count the number of populations with simulated hits at
each amino acid position. We repeat this process ten times to build a null distribution and compare

it to the empirical distribution of populations hit for each amino acid position (Figure 5C).

Next, we move away from using multiplicity, since we know that selection is playing a large role and
mutation rate is not completely limiting adaptive dynamics (clonal interference is observed in our
sequencing data). This means that as we look to identify common targets of selection, we will treat
the probability of a hit in any gene where we have observed at least one hit as equally likely (instead

of weighting by the number of possible nonsynonymous mutations). To this end, we define multi-hit
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genes as those with hits in at least six populations. Based on the simulations above, a gene has a
P=0.02 chance of being hit in at least six populations. While this is a lenient cutoff that will produce a
number of false positives, we see a large excess of genes with hits in greater than six populations in
our data (Figure 5B). To look for functional patterns in our mutation data, we performed GO-Term
Enrichment on the set of multi-hit genes analysis using the GOATOOLS python library (Klopfenstein
et al, 2018). The enrichments that were significant after Benjamini-Hochberg multiple hypothesis

testing correction are listed in Supplementary file 4.

We define essential genes based on data from the yeast gene deletion collection (Giaever et al., 2002;
Liu et al,, 2015). The set of essential genes used in Figure 8 are those classified as non-evolvable in

Liuetal. (2015).

Multi-hit gene enrichment by strain and/or environment

Within a given set of populations, we model the probability of a multi-hit gene i being associated with
a fixation event based on N;, the number of populations with a mutation fixed in gene i plus a 0.1
pseudocount (to avoid zero probabilities), and M, the total number of gene hits across all populations
in the set (we ignore when a gene is hit multiple times in the same population for this probability
calculation). We model the probability a gene is hit in population g based on the total number of gene

hits in population g, My, where hy;is 1 if gene i is hit in population g, and 0 if not:
P(Geneinot hit inpop g) = P(hy; =0) = (1—(N; /M) )M,
P(Geneihitinpop g) = P(hgi=1) = 1 —(1—=(N; /M) )Ms.

To test whether genes are disproportionately mutated in different strain backgrounds (MATa, MAT«,
diploid) or different environments, we compare four models that use different sets of populations to

compute P(hgy;):

1) P(hg) is calculated using the entire set of populations (so that there is only one P(hy;) for each
multi-hit gene)

2) P(hy) is calculated separately for each strain background (so that there are three P(hy;) for
each multi-hit gene, one for each strain)

3) P(hy) is calculated separately for each environment (so that there are three P(hy) for each

multi-hit gene, one for each environment)
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4) P(hg) is calculated separately for each environment-strain combination (so that there are

nine P(hgy;) for each multi-hit gene, one for each environment-strain combination)

For each multi-hit gene, we calculate the log-likelihood of the data under each model and calculate
log-likelihood ratios between model 1 and each of the other three models. We then create 10,000 null
datasets by drawing values from the probabilities defined in model 1 and compute log-likelihood
ratios for these simulated data. To define significant effects (at a P<0.05 level), we compare our log-
likelihood ratios to distributions of log-likelihood ratios from these null datasets and correct for
multiple hypothesis testing using a Benjamini-Hochberg correction. If multiple models are
significantly better than model 1, we use the Akaike information criterion (AIC) to determine the
model that best explains the data. Data on multi-hit genes and these statistical tests are available in

in Supplementary file 4.

Mutual information analyses

Next, we investigate whether the fixation of a mutation in any of our multi-hit genes is dependent on
fixation of a mutation in another multi-hit gene. For each environment-strain combination, we
calculate mutual information between all multi-hit genes as described in Fisher et al. (2019). To avoid
mistaking an environment or strain effect for an association between genes, we use separate
probabilities for each environment-strain combination, as in model 4 above, and define the
probability of a mutation having a hit in gene i in any one population from environment-strain

combination e as (equation 2.1 from Fisher et al. 2019):
Ne 5
P(hile) = Cu £Ne, Fl,

where Mgi = My; + ¢ and My, = 1 if there is a hit in gene i in population g, N. is the total number of
populations in environment-strain combination e, Cy = 1/N(1 + €), and the pseudocount e = 1/M (M
is the total number of gene hits across all populations in the environment-strain combination, as in
model 4 above). In contrast to the enrichment analysis above, this formula treats populations as
exchangeable, which is a reasonable assumption since the number of fixed mutations in each

environment-strain combination is not highly variable (Figure 3B)).

We calculate joint probabilities and mutual information as in Fisher et al. 2019 (see equations 2.2-
2.7). Because we separate our data into sets of populations with a shared environment and strain
background, our data contain many cases where a gene is hit zero times, which inflates the sensitivity

to the pseudocount used in Fisher et al. (2019). To avoid this issue, we set the mutual information
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between two genes to zero if either of the genes has no mutations in a given environment-strain
combination. We sum the mutual information values for each pair of genes across the 9 possible
environment-strain combinations, and record the total mutual information (Ml the sum of MI
values across all possible gene pairs) and the maximum mutual information between any two genes

(MImax).

Next, we compare these results to simulated datasets. We create 10,000 null datasets by drawing
from P(hi/e) for each gene, and calculate mutual information as described above to build null

distributions for Ml;,; and MIax.

The results are plotted in Figure 7 - figure supplement 1. While our M/, for our data is higher than
in simulated datasets (P=0.03), MInq for our data lies well within the range of simulated data, so we
cannot detect any specific examples of contingency. As in Fisher et al. (2019), we test the robustness
of our results to choices of the pseudocount eM between 0.1 and 2 (the value used above was 1), and

find that it does not qualitatively change our results.

Over-/under- dispersion analysis

Following Good et al. (2017), we looked for statistical patterns of contingency by comparing the
dispersion configurations for genes with simulated data. For each environment-strain combination,
we record the number of times each gene is hit and the number of populations in which it is hit. We
also simulate distributing these hits across populations by multinomial draws weighted by the
number of hits in each population. We run this simulation, for each possible number of hits (up to the
maximum observed), 10,000 times for each environment-strain combination. For each number of
hits, we compute the probability of those hits being distributed among each possible number of
populations for both our data and the simulated data. We compute the “excess probability” in our
data by subtracting the simulated probability from the data probability. The results are plotted in
Figure 7 - figure supplement 2A. We repeat this process with mutations that are detected but do not
fix included (Figure 7 - figure supplement 2B). Red squares along the diagonal suggest that the
mutations are overdispersed, meaning that nonsynonymous mutations are less likely to fix multiple
times in the same population than we would expect by chance. As in Good et al. (2017), we quantify
this observation of overdispersion by showing that mutations have less “missed opportunities” than

we would expect by chance (Figure 7 - figure supplement 2).
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Killer phenotype assays

To assay for the killer phenotype, we used a modified halo killing assay (Woods and Bevan, 1968).
First, we plated a 150 pL of 1:100 diluted saturated culture of a sensitive strain (YAN563) on a single-
well (VWR #46600-638) methylene blue agar plate (20 g/L peptone, 10 g/L yeast extract, 20 g/L
citric acid monohydrate, 30 mg/L methylene blue, 10 g/L. K2ZHPO4, 20 g/L dextrose, 15 g/L noble
agar). We then used the Biomek Fxp Liquid Handler to spot 3.5 pL of saturated culture of each of our
focal populations onto this lawn. We designed a Biomek protocol that uses a deck spring attachment
(“Alpillo” from Alpaqua) to make sure that the tips contacted the agar but did not pierce the agar
layer during this step. After 2-3 days of incubation at room temperature, we scanned the plates. We

” o«

scored each population-timepoint as “Killer,” “Diminished Killing,” or “No Killing,” based on the size
of the zone of inhibition (halo) around the spot (see Figure 9A for examples of each category, and
Figure 9 - figure supplement 1 for the underlying images). The sensitive strain used (YAN563) is a
cross between YAN457 (MATa, his3A1, wura3A0, leu2A0, lys2A0, RME1lpr::ins-308A,
ycr043cA0::NatMX, can1::RPL39pr_ymGFP_Ste2pr_SpHIS5_Ste3pr_LEUZ, derived from BY4742) and
YAN433 (MATa, his3A1, ura3A0, leu2A0, lys2A0, RMElpr:ins-3084, ycr043cAQ::HphMX4,

canl::RPL39pr_ymCherry_SteZ2pr_SpHIS5_Ste3pr_LEU2, derived from BY4742).

Ploidy assays

To investigate whether any of our focal populations had changed ploidy during the course of the
experiment, we measured the DNA content of clones isolated from each focal population at the final
timepoint. We isolated 1-2 clones from each focal population and measured DNA content using a
nucleic acid stain as described previously in Jerison et al. (2020), but with minor modifications.
Briefly, we diluted 4 pL of saturated cultures from each clone (grown in YPD) into 120 puL of water in
a 96-well plate, centrifuged the plate, removed the supernatant, resuspended in 50 pL water, added
100 pL of ethanol and pipetted slowly to mix, and incubated at room temperature for 1 hour. Next,
we centrifuged the plate, removed the supernatant, let dry for ~5 minutes, resuspended in 65 pL
RNase solution (2 mg/ml RNase in 10 mM Tris-HCl, pH 8.0 and 15 mM Na(l), and incubated at 37°C
for 2 hours. We then added 65 pL of 2 uM Sytox Green (Thermo Fisher Scientific S7020), covered the
plates in aluminum foil, and shook on a Titramax 100 plate shaker (Heidolph Instruments) for
approximately 45 minutes at room temperature. We measured DNA content using a linear FITC
channel on a Fortessa flow cytometer (BD Biosciences). FITC histograms are shown and described in

Figure 8 - figure supplement 1.
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Preliminary imaging

To investigate the possibility of clustering phenotypes in some of our populations with abnormal
ploidy stain data, we imaged our focal populations at each of the sequenced timepoints. We diluted
cultures 1:360 into 384-well plates (VWR #82051-306) and imaged cells using the Celldiscoverer 7

(Zeiss). Images for all populations are available in Supplementary file 6.

Determining the mutation responsible for a higher mutation rate in MAT7a
populations

To investigate the putative higher mutation rate in the MATa populations in our experiment, we
examined a list of mutations that differentiate our MATa ancestor and our MATa ancestor (available
in Supplementary file 5), and identified a putative causative mutation: a missense mutation at a
conserved residue in TSA1 (G146S, nucleotide mutation: G->A at bp 436). TSA1 encodes thioredoxin
peroxidase, which is involved in eliminating reactive oxygen species that can cause DNA damage, and
previous work has shown that deleting the gene causes an increase in mutation rate (Huang et al,,

2003). As we would expect, this mutation is heterozygous in the diploid ancestor.

We reconstructed the TSA1 G146S mutation by Delitto Perfetto in the S288C background (Storici and
Resnick, 2006). Briefly, we transformed BY4741 with a KIURA3-KanMX4 cassette, knocking out the
whole TSA1 gene, thus creating YAN727. We then removed the cassette with a PCR amplified TSA1
fragment containing the G146S mutation, selecting on 5-FOA and the absence of G418 resistance,
thus creating YAN728. The presence of the mutation was then confirmed by Sanger sequencing. We
used BY4741 for these reconstructions because our MATa ancestor has a functional URA3 (under the

STES promoter), making it more difficult to create this type of reconstruction.

We performed fluctuation assays on each of the three strains as previously described (Lang and
Murray, 2008). Briefly, we inoculated a colony from each strain into SC, grew overnight, diluted
1/10,000 and split into 100 pL aliquots in all wells of a 96-well plate, sealed the plate with aluminum
foil, and incubated at 30°C without shaking for 48 hours. We combined the 8 wells from column 2 of
each plate and used the pooled culture to measure cell density on a Coulter Counter Z2 (Beckman
Coulter). We spotted the entire volume of each of the other 88 wells on CSM-Arg (Sunrise Scientific)
plates supplemented with 100 mg/L L-canavanine (Sigma-Aldrich, St. Louis). Plates were allowed to
dry overnight at room temperature, incubated at 30°C for 36 hours, then left at room temperature

for 12 hours before counting and scanning. We attempted to count all colonies >0.25mm in size in
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each spotted culture, but note that our estimates of counts >50 are approximate due to overlapping

colonies (counts available in Supplementary file 5).

We used the Ma-Sandri-Sarkar Maximum Likelihood Estimator (Sarkar et al. 1992), implemented in
python (https://github.com/bondarevts/flucalc), to measure the mutation rate at the CAN1 locus
(Radchenko et al., 2018; Sarkar et al., 1992). As noted in Lang and Murray (2008), there is likely

limited postplating growth of sensitive yeast at this Canavanine concentration, leading to the
deviations from the expected Luria-Delbruck distribution in Figure 4 - figure supplement 1. Despite
this complication, we can easily see that the TSA1 mutation causes a ~5-fold increase in mutation
rate over the BY4741 background, and the TSA1 deletion causes an ~8-fold increase in mutation rate
over the BY4741 background (Figure 4 - figure supplement 1). In our case, the important result is
simply that the TSA1 G146S mutation causes an increase in mutation rate, consistent with the
hypothesis that it underlies the higher number of fixed mutations in MATa populations in our

experiment.
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All code used in this project is available on GitHub:

https://github.com/mjohnson11/VLTE PIPELINES

An interactive data browser for this project is available online:

https://www.miloswebsite.com/exp evo browser

Additional Files

Supplementary Files

Supplementary File 1. Experimental record. Includes daily notes, phenotype information for

individual wells (including fitness), and a record of sample sizes for statistical tests.
Supplementary File 2. A zip file of processed variant calling files for each population.
Supplementary File 3. A table of all confirmed copy number variants.

Supplementary File 4. Summary information on mutations, including which genes are mutated in
which populations, GO-term enrichments, multi-hit codons, and statistical test results for strain or

environment enrichment for each multi-hit gene.

Supplementary File 5. A record of the detected differences between our ancestral strains and of the

fluctuation assay confirming that the TSA1 mutation increases mutation rate.

Supplementary File 6. A zip file of all preliminary cell imaging.



